
On the Decidability of Shared Memory Consistency Verification

Ali Sezgin
Department of Computer Engineering

Atılım University
Gölbaşı, 06836 Ankara

Turkey
asezgin@atilim.edu.tr

Ganesh Gopalakrishnan∗

School of Computing
University of Utah

Salt Lake City, UT 84108
USA

ganesh@cs.utah.edu

Abstract

We view shared memories as structures which define re-
lations over the set of programs and their executions. An im-
plementation is modeled by a transducer, where the relation
it realizes is its language. This approach allows us to cast
shared memory verification as language inclusion. We show
that a specification can be approximated by an infinite hier-
archy of finite-state transducers, called the memory model
machines. Also, checking whether an execution is generated
by a sequentially consistent memory is approached through
a constraint satisfaction formulation. It is proved that if
a memory implementation generates a non interleaved se-
quential and unambiguous execution, it necessarily gener-
ates one such execution of bounded size. Our paper sum-
marizes the key results from the first author’s dissertation,
and may help a practitioner understand with clarity what
“sequential consistency checking is undecidable” means.

1. Introduction

Shared memory consistency models (“consistency mod-
els”) are centrally important in the design of high perfor-
mance hardware based on shared memory multiprocessing
(e.g., [1]) as well as high performance software based on
shared memory multi-threading (e.g., [2]). To mitigate the
complexity of designing shared memory consistency pro-
tocols, either post-facto verification (e.g., [3]) or correct
by construction synthesis (e.g., [4]) are employed. Shared
memory multiprocessor machines are programmed accord-
ing to their consistency models, which define the possible
outcomes of running concurrent programs. The semantics
of shared memory are described by their consistency mod-
els which specify the set of values thatload s are permit-

∗Supported in part by NSF grant ITR-0219805 and SRC Contract
1031.001

ted to return for any program. Typical programs consist
of load s, store s, and other special instructions such as
barrier s, andfence s. In this paper, we consider only
load s (synonymous withread s) andstore s (synony-
mous withwrite s), as is customary in a study of basic
shared memory consistency issues.

For most practical purposes, weak shared memory mod-
els such as the Sparc TSO [5] or the Itanium memory model
[6] are of interest. However, most programmers understand
shared memory in terms ofsequential consistency(SC) for
three reasons: (i) SC has, traditionally, been the memory
model of choice to support in hardware; (ii) excellent theo-
retical understanding exists with respect to SC; and (iii) pro-
grammers strive to obtain a semantics that matches SC for
particular programs of interest by inserting the least num-
ber of fences [7, 8]. Thus, it is important to have theoreti-
cal issues about sequential consistency well understood by
programmers in simple and intuitive terms, and in terms of
models that they can easily relate to. We believe that this
is not the case today: there are results which can be mis-
understood, practical issues that have not been considered
adequately, and in addition, new results that warrant dis-
semination at an intuitive level. The aim of this paper is to
offer such a perspective to practitioners as well as to those
in formal methods.

As an example of what we mean, consider [9] in
which the authors have shown that the problem of verify-
ing finite-state shared memory consistency protocols [10]
against the sequential consistency memory model is un-
decidable. Upon closer examination, [9] doesnot offer
a definite verdict on the practical aspect of shared mem-
ory consistency protocol verification. What [9] show is
that if a shared memory system is viewed in terms of
tracesof executed instructions, then the problem of show-
ing that these traces are contained in the language of se-
quential consistency (formally defined in [9]) is unde-
cidable. In [11], we show that if we model a finite-
state consistency protocol in terms of triples of the form

〈program, execution, correspondence〉, where we not
only keep the executions (as in current approaches) but also
(i) model the programs that gave rise to the executions, and
(ii) model a correspondence relation between which pro-
gram instructions appear where in the execution, then the
question of decidability remains open. We argue that our
way of modeling memory systems avoids all the problems
pertaining to realizability that a trace based view invites.
Moreover, we believe that our model is much more faithful
to reality in that a shared memory system is atransducer
from programs to executions and not merely an autonomous
process that spews executed instructions.

As another example of a less known result, we recently
show [11] that forunambiguousexecutions (executions
where each addressa is not written into with the same value
more than once), the question of verifying SC becomes de-
cidable. The manner in which this result was obtained is, in
itself, interesting. We show that given any unambiguous ex-
ecution, one can generate constraints that capture orderings
that must bedisobeyedfor the execution to be sequentially
consistent. We show that these constraints imply a bound on
the size of executions to be searched. This result has been
obtained without making any assumptions such aslocation
monotonicityor symmetrythat are made in [12, 13]. It is
also the first time that we believe that the notion of decid-
ability and ambiguity have been related.

Views similar to ours exist in other work also: for exam-
ple, in [14], the authors point out that the class of protocols
considered by [9] possibly include instances that are irrel-
evant (unrealizable) in practice. They go on to provide a
characterization of decidable families of protocols, as well
as decision procedures. Others [15] have also pointed out
such decidable protocol classes. However, these decidable
SC characterizations leave out important classes of execu-
tions that our approach considers.

