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ABSTRACT

Honu is a new language that fuses traditional algebraic notation
(e.g., infix binary operators) with Scheme-style language extensi-
bility. A key element of Honu’s design is an enforestation parsing
step, which converts a flat stream of tokens into an S-expression-
like tree, in addition to the initial “read” phase of parsing and in-
terleaved with the “macro-expand” phase. We present the design
of Honu, explain its parsing and macro-extension algorithm, and
show example syntactic extensions.
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1. INTRODUCTION

An extensible programming language accommodates additions
to the language without requiring those additions to be adopted by
a standardization committee, approved by a core set of implemen-
tors, or imposed on all users of the language. Whether for domain-
specific languages or improved general-purpose constructs, exten-
sible languages offer the promise of accelerating language design,
leading to clearer and more correct programs by narrowing the gap
between an idea and its expression as a program.

As appealing as the idea sounds, only the Lisp family of lan-
guages has so far made extensibility work well enough to be widely
embraced by its users. The line of work on extensible syntax runs
from early Lisp days, through Scheme to better support compos-
able macros [19], and through Racket to support language vari-
ants as radical as static types [14]. This success in the Lisp fam-
ily of languages has been surprisingly difficult to replicate in non-
parenthetical syntaxes, however.
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If language extensibility is not constrained to parentheses, then
it seems natural to design an extension mechanism that accom-
modates as many grammar extensions as possible. Sugar] [11],
for example, leverages SDF’s [31] support for composable gram-
mars to allow about as much flexibility as current parsing tech-
nology can manage. This flexibility opens the door to a range of
grammar-composition problems, however. From a Lisp perspec-
tive, programmers may end up worrying about technical details of
character-by-character parsing, instead of designing new expres-
sive forms.

In this paper, we offer Honu as an example in the middle ground
between the syntactic minimalism of Lisp and maximal grammat-
ical freedom. Our immediate goal is to produce a syntax that is
more natural for many programmers than Lisp notation—most no-
tably, using infix notation for operators—but that is similarly easy
for programmers to extend.

Honu adds a precedence-based parsing step to a Lisp-like pars-
ing pipeline to support infix operators and syntax unconstrained
by parentheses. Since the job of this step is to turn a relatively
flat sequence of terms into a Lisp-like syntax tree, we call it en-
forestation. Enforestation is not merely a preprocessing of pro-
gram text; it is integrated into the macro-expansion machinery so
that it obeys and leverages binding information to support hygiene,
macro-generating macros, and local macro binding—facilities that
have proven important for building expressive and composable lan-
guage extensions in Lisp, Scheme, and Racket.

2. HONU OVERVIEW

Honu’s syntax is similar to other languages that use curly braces
and infix syntax, such as C and Javascript. Honu’s macro support
is similar to Scheme’s, but the macro system is tailored to syntactic
extensions that continue the basic Honu style, including support for
declaring new infix operators.

All examples covered in the rest of the paper occur in an envi-
ronment where identifiers such as macro are bound as usual.

2.1 Honu Syntax

As an introduction to Honu syntax, the following Honu code de-
clares a function to compute the roots of a quadratic equation.

function quadratic(a, b, c) {

1

2 var discriminant = sqr(b) - 4 x a * ¢
3 if (discriminant < 0) {

4 ]

5 } else if (discriminant == 0) {

6 [-b /7 (2 x a)]

7 } else {

8 [-b/ (2 *a), b/ (2*a)l

9 3

10 }



The function quadratic accepts three arguments and returns a list
containing the roots of the formula, if any. Line 1 starts a func-
tion definition using function, which is similar to function in
Javascript. Line 2 declares a lexically scoped variable named dis-
criminant. Lines 4, 6, and 8 create lists containing zero, one, and
two elements, respectively. Honu has no return form; instead, a
function’s result is the value of its last evaluated expression. In this
case, lines 4, 6, and 8§ are expressions that can produce the func-
tion’s result.

As in Javascript, when function is used without a name, it cre-
ates a anonymous function. The declaration of quadratic in the
example above is equivalent to

var quadratic = function(a, b, ¢) { .... }

Semicolons in Honu optionally delimit expressions. Typically,
no semicolon is needed between expressions, because two expres-
sions in a sequence usually do not parse as a single expression.
Some expression sequences are ambiguous, however; for example,
f(x)Ly] could access either of the y element of the result of f ap-
plied to x, or it could be f applied to x followed by the creation of
a list that contains y. In such ambiguous cases, Honu parses the
sequence as a single expression, so a semicolon must be added if
separate expressions are intended.

Curly braces create a block expression. Within a block, dec-
larations can be mixed with expressions, as in the declaration of
discriminant on line 2 of the example above. Declarations are
treated the same as expressions by the parser up until the last step
of parsing, in which case a declaration triggers a syntax error if it
is not within a block or at the top level.

2.2 Honu Macros

The Honu macro form binds a (name) to a pattern-based macro:
macro (name) ( (literals) ) { (pattern) } { (body) }

The (pattern) part of a macro declaration consists of a mixture of
concrete Honu syntax and variables that can bind to matching por-
tions of a use of the macro. An identifier included in the (literals)
set is treated as a syntactic literal in (pattern) instead of as a pat-
tern variable, which means that a use of the macro must include the
literal as it appears in the (pattern). The (body) of a macro declara-
tion is an arbitrary Honu expression that computes a new syntactic
form to replace the macro use

One simple use of macros is to remove boilerplate. For example,
suppose we have a derivative function that computes the approx-
imate derivative of a given function:

1 function derivative(f) {

2 function (pt) {

3 (f(pt + 0.001) - f(pt)) / 0.001
4 }

5 3}

We can use derivative directly on an anonymous function:

1 var df = derivative(function (x) { x * x = 5 * x + 8 })
2 df(10) // 15.099

If this pattern is common, however, we might provide a D syntactic
form so that the example can be written as

1 vardf =D x, x *x x - 5% x + 8
2 df(10) // 15.099

"The (body) of a macro is a compile-time expression, which is
separated from the run-time phase in Honu in the same way as for
Racket [13].

