CS3520

Programming Language Concepts

Instructor: Matthew Flatt

Programming Language Concepts

This course teaches concepts in two ways:

- By implementing interpreters
- new concept => extend interpreter
- By using Scheme
- we assume that you don't already know Scheme

Course Details

http://www.cs.utah.edu/classes/cs3520/

Bootstrapping Problem

- We'll learn about languages by writing interpreters in Scheme
- We'll learn about Scheme...
by writing an interpreter...
in Scheme set theory
- More specifically, we'll define Scheme as an extension of algebra

Algebra is a programming language?

Algebra as a Programming Language

- Algebra has a grammar:
$\circ(1+2)$ is a legal expression
$\circ(1++)$ is not a legal expression
- Algebra has rules for evaluation:
- $(1+2)=3$
$\mathbf{f}(17)=(17+3)=20$ if $f(\mathbf{x})=(\mathbf{x}+3)$

A Grammar for Algebra Programs

The grammar in BNF (Backus-Naur Form; EoPL sec 1.1.2):

$$
\begin{array}{lll}
\text { <prog> } & ::=\text { <defn>* <expr> } \\
\text { <defn> } & ::=\text { <id>(<id>) = <expr> } \\
\text { <expr> } & ::=\text { (<expr> + <expr>) } \\
& ::=\text { (<expr> - <expr>) } \\
& ::=\text { <id>(<expr>) } \\
& ::=\text { <id> | <num> } \\
\text { <id> } & ::=\text { a variable name: } \mathbf{f}, \mathbf{x}, \mathbf{y}, \mathbf{z}, \ldots \\
\text { <num> } & ::=\text { a number: } 1,42,17, \ldots
\end{array}
$$

- Each meta-variable, such as <prog>, defines a set

Using a BNF Grammar

$$
\begin{array}{ll}
\text { <id> } & ::=~ a ~ v a r i a b l e ~ n a m e: ~ \\
\mathbf{f}, \mathbf{x}, \mathbf{y}, \mathbf{z}, \ldots \\
\text { <num> } & ::= \\
\text { a number: } 1,42,17, \ldots
\end{array}
$$

- The set <id> is the set of all variable names
- The set <num> is the set of all numbers
- To make an example member of <num>, simply pick an element from the set

$$
\begin{gathered}
1 \in \text { <num> } \\
198 \in \text { <num> }
\end{gathered}
$$

Using a BNF Grammar

$$
\begin{aligned}
\text { <expr> } & ::=\text { (<expr> + <expr>) } \\
& ::=\text { (<expr> - <expr>) } \\
& ::=\text { <id>(<expr>) } \\
& ::=\text { <id> | <num> }
\end{aligned}
$$

- The set <expr> is defined in terms of other sets

Using a BNF Grammar

$$
\begin{aligned}
\text { <expr> } & ::=\text { (<expr> + <expr>) } \\
& ::=\text { (<expr> - <expr>) } \\
& ::=\text { <id>(<expr>) } \\
& ::=\text { <id> | <num> }
\end{aligned}
$$

- To make an example <expr>:
- choose one case in the grammar
- pick an example for each meta-variable
- combine the examples with literal text

Using a BNF Grammar

$$
\begin{aligned}
\text { <expr> } & ::=\text { (<expr> + <expr>) } \\
& ::=\text { (<expr> - <expr>) } \\
& ::=\text { <id>(<expr>) } \\
& ::=\text { <id> | <num> }
\end{aligned}
$$

- To make an example <expr>:
- choose one case in the grammar
pick an example for each meta-variable

$$
7 \in \text { <num> }
$$

- combine the examples with literal text

$$
7 \in<\text { expr }>
$$

Using a BNF Grammar

$$
\begin{aligned}
\text { <expr> } & ::=\text { (<expr> + <expr>) } \\
& ::=\text { (<expr>-<expr>) } \\
& ::=\text { <id>(<expr>) } \\
& ::=\text { <id> | <num> }
\end{aligned}
$$