Roadmap. In Section 2, we define the notion of a mem-
ory model as a relation over programs and executions and
a shared memory system as a transducer. We address
many details that are not addressed in related works (e.g.,
[9, 14]) without which the connections between definitions
and physically realizable systems are unclear; these include
notions such as (i) establishing a relation between memory
requests and responses using acoloring relation, (ii) the no-
tions of immediateandtabular that allow a finite-state pro-
tocol to interact with a (potentially) out-of-order memory
system and collect responses corresponding to requests. In
Section 3, we describe what happens if we certify a mem-
ory system to be correct solely based on executions (without
considering programs). In Section 4, we describe a finite ap-
proximation to sequentially consistent shared memory sys-
tems. In Section 5, we present a constraint based approach
to verify finite executions, and state decidability results ap-
plicable to unambiguous executions. While we cannot do

justice to the level of detail it takes to explain these notions
adequately (which is what [11, 16] do), what we hope to
achieve is an intuitive dissemination of our results which
our former publications do not do.

2. Formalization of Shared Memory

Any work on shared memory formalization or verifica-
tion has to start with an understanding of what a memory
entails. After all, shared memory is but a type of memory.
It is common practice to immediately start with a mathe-
matical definition. Here, we will start with an intuitive ex-
planation, stating the obvious, and build our formalization
on top of that.

We will explain a memory system using two orthogonal
and complementary views: static and dynamic. Statically,
a memory system is an array whose dimension is known as
the address space. What each address can hold as datum
forms thedata spaceof the memory. Dynamically, a mem-
ory system is an interacting component which generates re-
sponse to each instruction it receives. The instructions it
receives are broadly classified as those that query and those
that update. The instructions belonging to the former class
are usually calledread instructions; those in the latter class
are calledwrite instructions. The state of a memory system
can be uniquely defined as the combination of the contents
of its address space (static part) and the set of instructions it
is processing (dynamic part).

What distinguishes a shared memory from other types of
memory is the environment with which the memory system
interacts. In a shared memory, typically, there are several
users and each instruction is tagged with the identifier of
the user issuing the instruction. Hence, contrary to a sin-
gle user system, not only does the memory differentiate an
instruction according to its class or the address on which it
operates, but also according to its issuer.

A shared memory system has multiple users and as such
it forms a concurrent system. Removing this concurrency
at the memory side goes against the raison d’être of shared
memory systems, i.e. increased performance through paral-
lelism. Allowing arbitrary behavior by the memory system
would make programming infeasible. The middle ground is
to define a set of behaviors: each instruction sequence (pro-
gram) is expected to result in one of the possibly several al-
lowed response sequences (executions). A shared memory
modeldefines this relation. When a shared memory system
is claimed to conform to a certain shared memory model,
it is to be understood that a program can only result in an
execution defined by this shared memory model. Formal
verification, then, is to prove thisclaim.

We keep referring to two seemingly different notions: a
shared memory model and a shared memory system. This
is not arbitrary. A shared memory model should be the defi-

2

nition of a relation (what it contains) and not its description
(how it realizes). A shared memory system, on the other
hand, should be the formal model of a design. It should
describe how it is to behave for each program it receives.

In our framework, closely following intuition, a shared
memory model is a binary relation over programs and exe-
cutions, called aspecification. A specification is parameter-
ized over the set of users, address space and data space. The
instructions or the responses that the memory might receive
or generate and which response can be generated for which
instruction forms a structure calledinterfaceand is also part
of the specification.

Definition 1 A memory interface,F, is a tuple〈I,O, ρ〉,
where

1. I andO are two disjoint, nonempty sets, called input
(instruction) and output (response) alphabets, respec-
tively. Their union, denoted byΣ, is called the alpha-
bet.

2. ρ ⊆ O × I is the response relation.

Definition 2 The rw-interface is the memory interfaceRW
with (hereN is the set of natural numbers):

1. IRW = {wi } × N3 ∪ {r i } × N2

2. ORW = {wo, r o} × N3

3. For anyσi ∈ IRW , σo ∈ ORW , we have(σo, σi) ∈
ρRW iff either the first component ofσo is wo, the first
component ofσi is wi and they agree on the remaining
three components, or the first component ofσo is r o,
the first component ofσi is r i and they agree on the
second and third components. Formally,

ρRW ={((wo, p, a, d), (wi , p, a, d)) | p, a, d ∈ N}∪
{((r o, p, a, d), (r i , p, a)) | p, a, d ∈ N}

Also, for ease of notation the following will be used:

1. A partition ofΣ, {R,W}, where

R = {r o} × N3 ∪ {r i } × N2

W = {wi , wo} × N3

2. Three functions,π, α, δ, where for anyσ ∈ ΣRW ,
π(σ) is the value ofσ’s second component,α(σ) that
of the third component, andδ(σ) that of the fourth
component if it exists, undefined (denoted by⊥) oth-
erwise.

