
Data Definitions and Templates

Syntax and Semantics

Defensive Programming

1

Data Definitions

Question 1:
Are both of the following data definitions ok?

; A w-grade is either

; - num

; - posn

; - empty

with ; A posn is
; (make-posn num num)

; A z-grade is either

; - num

; - (make-posn num num)

; - empty

Yes.
2-3

Data Definitions

Question 2:
Do w-grade and z-grade identify the same set of values?

; A w-grade is either

; - num

; - posn

; - empty

with ; A posn is
; (make-posn num num)

; A z-grade is either

; - num

; - (make-posn num num)

; - empty

Yes, every w-grade is a w-grade,
and every z-grade is a w-grade 4-5

Data Definitions

Question 3:
Are w-grade and w-grade the same data definition?

; A w-grade is either

; - num

; - posn

; - empty

with ; A posn is
; (make-posn num num)

; A z-grade is either

; - num

; - (make-posn num num)

; - empty

No, in the sense that they generate different templates
6-7

Data Definitions and Templates

The template depends on the static, textual content of a data
definition, only

; A w-grade is either

; - num

; - posn

; - empty

; A posn is

; (make-posn num num)

(define (func-for-w-grade w)

 (cond

[(number? w) ...]

 [(posn? w) ... (func-for-posn w) ...]

 [(empty? w) ...]))

(define (func-for-posn p)

 ... (posn-x p) ... (posn-y p) ...)

; A z-grade is either

; - num

; - (make-posn num num)

; - empty

(define (func-for-z-grade z)

 (cond

[(number? z) ...]

 [(posn? z) ... (posn-x z) ... (posn-y z) ...]

 [(empty? z) ...]))

8

Data Definitions and Templates

Why we treat the data definition statically to generate a template:

• Provides well-defined, simple rules for generating a template

"Dynamic" coverage is difficult in general

Recall 3520 anecdote: thinking in terms of dynamic coverage ⇒
broken programs

• Similar to the way that data choices affect modularity

Details of modularity are beyond the scope of this class, but we
want to build the right instincts

9

Data Definitions and Templates

Syntax and Semantics

Defensive Programming

10

Execution in DrScheme

Suppose that DrScheme's definition window contains

(define (f x)

 (/ x 2))

(f 10)

What's the result of clicking Execute?

5

11-12

Execution in DrScheme

Suppose that DrScheme's definition window contains

(define (f x)

 (/ x 0))

(f 10)

What's the result of clicking Execute?

/: divide by 0

13-14

Execution in DrScheme

Suppose that DrScheme's definition window contains

(define (f x)

 (/ x 0))

What's the result of clicking Execute?

Nothing (although f would produce an error if it were used)

15-16

Execution in DrScheme

Suppose that DrScheme's definition window contains

(define (f x)

 (/ x (0)))

What's the result of clicking Execute?

expected a name after an open parenthesis,
found a number — even without using f

17-18

Execution in DrScheme

Suppose that DrScheme's definition window contains

(define (f x)

 (cond x))

What's the result of clicking Execute?

cond: expected a question--answer clause — even
without using f

19-20

Execution in DrScheme

Suppose that DrScheme's definition window contains

(define (f x)

 (cond

 [false x]))

What's the result of clicking Execute?

Nothing

21-22

Execution in DrScheme

Suppose that DrScheme's definition window contains

(define (f x)

 (cond

 [false x]))

(f 10)

What's the result of clicking Execute?

cond: all questions were false

23-24

Errors in DrScheme

DrScheme complains about a function body

sometimes before the function is used

sometimes only when the function is called

Why?

Because some errors are syntax errors and some errors are
run-time errors

25-26

Syntax Errors

A syntax error is like a question that isn't a well-formed sentence

• f (x) = x + 0
DrScheme doesn't understand this notation, just like...

• "Parlez-Vous Français ?"
English-only speaker doesn't understand this notation

• (define (f x) (/ x (0)))
Parens around a zero make no sense to DrScheme, just like...

• "Does rain dog cat?"
Not enough verbs for this to make sense in English

When DrScheme sees a syntax error, it refuses to evaluate

27-29

Run-Time Errors

A run-time error is like a well-formed question with no answer

• (/ 12 0)
A clear request to DrScheme, but no answer, just like...

• "Why are you wearing a green hat?"
There's no answer if I'm wearing a blue hat

• (cond [false 10])
There's no reasonable choice for DrScheme, just like...

• "If you can't understand me, what's your name?"
No one who understands the question should answer

DrScheme evaluates around run-time errors until forced to answer

30-32

The Difference between DrScheme and English

In a (good) programming language, all errors are well-defined, and
the rules are relatively simple

• DrScheme has a simple, well-defined grammar, and deviations from
the grammar are syntax errors

• The reduction rules for each construct and primitive operation are
well-defined, producing either a value or an error

33

Beginner Scheme Grammar

A <var> is a name, a <con> is a constant, and a <prm> is an
operator name

A <defn> is one of
(define (<var> <var> ... <var>) <exp>)

(define <var> <exp>)

(define-struct <var> (<var> ... <var>))

A <exp> is one of
<var>

<con>

(<prm> <exp> ... <exp>)

(<var> <exp> ... <exp>)

(cond [<exp> <exp>] ... [<exp> <exp>])

(cond [<exp> <exp>] ... [else <exp>])

(and <exp> ... <exp>)

(or <exp> ... <exp>) 34

Evaluation Rules: and/or

(and true ... true false question ... question)
 → false

(and true ... true) → true

(or false ... false true question ... question)
 → true

(or false ... false) → false

Note that

(and 7 false)

fits the grammar, but has no matching evaluation rule, so it produces
a run-time error

35-36

Data Definitions and Templates

Syntax and Semantics

Defensive Programming

37

Execution in DrScheme

Suppose that DrScheme's definition window contains

; f : num -> num

(define (f x)

 (+ x 2))

(f 'apple)

What's the result of clicking Execute?

+: expects a <number>, given 'apple

But this is really a contract violation at the call to f

The implementor of f might want to clarify that this error is someone
else's fault, not a bug in f

38-40

Defensive Programming

; f : num -> num

(define (real-f x)

 (+ x 2))

(define (f x)

 (cond

 [(number? x) (real-f x)]

 [else (error 'f "not a number")]))

(f 'apple)

f: not a number

The error function triggers a run-time error

You don't have to program defensively in this course, but it
sometimes helps to defend against your own mistakes!

41-44

