
How to Design A Program (So Far)

Data Representation and Contract

Examples

Maybe Abstract

Use Existing

Template

Body

Test

1

Challenge Problem

• Implement the function odd-items which takes a list-of-X and produces
a list-of-X containing every other item in the given list (including the first
item)

2

Data Representation and Contract

Already done for us:

; odd-items : list-of-X -> list-of-X

3

Examples

(odd-items empty) "should be" empty

(odd-items '(1 2 3 4 5))

"should be" '(1 3 5)

(odd-items '(apple banana cherry))

"should be" '(apple cherry)

(odd-items (list true false))

"should be" (list true)

4

Maybe Abstract

Use Existing

or

Template

Body

?

We know that foldr captures the template for list-of-X, so
choose the left branch — and abstraction is done already!

5-6

Maybe Abstract

Use Existing

(define (odd-items l)

 (foldr (lambda (item odd-rest)

 ...)

empty l))

Problem: the odd items of the rest of the list are useless for the odd
items of the whole list

(odd-items '(1 2 3 4)) "should be" '(1 3)

but

(odd-items '(2 3 4)) "should be" '(2 4)
7-8

Template

Body

?

(define (odd-items l)

 (cond

 [(empty? l) empty]

 [(cons? l)

... (first l)

 ... (odd-items (rest l)) ...]))

Same problem — it's not just a reuse problem...

9-10

Structural Recursion

• For recursively defined data, our recipe so far always produces
structurally recursive programs

• In a sense, it always works:

(define (odd-items l)

 (first

(foldr (lambda (item odds+evens)

 (list (cons item

(second odds+evens))

(first odds+evens)))

(list empty empty) l)))

But making structural recursion work sometimes requires more
creativity than solving the problem a different way

11-12

Generative Recursion

Structural recursion is a powerful tool, but we need more tools

Our new tool is generative recursion:

(define (func v)

 (cond

 [(trivially-solvable? v) ...]
 [else ...

(func generated-v_1)

 .
.
.

 (func generated-v_n)
 ...]))

Structural recursion is a special case of generative recursion that is
especially common

13-14

Back to Odd Items

When the list given to odd-items has less than two items, the
problem is trivial to solve:

(define (odd-items l)

 (cond

 [(or (empty? l)

(empty? (rest l)))

l]

 [else ...]))

15

Back to Odd Items

Otherwise, it's helpful to have the rest of the rest:

(define (odd-items l)

 (cond

 [(or (empty? l)

(empty? (rest l)))

l]

 [else (cons

(first l)

 (odd-items (rest (rest l))))]))

16

How to Design A Program

Data Representation and Contract

Examples

Maybe Abstract

Use Existing

Template

Body

Trivial Cases

Recur on Smaller

Test

17

Guessing a Number

; make-secret-checker : num -> (num -> sym)

(define (make-secret-checker n)

 (local [(define secret (random n))]

 (lambda (m)

 (cond

 [(= m secret) 'perfect]

 [(< m secret) 'too-small]

 [(> m secret) 'too-large]))))

• Implement the function discover-number which takes a number n
and a function produced by (make-secret-checker n), and returns
the secret number in the function

18-19

Data Representation and Contract

Apparently done already:

; discover-number : num (num -> sym) -> num

20

Examples

(discover-number 1 (make-secret-checker 1))

"should be" 0

(discover-number 3 (make-secret-checker 3))

"should be" "0 or 1 or 2"

21

Maybe Abstract

Use Existing

or

Template

Body

or

Trivial Cases

Recur on Smaller

?

• Abstract/reuse: nothing obvious

• Template: nothing for num

... but is it really nat?

Yes, starting from 1

22-26

Template

Body

; discover-number : nat (nat -> sym) -> nat

(define (discover-number n checker)

 (cond

 [(= n 1) ...]

 [else

...

 (discover-number (sub1 n) checker)

 ...]))

27

Template

Body

; discover-number : nat (nat -> sym) -> nat

(define (discover-number n checker)

 (cond

 [(= n 1) 0]

 [else

...

 (discover-number (sub1 n) checker)

 ...]))