Definition 3 A memory specification,S, for a memory in-
terfaceF is the tuple〈F, λ〉, whereλ ⊆ ((IF)∗× (OF)∗)×
Perm, is the input-output relation.

Here,Perm is the set of all permutations. We later em-
ploy Permk for the set of all permutations over{1 . . . k}.
We shall letµS denotedom(λS) (a relation over(IS)∗ ×
(OS)∗). λ of a memory is expected to define the relation
between the input to a memory, a (finite) string overI which
might be called aprogramor aninstruction stream, and the
output it generates for this input, a (finite) string overO
which might be called anexecutionor a response stream.1

For each such program/execution pair of the memory,λ also
defines, through permutation, the mapping between an in-
dividual instruction of the program and its corresponding
output symbol in the execution.2

For instance, consider an input-output relation for
RW which has the following element:((((r i ,1,1)
(r i ,1,1)), ((r o,1,1,2) (r o,1,1,4))), (21)). In
the program, we have two reads issued by processor 1 to ad-
dress 1. The execution generates two different values read
for address 1; 2 and 4. By examining the permutation, we
see that the first instruction’s response is placed at the sec-
ond position of the output stream, whereby we conclude that
the returned value for the first read is 4. Similarly, the sec-
ond read’s value is 2. So, intuitively, if the permutation’s
ith value isj, the jth symbol of the output stream is the
response corresponding to theith instruction of the input
stream.

Definition 4 A memory specificationS is called proper if

1. µS is length preserving.

2. For anyp ∈ (IS)∗, there existsq ∈ (OS)∗ such that
(p,q) ∈ µS.

3. σ = (p,q) ∈ µS implies∅ 6= λS(σ) ⊆ Perm|p| and
for anyη ∈ λS(σ), η(j) = k impliesρS(qk, pj).

If the first condition holds, the memory specification is
length-preserving. Then, a length-preserving memory spec-
ification is one which matches the length of its input to its
output. Note that, without the third requirement, it is not
of much use.Example: SND = 〈RW, λND〉, whereσ =
((p,q),n) ∈ λND impliesp ∈ (IRW)∗, q ∈ (ORW)∗,
|p| = |q|, ρRW(qj , pj) and η(j) = j, for j ∈ [|p|],
η ∼ n (η is the permutation represented byn). The shared
memorySND is length-preserving. If the second condi-
tion holds, a memory specification iscomplete(e.g.,SND

is complete). Completeness is the requirement that a mem-
ory specification should not be able to reject any program

1Although we are using the wordsprogramandexecution, we do not
claim that the input is required to be the unfolding of a program and the
output to be its associated execution. This might or might not be the case,
depending on where exactly the interface, user and memory are defined.
One choice might put the compiler at the user side, quite possibly resulting
in an input stream that is different from the actual ordering of instructions
in a program due to performance optimizations.

2By itself, ρ defines thetypeof response relations allowed.

3

as long as it is syntactically correct with respect to the in-
terface. This property, despite its simplicity, is one which
has been neglected by all previous work on shared memory
formalization, to the best of our knowledge ([17] considers
some of these issues). The third condition is saying that
any permutation used as a mapping from the instructions of
the input to the responses of the output should be respect-
ing the response relation of the interface. There are some
subtle points to note. First, it requires that the length of the
output stream,|q|, to be at least as much as the length of
the input stream,|p|; it could be greater (a problem which
is taken care of by the requirement of length-preserving).
Second, even for the same input/output pair, there can be
more than one permutation. Since we are trying to define a
correct specification without any assumptions, these seem-
ingly not tight enough requirements are favored for the sake
of generality.SND satisfies this third property.

Consistency models are viewed as sets of triples

〈program string, execution string, permutation〉
where the permutation describes the association be-
tween the individual instructions in the program string
and the corresponding “finished” (or executed) el-
ements in the execution string. For example, the triple
<Prog: write(p1,a,2); read(p2,a), Exec:
read(p2,a,0); write(p1,a,2), Perm: 21>

(where permutation 21 is an abbreviation for
{(1, 2), (2, 1)} – focussing only on the range elements),
could be one element in the set that defines sequential
consistency. Note that the standard notion of “program
order” can be extracted from the first element of the triple
(the program string) by projecting the string to individual
processors.

The execution strings, which represent the temporal or-
der, can be transformed, possibly into a different structure,
such as a poset, such that the predicate of the consistency
model is satisfied. For sequential consistency, however, a
poset structure is not needed; one can transform the execu-
tion strings to aserial logical order, which is a total order
as described earlier.