As a macro, D can manipulate the given identifier and expression at
the syntactic level, putting them together with function:

1 macro D(){ z:id, math:expression } {
2 syntax(derivative(function (z) { math }))
30}

The pattern for the D macro is z:id, math:expression, which
matches an identifier, then a comma, and finally an arbitrary ex-
pression. In the pattern, z and math are pattern variables, while
id and expression are syntax classes [9]. Syntax classes play a
role analogous to grammar productions, where macro declarations
effectively extend expression. The syntax classes id and expres-
sion are predefined in Honu.

Although the (body) of a macro declaration can be arbitrary
Honu code, it is often simply a syntax form. A syntax form wraps
a template, which is a mixture of concrete syntax and uses of pat-
tern variables. The result of a syntax form is a syntax object, which
is a first-class value that represents an expression. Pattern variables
in syntax are replaced with matches from the macro use to gener-
ate the result syntax object.

The expansion of D is a call to derivative with an anonymous
function. The macro could be written equivalently as

1 macro D(){ z:id, math:expression } {
2 syntax ({

3 function f(z) { math }

4 derivative(f)

5 D)

6

which makes D expand to a block expression that binds a local f and
passes f to derivative. Like Scheme macros, Honu macros are
hygienic, so the local binding f does not shadow any f that might
be used by the expression matched to math.

The D example highlights another key feature of the Honu macro
system. Since the pattern for math uses the expression syntax
class, math can be matched to the entire expression x * x - 5
* x + 8 without requiring parentheses around the expression or
around the use of D. Furthermore, when an expression is substituted
into a template, its integrity is maintained in further parsing. For
example, if the expression 1+1 was bound to the pattern variable e
ine * 2, the resulting syntax object corresponds to (1 + 1) * 2,
not1 + (1 * 2).

Using expression not only makes D work right with infix op-
erators, but it also makes it work with other macros. For example,
we could define a parabola macro to generate parabolic formulas,
and then we can use parabola with D:

macro parabola(){ x:id a:expression,

1

2 b:expression,

3 c:expression} {
4 syntax(a * x * X + b *x x + ¢)

5 1

6

7 var d =D x, parabola x 1, -5, 8

8 d(10) // 15.099

The (partern) part of a macro declaration can use an ellipsis to
match repetitions of a preceding sequence. The preceding sequence
can be either a pattern variable or literal, or it can be multiple terms
grouped by $. For example, the following trace macro prints each
term followed by evaluating the expression.

1 macro trace(){ expr ... } {
2 syntax($ printf("~a -> ~a\n", ’expr, expr) $ ...)
30}



The ellipsis in the pattern causes the preceding expr to match a
sequence of terms. In a template, expr must be followed by an
ellipsis, either directly or as part of a group bracketed by $ and fol-
lowed by an ellipsis. In the case of trace, expr is inside a $ group,
which means that one printf call is generated for each expr.

All of our example macros so far immediately return a syntax
template, but the full Honu language is available for a macro imple-
mentation. For example, an extended trace macro might statically
compute an index for each of the expressions in its body and then
use the index in the printed results:

1 macro ntrace(){ expr ... } {

2 var exprs = syntax_to_list(syntax(expr ...))

3 var indexes = generate_indices(exprs)

4 with_syntax (idx ...) = indexes {

5 syntax($ printf("~a -> ~a\n", idx, expr) $ ...)
6 }

7}

In this example, syntax(expr ...) generates a syntax object that
holds a list of expressions, one for each expr match, and the Honu
syntax_to_list function takes a syntax object that holds a se-
quence of terms and generates a plain list of terms. A gener-
ate_indices helper function (not shown) takes a list and produces
a list with the same number of elements but containing integers
counting from 1. Thewith_syntax (pattern) = (expression) form
binds pattern variables in (pattern) by matching against the syntax
objects produced by (expression), which in this case binds idx as
a pattern variable for a sequence of numbers. In the body of the
with_syntax form, the syntax template uses both expr and idx
to generate the expansion result.

2.3 Defining Syntax Classes

The syntax classes id and expression are predefined, but pro-
grammers can introduce new syntax classes. For example, to match
uses of a cond form like

cond
x < 3: "less than 3"
X == 3: "3"

X > 3: "greater than 3"

we could start by describing the shape of an individual cond clause.
The Honu pattern form binds a new syntax class:

pattern (name) ( (literals) ) { (pattern) }

A pattern form is similar to a macro without an expansion (body).
Pattern variables in (pattern) turn into sub-pattern names that ex-
tend a pattern variable whose class is (name).

For example, given the declaration of a cond_clause syntax
class,

1 pattern cond_clause ()

2 { check:expression : body:expression }

we can use cond_clause form pattern variables in the definition of
a cond macro:

macro cond(){ first:cond_clause

1

2 rest:cond_clause ... } {
3 syntax(if (first_check) {

4 first_body

5 } $ else if (rest_check) {

6 rest_body

7 }$ .0

8}

Since first has the syntax class cond_clause, then it matches an
expression—colon—expression sequence. In the template of cond,
first_check accesses the first of those expressions, since check
is the name given to the first expression match in the definition
of cond_clause. Similarly, first_body accesses the second ex-
pression within the first match. The same is true for rest, but
since rest is followed in the macro pattern with an ellipsis, it
corresponds to a sequence of matches, so that rest_check and
rest_body must be under an ellipsis in the macro template.

Pattern variables that are declared without an explicit syntax class
are given a default class that matches a raw term: an atomic syn-
tactic element, or a set of elements that are explicitly grouped with
parentheses, square brackets, or curly braces.