28

Template

Body

; discover-number : nat (nat -> sym) -> nat

(define (discover-number n checker)

 (cond

 [(= n 1) 0]

 [else

(cond

 [(symbol=? (checker n) 'perfect) n]

 [else

(discover-number (sub1 n) checker)])]))

29

Template

Body

; discover-number : nat (nat -> sym) -> nat

(define (discover-number n checker)

 (cond

 [(= n 1) 0]

 [else

(cond

 [(symbol=? (checker n) 'perfect) n]

 [else

(discover-number (sub1 n) checker)])]))

This works, but is there a better way?
30

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get 'perfect or 'imperfect answers to guesses,
there's no better way to find the number

0 95

31-41

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get 'perfect or 'imperfect answers to guesses,
there's no better way to find the number

0 95

'perfect

42

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get 'perfect, 'too-small, or 'too-large answers, it's
better to guess in the middle

0 95

43-48

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get 'perfect, 'too-small, or 'too-large answers, it's
better to guess in the middle

0 95

'perfect

49

Trivial Cases

Recur on Smaller

0 95

'perfect

• Trivially solvable if mid-point is 'perfect

• Otherwise, mid-point results cuts the range in half — try again

50

Guessing A Number with Generative Recursion

(define (discover-number n checker)

 (discover-in-range 0 (sub1 n) checker))

; discover-in-range : nat nat (nat -> bool) -> num

; Finds the number between lo and hi (inclusive)

(define (discover-in-range lo hi checker)

 (cond

 [trivial? ...]
 [else

... (discover-in-range ...)

 ...]))

51

Guessing A Number with Generative Recursion

(define (discover-number n checker)

 (discover-in-range 0 (sub1 n) checker))

; discover-in-range : nat nat (nat -> bool) -> num

; Finds the number between lo and hi (inclusive)

(define (discover-in-range lo hi checker)

 (local [(define mid (quotient (+ lo hi) 2))]

 (cond

 [trivial? ...]
 [else

... (discover-in-range ...)

 ...])))

52

Guessing A Number with Generative Recursion

(define (discover-number n checker)

 (discover-in-range 0 (sub1 n) checker))

; discover-in-range : nat nat (nat -> bool) -> num

; Finds the number between lo and hi (inclusive)

(define (discover-in-range lo hi checker)

 (local [(define mid (quotient (+ lo hi) 2))]

 (cond

 [(symbol=? (checker mid) 'prefect) mid]

 [else

... (discover-in-range ...)

 ...])))

53

Guessing A Number with Generative Recursion

(define (discover-number n checker)

 (discover-in-range 0 (sub1 n) checker))

; discover-in-range : nat nat (nat -> bool) -> num

; Finds the number between lo and hi (inclusive)

(define (discover-in-range lo hi checker)

 (local [(define mid (quotient (+ lo hi) 2))]

 (cond

 [(symbol=? (checker mid) 'prefect) mid]

 [else

... (discover-in-range lo mid)

 ... (discover-in-range hi hi) ...])))

54

Guessing A Number with Generative Recursion

(define (discover-number n checker)

 (discover-in-range 0 (sub1 n) checker))

; discover-in-range : nat nat (nat -> bool) -> num

; Finds the number between lo and hi (inclusive)

(define (discover-in-range lo hi checker)

 (local [(define mid (quotient (+ lo hi) 2))]

 (cond

 [(symbol=? (checker mid) 'prefect) mid]

 [else

(cond

 [(symbol=? (checker mid) 'too-large)

(discover-in-range lo mid)]

 [else

(discover-in-range mid hi)])])))

55

Running the Guesser

(discover-number 10 check-7)

→

(discover-in-range 0 9 check-7)

using (define (discover-number n checker)
 (discover-in-range 0 (sub1 n) checker))

56-57

Running the Guesser

(discover-in-range 0 9 check-7)

→

(cond

 [(symbol=? (check-7 4) 'perfect) 4]

 [else

(cond

 [(symbol=? (check-7 4) 'too-large)

(discover-in-range 0 4 check-7)]

 [else

(discover-in-range 4 9 check-7)])])

using (define (discover-in-range lo hi checker)
 (local [(define mid (quotient (+ lo hi) 2))]

 (cond

 [(symbol=? (checker mid) 'prefect) mid]

 [else

(cond

 [(symbol=? (checker mid) 'too-large)

(discover-in-range lo mid)]

 [else

(discover-in-range mid hi)])])))
58-59

Running the Guesser

(cond

 [(symbol=? (check-7 4) 'perfect) 4]

 [else

(cond

 [(symbol=? (check-7 4) 'too-large)

(discover-in-range 0 4 check-7)]

 [else

(discover-in-range 4 9 check-7)])])