Consistency protocolsare viewed as finite-state ma-
chines over finite strings. The alphabet of these
machines consists of instructions paired with colors.
The colors serve as a “marker dye”. We color
an instruction (e.g., <write_i(p,a,d),blue> or
<read_i(p,a),green>) when it enters the system
(also notice our use of the_i subscript to denote the is-
suing event corresponding to these instructions). When the
instruction emerges after having being executed, we can tell
by observing its color which program instruction gave rise
to it (and also we mark the completion event of these in-
structions by the_o subscript).

We state well-formedness conditions for specifications

and implementations. Some of these conditions are:

− The specification and implementation effect length-
preserving maps from programs to executions.

− The implementation cannot accumulate an arbitrary
number of instructions that it has ingested.

− The color sets are finite. This models the fact that in
any finite-state implementation of a consistency pro-
tocol, the number of outstanding (unfinished) memory
instructions is bounded.

− The implementation makes a “color association” be-
tween input symbols and output symbols that does not
change as more instructions are considered. This cap-
tures that the association is decided by a deterministic
process carried out by a finite-state protocol (we call
this propertyimmediate).

− The color association is defined bypendinginstruc-
tions alone. In other words, “finished input instruction
/ output response” pairs have no effect in deciding the
nature of the color association for future instructions
(we call this propertytabular).

There is one additional and important problem: the map-
ping between instructions and their associated responses.
The usual solution is to impose certain restrictions on the
memory system such as in-order completion. For instance,
if two read instructions of the same address by the same user
await responses, the first suitable generated response (same
address and user) belongs to the instruction that was issued
first. We feel that this is an unnatural restriction and cannot
be reasonably enforced on all memory systems.

Had we been dealing with infinite state machines, the so-
lution would have been trivial: mark each instruction with
a unique natural number and tag its response with the same
number. This is, in fact, employed in defining specifica-
tions as we saw above. For finite-state systems, an infi-
nite alphabet is not possible. Instead, we will let these ma-
chines have alphabets where each instruction and response
is paired withcolors. These colors will serve as a “marker
dye”. We color an instruction (e.g.,〈?a2, blue 〉) when it
enters the system. When a (colored) response emerges from
the memory system, we can tell from its color which in-
struction gave rise to it.

In the most general case, a function has to be supplied
to interpret pairs of strings over colors: given any pair of
strings of equal length, this function would generate a per-
mutation which would map instructions to responses. A
color set together with such a (conversion) function is called
acoloring scheme. it is not hard to see that this might result
in syntactically different, semantically equivalent strings,
something we are trying to avoid. Fortunately, we can do
better. In order to justify the use of a canonical coloring,
we allude to finitary arguments. When a user issues an in-
struction, it must have a certain mechanism to tell which

4

response it receives actually corresponds to that instruction,
especially when both the user and the memory system op-
erate in a setting where out of order execution and pend-
ing instructions, instructions that have not yet received a
response from the memory system, are allowed. Let us as-
sume thati is an instruction that the user issued and the
responser is the symbol that the memory system generated
for i. When the user receivesr from the memory system, it
should be able to match it withi without waiting for other
responses. Furthermore, oncei andr are paired by the user,
they should remain so; a future sequence of instructions and
responses should not alter the once committed matchings.
Since the user is a finite-state entity, it can retain only a fi-
nite amount of information about past input; most likely, it
will only keep track of thependinginstructions. These ideas
are the basis for requiring implementations to beimmediate
andtabular[11].

Once an implementation is assumed to be immediate and
tabular, and this assumption only depends on the finiteness
of the system and the users, we can do away with arbitrary
colorings and work with a canonical coloring. We have
proved the existence of an equivalent canonical coloring for
an arbitrary coloring in [11]. This means that any shared
memory system can be modeled by a transducer which uses
the canonical coloring.

3. Execution-based Formalism

An alternative, and widely adopted, way to formalize
memory systems is to view them as machines generating
responses. In this view, anexecutionof a memory system is
the collection of responses, also calledeventsin this frame-
work, this memory system generates. A memory model is
described in terms of amodel predicateover executions. A
memory system satisfies a memory model if all the execu-
tions the system generates satisfies the model predicate.

As usual, a memory system is parameterized over the set
of users, the set of addresses and the set of different data
values each address can hold, represented byP , A andD,
respectively. We will take all these sets as finite. A read
event is represented byr(p, a, d) wherep ∈ P is the proces-
sor that issued the instruction,a ∈ A is the address queried
by the read instruction andd ∈ D is the data value returned
by the memory. Similarly, a write event is represented by
w(p, a, d) with p, a, andd having the same meanings.Σ
is the alphabet containing all read and write events. The
parameters of a read (write) event are extracted using the
functionsπ, α andδ. That is, fors = r(p, a, d), π(s) = p,
α(s) = a andδ(s) = d.