2.4 Honu Operators

In addition to defining new macros that are triggered through a
prefix keyword, Honu allows programmers to declare new binary
and unary operators. Binary operators are always infix, while unary
operators are prefix, and an operator can have both binary and unary
behaviors.

The operator form declares a new operator:

operator (name) (prec) {(assoc) (binary transform) (unary trans-

Sform)

The operator precedence (prec) is specified as a non-negative ra-
tional number, while the operator’s associativity (assoc) is either
left or right. The operator’s {(binary transform) is a function
that is called during parsing when the operator is used in a binary
position; the function receives two syntax objects for the operator’s
arguments, and it produces a syntax object for the operator appli-
cation. Similarly, an operator’s (unary transform) takes a single
syntax object to produce an expression for the operator’s unary ap-
plication.

The binary_operator and unary_operator forms are short-
hands for defining operators with only a (binary transform) or (unary
transform), respectively:

binary_operator (name) (prec) {(assoc) (binary transform)

unary_operator (name) (prec) (unary transform)

A unary operator is almost the same as a macro that has a single
expression subform. The only difference between a macro and
a unary operator is that the operator has a precedence level, which
can affect the way that expressions using the operator are parsed. A
macro effectively has a precedence level of 0. Thus, if m is defined
as a macro, thenm 1 + 2 parses likem (1 + 2), while if mis a
unary operator with a higher precedence than +, m 1 + 2 parses
like (m 1) + 2. A unary operator makes a recursive call to parse
with its precedence level but macros have no such requirement so
unary operators cannot simply be transformed into macros.

As an example binary operator, we can define a raise operator
that raises the value of the expression on the left-hand side to the
value of the expression on the right-hand side:

1 binary_operator raise 10 left
2 function (left, right) {
3 syntax(pow(left, right))
4 }

The precedence level of raise is 10, and it associates to the left.
Naturally, newly declared infix operators can appear in subex-
pressions for a macro use:

var d = D x, x raise 4 + x raise 2 - 3



We can define another infix operator for logarithms and compose
it with the raise operator. Assume that make_log generates an
expression that takes the logarithm of the left-hand side using the
base of the right-hand side:

binary_operator lg 5 left make_log

X raise 4 1lg 3 + x raise 2 1g 5 - 3

Since raise has higher precedence than 1g, and since both raise
and lg have a higher precedence than the built-in + operator, the
parser groups the example expression as

((x raise 4) 1g 3) + ((x raise 2) 1g 5) - 3

As the raise and 1g examples illustrate, any identifier can be
used as an operator. Honu does not distinguish between operator
names and other identifiers, which means that raise can be an op-
erator name and + can be a variable name. Furthermore, Honu has
no reserved words and any binding—variable, operator, or syntac-
tic form—can be shadowed. This flexible treatment of identifiers is
enabled by the interleaving of parsing with binding resolution, as
we discuss in the next section.

3. PARSING HONU

Honu parsing relies on three layers: a reader layer, an enforesta-
tion layer, and a parsing layer proper that drives enforestation,
binding resolution, and macro expansion. The first and last lay-
ers are directly analogous to parsing layers in Lisp and Scheme,
and so we describe Honu parsing in part by analogy to Scheme, but
the middle layer is unique to Honu.

3.1 Grammar

A BNF grammar usually works well to describe the syntax of a
language with a fixed syntax, such as Java. BNF is less helpful for
a language like Scheme, whose syntax might be written as

(expression) ::= (literal) | (identifier)
| ( (expression) (expression)* )
| ( lambda ( (identifier)* ) <expression)+ )
| ( if (expression) (expression) (expression) )
[I—
but such a grammar would be only a rough approximation. Because
Scheme’s set of syntactic forms is extensible via macros, the true
grammar at the level of expressions is closer to

(expression) ::= (literal) | (identifier)
| ( (expression) (expression)* )
| ( (form identifier) (term)* )

The ( (expression) (expression)* ) production captures the de-
fault case when the first term after a parenthesis is not an identi-
fier that is bound to a syntactic term, in which case the expression
is treated as a function call. Otherwise, the final ( (form identi-
fier) (term)* ) production captures uses of lambda and if as well
as macro-defined extensions. Putting a lambda or if production
would be misleading, because the name 1ambda or if can be shad-
owed or redefined by an enclosing expression; an enclosing term
might even rewrite a nested lambda or if away. In exchange for the
loss of BNF and a different notion of parsing, Scheme programmers
gain an especially expressive, extensible, and composable notation.

The syntax of Honu is defined in a Scheme-like way, but with
more default structure than Scheme’s minimal scaffolding. The
grammar of Honu is roughly as follows:

sequence)
literal)y | (identifier)
unary operator) (expression)

(program) R
(
(
(expression) (binary operator) (expression)
(
(
(

(expression) ::=

expression) ( (comma-seq) )
(expression) )

expression) [ (expression) ]

[ (comma-seq) ]

[ (expression) :

{ (sequence) }

(form identifier) (term)*

:= (expression) [,] (comma-seq)

| {expression)
(
(

(expression) = (expression) ]

(comma-seq) :

(sequence)  ::= (expression) [;] (sequence)
| (expression)

This grammar reflects a mid-point between Scheme-style syntax
and traditional infix syntax:

e Prefix unary and infix binary operations are supported through
the extensible (unary operator) and (binary operator) pro-
ductions.

e The (expression) ( (comma-seq) ) production plays the same
role as Scheme’s default function-call production, but in tra-
ditional algebraic form.

e The ( (expression) ) production performs the traditional role
of parenthesizing an expression to prevent surrounding oper-
ators with higher precedences from grouping with the con-
stituent parts of the expression.

e The (expression) [ (expression) ] production provides a de-
fault interpretation of property or array access.

e The [ (comma-seq) 1 production provides a default inter-
pretation of square brackets without a preceding expression
as a list creation mechanism.

e The [ (expression) : (expression) = (expression) ] produc-
tion provides a default interpretation of square brackets with
: and = as a list comprehension.

e The { (sequence) } production starts a new sequence of ex-
pressions that evaluates to the last expression in the block.

e Finally, the (form identifier) (term)* production allows ex-
tensibility of the expression grammar.