→

(cond

 [(symbol=? (check-7 4) 'too-large)

(discover-in-range 0 4 check-7)]

 [else

(discover-in-range 4 9 check-7)])

60-61

Running the Guesser

(cond

 [(symbol=? (check-7 4) 'too-large)

(discover-in-range 0 4 check-7)]

 [else

(discover-in-range 4 9 check-7)])

→

(discover-in-range 4 9 check-7)

62-63

Running the Guesser

(discover-in-range 4 9 check-7)

→

(cond

 [(symbol=? (check-7 6) 'perfect) 6]

 [else

(cond

 [(symbol=? (check-7 6) 'too-large)

(discover-in-range 4 6 check-7)]

 [else

(discover-in-range 6 9 check-7)])])

64-65

Running the Guesser

(cond

 [(symbol=? (check-7 6) 'perfect) 6]

 [else

(cond

 [(symbol=? (check-7 6) 'too-large)

(discover-in-range 4 6 check-7)]

 [else

(discover-in-range 6 9 check-7)])])

→

(discover-in-range 6 9 check-7)

66-67

Running the Guesser

(discover-in-range 6 9 check-7)

→

(cond

 [(symbol=? (check-7 7) 'perfect) 7]

 [else

(cond

 [(symbol=? (check-7 7) 'too-large)

(discover-in-range 6 7 check-7)]

 [else

(discover-in-range 7 9 check-7)])])

68-69

Running the Guesser

(cond

 [(symbol=? (check-7 7) 'perfect) 7]

 [else

(cond

 [(symbol=? (check-7 7) 'too-large)

(discover-in-range 6 7 check-7)]

 [else

(discover-in-range 7 9 check-7)])])

→

7

70-71

Running the Guesser Again

(discover-number 3 check-2)

→

(discover-in-range 0 2 check-2)

72-73

Running the Guesser Again

(discover-in-range 0 2 check-2)

→

(cond

 [(symbol=? (check-2 1) 'perfect) 1]

 [else

(cond

 [(symbol=? (check-2 1) 'too-large)

(discover-in-range 0 1 check-2)]

 [else

(discover-in-range 1 2 check-2)])])

74-75

Running the Guesser Again

(cond

 [(symbol=? (check-2 1) 'perfect) 1]

 [else

(cond

 [(symbol=? (check-2 1) 'too-large)

(discover-in-range 0 1 check-2)]

 [else

(discover-in-range 1 2 check-2)])])

→

(discover-in-range 1 2 check-2)

76-77

Running the Guesser Again

(discover-in-range 1 2 check-2)

→

(cond

 [(symbol=? (check-2 1) 'perfect) 1]

 [else

(cond

 [(symbol=? (check-2 1) 'too-small)

(discover-in-range 1 2 check-7)]

 [else

(discover-in-range 1 2 check-2)])])

78-79

Running the Guesser Again

(cond

 [(symbol=? (check-2 1) 'perfect) 1]

 [else

(cond

 [(symbol=? (check-2 1) 'too-small)

(discover-in-range 1 2 check-7)]

 [else

(discover-in-range 1 2 check-2)])])

→

(discover-in-range 1 2 check-2)

80-81

Running the Guesser Again

(discover-in-range 1 2 check-2)

→

(discover-in-range 1 2 check-2)

82-83

Running the Guesser Again

(discover-in-range 1 2 check-2)

→

(discover-in-range 1 2 check-2)

Infinite loop!

84-85

Generative Recursion and Termination

• With structural recursion, a program always terminates

Every value is finite

• With generative recursion, termination becomes more tricky

You have to argue that the problem size definitely gets smaller
for every recursive call

86

Guessing a Number, Corrected

(define (discover-in-range lo hi checker)

 (local [(define mid (quotient (+ lo hi) 2))]

 (cond

 [(symbol=? (checker mid) 'prefect) mid]

 [else

(cond

 [(symbol=? (checker mid) 'too-large)

(discover-in-range lo (sub1 mid))]

 [else

(discover-in-range (add1 mid) hi)])])))

87

Algorithms

Our discover-in-range function is an example of a general
algorithm called binary search

Many algorithms are less obvious than binary search

Mostly you'll use general algorithms, not invent them

• Algorithm textbooks are like "recipe" books

• Few people design new general algorithms

Generative recursion is far more common than general algorithms,
and it's often merely structural recursion

88-90