- To make an example <expr>:
- choose one case in the grammar
pick an example for each meta-variable

$$
\mathbf{f} \in<\text { id }>\quad 7 \in<\operatorname{expr}>
$$

- combine the examples with literal text

$$
\mathbf{f}(7) \in<\operatorname{expr}>
$$

Using a BNF Grammar

$$
\begin{aligned}
\text { <expr> } & ::=\text { (<expr> + <expr>) } \\
& ::=\text { (<expr>-<expr>) } \\
& ::=\text { <id>(<expr>) } \\
& ::=\text { <id> | <num> }
\end{aligned}
$$

- To make an example <expr>:
- choose one case in the grammar
pick an example for each meta-variable

$$
\mathbf{f} \in<\text { id }>\quad \mathbf{f}(7) \in<\operatorname{expr}>
$$

- combine the examples with literal text

$$
\mathbf{f}(\mathbf{f}(7)) \in<\operatorname{expr}>
$$

Using a BNF Grammar

$$
\begin{gathered}
\text { <prog> }::=\text { <defn>* <expr> } \\
\text { <defn> }::=\text { <id>(<id>) }=\text { <expr> } \\
f(\mathbf{x})=(\mathbf{x}+1) \in<\operatorname{defn}>
\end{gathered}
$$

- To make a <prog> pick some number of <defn>s

$$
(\mathbf{x}+\mathbf{y}) \in<\text { prog }>
$$

$$
\begin{aligned}
& \mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
& \mathbf{g (y)}=\mathbf{f}((\mathbf{y}-2)) \quad \in<\text { prog }> \\
& \mathbf{g}(7)
\end{aligned}
$$

Demonstrating Set Membership

- We can run the element-generation process in reverse to prove that some item is a member of a set
- Such proofs have a standard tree format:
sub-claim to prove ... sub-claim to prove
claim to prove
- Immediate membership claims serve as leaves on the tree:

$$
7 \in \text { <num> }
$$

Demonstrating Set Membership

- We can run the element-generation process in reverse to prove that some item is a member of a set
- Such proofs have a standard tree format:

claim to prove
- Immediate membership claims serve as leaves on the tree:

$$
\mathbf{f} \in \text { <id> }
$$

Demonstrating Set Membership

- We can run the element-generation process in reverse to prove that some item is a member of a set
- Such proofs have a standard tree format:
sub-claim to prove ... sub-claim to prove
claim to prove
- Other membership claims generate branches in the tree:

$$
\begin{aligned}
& 7 \in \text { <num> } \\
& 7 \in \text { <expr }
\end{aligned}
$$

Demonstrating Set Membership

- We can run the element-generation process in reverse to prove that some item is a member of a set
- Such proofs have a standard tree format:
sub-claim to prove ... sub-claim to prove claim to prove
- Other membership claims generate branches in the tree:

$$
\begin{gathered}
\mathbf{f} \in \text { <id> } \quad \frac{7 \in \text { <num> }>}{7 \in<\text { expr }>} \\
\mathbf{f}(7) \in \text { <expr> }
\end{gathered}
$$

The proof tree's shape is driven entirely by the grammar

Demonstrating Set Membership: Example

$$
\begin{gathered}
\mathbf{f}(7) \in<\text { expr> } \\
\text { <expr> } \quad::=\text { (<expr> + <expr>) } \\
::=(<e x p r>- \text { eexpr>) } \\
::=\text { <id>(<expr>) } \\
::=\text { <id> | <num> }
\end{gathered}
$$

- Two meta-variables on the left means two sub-trees:
- One for $\mathbf{f} \in$ <id>
- One for $7 \in$ <expr>

Demonstrating Set Membership: Example

$$
\begin{gathered}
\frac{\mathbf{f} \in \text { <id }>\quad 7 \in<\text { expr }>}{\mathbf{f}(7) \in \text { <expr> }} \\
\text { <id> }::=\text { a variable name: } \mathbf{f}, \mathbf{x}, \mathbf{y}, \mathbf{z}, \ldots \\
\text { <expr> } \quad::=(\text { <expr> + <expr>) } \\
\because:=(<\text { expr }>\text { <expr>) } \\
::=\text { <id>(<expr>) } \\
\because:=\text { <id> } \mid \text { <num> }
\end{gathered}
$$