In the same way that Scheme’s default function-call interpre-
tation of parentheses does not prevent parentheses from having
other meanings in a syntactic form, Honu’s default interpretation
of parentheses, square brackets, curly braces, and semi-colons does
not prevent their use in different ways within a new syntactic form.

3.2 Reading

The Scheme grammar relies on an initial parsing pass by a reader
to form (ferm)s. The Scheme reader plays a role similar to to-
ken analysis for a language with a static grammar, in that it dis-
tinguishes numbers, identifiers, string, commas, parentheses, com-
ments, etc. Instead of a linear sequence of tokens, however, the
reader produces a tree of values by matching parentheses. Val-
ues between a pair of matching parentheses are grouped as a sin-
gle term within the enclosing term. In Honu, square brackets and
curly braces are distinguished from parentheses, but they similarly
matched.

Ignoring the fine details of parsing numbers, strings, identifiers,
and the like, the grammar recognized by the Honu reader is



enforest(arom term,. ..., combine, prec, stack)

enforest(identifier term,. ..., combine, prec, stack)

where (var: identifier ;i) = l0OKUp(identifier)

enforest(identifier term, ..., combine, prec, [(combine ., precac) stackl)

where (macro: transformer) = lookup(identifier)

enforest(tree-termy, identifier term, ..., combine, prec, stack)

where (DINOP: prec.peraar, assoc) = lookup(identifier), prec.peraor >usoc Prec

enforest(tree-termy,, identifier term, ..., combine, prec, [(combine ., preca) stackl)

where (bINOP: prec,ear, assoc) = lookup(identifier), precapraor <usoe prec
enforest(identifier term, ..., combine, prec, stack)

where (UNOP: prec o) = l0OKUP(identifier)

enforest((terminia. ...) termy ..., combine, prec, stack)
where (tree-termia., €) = enforest(rermi,q. ..., identity, 0, [1)

enforest(iree-term (term,,, ...) term,., ..., combine, prec, stack)
where (tree-term,,, €) ... = enforest(term,,,, identity, 0, []) ...

enforest(iree-term [term ...] term, ..., combine, prec, stack)

where (tree-termy, ., €) = enforest(term ..., identity, 0, [1)
enforest([term ...] term,. ..., combine, prec, stack)

enforest({term ...} term,., ..., combine, prec, stack)

enforest(tree-term term,, ..., combine, prec, 1)
enforest(tree-term term,. ..., combine, prec, [(combine g, precaa) stack))

enforest((literal: atom> terMm,ey ..., combine, prec, stack)
enforest((id: identifiering) term,., ..., combine, prec, stack)

enforest(transformer(term,., ...), combine e, precc, stack)

enforest(term, ..., function (t) ((bin: identifier, tree-termy,y, t)},
PreCoperanrs [(combine, prec) stack])

enforest(combine(tree-termy,,,) identifier term. ...,
combine ek, precCe, stack)

enforest(tern,., ..., function (t) {combine({Un: identifier, t))} , PreCoperaor» stack)

enforest(iree-termi,ia. term, ..., combine, prec, stack)

enforest((call: tree-term, tree-1erm,,, ) term,, ..., combine, prec, stack)

enforest((arrayref: mree-term, tree-termiy) termye ...,
combine, prec, stack)

enforest((list: term, ) term, ..., combine, prec, stack)

enfOfeSt((blOCk: term, > term,.y ..., combine, prec, stack)

(combine(tree-term), term,, ...)
enforest(combine(tree-term) term,.,, ..., combine ., precac, stack)

Figure 1: Enforestation

(term) ::= (number) | (string) | (identifier)
| {comma) |
| (term)y= ) | [ (term)* 1 | { (term)* }

For example, given the input
make(1, 2, 3)

the reader produces a sequence of two (term)s: one for make, and
another for the parentheses. The latter contains five nested (term)s:
1, acomma, 2, acomma, and 3.

In both Scheme and Honu, the parser consumes a {(ferm) repre-
sentation as produced by the reader, and it expands macros in the
process of parsing (term)s into (expression)s. The (term)s used
during parsing need not have originated from the program source
text, however; macros that are triggered during parsing can synthe-
size new (term)s out of symbols, lists, and other literal values. The
ease of synthesizing (ferm) representations—and the fact that they
are merely (ferm)s and not fully parsed ASTs—is key to the ease
of syntactic extension in Scheme and Honu.

3.3 Enforestation

To handle infix syntax, the Honu parser relies on an enforestation
phase that converts a relatively flat sequence of (ferm)s into a more
Scheme-like tree of nested expressions. Enforestation handles op-
erator precedence and the relatively delimiter-free nature of Honu
syntax, and it is macro-extensible. After a layer of enforestation,
Scheme-like macro expansion takes over to handle binding, scope,
and cooperation among syntactic forms. Enforestation and expan-
sion are interleaved, which allows the enforestation process to be
sensitive to bindings.

Enforestation extracts a sequence of terms produced by the reader
to create a tree term, which is ultimately produced by a primitive
syntactic form or one of the default productions of (expression),
such as the function-call or list-comprehension production. Thus,

the set of (tree term)s effectively extends the (ferm) grammar al-
though (tree term)s are never produced by the reader:

(term) ::= ..
| (tree term)

Enforestation is driven by an enforest function that extracts the
first expression from an input stream of (ferm)s. The enforest
function incorporates aspects of the precedence parsing algorithm
by Pratt [21] to keep track of infix operator parsing and precedence.
Specifically, enforest has the following contract:

enforest : (term)* ((iree term) — (tree term))

— ({tree term), (term)*)

(prec) {stack)

The arguments to enforest are as follows:
e input — a list of (term)s for the input stream;

e combine — a function that takes a (tree term) for an expres-
sion and produces the result (tree term); this argument is
initially the identity function, but operator parsing leads to
combine functions that close over operator transformers;

e precedence — an integer representing the precedence of the
pending operator combination combine, which determines
whether combine is used before or after any further binary
operators that are discovered; this argument starts at 0, which
means that the initial combine is delayed until all operators
are handled.

e stack — a stack of pairs containing a combine function and
precedence level. Operators with a higher precedence level
than the current precedence level push the current combine
and precedence level on the stack. Conversely, operators
with a lower precedence level pop the stack.



