Writing Functions in Scheme

e Suppose we want a function ct which takes a list of symbols and
returns the number of symbols in the list

(ct'(@bc)) - - 3
(ct')) - -0

(ct'xyzwt)) - -5

How can we write this function?

Writing Functions in Scheme
 Answer #1: Have the instructor write it

;; Ct : <list-of-sym> -> <num>
, (ct'() - -0
,; (ct'(abc)) - -3
(define (ct)
(cond
[(null? 1) O]
[else (+ 1 (ct (cdr D))

Checking My Answer: Empty List

(define (ct |) - (define (ct)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr))]) [else (+ 1 (ct (cdr 1)))])
(ct'() (cond

[(null? () O]
[else (+ 1 (ct (cdr "()))])

Checking My Answer: Empty List

(define (ct 1) - (define (ct)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr 1)))]) [else (+ 1 (ct (cdr 1)))])
(cond (cond
[(null? '()) 0] [#t O]

[else (+ 1 (ct (cdr "()))]) [else (+ 1 (ct (cdr "()))])

Checking My Answer: Empty List

(define (ct 1) - (define (ct)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr 1)))])) [else (+ 1 (ct (cdr 1)))]))
(cond 0
[#t O]

[else (+ 1 (ct (cdr '())))])

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr))]) [else (+ 1 (ct (cdr 1))])
(ct'(ab c)) (cond

[(null? '(a b c)) 0]
[else (+ 1 (ct (cdr '(a b c))))])

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr))]) [else (+ 1 (ct (cdr))])
(cond (cond
[(null? '(a b c)) 0] [#f 0]

[else (+ 1 (ct (cdr '(a b c))))]) [else (+ 1 (ct (cdr '(a b c))))])

Checking My Answer: List of 3 Symbols

(define (ct 1) — (define (ct)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr))]) [else (+ 1 (ct (cdr 1))])
(cond (+ 1 (ct (cdr '(ab c)))
[#f O]

[else (+ 1 (ct (cdr '(a b c))))])

Checking My Answer: List of 3 Symbols

(define (ct) - (define (ct)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr))]) [else (+ 1 (ct (cdr 1))])
(+ 1 (ct (cdr'(a b c))) (+1

(ct'(b c)))

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct l)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr)))]) [else (+ 1 (ct (cdr 1)))])
(+1 (+1
(ct ‘(b ¢))) (cond

[(null? '(b c)) 0]
[else (+ 1 (ct (cdr '(b c)))])

10

Checking My Answer: List of 3 Symbols

(define (ct 1) — (define (ct 1)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr 1))]) [else (+ 1 (ct (cdr))])
(+1 (+1
(cond (cond
[(null? '(b c)) 0] [#f O]

[else (+ 1 (ct (cdr '(b c)))]) [else (+ 1 (ct (cdr '(b c))])

11

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr 1))]) [else (+ 1 (ct (cdr 1))])
(+1 (+1
(cond (+1
[#f O] (ct (cdr ‘(b c)))))

[else (+ 1 (ct (cdr '(b c)))])

12

Checking My Answer: List of 3 Symbols

(define (ct 1) — (define (ct 1)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr))]) [else (+ 1 (ct (cdr 1))])
(+1 (+1
(+1 (+1

(ct (cdr ‘(b c))))) (ct'(c)))

13

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct)
(cond (cond
[(null? 1) 0] [(null? 1) O]
[else (+ 1 (ct (cdr D)) [else (+ 1 (ct (cdr 1)))])
(+1 (+1
(+1 (+1
(ct '(c)))) (cond

[(null? '(c)) O]
[else (+ 1 (ct (cdr '(c))))])

14

Checking My Answer: List of 3 Symbols

(define (ct)
(cond
[(null? 1) O]
[else (+ 1 (ct (cdr)))])

(+1
(+1
(cond
[(null? '(c)) O]
lelse (+ 1 (ct (cdr '(c)))]))

(define (ct 1)
(cond
[(null? 1) O]
[else (+ 1 (ct (cdr 1)))])

(+1
(+1
(cond
[#f O]

lelse (+ 1 (ct (cdr "(c))))

15

Checking My Answer: List of 3 Symbols

(define (ct 1) — (define (ct 1)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr))]) [else (+ 1 (ct (cdr 1))])
(+1 (+1
(+1 (+1
(cond (+1
[#f O] (ct (cdr '(c))))))

lelse (+ 1 (ct (cdr (c))])

16

Checking My Answer: List of 3 Symbols

(define (ct) - (define (ct)
(cond (cond
[(null? 1) O] [(null? 1) 0]
[else (+ 1 (ct (cdr 1)))]) [else (+ 1 (ct (cdr D))
(+1 (+1
(+1 (+1
(+1 (+1

(ct (cdr'(c)))))) (ct*0))

17

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct |)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr 1)))]) [else (+ 1 (ct (cdr 1)))])
(+1 (+1
(+1 (+1
(+1 (+1
(ct'0)))) (cond

[(null?*()) O]
[else (+ 1 (ct (cdr "()))D)

Checking My Answer: List of 3 Symbols

(define (ct 1)
(cond
[(null? 1) O]
[else (+ 1 (ct (cdr))])

(+1
(+1
(+1
(cond

[(null?*()) O]

[else (+ 1 (ct (cdr "0))D))

(define (ct 1)
(cond
[(null? 1) O]
[else (+ 1 (ct (cdr 1)))])

(+1
(+1
(+1
(cond
[#t O]

