
Helper Functions and Reuse

Conditionals

Evaluation Rules for cond

Design Recipe with cond

Compound Data

1

Designing Programs

Design recipe

• As outlined last lecture

Helper functions and reuse

• Writing writing a function, consider whether existing functions help

Example: wearing-glasses? uses add-glasses

• Look for functions that you wish you had written

Example: same-person-maybe-disguised? needs
wearing-beard?

2-3

Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

4

Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

; bigger-image? : image image -> bool

5

Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

; bigger-image? : image image -> bool

; Returns true if a has more pixels than b

6

Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

; bigger-image? : image image -> bool

; Returns true if a has more pixels than b

(define (bigger-image? a b) ...)

7

Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

; bigger-image? : image image -> bool

; Returns true if a has more pixels than b

(define (bigger-image? a b) ...)

(bigger-image?) "should be" true

(bigger-image?) "should be" false

8

Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

; bigger-image? : image image -> bool

; Returns true if a has more pixels than b

(define (bigger-image? a b)

 (> (* (image-width a) (image-height a))

(* (image-width b) (image-height b))))

(bigger-image?) "should be" true

(bigger-image?) "should be" false

9

Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

; bigger-image? : image image -> bool

; Returns true if a has more pixels than b

(define (bigger-image? a b)

 (> (image-size a) (image-size b)))

(bigger-image?) "should be" true

(bigger-image?) "should be" false

Wish list: image-size

10

Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

; bigger-image? : image image -> bool

; Returns true if a has more pixels than b

(define (bigger-image? a b)

 (> (image-size a) (image-size b)))

(bigger-image?) "should be" true

(bigger-image?) "should be" false

Wish list: image-size

Fullfill wishes by applying the recipe again
(exercise for the reader)

11

Reuse

We should be able to use bigger-image? to write the max-image
function

12

Reuse

We should be able to use bigger-image? to write the max-image
function

; max-image : image image -> image

; Returns a if a has more pixels than b,

; otherwise returns b

(define (max-image a b) ...)

13

Reuse

We should be able to use bigger-image? to write the max-image
function

; max-image : image image -> image

; Returns a if a has more pixels than b,

; otherwise returns b

(define (max-image a b) ...)

(max-image) "should be"

(max-image) "should be"

14

Reuse

We should be able to use bigger-image? to write the max-image
function

; max-image : image image -> image

; Returns a if a has more pixels than b,

; otherwise returns b

(define (max-image a b)

 ... (bigger-image? a b) ...)

(max-image) "should be"

(max-image) "should be"

15

Reuse

We should be able to use bigger-image? to write the max-image
function

; max-image : image image -> image

; Returns a if a has more pixels than b,

; otherwise returns b

(define (max-image a b)

 ... (bigger-image? a b) ...)

(max-image) "should be"

(max-image) "should be"

Instead of returning a bool, we need to do one of two things, so we
need cond

16

Helper Functions and Reuse

Conditionals

Evaluation Rules for cond

Design Recipe with cond

Compound Data

17

Conditionals in Algebra

General format of conditionals in algebra:

{
answer question

...
answer question

Example:

abs(x) = { x if x > 0
-x otherwise

abs(10) = 10

abs(-7) = 7

18

Conditionals

General syntax of cond in our language:

(cond

 [question answer]
 ...

 [question answer])

• Any number of cond lines

• Each line has one question expression and one answer expression

(define (abs x)

 (cond

 [(> x 0) x]

 [else (- x)]))

(abs 10) "should be" 10

(abs -7) "should be" 7
19-20

Completing max-image

• Use cond to complete max-image

(define (max-image a b)

 (cond

 [(bigger-image? a b) a]

 [else b]))

21

Helper Functions and Reuse

Conditionals

Evaluation Rules for cond

Design Recipe with cond

Compound Data

22

Evaluation Rules for cond

First question is literally true or else

(cond

 [true answer]
 ...

 [question answer])

→ answer

• Keep only the first answer

Example:

(* 1 (cond

 [true 0]))

 → (* 1 0) → 0

23-26

Evaluation Rules for cond

First question is literally false

(cond

 [false answer]
 [question answer]
 ...

