
Writing Functions in Scheme

• Suppose we want a function ct which takes a list of symbols and
returns the number of symbols in the list

(ct '(a b c)) →→ 3

(ct '()) →→ 0

(ct '(x y z w t)) →→ 5

How can we write this function?

1

Writing Functions in Scheme

• Answer #1: Have the instructor write it

;; ct : <list-of-sym> -> <num>
;; (ct '()) →→ 0
;; (ct '(a b c)) →→ 3
(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

2

Checking My Answer: Empty List

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(ct '())

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [(null? '()) 0]
 [else (+ 1 (ct (cdr '())))])

3

Checking My Answer: Empty List

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [(null? '()) 0]
 [else (+ 1 (ct (cdr '())))])

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [#t 0]
 [else (+ 1 (ct (cdr '())))])

4

Checking My Answer: Empty List

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [#t 0]
 [else (+ 1 (ct (cdr '())))])

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

0

5

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(ct '(a b c))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [(null? '(a b c)) 0]
 [else (+ 1 (ct (cdr '(a b c))))])

6

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [(null? '(a b c)) 0]
 [else (+ 1 (ct (cdr '(a b c))))])

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [#f 0]
 [else (+ 1 (ct (cdr '(a b c))))])

7

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [#f 0]
 [else (+ 1 (ct (cdr '(a b c))))])

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1 (ct (cdr '(a b c))))

8

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1 (ct (cdr '(a b c))))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (ct '(b c)))

9

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (ct '(b c)))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (cond

 [(null? '(b c)) 0]
 [else (+ 1 (ct (cdr '(b c))))]))

10

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (cond

 [(null? '(b c)) 0]
 [else (+ 1 (ct (cdr '(b c))))]))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (cond

 [#f 0]
 [else (+ 1 (ct (cdr '(b c))))]))

11

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (cond

 [#f 0]
 [else (+ 1 (ct (cdr '(b c))))]))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (ct (cdr '(b c)))))

12

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (ct (cdr '(b c)))))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (ct '(c))))

13

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (ct '(c))))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (cond
 [(null? '(c)) 0]
 [else (+ 1 (ct (cdr '(c))))])))

14

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (cond
 [(null? '(c)) 0]
 [else (+ 1 (ct (cdr '(c))))])))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (cond
 [#f 0]
 [else (+ 1 (ct (cdr '(c))))])))

15

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (cond
 [#f 0]
 [else (+ 1 (ct (cdr '(c))))])))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (ct (cdr '(c))))))

16

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (ct (cdr '(c))))))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (ct '()))))

17

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (ct '()))))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (cond

 [(null? '()) 0]
 [else (+ 1 (ct (cdr '())))]))))

18

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (cond

 [(null? '()) 0]
 [else (+ 1 (ct (cdr '())))]))))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (cond

 [#t 0]
 [else (+ 1 (ct (cdr '())))]))))

19

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (cond

 [#t 0]
 [else (+ 1 (ct (cdr '())))]))))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 0)))

20

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 0)))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 1))

21

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 1))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 2)

22

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 2)

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

3

23

Writing Functions in Scheme: Answer #2

Answer #2: Use the general design recipe

• Locate or write a data definition

• Write a contract

• Write examples

• Create a template that follows the shape of the data definition

• Convert the template to the final function

• Run examples as tests

24-25

Writing Functions in Scheme: Answer #2

Answer #2: Use the general design recipe

• Locate or write a data definition

• Write a contract

• Write examples

• Create a template that follows the shape of the data definition

• Convert the template to the final function

• Run examples as tests

works 90% of the time

26-27

Data Definitions

What is a "list of symbols"?

<list-of-sym> ::= '()
::= (cons <symbol> <list-of-sym>)

• Sometimes the data definition is given, somtimes you have to
create it

• Usually include it in your code as a comment

28-30

Contracts

A contract is a comment that identifies set of input values and output
values

;; ct: <list-of-sym> -> <num>

• All mentioned data sets should have a data definition somewhere

31-32

Examples

Examples (usually in comments at first) help clarify the purpose of
the function

;; (ct '()) →→ 0
;; (ct '(a b c)) →→ 3

• Make sure that every case in the data definition is covered at least
once

33-34

Template

A template reflects the structure of the input according to the data
definition

<list-of-sym> ::= '()
::= (cons <symbol> <list-of-sym>)

(define (ct l)
 (cond
 [(null? l) ...]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

35

Template

A template reflects the structure of the input according to the data
definition

<list-of-sym> ::= '()
::= (cons <symbol> <list-of-sym>)

(define (ct l)
 (cond
 [(null? l) ...]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

• Two cases in data definition implies cond with two cond-lines

36

Template

A template reflects the structure of the input according to the data
definition

<list-of-sym> ::= '()
::= (cons <symbol> <list-of-sym>)

(define (ct l)
 (cond
 [(null? l) ...]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

• Corresponding predicate for each data case

37

Template

A template reflects the structure of the input according to the data
definition

<list-of-sym> ::= '()
::= (cons <symbol> <list-of-sym>)

(define (ct l)
 (cond
 [(null? l) ...]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

• Extract parts in cases with meta-variables

38

Template

A template reflects the structure of the input according to the data
definition

<list-of-sym> ::= '()
::= (cons <symbol> <list-of-sym>)

(define (ct l)
 (cond
 [(null? l) ...]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

• Recursive call for self-references in data definition

39

Template

A template reflects the structure of the input according to the data
definition

<list-of-sym> ::= '()
::= (cons <symbol> <list-of-sym>)

(define (ct l)
 (cond
 [(null? l) ...]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

• A template depends only on the input data; it ignores the function's
purpose

(Nevertheless, generating a template, which is fairly automatic,
usually provides most of the function)

40-41

Template to Function

Transform template to function line-by-line

(define (ct l)
 (cond
 [(null? l) ...]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

42

Template to Function

Transform template to function line-by-line

(define (ct l)
 (cond
 [(null? l) 0]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

43

Template to Function

Transform template to function line-by-line

(define (ct l)
 (cond
 [(null? l) 0]
 [(pair? l) (+ 1 (ct (cdr l)))]))

• Sometimes, a part of the template isn't needed

44

Reminder: Recipe

• Locate or write a data definition

• Write a contract

• Write examples

• Create a template that follows the shape of the data definition

• Convert the template to the final function

• Run examples as tests

45

Reminder: Template Steps

• Create a cond expression with one line for each case in the data
definition

• Write down a predicate for each case

• For the answer, extract parts in cases with meta-variables

• For each self-reference in the data definition, add a recursive call

Shape of template shape == Shape of data definition

46

More Examples

(more examples in class)

47

Generalized Recipe

• Locate or write data definitions

• Write contracts

• Write examples

• Create a template that follows the shape of the data definition, one
for each data definition

• Convert the templates to the final functions

• Run examples as tests

48