In addition, enforest is implicitly closed over a mapping from
identifiers to macros, operators, primitive syntactic forms, and de-
clared variables. The result of enforest is a tuple that pairs a tree
term representing an (expression) with the remainder terms of the
input stream.

The rules of enforestation are given in figure 1. If the first term
is not a tree term or a special form then it is first converted into a
tree term. Special forms include macros, operators, function calls,
and bracketed sequences.

As an example, with the input

1+2%x3-f(10)

enforestation starts with the entire sequence of terms, the identity
function, a precedence of zero, and an empty stack:

enforest(1 + 2 x 3 - f (10), identity, 0, [1)

The first term, an integer, is converted to a literal tree term, and then
enforest recurs for the rest of the terms. We show a tree term in
angle brackets:

enforest(<literal: 1> + 2 % 3 - f (10), identity, 0, [1)

Since the input stream now starts with a tree term, enforest checks
the second element of the stream, which is a binary operator with
precedence 1. Enforestation therefore continues with a new com-
bine function that takes a tree term for the operator’s right-hand
side and builds a tree term for the binary operation while the old
combine function and precedence level are pushed onto the stack:

enforest(2 * 3 - f (10), combinel, 1, [(identity, 0)1)
where combinel(t) = <bin: +, <literal: 1>, t>

The first term of the new stream starts with 2, which is converted to
a literal tree term:

enforest(<literal: 2> x 3 - f (10), combinel, 1,
[(identity, 0)1)

The leading tree term is again followed by a binary operator, this
time with precedence 2. Since the precedence of the new operator is
higher than the current precedence, a new combine function builds
a binary-operation tree term for * while the combinel function and
its precedence level are pushed onto the stack:

enforest(3 - f (10), combine2, 2,
[(combinel, 1), (identity, 0)1)
where combine2(t) = <bin: *, <literal: 2>, t>

The current input sequence once again begins with a literal:

enforest(<literal: 3> - f (10), combine2, 2,
[(combinel, 1), (identity, 0)1)

The binary operator - has precedence 1, which is less than the cur-
rent precedence. The current combine function is therefore applied
to <literal: 3>, and the result becomes the new tree term at the
start of the input. We abbreviate this new tree term:

enforest(<expr: 2%3> - f (10), combinel, 1,
[(identity, 0)1)

where <expr: 2%3> = <bin: *, <literal: 2>,

<literal: 3>>

Parsing continues by popping the combine function and precedence
level from the stack. Since the precedence of - is the same as the
current precedence and is left associative the combinel function is
applied to the first tree term and another level of the stack is popped:

enforest(<expr: 1+2%3> - f (10), identity, 0, [1)

The - operator is handled similarly to + at the start of parsing. The
new combine function will create a subtraction expression from the
current tree term at the start of the input and its argument:

enforest( f (10), combine3, 1, [(identity, 0)1)
where combine3(t) = <bin: -, exp<l+2x3>, t>

Assuming that f is bound as a variable, the current stream is en-
forested as a function-call tree term. In the process, a recursive
callenforest (10, identity, 0, empty) immediately produces
<literal: 10> for the argument sequence, so that the non-nested
enforest continues as

enforest(<call: <id: f>, <literal: 10>>, combine3, 1,
[(identity, 0)1)

Since the input stream now contains only a tree term, it is passed to
the current combine function, producing the result tree term:

<bin: -, <expr: 1+2x3>, <call: <id: f>, <literal: 10>>>

Finally, the input stream is exhuasted so the identity combination
function is popped from the stack and immediately applied to the
tree term.

3.4 Macros and Patterns

From the perspective of enforest, a macro is a function that
consumes a list of terms, but Honu programmers normally do not
implement macros at this low level. Instead, Honu programmers
write pattern-based macros using the macro form that (as noted in
section 2.2) has the shape

macro (name) ( (literals) ) { (pattern) } { (body) 3

The macro form generates a low-level macro that returns a new
sequence of terms and any unconsumed terms from its input. The
(pattern) is compiled to a matching and destructuring function on
an input sequence of terms. This generated matching function auto-
matically partitions the sequence into the terms that are consumed
by the macro and the leftover terms that follow the pattern match.

Literal identifiers and delimiters in {partern) are matched to equiv-
alent elements in the input sequence. A parenthesized sequence
in (pattern) corresponds to matching a single parenthesized term
whose subterms match the parenthesized pattern sequence, and so
on. A pattern variable associated to a syntax class corresponds to
calling a function associated with the syntax class to extract a match
from the sequence plus the remainder of the sequence.

For example, the macro

macro parabola(){ x:id a:expression,
b:expression,
c:expression} {
syntax(a * x * X + b *x x + ¢)

}
expands to the low-level macro function
function(terms) {

var x = first(terms)
var [a_stx, after_a] = get_expression(rest(terms))

check_equal(","”, first(after_a))
var [b_stx, after_b] = get_expression(rest(after_a))
check_equal(”,"”, first(after_b))

var [c_stx, after_c] = get_expression(rest(after_b))

// return new term plus remaining terms:

[with_syntax a = a_stx, b = b_stx, ¢ = c_stx {
syntax(a x x * x + b * x + ¢)

}, after_c]



The get_expression function associated to the expression syn-
tax class is simply a call back into enforest:

function get_expression(terms) {
enforest(terms, identity, 0)

}

New syntax classes declared with pattern associate the syntax
class name with a function that similarly takes a term sequence and
separates a matching part from the remainder, packaging the match
so that its elements can be extracted by a use of the syntax class. In
other words, the matching function associated with a syntax class
is similar to the low-level implementation of a macro.