How an execution is represented results in different for-
malizations. There have been research that used partial or-
ders [18], graphs [19, 20] and traces [9, 14, 21, 22]. We will
consider the latter which has almost always been used in the

verification of sequential consistency.
In trace-theoretical representation, we use a partially

commutative monoid instead of the free monoidΣ∗. Let
σ1, σ2 be strings overΣ, let s, t be symbols inΣ and let
σ = σ1stσ2. Then the stringσ1tsσ2 is 1-step equivalent to
σ if π(s) 6= π(t). An equivalence class is the transitive clo-
sure of 1-step equivalence. We can say that two strings not
necessarily syntactically equal but belonging to the same
equivalence class have the same semantic value.

A string σ = s1s2 · · · sn for si ∈ Σ is serial
(interleaved-sequential) if for anyi ≤ n such thatsi =
r(p, a, d) is a read event, either there existsj < i with
α(sj) = a, δ(sj) = d, and there does not existj < k < i
such thatα(sk) = a andδ(sk) 6= d, or d is the initial value
of a. For simplicity, we will assume that the initial value
for each address is0. This is the standard definition for se-
quential consistency; it requires that each execution allow a
(logical) reordering such that any read of an address returns
the value of the most recent write to the same address.

In this formalization, an execution is a string overΣ. The
model predicate for sequential consistency is as follows: An
execution is sequentially consistent if it is in the equivalence
class of a serial string. We say that a memory system is
sequentially consistent if all its executions are sequentially
consistent.

Based on this formalization, it has been claimed that [9]
a sequentially consistent finite-state memory system has a
sequentially consistent regular language. Consequently, in
[9], it is proved that it is undecidable to check for an arbi-
trary finite-state memory system whether it is sequentially
consistent or not. This result has been cited in almost all
of the subsequent work such as [21, 22, 20, 23]. Before ar-
guing the relevance of this result, however, it first behooves
us to talk about an assumption that has not been explicitly
stated.

3.1. Trace-based Formalization and In-order Com-
pletion

We have said that the definition of sequential consis-
tency, or any memory model for that matter, required in-
formation on the sequential order of instructions issued per
processor, also known as the program order. On the other
hand, we have not really talked about program order in the
context of trace-based formalization. The conciliation of
these two seemingly contradicting facts lies in a crucial as-
sumption: the memory system is expected to complete the
requests it receives in an order which respects per proces-
sor issuing order. That is, if the memory system receives
instruction i1 at time t1 from processorp, instructioni2
at t2 again from the same processor andt1 < t2, then it
is assumed thati1 completes3 beforei2. That is precisely

3This notion might also be called “commitment”.

5

why the equivalence classes defined above do respect pro-
gram order; events belonging to the same processor are not
allowed to commute, hence at each 1-step equivalence the
program orders remain the same.

It is highly questionable whether this assumption can
stay valid, given the ever ambitious optimizations done for
memory systems. There are already memory systems which
process their requests out of issuing order.

Consider the following scenario. Processorp issues
r(p, a)4 and then issuesr(p, b). If the second read com-
pletes before the first one, what we observe in the execution
will be of the formσ1r(p, b, d)σ2r(p, a, d′)σ3 for stringsσi

over Σ. Any string in the equivalence class of this string
will always haver(p, b, d) beforer(p, a, d′), contradicting
the initial program order.

One can say that an intermediate machine that would
convert what the memory system generates into a string for
which the assumption holds can be constructed. We could
then take the combination of the memory system and that
machine and work on the output of the intermediate ma-
chine without any problem. However, there are cases where
a finite-state machine simply cannot generate such an out-
put.

Consider now a slight variation of the above scenario.
Processorp issuesr(p, a) and then issues an unbounded
number ofr(p, b). That is, after reading addressa, it polls
the addressb for an unbounded number of times. Assume
further that the read ofa does not return a value unless all
the reads ofb complete. This will mean that the finite-state
intermediate machine must have the capability of storing an
unbounded amount of information, in this case all the read
events of addressb. This is clearly and theoretically impos-
sible.

This assumption of in-order completion found in trace-
based formalization, therefore, restricts its use to a subset
of all possible memory systems, not all of which are pure
theoretical concoctions.

Unfortunately, not only all possible finite-state memory
systems cannot be formalized using trace theory, the finite-
ness of a memory system in this formalization cannot be
formulated either. We will argue this point next.

3.2. Finiteness and Trace-based Formalization

It has been argued in [9] that since a memory system is
basically a finite-state automaton whose language is a sub-
set ofΣ∗, the memory system is finite-state if and only if
its language is regular. Furthermore, as we have previously
mentioned, this implies that a finite-state memory system is
sequentially consistent if and only if its language is regular
and sequentially consistent.

4This is the representation of the instruction whose response is the read
eventr(p, a, d) for somed ∈ D.