- $\mathbf{f} \in<$ id> is immediate
- $7 \in<e x p r>$ has one meta-variable, so one subtree

Demonstrating Set Membership: Example

$$
\begin{gathered}
\mathbf{f \in < i d >} \frac{7 \in<\text { num }>}{7 \in<\operatorname{expr}>} \\
\text { f(7) } \in \text { <expr }>
\end{gathered} \quad \begin{gathered}
\text { <num> }::=\text { a number: } 1,42,17, \ldots
\end{gathered}
$$

- $7 \in<$ num> is immediate, so the proof is complete

Demonstrating Set Membership: Another Example

$$
\begin{aligned}
& \mathbf{f (x)}=(\mathbf{x}+1) \\
& \mathbf{g}(\mathbf{y})=\mathbf{f}((\mathbf{y}-2)) \quad \in \text { <prog> } \\
& \mathbf{g}(7) \\
& \text { <prog> }::=\text { <defn>* <expr> }
\end{aligned}
$$

- Three meta-variables (after expanding *) means three sub-trees:
-One for $f(\mathbf{x})=(\mathbf{x}+1) \in<$ defn $>$
-One for $\mathbf{g}(\mathbf{y})=\mathbf{f}((\mathbf{y}-2)) \in<$ defn $>$
- One for $\mathbf{g}(7) \in<$ expr>

Demonstrating Set Membership: Example 2

$$
\begin{gathered}
\mathbf{g}(\mathbf{y})=\mathbf{f}((\mathbf{y}-2)) \in<\text { defn }> \\
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \in<\operatorname{defn}> \\
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \in<\operatorname{expr}> \\
\mathbf{g}(\mathbf{y})=\mathbf{f}((\mathbf{y}-2)) \quad \in<\text { prog }> \\
\mathbf{g}(7)
\end{gathered}
$$

- Each sub-tree can be proved separately
- We'll prove only the first sub-tree for now

Demonstrating Set Membership: Example 2

$$
\begin{gathered}
f(\mathbf{x})=(\mathbf{x}+1) \in<\operatorname{defn}\rangle \\
<\operatorname{defn}>::=<i d\rangle(<i d>)=<\text { expr }>
\end{gathered}
$$

- Three meta-variables, three sub-trees

Demonstrating Set Membership: Example 2

$$
\begin{array}{cc}
\mathbf{f} \in \text { <id }>\quad \mathbf{x} \in \text { <id }>\quad(\mathbf{x}+1) \in \text { <expr }> \\
\mathbf{f (x)}=(\mathbf{x}+1) \in \text { <defn> }
\end{array}
$$

- The first two are immediate, the last requires work:

$$
\begin{aligned}
\text { <expr> } & ::=\text { (<expr> + <expr>) } \\
& ::=\text { (<expr>-<expr>) } \\
& ::=\text { <id>(<expr>) } \\
& ::=\text { <id> | <num> }
\end{aligned}
$$

Demonstrating Set Membership: Example 2

Final tree:

		$\mathbf{x} \in$ <id>	$1 \in$ <num>
		$\mathbf{x} \in$ <expr>	$1 \in$ <expr>
$\mathbf{f} \in<$ id>	$\mathbf{x} \in\langle$ <id>	($\mathbf{x}+$	xpr>

- This was just one of three sub-trees for the original $\in<$ prog> proof...

Algebra as a Programming Language

- Algebra has a grammar:
$\circ(1+2)$ is a legal expression
$\circ(1++)$ is not a legal expression
- Algebra has rules for evaluation:
- $(1+2)=3$
$\mathbf{f}(17)=(17+3)=20$ if $f(\mathbf{x})=(\mathbf{x}+3)$

Evaluation Function

- An evaluation function, \rightarrow, takes a single evaluation step
- It maps programs to programs:

$$
(2+(7-4)) \quad \rightarrow \quad(2+3)
$$

Evaluation Function

- An evaluation function, \rightarrow, takes a single evaluation step
- It maps programs to programs:

$$
\begin{array}{lll}
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
(2+(7-4)) & \rightarrow & \mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
(2+3)
\end{array}
$$

