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Designing Programs

Design recipe

• As outlined last lecture

Helper functions and reuse

• Writing writing a function, consider whether existing functions help

Example: wearing-glasses? uses add-glasses

• Look for  functions that you wish you had written

Example: same-person-maybe-disguised? needs
wearing-beard?
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Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image
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Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

; bigger-image? : image image -> bool
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Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

; bigger-image? : image image -> bool

; Returns true if a has more pixels than b
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Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

; bigger-image? : image image -> bool

; Returns true if a has more pixels than b

(define (bigger-image? a b) ...)
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Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

; bigger-image? : image image -> bool

; Returns true if a has more pixels than b

(define (bigger-image? a b) ...)

 

(bigger-image?  ) "should be" true

(bigger-image?  ) "should be" false
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Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

; bigger-image? : image image -> bool

; Returns true if a has more pixels than b

(define (bigger-image? a b)

  (> (* (image-width a) (image-height a))

(* (image-width b) (image-height b))))

 

(bigger-image?  ) "should be" true

(bigger-image?  ) "should be" false
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Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

; bigger-image? : image image -> bool

; Returns true if a has more pixels than b

(define (bigger-image? a b)

  (> (image-size a) (image-size b)))

 

(bigger-image?  ) "should be" true

(bigger-image?  ) "should be" false

 

Wish list: image-size
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Another Example

Write the function bigger-image? which checks whether one image
has more pixels than a second image

; bigger-image? : image image -> bool

; Returns true if a has more pixels than b

(define (bigger-image? a b)

  (> (image-size a) (image-size b)))

 

(bigger-image?  ) "should be" true

(bigger-image?  ) "should be" false

 

Wish list: image-size

Fullfill wishes by applying the recipe again
(exercise for the reader)
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Reuse

We should be able to use bigger-image? to write the max-image
function
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Reuse

We should be able to use bigger-image? to write the max-image
function

; max-image : image image -> image

; Returns a if a has more pixels than b,

; otherwise returns b

(define (max-image a b) ...)
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Reuse

We should be able to use bigger-image? to write the max-image
function

; max-image : image image -> image

; Returns a if a has more pixels than b,

; otherwise returns b

(define (max-image a b) ...)

 

(max-image  ) "should be" 

(max-image  ) "should be" 
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Reuse

We should be able to use bigger-image? to write the max-image
function

; max-image : image image -> image

; Returns a if a has more pixels than b,

; otherwise returns b

(define (max-image a b)

  ... (bigger-image? a b) ...)

 

(max-image  ) "should be" 

(max-image  ) "should be" 
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Reuse

We should be able to use bigger-image? to write the max-image
function

; max-image : image image -> image

; Returns a if a has more pixels than b,

; otherwise returns b

(define (max-image a b)

  ... (bigger-image? a b) ...)

 

(max-image  ) "should be" 

(max-image  ) "should be" 

Instead of returning a bool, we need to do one of two things, so we
need cond
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Conditionals in Algebra

General format of conditionals in algebra:

{
answer question

...
answer question

Example:

abs(x) = { x if x > 0
-x otherwise

abs(10) = 10

abs(-7) = 7
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Conditionals

General syntax of cond in our language:

(cond

  [question answer]
  ...

  [question answer])

• Any number of cond lines

• Each line has one question expression and one answer expression

(define (abs x)

  (cond

  [(> x 0) x]

  [else (- x)]))

(abs 10) "should be" 10

(abs -7) "should be" 7
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Completing max-image

• Use cond to complete max-image

(define (max-image a b)

  (cond

  [(bigger-image? a b) a]

  [else b]))
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Evaluation Rules for cond

First question is literally true or else

(cond

  [true answer]
  ...

  [question answer])

→ answer

• Keep only the first answer

Example:

(* 1 (cond

  [true 0]))

 → (* 1 0) → 0
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Evaluation Rules for cond

First question is literally false

(cond

  [false answer]
  [question answer]
  ...

  [question answer])

→

(cond

  [question answer]
  ...

  [question answer])

• Throw away the first line

Example:

(+ 1 (cond

  [false 1]

  [true 17]))

 → (+ 1 (cond

  [true 17]))

 → (+ 1 17) → 18
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Evaluation Rules for cond

First question isn't a value, yet

(cond

  [question answer]
  ...

  [question answer])

→

(cond

  [nextques answer]
  ...

  [question answer])

where question  →  nextques

• Evaluate first question as sub-expression

Example:

(+ 1 (cond

  [(< 1 2) 5]

  [else 8]))

 → (+ 1 (cond

  [true 5]

  [else 8]))

 → (+ 1 5) → 6
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Evaluation Rules for cond

Only queston is false answers

(cond

[false 10])
 → error: all questions false
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Examples

When the problem statement divides the input into several
categories, test each one

Example:

Write the function line-part that determines whether a number is
on zero, to the left, or to the right on a number line

0

(line-part 0) "should be" 'zero
(line-part -3) "should be" 'left
(line-part 3) "should be" 'right
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Body

When the problem statement divides the input into N categories:

• Start the body with a cond expression and N lines

• Formulate a question to recognize each category

Example:

Write the function line-part that determines whether a number is
on zero, to the left, or to the right on a number line

Three cases, so three lines: (define (line-part n)

  (cond

  [(= n 0) ...]

  [(< n 0) ...]

  [(> n 0) ...]))
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Finding Images

(image-inside?  )  →  true

(image-inside?  )  →  false
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Image Tests in Conditionals

Now we can combine such operators with cond:

; detect-person : image image image -> image

; Returns a or b, depending on which is in i

(define (detect-person i a b)

  (cond

  [(image-inside? i a) a]

  [(image-inside? i b) b]))

(detect-person   )

"should be" 
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Finding and Adjusting Images

Suppose we want to write frame-person:

(frame-person  )

"should be"

Need an operator that reports where an image exists
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Finding an Image Position

find-image : image image -> num num

Must return a single value

Correct contract:

find-image : image image -> posn

• A posn is a compound value

47-48



Positions

• A posn is

 (make-posn X Y)

where X is a num and Y is a num

Examples:

(make-posn 1 2)

(make-posn 17 0)

A posn is a value, just like a number, symbol, or image
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posn-x and posn-y

The posn-x and posn-y operators extract numbers from a posn:

(posn-x (make-posn 1 2))  →  1

(posn-y (make-posn 1 2))  →  2

• General evaluation rules for any X and Y:

(posn-x (make-posn X Y))  →  X

(posn-y (make-posn X Y))  →  Y
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Positions and Values

Is (make-posn 100 200) a value?

Yes.

A posn is

 (make-posn X Y)

where X is a num and Y is a num
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Positions and Values

Is (make-posn (+ 1 2) 200) a value?

No. (+ 1 2) is not a num, yet.

• Two more evaluation rules:

(make-posn X Y)  →  (make-posn Z Y)
when X  →  Z

(make-posn X Y)  →  (make-posn X Z)
when Y  →  Z

Example:

(make-posn (+ 1 2) 200)  →  (make-posn 3 200)
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More Examples

Try these in DrScheme's stepper:

(make-posn (+ 1 2) (+ 3 4))

(posn-x (make-posn (+ 1 2) (+ 3 4)))

; pixels-from-corner : posn -> num

(define (pixels-from-corner p)

  (+ (posn-x p) (posn-y p)))

(pixels-from-corner (make-posn 1 2))

; flip : posn -> posn

(define (flip p)

  (make-posn (posn-y p) (posn-x p)))

(flip (make-posn 1 2))
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