However, we believe that this characterization of finite-
ness is inadequate. Consider the following set of execu-
tions, given as a regular expression:

w(1, a, 2)r(1, a, 1)∗r(2, a, 2)∗w(2, a, 1)

According to the definition of sequential consistency, the
memory system generating this language is sequentially
consistent. It is sequentially consistent because any string
belonging to this regular expression has a serial string in its
equivalence class. For instance, the execution

w(1, a, 2)r(1, a, 1)r(2, a, 2)w(2, a, 1)

is equivalent to the serial string

w(1, a, 2)r(2, a, 2)w(2, a, 1)r(1, a, 1)

Let us assume thatN is the cardinality of the state space
of the finite-state memory system generating this regular
expression. Think of the execution where we have2N
r(1, a, 1) events and2N r(2, a, 2) events. By the execu-
tion string, we know that the first event isw(1, a, 2). This
is to be followed by the read eventr(1, a, 1). Note that, by
the assumption discussed in the previous section, we know
that, without any information about the relative issuing or-
ders among read instructions belonging to different proces-
sors, at least2N instructions must be issued by the second
processor before the write instruction which is the last to be
committed is issued by this same processor.

However, this cannot be done by a sequentially consis-
tentand finite-statemachine. Noting that the cardinality of
the state space of the machine wasN , there are two possi-
bilities:

1. The machine generates the read eventr(1, a, 1) be-
fore the issuing of the instruction corresponding to the
eventw(2, a, 1). If at the instant the machine gener-
ates this read event we stop feeding the finite-state ma-
chine with instructions, it will either terminate with an
execution that does not have a serial string in its equiv-
alence class or it will hang waiting for issuing of the
write instruction itguessed. The former case results
in a non-sequentially consistent execution. The latter
case where the memory system simply refuses to ter-
minate computation will be discussed below.

2. The machine generates the first read event after the is-
suing of the instruction corresponding to thew(2, a, 1)
event. This means that the machine has not generated
any event for at least2N steps. This in turn implies
that, since there areN states, there exists at least one
state,s, which was visited more than once, such that on
one path froms to s, the machine inputs instructions
but does not generate any events. Let us assume that

6

the mentioned path froms tos was takenk times. Con-
sider a different computation where this path is taken
2k times; each time this path is taken in the original
computation, in the modified computation it is taken
twice. It is not difficult to see that this will change the
program, the number of instructions issued, but will
leave the execution the same; no output is generated
on the path froms to s. Hence, we obtain an execution
which does not match its program; the program’s size
becomes larger than the size of execution. Put in other
words, the finite-state memory ignores certain instruc-
tions and does not generate responses.

The basic fallacy here is the abstraction of input, or the pro-
gram. In the first case, where the memory system hangs
or does not terminate, the memory system cannot be con-
sidered correct in any reasonable sense. A memory system
should always generate an execution as long as the stream
of memory accesses, or instructions, are syntactically cor-
rect. In the second case, we have a memory system which
generates its output regardless of what it receives as input.
There should be a well-defined correspondence between the
instructions a memory system receives and the responses it
generates.

Remember that the initial motivation for shared memory
models was to capture some sort of correctness for shared
memory systems. The tworuleswe have mentioned above,
that the memory system does not deadlock and that the pro-
gram and its execution must be related, should be properties
that are satisfied by any memory system, not only sequen-
tially consistent systems. However, it is impossible to char-
acterize these requirements when only execution is present
in the formalization.

If the reader is not convinced about the necessity of rules,
we could propose an alternative argument. Going back to
the original definition, we note that a sequentially consis-
tent memory system is required to behave as if it is a single
user system. A single user memory system, on the other
hand, cannot exhibit any of the behaviors mentioned above
(deadlock or arbitrary execution) and be deemed correct.

It is therefore not correct to prove a property in trace-
based formalization and then claim that property to hold for
memory systems in general. The reverse direction holds
as well: certain properties of memory systems cannot be
expressed in trace-based formalization. Finiteness is one
such property. We have been so far unable to characterize
for the trace-based formalization the set of executions which
can be generated by finite-state memory systems.

Another property that has been proved to hold for mem-
ory systems in trace-based formalization is the undecidabil-
ity we mentioned above. As a corollary of the argument
we have given for the finiteness, the result of undecidabil-
ity is not applicable to finite memory systems in general.
We claim that the decidability of checking the sequential

consistency of a finite-state memory system is still an open
problem.

4. Finite Approximations to Sequential Consis-
tency

In this section, we will define for each shared memory
instance a set of machines whose language-union will cover
all possible interleaved-sequential program/execution pairs
of that instance at the initial stateι.

memory

... ...

Commit

Queues

Processor

Queues

Input instruction
stream

stream
responseOutput

size ksize j

array

Figure 1. The diagram of SCP,C(j, k)

Let P be a parameterized instance(P,A, D), C be a
color set and letj, k ∈ N. For simplicity, we will assume
thatP = [|P |]5, A = [|A|], C = [|C|]. Then, the machine
SC(P,C)(j, k) is defined as follows:

There are|P | processorfifo queues each of sizej such
that each queue is uniquely identified by a number inP , |C|
commitfifo queues each of sizek, again each with a unique
identifier fromC, and thememory array, mem, of size|A|.
Initially, the queues are empty, and the memory array agrees
with ι, that is,mem(i) = ι(i), for all i ∈ dom(ι). At
each step of computation, the machine can perform one of
the following operations: read an instruction, commit an
instruction or generate a response. The choice is done non-
deterministically among those operations whose guards are
satisfied.