3.5 Parsing

Honu parsing repeatedly applies enforest on a top-level se-
quence of (term)s, detecting and registering bindings along the
way. For example, a macro declaration that appears at the top level
must register a macro before later (ferm)s are enforested, since the
macro may be used within those later (term)s.

Besides the simple case of registering a macro definition before
its use, parsing must also handle mutually recursive definitions,
such as mutually recursive functions. Mutual recursion is handled
by delaying the parsing of curly-bracketed blocks (such as func-
tion bodies) until all of the declarations in the enclosing scope have
been registered, which requires two passes through a given scope
level. Multiple-pass parsing of declarations and expressions has
been worked out in detail for macro expansion in Scheme [27] and
Racket [14], and Honu parsing uses the same approach.

Honu not only delays parsing of blocks until the enclosing layer
of scope is resolved, it even delays the enforestation of block con-
tents. As a result, a macro can be defined after a function in which
the macro is used. Along the same lines, a macro can be defined
within a block, limiting the scope of the macro to the block and
allowing the macro to expand to other identifiers that are bound
within the block.

Flexible ordering and placement of macro bindings is crucial to
the implementation of certain kinds of language extensions [14].
For example, consider a cfun form that supports macros with con-
tracts:

cfun quadratic(num a, num b, num c) : listof num { .... }

The cfun form can provide precise blame tracking [12] by binding
quadratic to a macro that passes information about the call site
to the raw quadratic function. That is, the cfun macro expands
to a combination of function and macro declarations. As long as
macro declarations are allowed with the same placement and order-
ing rules as function declarations, then cfun can be used freely as
a replacement for function.
The contract of the Honu parse function is

parse : (term)* (bindings) — (AST)*

That is, parse takes a sequence of (term)s and produces a sequence
of (AST) records that can be interpreted. Initially, parse is called
with an empty mapping for its (bindings) argument, but nested
uses of parse receive a mapping that reflects all lexically enclosing
bindings.

Since parse requires two passes on its input, it is implemented
in terms of a function for each pass, parsel and parse2:

parsel : (term)* (bindings) — ((tree term)*, (bindings))

parse2 : (tree term)* (bindings) — (AST)*

The parsel pass determines bindings for a scope, while parse2
completes parsing of the scope using all of the bindings discovered

by parsel.
Details of the parsing algorithm can be found in the appendix.

3.5.1 Parsing Example
As an example, consider the following sequence:

macro info(at){ x:id, math:expression
at point:expression } {
syntax ({
var f = function(x) { math }
printf(”"at ~a dx ~a\n", f(point))
D)
¥

info x, x*x+2xx-1 at 12

Initially, this program corresponds to a sequence of (ferms) start-
ing with macro, info, and (at). The first parsing step is to en-
forest one form, and enforestation defers to the primitive macro,
which consumes the next four terms. The program after the first
enforestation is roughly as follows, where we represent a tree term
in angle brackets as before:

<macro declaration: info, ...>

info x, x*x+2xx-1 at 12

The macro-declaration tree term from enforest causes parsel to
register the info macro in its bindings, then parse1 continues with
enforest starting with the info identifier. The info identifier is
bound as a macro, and the macro’s pattern triggers the following
actions:

e it consumes the next x as an identifier;
e it consumes the comma as a literal;

e it starts enforesting the remaining terms, which succeeds with
a tree term for x*x+2%xx-1;

e it consumes at as a literal;

e starts enforesting the remaining terms as an expression, again,
which succeeds with the tree term <literal: 12>.

Having collected matches for the macro’s pattern variables, the
info macro’s body is evaluated to produce the expansion, so that
the overall sequence becomes

{
var f = function(x) { <expr: x*x+2*x-1> }
printf(”"at ~a dx ~a\n", f(<literal: 12>))
¥

Macro expansion of info did not produce a tree term, so enforest
recurs. At this point, the default production for curly braces takes
effect, so that the content of the curly braces is preserved in a block
tree term. The block is detected as the enforest result by parsel,
which simply preserves it in the result tree term list. No further
terms remain, so parsel completes with a single tree term for the
block.

The parse2 function receives the block, and it recursively parses
the block. That is, parse is called to process the sequence

var f = function(x) { <expr: x*x+2*x-1> }

printf(”"at ~a dx ~a\n", f(<literal: 12>))

The first term, var, is bound to the primitive declaration form,
which consumes f as an identifier, = as a literal, and then enforests
the remaining terms as an expression.

The remaining terms begin with function, which is is the prim-
itive syntactic form for functions. The primitive function form
consumes the entire expression to produce a tree term represent-
ing a function. This tree term is produced as the enforestation that
var demanded, so that var can produce a tree term representing the
declaration of f. The block body is therefore to the point



<function declaration: f, <function: x,
<expr: Xxx+2xx-1>>>
printf(”"at ~a dx ~a\n", f(<literal: 12>))

When parsel receives this function-declaration tree term, it regis-
ters f as a variable. Then parsel applies enforest on the terms
starting with printf, which triggers the default function-call pro-
duction since printf is bound as a variable. The function-call pro-
duction causes enforestation of the arguments "at ~a dx ~a\n”
and f(<literal: 12>) to a literal string and function-call tree
term, respectively. The result of parsel is a sequence of two tree
terms:

<function declaration: f, <function: x,
<expr: XxX+2xx-1>>>
<call: <var: printf>,
<literal: "at ~a dx ~a\n">,
<call <var: f>, <literal: 12>>>

The parse2 phase at this level forces enforestation and parsing of
the function body, which completes immediately, since the body
is already a tree term. Parsing similarly produces an AST for the
body in short order, which is folded into a AST for the function
declaration. Finally, the function-call tree term is parsed into nested
function-call ASTs.

