Assignment in Scheme

So far, we have one form of assignment: vector-set!

(let ([v (vector 1 2 3)])
(begin
(vector-set! v 1 72)

v))

- —

#(1 72 3)

Assignment in Scheme

Scheme actually allows variables to be modified:

(let ([x 2])
(begin
(set! x 73)

X))

- —

73

« Don't write Scheme code like that, except for HW6

e But many languages have assignment, and need it

Assignment in the Book Language

o Add a set expression form:

<expr> ;= set <id>=<expr>

Evaluating with Assignment

Can't write this, since we don't
have begin in our language

let x =10
y =12
In (begin set x = +(x,1)
X)

Evaluating with Assignment

Instead, use a binding for a
dummy variable d to sequence
expressions; initial environment is

empty

let x = 10
y =12

In let d = set x = +(x,1)
In X

Evaluating with Assignment

DO
Eval RHS (right-hand side) of the
let expression
let x =10
y =12

In let d = set x = +(x,1)
In X

Evaluating with Assignment

X|10
Dy[12
Extend the current environment
with x and y, and eval body
let x = 10
y =12

In let d = set x = +(x,1)
In X

10

Evaluating with Assignment

Eval RHS of the let expression
let x =10
y =12
In letd =set x = +(x,1)
In X

11

Evaluating with Assignment

X|11
Dy[12
It modifies the X In the current
lexical scope; we define set to
always return 1
let x = 10
y =12

In letd =set x = +(x,1)
N X

12

Evaluating with Assignment

X|11
y|1l2
ﬁ
mp(d|l
Bind d to the result 1; to eval the
body, x, we look it up in the
environment as usual, and find 11
let x = 10
y =12

In let d = set x = +(x,1)
In X

13

Evaluating with Assignment

x|11

y|1l2

ﬁ

d|1
» Variables now correspond to
boxes in the environment, not
fixed values

let x =10
y =12

In let d = set x = +(x,1)
In X

14

Expressed and Denoted Values

<expval> = <num>
.= <proc>
<denval> := <reference>

 New datatype:

(defi ne-dat atype reference reference?
(a-ref (pos Integer?)
(vec vector?)))

 New function:

appl y-env-ref : env sym-> ref

15

Assignment and Closures

»0O
An example with proc; again, we
start with the empty environment
let x =10
y =12

In let f = proc(z)+(z,x)
In let d = set x = +(x,1)
in (f 0)

16

Assignment and Closures

»0O
Eval RHS of the let expression
let x =10
y =12

In let f = proc(z)+(z,x)
In let d = set x = +(x,1)
in (f 0)

17

Assignment and Closures

X|10
Dy[12
Extend the current environment
with x and y, and eval body
let x = 10
y =12

In let f = proc(z)+(z,x)
In let d = set x = +(x,1)
in (f 0)

18

Assignment and Closures

Eval RHS of the let expression...

let x =10
y =12
In let f = proc(z)+(z,x)
In let d = set x = +(x,1)
in (f 0)

19

Assignment and Closures

X|10
Dy[12
Z|+(z,x)|®
... Which creates a closure,
pointing to the current
environment
let x = 10
y =12

In let f = proc(z)+(z,x)
In let d = set x = +(x,1)
in (f 0)

Assignment and Closures

X|10
y|1l2
A
) f|® »z|+(z,x)[®
To finish the let, the environment
IS extended with f bound to the
closure; then evaluate the body
let x = 10
y =12

In let f = proc(z)+(z,x)
In let d = set x = +(x,1)
in (f 0)

Assignment and Closures

10

0| A

- »1z|+(z,x)|®

Eval RHS of the let expression...

let x =10
y =12
In let f = proc(z)+(z,x)
In let d = set x = +(x,1)
in (f 0)

Assignment and Closures

X|11
y|1l2
A
»f o »z|+(z,x)|®
... which changes the value of x,
then produces 1
let x =10
y =12

In let f = proc(z)+(z,x)
In let d = set x = +(x,1)
in (f 0)

»

let x = 10
y =12

11

0| A

+(2.x)

Assignment and Closures

To eval the body, (f 0), we look up
f in the environment to find a
closure, and evaluate 0to O

In let f = proc(z)+(z,x)
In let d = set x = +(x,1)
in (f 0)

Assignment and Closures

fl®| »z/+(z,x)|®

Extend the closure's environment

d|1 with O for z, and evaluate the
closure's body Iin that
mp [0 environment: the result will be 11
let x = 10
y =12

In let f = proc(z)+(z,x)
In let d = set x = +(x,1)
in (f 0)

25

Assignment and Closures

X|11
y|1l2
)
fl®| »z/+(z,x)|®
dfl » By capturing environments,
closures capture variables that
z|0 may change
let x =10
y =12

