
CS3520
Programming Language Concepts

Instructor: Matthew Flatt

1

Programming Language Concepts

This course teaches concepts in two ways:

• By implementing interpreters

new concept => extend interpreter

• By using Scheme

we assume that you don't already know Scheme

2-4

Course Details

http://www.cs.utah.edu/classes/cs3520/

5

Bootstrapping Problem

• We'll learn about languages by writing interpreters in Scheme

• We'll learn about Scheme...

 by writing an interpreter...

 in Scheme set theory

• More specifically, we'll define Scheme as an extension of algebra

Algebra is a programming language?

6-12

Algebra as a Programming Language

• Algebra has a grammar:

(1 + 2) is a legal expression

(1 + +) is not a legal expression

• Algebra has rules for evaluation:

(1 + 2) = 3

f(17) = (17 + 3) = 20 if f(x) = (x + 3)

13-14

A Grammar for Algebra Programs

The grammar in BNF (Backus-Naur Form; EoPL sec 1.1.2):

<prog> ::= <defn>* <expr>
<defn> ::= <id>(<id>) = <expr>
<expr> ::= (<expr> + <expr>)

::= (<expr> - <expr>)
::= <id>(<expr>)
::= <id> | <num>

<id> ::= a variable name: f, x, y, z, ...
<num> ::= a number: 1, 42, 17, ...

• Each meta-variable, such as <prog>, defines a set

15-16

Using a BNF Grammar

<id> ::= a variable name: f, x, y, z, ...
<num> ::= a number: 1, 42, 17, ...

• The set <id> is the set of all variable names

• The set <num> is the set of all numbers

• To make an example member of <num>, simply pick an element
from the set

1 ∈ <num>

198 ∈ <num>

17-19

Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
::= (<expr> - <expr>)
::= <id>(<expr>)
::= <id> | <num>

• The set <expr> is defined in terms of other sets

20

Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
::= (<expr> - <expr>)
::= <id>(<expr>)
::= <id> | <num>

• To make an example <expr>:

choose one case in the grammar

pick an example for each meta-variable

combine the examples with literal text

21

Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
::= (<expr> - <expr>)
::= <id>(<expr>)
::= <id> | <num>

• To make an example <expr>:

choose one case in the grammar

pick an example for each meta-variable

7 ∈ <num>

combine the examples with literal text

7 ∈ <expr>

22-24

Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
::= (<expr> - <expr>)
::= <id>(<expr>)
::= <id> | <num>

• To make an example <expr>:

choose one case in the grammar

pick an example for each meta-variable

f ∈ <id> 7 ∈ <expr>

combine the examples with literal text

f(7) ∈ <expr>

25-28

Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
::= (<expr> - <expr>)
::= <id>(<expr>)
::= <id> | <num>

• To make an example <expr>:

choose one case in the grammar

pick an example for each meta-variable

f ∈ <id> f(7) ∈ <expr>

combine the examples with literal text

f(f(7)) ∈ <expr>

29-30

Using a BNF Grammar

<prog> ::= <defn>* <expr>
<defn> ::= <id>(<id>) = <expr>

f(x) = (x + 1) ∈ <defn>

• To make a <prog> pick some number of <defn>s

(x + y) ∈ <prog>

f(x) = (x + 1)
g(y) = f((y - 2))
g(7)

 ∈ <prog>

31-32

Demonstrating Set Membership

• We can run the element-generation process in reverse to prove
that some item is a member of a set

• Such proofs have a standard tree format:

sub-claim to prove ... sub-claim to prove
claim to prove

• Immediate membership claims serve as leaves on the tree:

7 ∈ <num>

33-35

Demonstrating Set Membership

• We can run the element-generation process in reverse to prove
that some item is a member of a set

• Such proofs have a standard tree format:

sub-claim to prove ... sub-claim to prove
claim to prove

• Immediate membership claims serve as leaves on the tree:

f ∈ <id>

36

Demonstrating Set Membership

• We can run the element-generation process in reverse to prove
that some item is a member of a set

• Such proofs have a standard tree format:

sub-claim to prove ... sub-claim to prove
claim to prove

• Other membership claims generate branches in the tree:

7 ∈ <num>

7 ∈ <expr>

37

Demonstrating Set Membership

• We can run the element-generation process in reverse to prove
that some item is a member of a set

• Such proofs have a standard tree format:

sub-claim to prove ... sub-claim to prove
claim to prove

• Other membership claims generate branches in the tree:

f ∈ <id>

7 ∈ <num>

7 ∈ <expr>

f(7) ∈ <expr>

The proof tree's shape is driven entirely by the grammar

38-39

Demonstrating Set Membership: Example

f(7) ∈ <expr>

<expr> ::= (<expr> + <expr>)
::= (<expr> - <expr>)
::= <id>(<expr>)
::= <id> | <num>

• Two meta-variables on the left means two sub-trees:

One for f ∈ <id>

One for 7 ∈ <expr>

40-41

Demonstrating Set Membership: Example

f ∈ <id> 7 ∈ <expr>

f(7) ∈ <expr>

<id> ::= a variable name: f, x, y, z, ...