 [question answer])

→

(cond

 [question answer]
 ...

 [question answer])

• Throw away the first line

Example:

(+ 1 (cond

 [false 1]

 [true 17]))

 → (+ 1 (cond

 [true 17]))

 → (+ 1 17) → 18
27-28

Evaluation Rules for cond

First question isn't a value, yet

(cond

 [question answer]
 ...

 [question answer])

→

(cond

 [nextques answer]
 ...

 [question answer])

where question → nextques

• Evaluate first question as sub-expression

Example:

(+ 1 (cond

 [(< 1 2) 5]

 [else 8]))

 → (+ 1 (cond

 [true 5]

 [else 8]))

 → (+ 1 5) → 6
29-30

Evaluation Rules for cond

Only queston is false answers

(cond

[false 10])
 → error: all questions false

31

Helper Functions and Reuse

Conditionals

Evaluation Rules for cond

Design Recipe with cond

Compound Data

32

Examples

When the problem statement divides the input into several
categories, test each one

Example:

Write the function line-part that determines whether a number is
on zero, to the left, or to the right on a number line

0

(line-part 0) "should be" 'zero
(line-part -3) "should be" 'left
(line-part 3) "should be" 'right

34-36

Body

When the problem statement divides the input into N categories:

• Start the body with a cond expression and N lines

• Formulate a question to recognize each category

Example:

Write the function line-part that determines whether a number is
on zero, to the left, or to the right on a number line

Three cases, so three lines: (define (line-part n)

 (cond

 [(= n 0) ...]

 [(< n 0) ...]

 [(> n 0) ...]))

38-40

Helper Functions and Reuse

Conditionals

Evaluation Rules for cond

Design Recipe with cond

Compound Data

41

Finding Images

(image-inside?) → true

(image-inside?) → false

42-43

Image Tests in Conditionals

Now we can combine such operators with cond:

; detect-person : image image image -> image

; Returns a or b, depending on which is in i

(define (detect-person i a b)

 (cond

 [(image-inside? i a) a]

 [(image-inside? i b) b]))

(detect-person)

"should be"

44

Finding and Adjusting Images

Suppose we want to write frame-person:

(frame-person)

"should be"

Need an operator that reports where an image exists

45-46

Finding an Image Position

find-image : image image -> num num

Must return a single value

Correct contract:

find-image : image image -> posn

• A posn is a compound value

47-48

Positions

• A posn is

 (make-posn X Y)

where X is a num and Y is a num

Examples:

(make-posn 1 2)

(make-posn 17 0)

A posn is a value, just like a number, symbol, or image

49-51

posn-x and posn-y

The posn-x and posn-y operators extract numbers from a posn:

(posn-x (make-posn 1 2)) → 1

(posn-y (make-posn 1 2)) → 2

• General evaluation rules for any X and Y:

(posn-x (make-posn X Y)) → X

(posn-y (make-posn X Y)) → Y

52-53

Positions and Values

Is (make-posn 100 200) a value?

Yes.

A posn is

 (make-posn X Y)

where X is a num and Y is a num

54

Positions and Values

Is (make-posn (+ 1 2) 200) a value?

No. (+ 1 2) is not a num, yet.

• Two more evaluation rules:

(make-posn X Y) → (make-posn Z Y)
when X → Z

(make-posn X Y) → (make-posn X Z)
when Y → Z

Example:

(make-posn (+ 1 2) 200) → (make-posn 3 200)

55

More Examples

Try these in DrScheme's stepper:

(make-posn (+ 1 2) (+ 3 4))

(posn-x (make-posn (+ 1 2) (+ 3 4)))

; pixels-from-corner : posn -> num

(define (pixels-from-corner p)

 (+ (posn-x p) (posn-y p)))

(pixels-from-corner (make-posn 1 2))

; flip : posn -> posn

(define (flip p)

 (make-posn (posn-y p) (posn-x p)))

(flip (make-posn 1 2))
56

