
Aquarium

Our zoo was so successful, let's start an aquarium

For a fish, we only care about its weight, so for two fish:

; An aquarium is

; (make-aq num num)

(define-struct aq (first second))

1

Aquarium Template

; An aquarium is

; (make-aq num num)

Generic template:
; func-for-aq : aquarium -> ...

;

;

(define (func-for-aq a)

 ... (aq-first a) ... (aq-second a) ...)

; aq-weight : aquarium -> num

(define (aq-weight a)

 (+ (aq-first a) (aq-second a)))

(aq-weight (make-aq 7 8)) "should be" 15

And so on, for many other simple aquarium functions... 2-4

Tragedy Strikes the Aquarium

Poor blue fish... now we have only one

Worse, we have to re-write all our functions...

; An aquarium is

; (make-aq num)

(define-struct aq (first))

5-6

Aquarium Template, Revised

; An aquarium is

; (make-aq num)

; func-for-aq : aquarium -> ...

;

;

(define (func-for-aq a)

 ... (aq-first a) ...)

; aq-weight : aquarium -> num

(define (aq-weight a)

 (aq-first a))

(aq-weight (make-aq 7)) "should be" 7

And so on, for all of the aquarium functions...
7-9

The Aquarium Expands

Hooray, we have two new fish!

Unfortunately, we have to re-re-write all our functions...

; An aquarium is

; (make-aq num num num)

(define-struct aq (first second third))

10-11

A Flexible Aquarium Representation

Our data choice isn't working

• An aquarium isn't just 1 fish, 2 fish, or 100 fish — it's a collection
containing an arbitrary number of fish

• No data definition with just 1, 2, or 100 numbers will work

To represent an aquarium, we need a list of numbers

We don't need anything new in the language, just a new idea

12

Structs as Boxes

Pictorially,

• define-struct lets us define a new kind of box

• The box can have as many compartments as we want, but we have
to pick how many, once and for all

(define-struct snake (name weight food))

⇒

(define-struct ant (weight loc))

⇒

13

Boxes Stretch

The boxes stretch to fit any one thing in each slot:

'slinky 12 'rats

Even other boxes:

0.002 2 3

Still, the number of slots is fixed

14

Packing Boxes

Suppose that

• You have four things to pack as one

• You only have 2-slot boxes

• Every slot must contain exactly one thing

How can you create a single package?

15

Packing Boxes

This isn't good enough

because it's still two boxes...

But this works!

16-17

Packing Boxes

And here's 8 fish:

And here's 16 fish!

But what if we just add 1 fish, instead of doubling the fish?

But what if we have 0 fish?

18-20

General Strategy for Packing Boxes

Here's a general strategy:

• For 0 fish, use empty

• If you have a package and a new fish, put them together

To combine many fish, start with empty and add fish one at a time

empty

empty

empty

empty

21-25

General Strategy for a List of Numbers

To represent the aquarium as a list of numbers, use the same idea:

• For 0 fish, use empty

• If you have a list and a number, put them together with
make-bigger-list

empty

(make-bigger-list 10 empty)

(make-bigger-list 5 (make-bigger-list 10 empty))

(make-bigger-list 7 (make-bigger-list 5 (make-bigger-list 10 empty)))

26-30

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

31

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 ...)

32

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l) ...]))

33

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l)

... (bigger-list-first l)

 ... (bigger-list-rest l)

 ...]))

34

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l)

... (bigger-list-first l)

 ... (bigger-list-rest l)

 ...]))

35

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l)

... (bigger-list-first l)

 ... (func-for-lon (bigger-list-rest l))

 ...]))

36

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 ...)

37

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 ...)

(aq-weight empty) "should be" 0

38

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 ...)

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

39

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 ...)

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7
40

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l)

... (bigger-list-first l)

 ... (aq-weight (bigger-list-rest l))

 ...]))

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7
41

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 (cond

[(empty? l) 0]

 [(bigger-list? l)

(+ (bigger-list-first l)

(aq-weight (bigger-list-rest l)))]))

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7
42

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 (cond

[(empty? l) 0]

 [(bigger-list? l)

(+ (bigger-list-first l)

(aq-weight (bigger-list-rest l)))]))

Try examples in the stepper

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7
43

Shortcuts

The name make-bigger-list is awfully long

DrScheme has built-in shorter versions

make-bigger-list ⇒ cons

bigger-list-first ⇒ first

bigger-list-rest ⇒ rest

bigger-list? ⇒ cons?

(first (cons 1 empty)) → 1

(rest (cons 1 empty)) → empty

(cons? empty) → false
44-45

Lists using the Shortcuts

; A list-of-num is either

; - empty

; - (cons num list-of-num)

; aq-weight : list-of-num -> num

(define (aq-weight l)

 (cond

 [(empty? l) 0]

 [(cons? l) (+ (first l)

(aq-weight (rest l)))]))

(aq-weight empty) "should be" 0

(aq-weight (cons 5 (cons 2 empty)))

"should be" 7
46

Design Recipe for Lists

Design recipe changes for today:

None

Granted, the self-reference was slightly novel...

; A list-of-num is either

; - empty

; - (cons num list-of-num)

47-48

Recursion

A self-reference in a data definition leads to a recursive function —
one that calls itself

(define (aq-weight l)

 (cond

 [(empty? l) 0]

 [(cons? l) (+ (first l)

(aq-weight (rest l)))]))

Recursion is rumored to be a difficult topic...

... but now you know better

49-51