Let σ = (p, c) be the first unread instruction. The guard
for reading such an instruction is that theπ(p)th processor
queue and thecth commit queue are not full. If this opera-
tion is chosen by the machine, then one copy ofσ is inserted
to the end of theπ(p)th processor queue, another is inserted
to the end of thecth commit queue and a link is established
between the two entries.

The guard for committing an instruction is the existence
of at least one nonempty processor fifo queue. If this guard

5For a setA, |A| gives the cardinality ofA. For a natural numbern,
[n] gives the set{0, 1, . . . , n− 1}.

7

is satisfied and the commit operation is chosen, then the
head of one of the nonempty processor queues is removed
from its queue. Let us denote that entry by(q, c). If
q ∈ R, then the response((r o, π(q), α(q),mem(α(q))), c)
replaces the entry linked to(q, c) in thecth commit queue.
If q ∈ W , then the response((wo, π(q), α(q), δ(q)), c) re-
places the entry linked to(q, c) in thecth commit queue and
theα(q)th entry of the memory array is updated to the new
valueδ(q), i.e.,mem[α(q)] = δ(q).

The guard for outputting a response is the existence of
at least one nonempty commit queue which has a com-
pleted response at its head position. If indeed there are such
nonempty queues and the output operation is chosen, then
one of these commit queues is selected randomly, its head
entry is output by the machine and removed from the com-
mit queue.

Let the language of anSCP,C(j, k) machine,
L(SCP,C(j, k)), be the set of pairs of input accepted
by the machine and output generated in response
to that input. Let LP,C denote the (infinite) union⋃

j,k∈Nat L(SCP,C(j, k)). In [11], we prove that any pro-
gram/execution pair is interleaved-sequential only if it can
be generated by someSC machine. This implies thatLP,C

contains all and only interleaved-sequential executions; that
is, it is equivalent to the set of all sequentially consistent
program/execution pairs.

The relation realized by a finiteSCP,C(j, k) is also the
language of a 2-tape automaton, since it is finite-state and
length preserving (see [24]). The same can be said about
length-preserving shared memory implementations of a fi-
nite instance. Since the emptiness problem for regular lan-
guages is decidable, it follows that it is decidable to check
whether a finite instance implementation realizes a relation
that is included in the language of someSC machine. Fur-
thermore, completeness of an implementation of a finite
instance is also decidable; it suffices to construct a new
automaton with the same components whose transition la-
bels are projected to the first (input) alphabet and then to
check for its universality. These observations allow us to
claim that it is decidable to check whether a memory sys-
tem M is complete and has a language that is subset of
SCP,CM (j, k), for somej, k ∈ N. Note thatSC machines
allow a semi-decision procedure for sequential consistency
conformance of a protocol to be obtained through language
containment (since we do not know how to boundj andk
yet, a decision procedure is not obtained).

As a case study for the above ideas, in [11], we prove
finite instances of lazy caching [25] sequentially consistent.
The method we used is based on (regular) language inclu-
sion and, thus, in principle, could be fully automated.

5. A Constraint Satisfaction Approach

We said that a concurrent execution is a combination of
sequential executions, one per processor and the concurrent
execution is interleaved-sequential if a certain interleaving
of the sequential executions appears as if executed by a sin-
gle processor. Let us call this thelogical order of a con-
current execution. The logical order, then, is a fictitious or-
der that conforms to all the requirements enforced by each
processor. But what exactly do we mean by these require-
ments?

1

2

4

P1 P2 P3

w(2,a,1) w(3,a,2)

r(1,a,1)

r(1,a,2)

3

Figure 2. Sample concurrent execution, G1.

Look at the concurrent executionG1 of Fig. 2. We have
four instructions. The requirement of processor 2 is that a
write of value 1 to addressa exists. Besides that, it imposes
no ordering with respect to any other instruction. Same with
processor 3. Processor 1, on the other hand, requires that the
read of value 1 precede the read of value 2 at addressa. This
has an indirect effect on the write ordering:w(a,1) 6 must
precedew(a,2) . Hence, a logical order, in case it exists,
must satisfy all these requirements. For this instance,3, 1,
4, 2 is the required logical order.

1

2

r(1,a,1)

r(1,b,1)

P1

Figure 3. Sample concurrent execution, G2.

Now, look at a snippet of a concurrent executionG2,
in Fig. 3. One requirement is thatr(1, a,1) precede
r(1, b,1) . It is also required thatw(a,1) andw(b,1)
exist. However, it does not seem to relate these writes. We
might conclude that this is all the requirement enforced by
this pair of reads to different addresses and we would be
wrong!

