
Java Component Development in Jiazzi

Sean McDirmid, Matthew Flatt, Wilson C. Hsieh
School of Computing

University of Utah

fmcdirmid,mflatt,wilsong@cs.utah.edu

Extended Abstract
Current Java constructs for code reuse, including classes, are in-
sufficient for organizing programs in terms of reusable software
components. Although packages, class loaders, and various design
patterns can implement forms of components in ad hoc manners,
the lack of an explicit language construct for components places a
substantial burden on programmers, and obscures a programmer’s
intent to the compiler or to other programmers. As object-oriented
software systems increase in size and complexity, components are
becoming central to the design process, and they deserve close in-
tegration with the language.

Jiazzi [4] enhances Java with support for large-scale software com-
ponents. Jiazzi components are constructed as units [3]. A unit is
conceptually a container of compiled Java classes with support for
“typed” connections. There are two types of units: atoms, which
are built from Java classes, and compounds, which are built from
atoms and other compounds.

Units import and export Java classes. Classes imported into a unit
are exported from other units; classes exported from a unit can be
imported into other units. Linking specified by compounds deter-
mines how connections are made between exported and imported
classes. Groups of classes are connected together when units are
linked; we call these groups of classes packages to emphasize their
similarity to packages in standard Java. Using package-grained
connections reduces the quantity of explicit connections between
units, which allows the component system to scale to larger de-
signs.

Jiazzi includes a component language that provides a convenient
way for programmers to build and reason about units. Using this
language, the structure of classes in a unit’s imported and exported
packages can be described using package signatures. Because pack-
age signature can be used in multiple unit definitions, they enhance
the component language’s scaling properties.

Figure 1 illustrates how Jiazzi can be used in a simple component-
based design where an application component is linked with a com-
ponent that provides a user interface (UI) library. The atom ui
exports UI library classes in package ui out, while the atom ap-
plet imports UI library classes in package ui in and exports an
application class in package app out. The compound linkui
links ui and applet together into a complete program; connec-
tions between units are shown as lines between packages.

linkui

u : ui ui_out

ui_out

a : applet
ui_in applet_out applet_out

Figure 1: A graphical illustration of a compound linkui that
composes two atoms ui and applet.

applet.jar
Program.class

ui.jar

Widget.class
Button.class

Window.class

linkui.jar

Widget.class

Button.class
Window.class

Program.class

Java Virtual
Machine

Program.java
applet.unit

ui_s.sig
applet_s.sig

linkui.unit Stub genarator

Widget.class

Button.class
Window.class

Program.classAtom linker

Compound linker

Java compiler

Figure 2: The files and development process of building the atom
applet and the compound linkui.

The process of developing the design in Figure 1 is illustrated in
Figure 2. The atom applet is defined in the file applet.unit.
The package ui in imported into applet is described using the
package signature ui s and consists of Java classes Widget, But-
ton, and Window. The package app out exported from ap-
plet is described using the package signature applet s and
consists of a single Java class Program, which is provided by
a conventional Java source file Program.java. The package
signatures ui s and applet s are respectively defined in files
ui s.sig and applet s.sig.

The Java source file Program.java is shown in Figure 3. No
specific provider of atom applet’s imported package ui in is
hard coded. Instead a stub generator is used to generate stub class
files based on the package signature ui s. This allows Pro-
gram.java to be compiled using a normal Java source compiler



file: ./applet/app out/Program.java

package app out;
public class Program
extends ui in.Window f
ui in.Button b = new ui in.Button();
public void run() f show(); g
public Program() f
b.setLabel("start"); add(b);
g
g

Figure 3: The contents of the Java source file Program.java.

(e.g., JDK’s javac). An atom linker performs type checking to en-
sure that the result of the source compilation, Program.class,
conforms to the structure of Program specified in package signa-
ture applet s. After type checking, Program.class is pack-
aged into the archive file applet.jar.

