
Assignment in Scheme

So far, we have one form of assignment: vector-set!

(let ([v (vector 1 2 3)])
 (begin
 (vector-set! v 1 72)
 v))
→→
#(1 72 3)

1

Assignment in Scheme

Scheme actually allows variables to be modified:

(let ([x 2])
 (begin
 (set! x 73)
 x))
→→
73

• Don't write Scheme code like that, except for HW6

• But many languages have assignment, and need it

2-4

Assignment in the Book Language

• Add a set expression form:

<expr> ::= set <id> = <expr>

5

Evaluating with Assignment

Can't write this, since we don't
have begin in our language

let x = 10
 y = 12
 in (begin set x = +(x,1)
 x)

7

Evaluating with Assignment

Instead, use a binding for a
dummy variable d to sequence
expressions; initial environment is
empty

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

8

Evaluating with Assignment

Eval RHS (right-hand side) of the
let expression

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

9

Evaluating with Assignment

x 10
y 12

Extend the current environment
with x and y, and eval body

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

10

Evaluating with Assignment

x 10
y 12

Eval RHS of the let expression

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

11

Evaluating with Assignment

x 11
y 12

It modifies the x in the current
lexical scope; we define set to
always return 1

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

12

Evaluating with Assignment

x 11
y 12

d 1

Bind d to the result 1; to eval the
body, x, we look it up in the
environment as usual, and find 11

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

13

Evaluating with Assignment

x 11
y 12

d 1

 Variables now correspond to
boxes in the environment, not
fixed values

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

14

Expressed and Denoted Values

<expval> ::= <num>
::= <proc>

<denval> ::= <reference>

• New datatype:

(define-datatype reference reference?
 (a-ref (pos integer?)
 (vec vector?)))

• New function:

apply-env-ref : env sym -> ref

15

Assignment and Closures

An example with proc; again, we
start with the empty environment

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

16

Assignment and Closures

Eval RHS of the let expression

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

17

Assignment and Closures

x 10
y 12

Extend the current environment
with x and y, and eval body

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

18

Assignment and Closures

x 10
y 12

Eval RHS of the let expression...

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

19

Assignment and Closures

x 10
y 12

z +(z,x)

... which creates a closure,
pointing to the current
environment

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

20

Assignment and Closures

x 10
y 12

f z +(z,x)

To finish the let, the environment
is extended with f bound to the
closure; then evaluate the body

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

21

Assignment and Closures

x 10
y 12

f z +(z,x)

Eval RHS of the let expression...

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

22

Assignment and Closures

x 11
y 12

f z +(z,x)

... which changes the value of x,
then produces 1

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

23

Assignment and Closures

x 11
y 12

f z +(z,x)

d 1 To eval the body, (f 0), we look up
f in the environment to find a
closure, and evaluate 0 to 0

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

24

Assignment and Closures

x 11
y 12

f z +(z,x)

d 1

z 0

Extend the closure's environment
with 0 for z, and evaluate the
closure's body in that
environment; the result will be 11

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

25

Assignment and Closures

x 11
y 12

f z +(z,x)

d 1

z 0

 By capturing environments,
closures capture variables that
may change

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

26

Assignment and Arguments

Another example with proc, but
with the let inside the proc

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

27

Assignment and Arguments

Eval RHS of the let expression...

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

28

Assignment and Arguments

z let x = 10 in let d = set x = +(x,z) in x

... which creates a closure,
pointing to the current
environment

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

29

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

Bind the closure to f and eval the
body

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

30

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

Evaluate the first operand, (f 1)

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

31

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1

Take the closure for f, extend its
environment with a binding for z,
and eval the closure's body

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

32

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1

Eval the RHS

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

33

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 10

Add the binding for x and eval the
inner body

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

34

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 10

Eval RHS...

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

35

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

... which modifies the value of x

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

36

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

Bind d to 1 and evaluate x, which
produces 11

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

37

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

First operand is 11; now evaluate
the second operand, (f 9)

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

38

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9

Again, take the closure for f,
extend the closure's environment
with a binding for z, and eval the
closure's body

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

39

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 10 Add a binding for x, then eval the

inner body

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

40

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 19

Again the d RHS modifies the
value of x, but using the new z
and x

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

41

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 19

d 1
Bind d to 1 and evaluate x, which
produces 19

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

42

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 19

d 1
So the operands are 11 and 19;
The final result is 30

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

43

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 19

d 1

 Every evaluation of a binding
expression creates a new variable
(box)

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

44

Assignment and Locals within Procedures

An example with a procedure in a
procedure

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

45

Assignment and Locals within Procedures

Eval RHS of the let expression...

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

46

Assignment and Locals within Procedures

x proc(z)let d = set x = +(x,z) in x

... which creates a closure,
pointing to the current
environment

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

47

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

To finish the let, the environment
is extended with mk bound to the
closure, then evaluate the body

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

48

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

Eval RHS, a function call; look up
mk...

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

49

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

x 10

It's a closure, so extend the
closure's environment with 10, and
eval the closure's body

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

50

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

x 10

z let d = set x = +(x,z) in x

Note that the variable x is in the
closure's environment

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

51

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x

Bind f to the closure, and evaluate
the body

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

52

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x
Eval RHS of the let expression,
another call to mk; same as
before...

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

53

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x

x 12

g z let d = set x = +(x,z) in x

Extend mk's env
with a new x and
get a closure,
this time bound
to g

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

54

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x

x 12

g z let d = set x = +(x,z) in x

At this point, f
and g have
private versions
of x

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

55

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x

x 12

g z let d = set x = +(x,z) in x

 Closures can
capture
generated
variables,
effectively
getting private
state

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

56

Assignment Summary

• Variables now denote references (a.k.a. locations), not values

• Lexical scope still works

57