In let f = proc(z)+(z,x)
In let d = set x = +(x,1)
in (f 0)

26

Assignment and Arguments

e

Another example with proc, but
with the let inside the proc

let f = proc(z)
let x = 10
In let d = set x = +(x,2)
INn X
in +((f 1), (f 9))

27

Assignment and Arguments

e

Eval RHS of the let expression...

let f = proc(z)
let x = 10
In let d = set x = +(x,2)
In X
in +((f 1), (f 9))

28

Assignment and Arguments

20,

zlletx =10 1In let d = set X = +(X,z) In X|®

... Which creates a closure,
pointing to the current
environment

let f = proc(z)
let x = 10
In let d = set x = +(x,2)
In X
in +((f 1), (f 9))

29

Assignment and Arguments

mp(f[® >z|]let x =10 in let d = set x = +(x,z) In x|(®

Bind the closure to f and eval the
body

let f = proc(z)
let x =10
In let d = set x = +(X,2)
In X
in +((f 1), (f 9))

30

Assignment and Arguments

mp(f[® >z|]let x =10 in let d = set x = +(x,z) In x|(®

Evaluate the first operand, (f 1)

let f = proc(z)
let x =10
In let d = set x = +(x,2)
In X
in +((f 1), (f 9))

31

Assignment and Arguments

flo| > z|let x = 10 in let d = set x = +(x,2) in x|®

Take the closure for f, extend its
environment with a binding for z,
and eval the closure's body

let f = proc(z)
let x = 10
In let d = set x = +(X,2)
In X
in +((f 1), (f 9))

32

Assignment and Arguments

flo| > z|let x = 10 in let d = set x = +(x,2) in x|®

Eval the RHS

let f = proc(z)
let x = 10
In let d = set x = +(x,2)
INn X
in +((f 1), (f 9))

33

Assignment and Arguments

flo| > z|let x = 10 in let d = set x = +(x,2) in x|®

mp(x|10

Add the binding for x and eval the
Inner body

let f = proc(z)
let x =10
In let d = set x = +(X,2)
In X
in +((f 1), (f 9))

34

Assignment and Arguments

flo| > z|let x = 10 in let d = set x = +(x,2) in x|®

mp(x|10

Eval RHS...

let f = proc(z)
let x =10
In let d = set x = +(x,2)
In X
in +((f 1), (f 9))

35

Assignment and Arguments

flo| > z|let x = 10 in let d = set x = +(x,2) in x|®

mp(x|11

... which modifies the value of x

let f = proc(z)
let x = 10
In let d = set x = +(x,2)
In X
in +((f 1), (f 9))

36

Assignment and Arguments

flo| > z|let x = 10 in let d = set x = +(x,2) in x|®

le\

x11|;d -

Bind d to 1 and evaluate x, which
produces 11

let f = proc(z)
let x = 10
In let d = set x = +(X,2)
In x
in +((f 1), (f 9))

37

Assignment and Arguments

flo| > z|let x = 10 in let d = set x = +(x,2) in x|®

le\

x11|;d -

First operand is 11; now evaluate
the second operand, (f 9)

let f = proc(z)
let x = 10
In let d = set x = +(X,2)
In X
in +((f 1), (f 9))

38

Assignment and Arguments

flo| >zllet x = 10 in let d = set x = +(x,z) in x|®

1|Kx 11|K

Again, take the closure for f,
NEE extend the closure's environment

with a binding for z, and eval the
closure's body

let f = proc(z)
let x =10
In let d = set X = +(X,2)
In X
in +((f 1), (f 9))

39

Assignment and Arguments

flo| >zllet x = 10 in let d = set x = +(x,z) in x|®

1|Kx 11|R

d|l
: 9|;x 10 Add a binding for x, then eval the
Inner body
let f = proc(z)
let x =10
in let d = set x = +(x,2)

In X
in +((f 1), (f 9))

40

Assignment and Arguments

flo| >zllet x = 10 in let d = set x = +(x,z) in x|®

1|Kx 11|K

d|l
Again the d RHS modifies the
Z 9|\ _

m|x|19 value of x, but using the new z

and X
let f = proc(z)
let x =10
In let d = set x = +(x,2)

In X
in +((f 1), (f 9))

41

Assignment and Arguments

flo| >zllet x = 10 in let d = set x = +(x,z) in x|®

1|Kx 11|K

dfl
Z|9
IKX 19'\ Bind d to 1 and evaluate x, which
mp(d|l produces 19
let f = proc(z)
let x =10
In let d = set x = +(x,2)

In X
in +((f 1), (f 9))

42

Assignment and Arguments

flo| >zllet x = 10 in let d = set x = +(x,z) in x|®

1|Kx 11|R

di1
Z|9
IKX 19'\ So the operands are 11 and 19;
mp(d|l The final result is 30
let f = proc(z)
let x = 10
In let d = set x = +(x,2)

In X
in +((f 1), (f 9))

43

Assignment and Arguments

flo| >zllet x = 10 in let d = set x = +(x,z) in x|®

1|Kx 11|K

d|l
» Every evaluation of a binding
Z 9|\ . .
X 19'\ expression creates a new variable
d|1 (box)
let f = proc(z)
let x = 10
In let d = set x = +(x,2)

In X
in +((f 1), (f 9))

44

Assignment and Locals within Procedures

e

An example with a procedure in a
procedure

let mk = proc(x) proc(z)
let d = set x = +(X,z) In X
In let f = (mk 10)
Inletg=(mk 12) in ...