The compound linkui links the atom applet with a UI library
provided by the atom ui, which is constructed into the archive file
ui.jar in a manner similar to applet. A compound linker per-
forms connection-oriented type checking and duplicates the class
files of each atom. The duplicated class files are rewritten ac-
cording to how connections are made in the compound; for ex-
ample references to classes imported in package ui in in ap-
plet’s Program.class are replaced with classes exported in
package ui out obtained from ui. Finally, the duplicated class
files are packaged into the archive file linkui.jar by the com-
pound linker. Since the compound linkui has no imports, its
classes can safely be executed in a conventional Java Virtual Ma-
chine, for example by placing linkui.jar in the classpath.

Jiazzi supports advanced component programming in Java with the
following features:

- External linking: external class dependencies of a com-
ponent are resolved by the user of the component, even if
the component is in binary form. Avoiding hard-coded class
dependencies among components makes the components as
flexible as possible for client programmers [2].

- Hierarchical composition: multiple components can be com-
bined into a larger, encapsulated component that is not nec-
essarily a self-contained program. Hierarchical composition
allows for the incremental construction of software.

- Separate compilation: a component’s source code can be
compiled (type checked) independently of other components.
The use of a component at link time can be compiled (type
checked) without knowledge of its hidden implementation.
Separate compilation enables development of large programs
and deployment of components in binary form.

- Flexible hiding: a component can accept imported class im-
plementations that supply more methods than it expects; a
component can also export class implementations that sup-
ply more methods than its clients expect. Such hiding allows
for flexible composition by not requiring exact matches when
connecting to a component’s imports, and allows for flexible
encapsulation by allowing a component to restrict access to
exported classes.

- Inter-component subclassing: a component can define a
subclass of an imported class; a component can also import
subclasses of its exported classes. Inter-component subclass-
ing is necessary for grouping classes and class extensions
into components.

- Cyclic linking: component linking can resolve mutually re-
cursive dependencies among components. Cyclic linking en-
ables natural component organizations, because mutually re-
cursive “has a” relationships are especially common at the
class level, and can naturally span component boundaries.

Jiazzi supports the composition of class-extending components; e.g.,
mixins [1]. Mixins and cyclic component linking can be combined
into an open class pattern, which allows independent features that
cross cut class boundaries to be packaged in separate components.
With the open class pattern, we can replace the use of many design
patterns used to implement modular feature addition, such as ab-
stract factories and bridges, with a combination of external linking
and Java’s in-language constructs for subclassing and instantiation.

Separate type checking is an essential part of separate compilation,
and is often at tension with other Jiazzi features. By allowing mix-
ins and cyclic component linking, we must disallow constructions
of cycles in the class hierarchies or distinct methods that are am-
biguous in a class. Using a novel “truth in subclassing” unit-level
type checking rule and by enforcing method scope at component
boundaries, Jiazzi is able to avoid or detect/reject such construc-
tions while still type checking components separately.

Jiazzi does not change current Java programming practices; Ji-
azzi requires neither extensions to the Java language nor special
conventions for writing Java code that will go inside a compo-
nent. Java developers continue to use existing tools, including Java
source compilers and IDEs, in the development of Java code. Com-
ponent boundaries are not restricted enabling Java classes to be
grouped into components where natural, which also makes it easier
to retrofit legacy Java code into component-based designs.

We encourage Java developers to use Jiazzi. More information
about Jiazzi can be found in our technical paper in OOPSLA ’01 [4],
or our web site, where an implementation is also available:
http://www.cs.utah.edu/plt/jiazzi

REFERENCES
[1] G. Bracha and W. Cook. Mixin-based inheritance. In Proc. of

OOPSLA, pages 303–311, Oct. 1990.

[2] R. Findler and M. Flatt. Modular object-oriented
programming with units and mixins. In Proc. of ICFP, pages
98–104, Sept. 1998.

[3] M. Flatt and M. Felleisen. Units: Cool modules for HOT
languages. In Proc. of PLDI, pages 236–248, May 1998.

[4] S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New-age
components for old-fashioned Java. In To Appear in the Proc.
of OOPSLA, Oct. 2001.


