
Designing Generative Recusion

When you discover that the design recipe isn't working,
stop writing code

Instead, figure out the algorithm

• What is the trivial case?

• What are the smaller sub-problems, and how are their solutions
combined?

Generating sub-problems or combining the answers may require
additional functions

1-3



Generating Sub-Problems

The key to a sub-problem is that it looks like the original problem
(only smaller)

Example: In odd-items, the sub-problem is a smaller list from which
we want the odd items

Homework: In colors->list, the sub-problem should be a smaller
list from which to extract rows

Guideline: When the result is a list, try to generate the first item in the
list, then create a sub-problem for the rest of the list

4-5



New Example

Suppose that instead of rows, we want to convert an image into a list
of columns

(colors->columns (list color1 color2 color3

color4 color5 color6)

3)

"should be" (list (list color1 color4)

(list color2 color5)

      (list color3 color6))

Structural recursion doesn't work well

6



Designing the Column Converter

(colors->columns (list color1 color2 color3

color4 color5 color6)

3)

"should be" (list (list color1 color4)

(list color2 color5)

      (list color3 color6))

The result is a list of columns:

• Can we get the first column?

• Can we create a list with only the other columns?

7



Designing the Column Converter

(colors->columns (list color1 color2 color3

color4 color5 color6)

3)

"should be" (list (list color1 color4)

(list color2 color5)

      (list color3 color6))

(colors->columns (list color1 color2 color3

color4 color5 color6)

3)

→
(cons (list color1 color4)

(colors->columns (list color2 color3

color5 color6)

2))
8



Designing the Column Converter

(colors->columns (list color1 color2 color3

color4 color5 color6)

3)

"should be" (list (list color1 color4)

(list color2 color5)

      (list color3 color6))

; 

; 

extract-first-column :

  list-of-color num -> list-of-color

 

; 

; 

drop-first-column :

  list-of-color num -> list-of-color

9



Implementing the Column Converter

(define (colors->columns l n)

  (cond

  [(empty? l) empty]

  [else

(local [(define c1

  (extract-first-column l n))

(define rl

  (drop-first-column l n))]

  (cons c1

(colors->columns rl (sub1 n))))]))

With two pending wishes...

10



Designing Extract

Now to satisfy our wish for extract-first-column...

(extract-first-column (list color1 color2 color3

color4 color5 color6)

3)

"should be" (list color1 color4)

Again, structural recursion doesn't work well

• Can we get the first item in the column?

• Can we create a list whose first column is the rest of the column?

11-12



Designing Extract

Now to satisfy our wish for extract-first-column...

(extract-first-column (list color1 color2 color3

color4 color5 color6)

3)

"should be" (list color1 color4)

(extract-first-column (list color1 color2 color3

color4 color5 color6)

3)

→
(cons color1

(extract-first-column

(list color4 color5 color6)

 3))

; skip-n : list-of-X nat -> list-of-X 13-14



Implementing Extract

(define (extract-first-column l n)

  (cond

  [(empty? l) empty]

  [else

(cons

(first l)

 (extract-first-column (skip-n l n) n))]))

Implementing skip-n is an exercise in structural recursion on nat

15



Designing Drop

Finally, to satisfy our wish for drop-first-column...

(drop-first-column (list color1 color2 color3

color4 color5 color6)

3)

"should be" (list color2 color3

color5 color6)

Yet again, structural recursion doesn't work well

• Can we get the first item in the result?

• Can we create a list where dropping the first column is the rest of
the answer?

16-17



Designing Drop

Finally, to satisfy our wish for drop-first-column...

(drop-first-column (list color1 color2 color3

color4 color5 color6)

3)

"should be" (list color2 color3

color5 color6)

(drop-first-column (list color1 color2 color3

color4 color5 color6)

3)

→
(cons color2

(drop-first-column ??? 3))

18



Designing Drop

Finally, to satisfy our wish for drop-first-column...

(drop-first-column (list color1 color2 color3

color4 color5 color6)

3)

"should be" (list color2 color3

color5 color6)

• Can we create a list where dropping the first column is the rest of
the answer?

No — getting just the first item doesn't make a similar sub-problem

19



Designing Drop

Finally, to satisfy our wish for drop-first-column...

(drop-first-column (list color1 color2 color3

color4 color5 color6)

3)

"should be" (list color2 color3

color5 color6)

Need to grab an entire row, then skip the row to recur

(drop-first-column (list color1 color2 color3

color4 color5 color6)

3)

→
(append (list color2 color3)

(drop-first-column (list color4 color5 color6) 3))

20



Implementing Drop

(define (drop-first-column l n)

  (cond

  [(empty? l) empty]

  [else

(append

(first-n (rest l) (sub1 n))

 (drop-first-column (skip-n l n)))]))

 

 

; first-n : list-of-X nat -> list-of-X

; snip-n : list-of-X nat -> list-of-X

The leftover wishes are strightforward

21



Another Example

• Implement replace-range, which takes a list, two numbers start and
end, and a value v; the result is a list like the given one, except that v
replaces the elements in positions start to end inclusive

; 

; 

replace-range :

  list-of-X num num X -> list-of-X

 

(replace-range '(a b c d e) 1 3 'x)

"should be"

'(a x x x e)

22-23



Designing Replacement

(replace-range '(a b c d e) 1 3 'x)

"should be"

'(a x x x e)

(replace-range '(a b c d e) 1 3 'x)

→
(cons 'a

(replace-range '(b c d e) 0 2 'x))

24



Designing Replacement

(replace-range '(a b c d e) 1 3 'x)

"should be"

'(a x x x e)

(replace-range '(a b c d e) 1 3 'x)

→
(cons 'a

(replace-range '(b c d e) 0 2 'x))

→
(cons 'a

(cons 'x

(replace-range '(c d e) -1 1 'x)))

25



Designing Replacement

(replace-range '(a b c d e) 1 3 'x)

"should be"

'(a x x x e)

→ →
(cons 'a

(cons 'x

...

      (replace-range '(e) -3 -1 'x)))

→
(cons 'a

... ...

      (cons 'e

(replace-range empty -4 -2 'x)))

26



Implementing Replacement

(define (replace-range l s e v)

  (cond

  [(empty? l) empty]

  [else (cons (cond

  [(and (< s 1) (> e -1)) v]

  [else (first l)])

(replace-range (rest l)

(sub1 s)

               (sub1 e)

               v))]))

27



Designing Generative Recursion

Finding the recursive sub-problem is the key

• Think first, write code second

• Writing down example steps can help

28