3.5.2 Parsing as Expansion

For completeness, we have described Honu parsing as a stand-
alone and Honu-specific process. In fact, the Honu parser im-
plementation leverages the existing macro-expansion machinery of
Racket. For example, the Honu program

#lang honu
1+2

is converted via the Honu reader to

#lang racket
(honu-block 1 + 2)

The honu-block macro is implemented in terms of enforest:

(define-syntax (honu-block stx)

(define terms (cdr (syntax->list stx)))

(define-values (form rest) (enforest terms identity 0))

(if (empty? rest)

form

#(begin #,form (honu-block . #,rest))))
where #¢ and #, are forms of quasiquote and unquote lifted to
the realm of lexically scoped S-expressions.

The strategy of treating enforest’s first result as a Racket form
works because enforest represents each tree term as a Racket S-
expression. The tree term for a Honu var declaration is a Racket
define form, function call and operator applications are repre-
sented as Racket function calls, and so on.

Expanding honu-block to another honu-block to handle fur-
ther terms corresponds to the parsel recursion in the stand-alone
description of Honu parsing. Delaying enforestation and parsing to
parse2 corresponds to using honu-block within a tree term; for
example, the enforestation of

function(x) { Dy, y*x }

(lambda (x) (honu-block Dy |,| y * x))

When such a function appears in the right-hand side of a Racket-
level declaration, Racket delays expansion of the function body un-
til all declarations in the same scope are processed, which allows a
macro definition of D to work even if it appears after the function.

Honu macro and pattern forms turn into Racket define-syntax
forms, which introduce expansion-time bindings. The enforest
function and pattern compilation can look up macro and syntax-
class bindings using Racket’s facilities for accessing the expansion-
time environment [14].

Besides providing an easy way to implement Honu parsing, build-
ing on Racket’s macro expander means that the more general facil-
ities of the expander can be made available to Honu programmers.
In particular, Racket’s compile-time reflection operations can be
exposed to Honu macros, so that Honu macros can cooperate in the
same ways as Racket macros to implement pattern matchers, class
systems, type systems, and more.

4. RELATED WORK

C++ templates are most successful language-extension mecha-
nism outside of the Lisp tradition. Like Honu macros, C++ tem-
plates allow only constrained extensions of the language, since tem-
plate invocations have a particular syntactic shape. Honu macros
are more flexible than C++ templates, allowing extensions to the
language that have the same look as built-in forms. In addition, be-
cause Honu macros can be written in Honu instead of using only
pattern-matching constructs, complex extensions are easier to write
and can give better syntax-error messages than in C++’s template
language. C++’s support for operator overloading allows an indi-
rect implementation of infix syntactic forms, but Honu allows more
flexibility for infix operators, and Honu does not require an a priori
distinction between operator names and other identifiers.

Converge [30] has metaprogramming facilities similar to C++
templates but allows for syntax values to flow between the com-
pile time and runtime. Metaprograms in Converge are wrapped in
special delimiters that notify the parser to evaluate the code inside
the delimiters and use the resulting syntax object as the replace-
ment for the metaprogram. Converge cannot create new syntactic
forms using this facility, however. Composability of metaprograms
is achieved using standard function composition.

Honu macro definitions integrate with the parser without hav-
ing to specify grammar-related details. Related systems, such as
Sugar] [11], Xoc [8], MetaLua [15] and Polyglot [20] require the
user to specify which grammar productions to extend, which can
be an additional burden for the programmer. Xoc and SugarJ use
a GLR [29] parser that enables them to extend the the class of to-
kens, which allows a natural embedding of domain-specific lan-
guages. MetaLua allows users to modify the lexer and parser but
forces macro patterns to specify the syntactic class of all its pattern
variables which prevents macros from binding use-site identifiers
in expressions passed to the macro. Ometa [33] and Xtc [16] are
similar in that they allow the user to extend how the raw charac-
ters are consumed, but they do not provide a macro system. Honu
does not contain a mechanism for extending its lexical analysis of
the raw input stream because Honu implicitly relies on guarantees
from the reader about the structure of the program to perform macro
expansion.

Composability of macros is tightly correlated with the parsing
strategy. Honu macros are highly composable because they are
limited to forms that start with an identifier bound to a macro or
be in operator position. Other systems that try to allow more gen-
eral forms expose underlying parsing details when adding exten-
sions. Systems based on LL, such as the one devised by Cardelli
and Matthes [7], and LALR, such as Maya [4], have fundamental



limits to the combinations of grammar extensions. PEG based sys-
tems are closed under union but force an ordering of productions
which may be difficult to reason about.

Some macro systems resort to AST constructors for macro ex-
pansions instead of templates based on concrete syntax. Maya
fits the AST-constructor category. Template Haskell [17], Sugar],
and the Java Syntax Extender [3] include support for working with
concrete syntax, but they also expose a set of abstract syntax tree
constructors for more complex transformations. Camlp4 [10] is a
preprocessor for Ocaml programs that can output concrete Ocaml
syntax, but it cannot output syntax understood by a separate prepro-
cessor, so syntax extensions are limited to a single level. MS2 [34]
incorporates Lisp’s quasiquote mechanism as a templating system
for C, but MS2 does not include facilities to expand syntax that
correspond to infix syntax or any other complex scheme.

Honu macros have the full power of the language to implement
a macro transformation. Systems that only allow term rewriting,
such as R5RS Scheme [18], Dylan [25], Arai and Wakita [1] and
Fortress [22], can express many simple macros, but they are cum-
bersome to use for complex transformations.