45

Assignment and Locals within Procedures

e

Eval RHS of the let expression...

let mk = proc(x) proc(z)
let d = set x = +(X,z) In X
In let f = (mk 10)
Inletg=(mk 12) in ...

46

Assignment and Locals within Procedures

20,

X|proc(z)let d = set x = +(x,z) in x|®

... Which creates a closure,
pointing to the current
environment

let mk = proc(x) proc(z)
let d = set x = +(X,z) In X
In let f = (mk 10)
Inletg=(mk 12) in ...

47

Assignment and Locals within Procedures

mp mk|® > x|proc(z)let d = set x = +(x,z) in x|®

To finish the let, the environment
IS extended with mk bound to the
closure, then evaluate the body

let mk = proc(x) proc(z)
let d = set x = +(X,z) In X
in let f = (mk 10)
inletg =(mk 12) in ...

48

Assignment and Locals within Procedures

mp mk|® > x|proc(z)let d = set x = +(x,z) in x|®

Eval RHS, a function call; look up
mKk...

let mk = proc(x) proc(z)
let d = set x = +(X,z) In X
In let f = (mk 10)
Inletg=(mk 12) in ...

Assignment and Locals within Procedures

mKk|®| »x|proc(z)let d = set x = +(x,z) in x|®

It's a closure, so extend the
closure's environment with 10, and
eval the closure's body

let mk = proc(x) proc(z)
let d = set x = +(X,z) In X
In let f = (mk 10)
Inletg=(mk 12) in ...

50

Assignment and Locals within Procedures

QR

mKk|®|

X|proc(z)let d = set x = +(x,z) in x|®

10

T

let d = set x = +(X,z) in x|®

Note that the variable x is in the
closure's environment

let mk = proc(x) proc(z)

let d = set x = +(X,z) In X

In let f = (mk 10)
Inletg=(mk 12) in ...

51

Assignment and Locals within Procedures

mKk|®| »x|proc(z)let d = set x = +(x,z) in x|®

I
B [f[® >z|let d = set X = +(X,z) In X|®

Bind f to the closure, and evaluate
the body

let mk = proc(x) proc(z)
let d = set x = +(X,z) In X
In let f = (mk 10)
inletg =(mk 12) in ...

52

Assignment and Locals within Procedures

mKk|®| »x|proc(z)let d = set x = +(x,z) in x|®

I
B [f[® >z|let d = set X = +(X,z) In X|®
Eval RHS of the let expression,
another call to mk; same as
before...

let mk = proc(x) proc(z)
let d = set x = +(X,z) In X
In let f = (mk 10)
Inletg=(mk 12) in ...

Assignment and Locals within Procedures

m&&»x proc(z)let d = set x = +(X,z) in x|®

X|10

I
f'?z let d = set x = +(X,z) in x|®

X|12

B (g[® >z|let d =set X = +(X,z) In X|®

let mk = proc(x) proc(z)
let d = set x = +(X,z) In X
In let f = (mk 10)
Inletg =(mk 12) in ...

Extend mk's env
with a new x and
get a closure,
this time bound

to g

54

Assignment and Locals within Procedures

m&&»x proc(z)let d = set x = +(X,z) in x|®

X(10
I
flo »z/let d = set x = +(x,z) In x|® . .
i) At this point, f
|12 and g have
- private versions
B (g[® >z|let d =set X = +(X,z) In X|® of X

let mk = proc(x) proc(z)
let d = set x = +(X,z) In X
In let f = (mk 10)
Inletg =(mk 12) in ...

55

Assignment and Locals within Procedures

m&&»x proc(z)let d = set x = +(X,z) in X

X|10
I
f'?z let d = set x = +(X,z) in x|®
X|12
|
gl®| > z|let d = set x = +(X,z) In x|®

let mk = proc(x) proc(z)
let d = set x = +(X,z) In X
In let f = (mk 10)
Inletg =(mk 12) in ...

» Closures can
capture
generated
variables,
effectively
getting private
state

56

Assignment Summary

 Variables now denote references (a.k.a. locations), not values

 Lexical scope still works

57

