
posn

define-struct

1

Compound Data So Far

A posn is

 (make-posn num num)

• (make-posn 1 2) is a value

• (posn-x (make-posn 1 2)) → 1

• (posn-y (make-posn 1 2)) → 2

So much for computation... how about program design?

2-3

Body

If the input is compound data, start the body by selecting the parts

5

Body

If the input is compound data, start the body by selecting the parts

; max-part : posn -> num

; Return the X part of p is it's bigger

; than the Y part, otherwise the Y part

(define (max-part p)

 ...)

(max-part (make-posn 10 11)) "should be" 11

(max-part (make-posn 7 5)) "should be" 7

6

Body

If the input is compound data, start the body by selecting the parts

; max-part : posn -> num

; Return the X part of p is it's bigger

; than the Y part, otherwise the Y part

(define (max-part p)

 ... (posn-x p) ... (posn-y p) ...)

(max-part (make-posn 10 11)) "should be" 11

(max-part (make-posn 7 5)) "should be" 7

7

Body

If the input is compound data, start the body by selecting the parts

; max-part : posn -> num

; Return the X part of p is it's bigger

; than the Y part, otherwise the Y part

(define (max-part p)

 (cond

 [(> (posn-x p) (posn-y p)) (posn-x p)]

 [else (posn-y p)]))

(max-part (make-posn 10 11)) "should be" 11

(max-part (make-posn 7 5)) "should be" 7

8

Body

If the input is compound data, start the body by selecting the parts

; max-part : posn -> num

; Return the X part of p is it's bigger

; than the Y part, otherwise the Y part

(define (max-part p)

 (cond

 [(> (posn-x p) (posn-y p)) (posn-x p)]

 [else (posn-y p)]))

(max-part (make-posn 10 11)) "should be" 11

(max-part (make-posn 7 5)) "should be" 7

Since this guideline applies before the usual body work, let's split it
into an explicit step

9

Design Recipe II

Data

• Understand the input data

Contract, Purpose, and Header

• Describe (but don't write) the function

Examples

• Show what will happen when the function is done

Template

• Set up the body based on the input data (and only the input)

Body

• The most creative step: implement the function body

Test

• Run the examples
10

Body Template

If the input is compound data, start the body by selecting the parts

; max-part : posn -> num

; ...

(define (max-part p)

 ... (posn-x p) ... (posn-y p) ...)

Check: number of parts in template =
number of parts data definition named in contract

A posn is

 (make-posn num num)

11-13

Body Template

If the input is compound data, start the body by selecting the parts

Handin artifact: a comment (required starting with HW 3)

; max-part : posn -> num

; Return the X part of p is it's bigger

; than the Y part, otherwise the Y part

;

;

(define (max-part p)

 ... (posn-x p) ... (posn-y p) ...)

(define (max-part p)

 ... (posn-x p) ... (posn-y p) ...)

(max-part (make-posn 10 11)) "should be" 11

(max-part (make-posn 7 5)) "should be" 7

14

posn

define-struct

16

Other Kinds of Data

Suppose we want to represent snakes:

• name

• weight

• favorite food

What kind of data is appropriate?

Not num, bool, sym, image, or posn...

17-18

Data Definitions and define-struct

Here's what we'd like:

A snake is
 (make-snake sym num sym)

But make-snake is not built into DrScheme

We can tell DrScheme about snake:

(define-struct snake (name weight food))

Creates the following:

• make-snake
• snake-name
• snake-weight
• snake-food

19-22

Data Definitions and define-struct

Here's what we'd like:

A snake is
 (make-snake sym num sym)

But make-snake is not built into DrScheme

We can tell DrScheme about snake:

(define-struct snake (name weight food))

Creates the following:

(snake-name (make-snake X Y Z)) → X
(snake-weight (make-snake X Y Z)) → Y
(snake-food (make-snake X Y Z)) → Z

23

Data

Deciding to define snake is in the first step of the design recipe

Handin artifact: a comment and/or define-struct

; A snake is

; (make-snake sym num sym)

(define-struct snake (name weight food))

Now that we've defined snake, we can use it in contracts

24-26

Programming with Snakes

• Implement snake-skinny?, which takes a snake and returns true if
the snake weights less than 10 pounds, false otherwise

• Implement feed-snake, which takes a snake and returns a snake with
the same name and favorite food, but five pounds heavier

27-28

Programming with Armadillos

• Pick a representation for armadillos ("dillo" for short), where a dillo has a
weight and may or may not be alive

• Implement run-over-with-car, which takes a dillo and returns a
dead dillo of equal weight

• Implement feed-dillo, where a dillo eats 2 pounds of food at a time

... unless it's dead

29-32