[else (+ 1 (ct (cdr "0))D))

19

Checking My Answer: List of 3 Symbols

(define (ct)
(cond
[(null? 1) O]
[else (+ 1 (ct (cdr 1)))])

(+1
(+1
(+1
(cond
[#t 0]

[else (+ 1 (ct (cdr "))

—

(define (ct 1)
(cond
[(null? I) O]
[else (+ 1 (ct (cdr 1)))])

(+1
(+1
(+1
0)))

20

Checking My Answer: List of 3 Symbols

(define (ct 1) — (define (ct 1)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr 1)))]) [else (+ 1 (ct (cdr)))])
(+1 (+1
(+1 (+1
(+1 1))

0)))

21

Checking My Answer: List of 3 Symbols

(define (ct 1) — (define (ct 1)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr 1)))]) [else (+ 1 (ct (cdr)))])
(+1 (+1
(+1 2)

1))

22

Checking My Answer: List of 3 Symbols

(define (ct) - (define (ct)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr))]) [else (+ 1 (ct (cdr 1))])
(+1 3

2)

23

Writing Functions in Scheme: Answer #2

Answer #2: Use the general design recipe

« Locate or write a data definition

* Write a contract

* Write examples

» Create a template that follows the shape of the data definition
e Convert the template to the final function

 Run examples as tests

24-25

Writing Functions in Scheme: Answer #2

Answer #2: Use the general design recipe

« Locate or write a data definition

* Write a contract

* Write examples

e Create a template that follows the shape of the data definition
e Convert the template to the final function

 Run examples as tests

works 90% of the time

26-27

Data Definitions
What is a "list of symbols"?

<list-of-sym> = ()
(cons <symbol> <list-of-sym>)

e Sometimes the data definition is given, somtimes you have to
create it

o Usually include it in your code as a comment

28-30

Contracts

A contract is a comment that identifies set of input values and output
values

. ct: <list-of-sym> -> <num>

» All mentioned data sets should have a data definition somewhere

31-32

Examples

Examples (usually in comments at first) help clarify the purpose of
the function

5 (ct'()) --0
; (ct'(abc)) - - 3

 Make sure that every case in the data definition is covered at least
once

33-34

Template

A template reflects the structure of the input according to the data
definition

<list-of-sym> = ()
.= (cons <symbol> <list-of-sym>)

(define (ct I|)
(cond
[(nul 1?2 1) ...]

[(pair? 1) ...(car |)...(ct (cdr 1))...]))

35

Template

A template reflects the structure of the input according to the data
definition
<list-of-sym> = ()
.= (cons <symbol> <list-of-sym>)

(define (ct I|)
(cond
[(nul 1?2 1) ...]

[(pair? 1) ...(car |)...(ct (cdr 1))...]))

e Two cases in data definition implies cond with two cond-lines

36

Template

A template reflects the structure of the input according to the data
definition
<list-of-sym> = ()
.= (cons <symbol> <list-of-sym>)

(define (ct I|)
(cond
[(nul 1?2 1) ...]

[(pair? 1) ...(car |)...(ct (cdr 1))...]))

e Corresponding predicate for each data case

37

Template

A template reflects the structure of the input according to the data
definition
<list-of-sym> = ()
.= (cons <symbol> <list-of-sym>)

(define (ct I|)
(cond
[(nul 1?2 1) ...]

[(pair? 1) ...(car |)...(ct (cdr 1))...]))

« Extract parts in cases with meta-variables

38

Template

A template reflects the structure of the input according to the data
definition
<list-of-sym> = ()
.= (cons <symbol> <list-of-sym>)

(define (ct I|)
(cond
[(nul 1?2 1) ...]

[(pair? 1) ...(car |)...(ct (cdr 1))...]))

 Recursive call for self-references in data definition

39

Template

A template reflects the structure of the input according to the data
definition
<list-of-sym> = ()
.= (cons <symbol> <list-of-sym>)

(define (ct I|)
(cond
[(nul 1?2 1) ...]

[(pair? 1) ...(car |)...(ct (cdr 1))...]))

o Atemplate depends only on the input data; it ignores the function's
purpose

(Nevertheless, generating a template, which is fairly automatic,
usually provides most of the function)

40-41

Template to Function

Transform template to function line-by-line

(define (ct I|)
(cond
[(nul 1?2 1) ...]
[(pair? |) ...(car |)...(ct (cdr

1)) ..

1))

42

Template to Function

Transform template to function line-by-line

(define (ct I|)
(cond
[(null?) O]
[(pair? |) ...(car |)...(ct (cdr

1)) ..

1))

43

Template to Function

Transform template to function line-by-line

(define (ct I)
(cond
[(null? 1) O]
[(pair? |) (+ 1 (ct (cdr

e Sometimes, a part of the template isn't needed

1)))1))

44

Reminder: Recipe

» Locate or write a data definition

« Write a contract

o Write examples

e Create a template that follows the shape of the data definition
o Convert the template to the final function

 Run examples as tests

45

Reminder: Template Steps

» Create a cond expression with one line for each case in the data
definition

* Write down a predicate for each case
* For the answer, extract parts in cases with meta-variables
» For each self-reference in the data definition, add a recursive call

Shape of template shape == Shape of data definition

46

More Examples

(more examples in class)

47

Generalized Recipe

e Locate or write data definitions
e Write contracts
o Write examples

» Create a template that follows the shape of the data definition, one
for each data definition

e Convert the templates to the final functions

 Run examples as tests

48

