
Contracts and Abstraction

Casts

Checking a Type

Interfaces

1

Contracts

What is the contract for the equals method of String?

"hello".equals(...)

So far, we've pretended that it takes a String and produces a
boolean

"hello".equals("bye") → false

"hello".equals(8) contract mismatch

The truth is somewhat more complex:

"hello".equals(new Posn(1, 2)) → false

2-4

The Whole Truth

• The equals method takes an Object and returns a boolean

• Every class extends Object

class Posn {

 double x;

 ...

}

is a shorthand for

class Posn extends Object {

 double x;

 ...

}

• The equals method is defined in Object

5

The Default Equals Method

class Object {

 ...

 boolean equals(Object o) {

 return o == this;

 }

}

where == is like eq? in Scheme

6

Using Object for Abstraction

In Scheme, we eventually wrote abstractions for lists:

; A list-of-X is either

; - empty

; - (cons X list-of-X)

A precise translation to a Java-like notation:

abstract class ListOf<X> { }

class EmptyListOf<X> { ... }

class ConsListOf<X> {

 <X> first;

 ListOf<X> rest;

 ...

}

new ConsListOf<String>("apple", ...)

But Java doesn't support this, yet 7-9

Using Object for Abstraction

In Scheme, we eventually wrote abstractions for lists:

; A list-of-X is either

; - empty

; - (cons X list-of-X)

A usable translation to Java:

abstract class List { }

class Empty { ... }

class Cons {

 Object first;

 List rest;

 ...

}

new Cons("apple", ...)

10

Object Lists

abstract class List {

 abstract boolean isMember(Object o);

}

class Empty extends List {

 Empty() { }

 boolean isMember(Object o) { return false; }

}

class Cons extends List {

 Object first;

 List rest;

 Cons(Object first, List rest) {

 this.first = first; this.rest = rest;

 }

 boolean isMember(Object o) {

 return this.first.equals(o) || this.rest.isMember(o);

 }

}

Copy

11

Extracting Objects

• Implement the List method nth, which takes a number n and returns the
first item in the list after skipping n items, or an empty list if no items are
left

12

Contracts and Abstraction

Casts

Checking a Type

Interfaces

13

Using Extracted Objects

new Cons(new Posn(1, 2), new Empty()).nth(0)

→ Posn(x = 1,y = 2)

new Cons(new Posn(1, 2), new Empty()).nth(0).x

contract error

The contract error occurs becuase nth promises merely to return an
Object, not necessarily a Posn

Java provides a way around this weakness in the contract system...

14-16

Casts

A cast is a dynamic request for an improved contract

General syntax:

(Class)expr

The parentheses are required

Examples:

(Posn)(new Cons(new Posn(1, 2), new Empty()).nth(0))

Path escapePath(Person p) {

 Path lp = this.left.escapePath(p);

 if (lp.isOk())

 return new Left((Success)lp);

 ...

} 17-18

Using A Cast to implement equals

A problem with Posn:

new Posn(1, 2).equals(new Posn(1, 2))
→ false

To fix this, we need to override equals:

class Posn {

 double x;

 double y;

 Posn(double x, double y) {

 this.x = x; this.y = y;

 }

 boolean equals(Object o) {

 return (this.x == ((Posn)o).x)

 && (this.y == ((Posn)o).y);

 }

} Copy19-20

Contracts and Abstraction

Casts

Checking a Type

Interfaces

21

Checking Types

A remaining problem:

"hello".equals(new Posn(1, 2)) → false

new Posn(1, 2).equals("hello") → cast failed

Our equals should only cast if the argument really is a Posn

The instanceof operator tests whether a cast will succeed

boolean equals(Object o) {

 if (o instanceof Posn)

 return (this.x == ((Posn)o).x)

 && (this.y == ((Posn)o).y);

 else

 return false;

} Copy
22-24

Using instanceof

The instanceof operator is only in Advanced Java because it's
rarely the right way to implement something

Example bad use:

class Cons extends List {

 ...

 boolean isMember(Object o) {

 if (this.first.equals(o))

 return true;

 else if (this.rest instanceof Empty)

 return false;

 ...

 }

}

25

Contracts and Abstraction

Casts

Checking a Type

Interfaces

26

Named Doors

Suppose that we want to make the following improvements to our
maze game:

• Some doors will have names

• We want to get all of the named places in a maze, including both
escapes and named doors

• We'll need certain methods on named places, such as isNice

• We don't want to add named-place methods to all doors

• We refuse to use instanceof

abstract class Door {

 ...

 abstract List places();

}
27

A NamedPlace Abstract Class

Like this?

NamedPlace

String name

boolean isNice()

Escape

boolean isNice()

NamedInto

boolean isNice()

NamedPlace can't be an abstract class, because Escape already
extends Door, and NamedInto should extend Into

A class must extend exactly one class

However, NamedPlace can be an interface...
28-30

Interface

An interface is like an abstract class with no fields and all
abstract methods

interface NamedPlace {

 boolean isNice();

}

Instead of extending an interface, classes implement it

class Escape extends Door implements NamedPlace {

 ...

 boolean isNice() { return true; }

}

class NamedInto extends Into implements NamedPlace {

 ...

 boolean isNice() { return false; }

} 31-32

Door Hierarchy with Interfaces

NamedPlace

...

Door

...

Escape

String name

...

Into

Room next

...

NamedInto

String name

...

Short

double height

...

Locked

String keyColor

...

33

Single vs. Multiple, Implementation vs. Interface

A class must extend only one class

This is single inheritance of implementation

A class interface can implement any number of interfaces

This is multiple inheritance of interface

34