Evaluation Function

- An evaluation function, \rightarrow, takes a single evaluation step
- It maps programs to programs:

$$
\begin{array}{lll}
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) & \rightarrow & \mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
\mathbf{g}(\mathbf{y})=(\mathbf{y}-1) & & \mathbf{g}(\mathbf{y})=(\mathbf{y}-1) \\
\mathbf{h}(\mathbf{z})=\mathbf{f}(\mathbf{z}) & & \mathbf{h}(\mathbf{z})=\mathbf{f}(\mathbf{z}) \\
(2+\mathbf{f}(13)) & & (2+(13+1))
\end{array}
$$

Evaluation Function

- Apply \rightarrow repeatedly to obtain a result:

$$
\begin{array}{lll}
f(\mathbf{x})=(\mathbf{x}+1) & \rightarrow & \mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
(2+(7-4)) & & (2+3) \\
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) & \rightarrow & \mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
(2+3) & & 5
\end{array}
$$

Evaluation Function

- The \rightarrow function is defined by a set of pattern-matching rules:

$$
\begin{array}{lll}
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) & \rightarrow & \mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
(2+(7-4)) & & (2+3)
\end{array}
$$

due to the pattern rule

$$
\ldots(7-4) \ldots \rightarrow \ldots 3 \ldots
$$

Evaluation Function

- The \rightarrow function is defined by a set of pattern-matching rules:

$$
\begin{array}{lll}
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
(2+\mathbf{f}(13)) & & \mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
& (2+(13+1))
\end{array}
$$

due to the pattern rule

$$
\begin{array}{ll}
\ldots<i d>_{1}\left(\langle i d\rangle_{2}\right)=\left\langle\operatorname{expr}>_{1} \ldots\right. & \rightarrow \ll i d\rangle_{1}\left(\langle i d\rangle_{2}\right)=\left\langle\operatorname{expr}>_{1} \ldots\right. \\
\ldots<i d>_{1}\left(<\operatorname{expr}>_{2}\right) \ldots & \ldots<\operatorname{expr}>_{3} \ldots
\end{array}
$$

where $<$ expr $>_{3}$ is $<$ expr $>_{1}$ with $\left\langle i d>_{2}\right.$ replaced by $<$ expr $>_{2}$

Pattern-Matching Rules for Evaluation

- Rule 1

$$
\begin{array}{ll}
\ldots<i d>_{1}\left(<i d>_{2}\right)=<\operatorname{expr}>_{1} \ldots & \left.\rightarrow \quad \ldots<i d>_{1}(<i d\rangle_{2}\right)=<\operatorname{expr}>_{1} \ldots \\
\ldots<i d>_{1}\left(<\operatorname{expr}>_{2}\right) \ldots & \ldots<\operatorname{expr}>_{3} \ldots
\end{array}
$$

where $<$ expr $>_{3}$ is $<$ expr $>_{1}$ with $<i d>_{2}$ replaced by $<$ expr $>_{2}$

- Rules 2- ∞

$$
\begin{array}{cc}
\ldots(0+0) \ldots & \rightarrow \ldots 0 \ldots \\
\ldots(1+0) \ldots & \rightarrow \ldots 1 \ldots \\
\ldots(0+1) \ldots & \rightarrow \ldots 1 \ldots \\
\ldots(2+0) \ldots & \rightarrow \ldots 2 \ldots(1-0) \ldots \rightarrow \ldots 1 \ldots \\
\text { etc. } \ldots & \ldots(0-1) \ldots \rightarrow \ldots-1 \ldots \\
\ldots(2-0) \ldots \rightarrow \ldots 2 \ldots \\
\ldots & \ldots
\end{array}
$$

Homework

- Some evaluations
- Some membership proofs
- See the web page for details
- Due next Tuesday, August 27, 11:59 PM

Where is This Going?

Next time:

- Shift syntax slightly to match that of Scheme
- Add new clauses to the expression grammar
- Add new evaluation rules

Current goal is to learn Scheme, but we'll use algebraic techniques all semester

