Designing Generative Recusion

When you discover that the design recipe isn't working,
stop writing code

Instead, figure out the algorithm
e What is the trivial case?
 What are the smaller sub-problems, and how are their solutions

combined?

Generating sub-problems or combining the answers may require
additional functions

1-3

Generating Sub-Problems
The key to a sub-problem is that it looks like the original problem
(only smaller)

Example: In odd- i t ens, the sub-problem is a smaller list from which
we want the odd items

Homework: In col or s- >| | st , the sub-problem should be a smaller

list from which to extract rows

When the result is a list, try to generate the first item in the
list, then create a sub-problem for the rest of the list

New Example

Suppose that instead of rows, we want to convert an image into a list
of columns

(colors->colums (list colorl color2 color3
color4 color5 col or6)
3)
"shoul d be" (list (list colorl color4)
(l'tst color2 colorb)
(l'1st color3 coloro))

Structural recursion doesn't work well

Designing the Column Converter

(colors->colums (list colorl color2 color3
color4 color5 col or6)
3)
"shoul d be" (list (list colorl color4)
(I'1st color2 colorb)
(l'1st color3 color6))

The result is a list of columns:
e Can we get the first column?

e Can we create a list with only the other columns?

Designing the Column Converter

(colors->colums (list colorl color2 color3
color4 color5 col or6)
3)
"shoul d be" (list (list colorl color4)
(I'1st color2 colorb)
(l'1st color3 color6))

(colors->colums (list colorl color2 color3
color4 color5 col or6)
3)
(cons (list colorl color4)
(colors->colums (list color2 color3
col or5 col or6)

2))

Designing the Column Converter

(colors->colums (list colorl color2 color3
color4 col or5 col oro6)
3)
"shoul d be" (list (list colorl color4)
(I'1st color2 colorb)
(l'1st color3 color6))

- extract-first-colum :
: |1 st-of-color num-> |1st-of-col or

, drop-first-colum :
; |1 st-of-color num-> |1 st-of-col or

Implementing the Column Converter

(define (colors->colums | n)
(cond
[(enpty? |) enpty]
| el se
(local [(define cl
(extract-first-colum | n))
(define rl
(drop-first-colum | n))|
(cons cl
(colors->colums rl (subl n))))]))

With two pending wishes...

10

Designing Extract

Now to satisfy our wish for extract-first-col um...

(extract-first-colum (list colorl color2 color3
color4 col or5 col or6)
3)
"shoul d be" (list colorl color4)

Again, structural recursion doesn't work well

e Can we get the first item in the column?

e Can we create a list whose first column is the rest of the column?

11-12

Designing Extract

Now to satisfy our wish for extract-first-col um...

(extract-first-colum (list colorl color2 color3
color4 col or5 col or6)
3)
"shoul d be" (list colorl color4)

(extract-first-colum (list colorl color2 color3
col or4 col or5 col or6)
3)
(cons colorl
(extract-first-col um
(list color4 color5 col or6)

3))

. skip-n : list-of-X nat -> list-of-X 1314

Implementing Extract

(define (extract-first-colum | n)

(cond
[(enpty? |) enpty]
| el se
(cons
(first |)

(extract-first-colum (skip-n 1l n) n))]))

Implementing ski p- n is an exercise in structural recursion on nat

15

Designing Drop

Finally, to satisfy our wish for dr op-fi r st -col um...

(drop-first-colum (list colorl color2 color3
color4 color5 col or6)
3)
"shoul d be" (list color2 color3
col or5 col or6)

Yet again, structural recursion doesn't work well
e Can we get the first item in the result?

e Can we create a list where dropping the first column is the rest of
the answer?

16- 17

Designing Drop

Finally, to satisfy our wish for dr op-fi r st -col um...

(drop-first-colum (list colorl color2 color3
color4 color5 col or6)
3)
"shoul d be" (list color2 color3
col or5 col or6)

(drop-first-colum (list colorl color2 color3
color4 color5 col or6)
3)
(cons col or?2
(drop-first-colum ?2?7? 3))

Designing Drop

Finally, to satisfy our wish for dr op-fi r st -col um...

(drop-first-colum (list colorl color2 color3
color4 color5 col or6)
3)
"shoul d be" (list color2 color3
col or5 col or6)

e Can we create a list where dropping the first column is the rest of
the answer?

No —getting just the first item doesn't make a similar sub-problem

19

Designing Drop

Finally, to satisfy our wish for dr op-fi r st -col um...

(drop-first-colum (list colorl color2 color3
color4 color5 col or6)
3)
"shoul d be" (list color2 color3
col or5 col or6)

Need to grab an entire row, then skip the row to recur

(drop-first-colum (list colorl color2 color3
col or4 col or5 col or6)
3)
(append (list color2 color3)
(drop-first-colum (list color4 color5 color6) 3))

20

Implementing Drop

(define (drop-first-colum | n)
(cond
[(enpty? |) enpty]
[el se
(append
(first-n (rest |) (subl n))
(drop-first-colum (skip-nl| n)))]))

first-n . list-of-X nat -> list-of-X
, snip-n : list-of-X nat -> list-of-X

The leftover wishes are strightforward

21

Another Example

* Implement r epl ace- r ange, which takes alist, two numbers start and

end, and avaluev, theresult isalist like the given one, except that v
replaces the elements in positions start to end inclusive

, replace-range :
list-of -X numnum X -> [iIst-of-X

(replace-range "(a b c d e) 1 3 '"Xx)

"shoul d be"
'(a X X X e)

22-23

Designing Replacement

—

(cons 'a

(replace-range "(a b c de) 1 3 '"x)
"shoul d be"
‘(a X X X e)

(replace-range "(a b c de) 1 3 '"x)
(replace-range '"(b c de) 0 2 "x))

24

Designing Replacement

(replace-range "(a b c de) 1 3 '"x)
"shoul d be"
‘(a X X X e)

(replace-range "(a b c de) 1 3 '"x)
(cons 'a
(replace-range '"(b c de) 0 2 "x))
(cons 'a
(cons ' X
(replace-range "(c de) -1 1

X))

25

Designing Replacement

(replace-range "(a b c de) 1 3 '"x)
"shoul d be"
‘(a X X X e)

- -

(cons

—

(cons

" a
(cons ' X
k}éplace—range '(e) -3 -1 "X)))
" a
(cons ' e

(repl ace-range empty -4 -2 'x)))

26

Implementing Replacement

(define (replace-range | s e v)
(cond
[(enpty? |) enpty]
el se (cons (cond
[(and (< s 1) (>e -1)) v]
lelse (first 1)])
(repl ace-range (rest |)
(subl s)
(subl e)

v))1))

Designing Generative Recursion

Finding the recursive sub-problem is the key

* Think first, write code second

* Writing down example steps can help

28