<expr> ::= (<expr> + <expr>)
::= (<expr> - <expr>)
::= <id>(<expr>)
::= <id> | <num>

• f ∈ <id> is immediate

• 7 ∈ <expr> has one meta-variable, so one subtree

42-43

Demonstrating Set Membership: Example

f ∈ <id>

7 ∈ <num>

7 ∈ <expr>

f(7) ∈ <expr>

<num> ::= a number: 1, 42, 17, ...

• 7 ∈ <num> is immediate, so the proof is complete

44-45

Demonstrating Set Membership: Another Example

f(x) = (x + 1)
g(y) = f((y - 2))
g(7)

 ∈ <prog>

<prog> ::= <defn>* <expr>

• Three meta-variables (after expanding *) means three sub-trees:

One for f(x) = (x + 1) ∈ <defn>

One for g(y) = f((y - 2)) ∈ <defn>

One for g(7) ∈ <expr>

46-48

Demonstrating Set Membership: Example 2

g(y) = f((y - 2)) ∈ <defn>
f(x) = (x + 1) ∈ <defn> g(7) ∈ <expr>

f(x) = (x + 1)
g(y) = f((y - 2))
g(7)

 ∈ <prog>

• Each sub-tree can be proved separately

• We'll prove only the first sub-tree for now

49-50

Demonstrating Set Membership: Example 2

f(x) = (x + 1) ∈ <defn>

<defn> ::= <id>(<id>) = <expr>

• Three meta-variables, three sub-trees

51-53

Demonstrating Set Membership: Example 2

f ∈ <id> x ∈ <id> (x + 1) ∈ <expr>

f(x) = (x + 1) ∈ <defn>

• The first two are immediate, the last requires work:

<expr> ::= (<expr> + <expr>)
::= (<expr> - <expr>)
::= <id>(<expr>)
::= <id> | <num>

54

Demonstrating Set Membership: Example 2

Final tree:

f ∈ <id> x ∈ <id>

x ∈ <id>

x ∈ <expr>

1 ∈ <num>

1 ∈ <expr>

(x + 1) ∈ <expr>

f(x) = (x + 1) ∈ <defn>

• This was just one of three sub-trees for the original ∈ <prog>
proof...

55

Algebra as a Programming Language

• Algebra has a grammar:

(1 + 2) is a legal expression

(1 + +) is not a legal expression

• Algebra has rules for evaluation:

(1 + 2) = 3

f(17) = (17 + 3) = 20 if f(x) = (x + 3)

56

Evaluation Function

• An evaluation function, →, takes a single evaluation step

• It maps programs to programs:

(2 + (7 - 4)) → (2 + 3)

57

Evaluation Function

• An evaluation function, →, takes a single evaluation step

• It maps programs to programs:

f(x) = (x + 1)
(2 + (7 - 4))

 → f(x) = (x + 1)
(2 + 3)

58

Evaluation Function

• An evaluation function, →, takes a single evaluation step

• It maps programs to programs:

f(x) = (x + 1)
g(y) = (y - 1)
h(z) = f(z)
(2 + f(13))

 → f(x) = (x + 1)
g(y) = (y - 1)
h(z) = f(z)
(2 + (13 + 1))

59

Evaluation Function

• Apply → repeatedly to obtain a result:

f(x) = (x + 1)
(2 + (7 - 4))

 → f(x) = (x + 1)
(2 + 3)

f(x) = (x + 1)
(2 + 3)

 → f(x) = (x + 1)
5

60

Evaluation Function

• The → function is defined by a set of pattern-matching rules:

f(x) = (x + 1)
(2 + (7 - 4))

 → f(x) = (x + 1)
(2 + 3)

due to the pattern rule

... (7 - 4) ... → ... 3 ...

61-62

Evaluation Function

• The → function is defined by a set of pattern-matching rules:

f(x) = (x + 1)
(2 + f(13))

 → f(x) = (x + 1)
(2 + (13 + 1))

due to the pattern rule

... <id>1(<id>2) = <expr>1 ...

... <id>1(<expr>2) ...

 → ... <id>1(<id>2) = <expr>1 ...

... <expr>3 ...

where <expr>3 is <expr>1 with <id>2 replaced by <expr>2

63

Pattern-Matching Rules for Evaluation

• Rule 1

... <id>1(<id>2) = <expr>1 ...

... <id>1(<expr>2) ...

 → ... <id>1(<id>2) = <expr>1 ...

... <expr>3 ...

where <expr>3 is <expr>1 with <id>2 replaced by <expr>2

• Rules 2 - ∞

... (0 + 0) ... → ... 0 (0 - 0) ... → ... 0 ...

... (1 + 0) ... → ... 1 (1 - 0) ... → ... 1 ...

... (0 + 1) ... → ... 1 (0 - 1) ... → ... -1 ...

... (2 + 0) ... → ... 2 (2 - 0) ... → ... 2 ...
etc. etc.

64-65

Homework

• Some evaluations

• Some membership proofs

• See the web page for details

• Due next Tuesday, August 27, 11:59 PM

66

Where is This Going?

Next time:

• Shift syntax slightly to match that of Scheme

• Add new clauses to the expression grammar

• Add new evaluation rules

Current goal is to learn Scheme, but we'll use algebraic techniques
all semester

67