ZL [2] is like Honu in that it relies on Lisp-like read and parsing
phases, it generalizes those to non-parenthesiz-ed syntax, and its
macros are expressed with arbitrary ZL code. Compared to Honu,
macros in ZL are more limited in the forms they can accept, due
to decisions made early on in the read phase. Specifically, arbi-
trary expressions cannot appears as subforms unless they are first
parenthesized. ZL supports more flexible extensions by allowing
additions to its initial parsing phase, which is similar to reader ex-
tension in Lisp or parsing extensions in SugarJ, while Honu allows
more flexibility within the macro level.

Stratego [32] supports macro-like implementations of languages
as separate from the problem of parsing. Systems built with Strat-
ego can use SDF for parsing, and then separate Stratego transfor-
mations process the resulting AST. Transformations in Stratego are
written in a language specific to the Stratego system and different
from the source language being transformed, unlike Honu or other
macro languages. Metaborg [5] and Sugar] use Stratego and SDF
to add syntactic extensions using the concrete syntax of the host
language. Metaborg is used purely in a preprocessing step, while
Sugar] is integrated into the language in the same way as Honu.

Many systems implement some form of modularity for syntactic
extension. Both SDF and Xoc [8] provide a way to compose mod-
ules which define grammar extensions. These systems have their
own set of semantics that are different from the source language
being extended. Honu uses its natural lexical semantics to control
the scope of macros. Macros can be imported into modules and
shadowed at any time thus macros do not impose a fundamental
change into reasoning about a program.

Nemerle [26] provides many of the same features as Honu but
requires macros to be put in a module separate from where the
macro is used, because macros must be completely compiled before
they can be used. Nemerle is thus unable to support locally-scoped
macros, and it cannot bind identifiers from macro invocations to
internal macros.

Multi-stage allows programs to generate and optimize code at
run-time for specific sets of data. Mython [23], MetaOcaml [6],
LMS [24] are frameworks that provide methods to optimize expres-
sions by analyzing a representation of the source code. A similar
technique can be achieved in Honu by wrapping expressions with a
macro that analyzes its arguments and plays the role of a compiler
by rewriting the expression to a semantically equivalent expression.
Typed Racket [28] implements compile-time optimizations using
the Racket macro system.

5. CONCLUSION

Honu is a syntactically extensible language that builds on Lisp-
style extensibility while supporting infix operators and other syn-
tactic forms that are unconstrained by parentheses. Although Honu
syntax is more flexible than parenthesized syntax, Honu continues
a tradition of trading expressiveness for syntactic simplicity in that
Honu accommodates only syntactic extensions that fit certain con-
ventions. More generally, we suggest that a language has its own
syntactic style, and successful extensions leverage that consistency
rather than subverting it.

Syntactic consistency is especially clear in Lisp-style languages,
but many other languages have their own conventions that can be
exploited and preserved by extensions to the language. Java, Java-
script and other curly-brace languages consistently delimit sub-
expressions with parenthesis, braces, and brackets. A Honu-style
parser would work well in those languages, at least for expres-
sions. Languages with complex grammars, such as Java or Ruby,
would likely require incorporating the precedence parser with an
LR-based parser. In the worst case, the parser can add support for
macros without requiring changes to deal with infix operators.

Composability is a key feature of the Honu macro system. The
token-level consistency that is imposed by the reader layer, the ex-
tensible (expression) grammar production, and the hygienic treat-
ment of identifiers together allow programmers to implement macros
that compose naturally. Furthermore, user-defined forms are like
built-in forms in that they have no special identifiers or other mark-
ers to distinguish them. Macros in Honu thus offer the promise of
a smooth path from building simple syntactic abstractions to whole
new languages.

Acknowledgments: Thanks to Ryan Culpepper and Kevin Atkin-
son for feedback on the design and presentation of Honu.
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Appendix

The parsel function takes inpur as the (term) sequence and bind-
ings as the bindings found so far. If input is empty, then parse1l
returns with an empty tree term sequence and the given bindings.
Otherwise, parsel applies enforest to input, the identity func-
tion, and zero; more precisely, parsel applies an instance of en-
forest that is closed over bindings. The result from enforest is

form,

which is a tree term, and rest, which is the remainder of in-

put that was not consumed to generate form. Expansion continues
based on case analysis of form:

If form is a var declaration of identifier, then a variable map-
ping for identifier is added to bindings, and parsel recurs
with rest; when the recursive call returns, form is added to
(the first part of) the recursion’s result.

If form is a macro or pattern declaration of identifier, then
the macro or syntax class’s low-level implementation is cre-
ated and added to bindings as the binding of identifier. Gen-
eration of the low-level implementation may consult bind-
ings to extract the implementations of previously declared
syntax classes. The parsel function then recurs with rest
and the new bindings.

If parsel was called for the expansion of a module body,
then an interpretable variant of form is preserved in case the
macro is exported. Otherwise, form is no longer needed,
since the macro or syntax-class implementation is recorded
in the result bindings.

If form is an expression, parsel recurs with rest and un-
changed bindings; when the recursive call returns, form is
added to (the first part of) the recursion’s result.

The results from parsel are passed on to parse2. The parse2
function maps each form in its input tree term to an AST:

If form is a var declaration, the right-hand side of the decla-
ration is parsed through a recursive call to parse2. The result
is packaged into a variable-declaration AST node.

If form is a function expression, the body is enforested and
parsed by calling back to parse, passing along parse2’s
(bindings) augmented with a variable binding for each func-
tion argument. The result is packaged into a function- or
variable-declaration AST node.

If form is a block expression, then parse is called for the
block body in the same way as for a function body (but
without argument variables), and the resulting AST's are pack-
aged into a single sequence AST node.

If form is an identifier, then it must refer to a variable, since
macro references are resolved by enforest. The identifier is
compiled to a variable-reference AST.

If form is a literal, then a literal AST node is produced.

Otherwise, form is a compound expression, such as a function-
call expression. Subexpressions are parsed by recursively
calling parse2, and the resulting ASTs are combined into
a suitable compound AST.
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