The trick is in negation. Instead of expressing the re-
quirements asenforcedorderings, we could express them

6This is a shorthand forw(p, a,1) for somep ∈ P . Since we are
dealing with unambiguous runs exclusively, there is at most one such write.

8

as forbiddenorderings. For instance, in Fig. 2, we could
say that processor 1 forbids the ordering wherew(a,2)
precedesw(a,1) . In the case of binary orderings, the
difference is superfluous. However, for Fig. 3, if we say
that, for any other write tob, w(b, d) such thatd 6= 1, we
cannot havew(b,1) precedew(b, d) when both precede
w(a,1) , we introduce a new requirement.

It turns out that a formalization of the above ideas to
form a set of impossible orderings over the writes of a con-
current execution helps us form a new problem, equivalent
to interleaved-sequentiality checking. For a given concur-
rent execution, we define a set of constraints which basi-
cally combines all possible kinds of forbidden orderings for
the execution.

Theorem Let Gc be a legal (unambiguous) concurrent ex-
ecution andCSc be its constraint set. Then,Gc is
interleaved-sequential if and only ifCSc is satisfiable.

Previous work on interleaved-sequentiality checking ei-
ther completely ignored the problem of finding the subset
of the execution that violated the property [26], or tried to
characterize it in terms of cycles [20]. With the constraint
sets, we can define what it means to have a minimal subset
of a non interleaved-sequential (i-s, for short) concurrent
execution such that the minimal subset still is a violating
execution, but any execution subset of it is not.

Let us examine the concurrent executionG3 that is not
i-s, given in Fig. 47 Assume that a logical order is be-
ing searched for this execution. Starting from the require-
ment of processor 2, we see that8 (w(2, a,1)) must be
ordered before9 (w(2, a,2)) since (8,9) ∈ Ec. This
ordering implies that2 (r(1, a,1)) is ordered before9
(w(2, a,2)). Since(1,2) ∈ Ec and (9,10) ∈ Ec, we
have to order1 before10 which implies the ordering of4
before10 (hence the dashed line from4 to 10). Contin-
uing in this manner, we eventually come to a point where
we have to order5 before12 , which would violate a prop-
erty of interleaved-sequentiality. A similar analysis could
be performed for the dotted lines which is the result of or-
dering12 before6 due to the edge(5,6) ∈ Ec.

Given the above example, it is not clear how, solely
based on cycles, we can pick a minimal set of vertices that
still is not i-s. Clearly, just picking, say, vertices4 and10
because there is a cycle between the two will not be cor-
rect. Actually, this concurrent execution is minimally non
i-s, that is, any removal of a vertex from the graph would
make the remaining subset i-s. This is precisely where we
can use the constraint set.
Definition: Let Gc be a non i-s concurrent execution and
CSc its constraint set. Then a minimal constraint set, subset

7We have added some edges - dotted and dashed lines - that are not part
of the concurrent execution for illustration purposes. These edges actually
would have been added by the algorithm given in [20] or [23].

1

2

3

4

5

6

7

8

9

10

11

12

w(1,b,1)

r(1,a,1)

w(1,c,1)

r(1,b,1)

r(1,a,4)

w(1,a,3)

r(1,c,1)

w(2,a,1)

w(2,a,2)

w(2,b,2)

w(2,c,2)

w(2,a,4)

Figure 4. Sample non-i-s concurrent execu-
tion G3 illustrating cycles and the minimal set.
The dashed lines are the result of ordering
w(a,1) before w(a,2) . The dotted lines are
the result of ordering w(a,4) before w(a,3) .

of CSc, is a set which itself is unsatisfiable but any proper
subset of it is not.

Note that there can be more than one minimal set for a
given Gc. This definition allows us to define minimality
with respect to the constraint set.

For P, A,D all finite, we prove in [11] that the size of
any minimal instruction set of any non-i-s unambiguous
concurrent execution is bounded. An implementation has
a non i-s unambiguous concurrent execution if and only if
there exists a run that does not visit any state more than
4|A|2(|D| + 1)3 times, generating a non i-s concurrent ex-
ecution. This bound makes it possible to have a decision
procedure for detecting non i-s unambiguous concurrent ex-
ecutions in a memory system.

Even though, this result might seem intuitively trivial
since there are only finitely many different write events in
the (infinite) set of unambiguous executions for finite val-
ues ofP , A andD, it was not possible to obtain it using the
previous methods based on cycle analysis. The most impor-
tant aspect is that we have not resorted to making assump-
tions about the concurrent executions, about certain rela-
tions between instructions and responses. There is also an
interesting open problem. When we talk about constraints,
we do not take into account the fact that the machine that

9

generates the execution is actually finite-state. Due to this
finiteness, the executions cannot be arbitrary but follow a
certain regular pattern, which so far we have not been able
to characterize. That might render the definition of a certain
equivalence relation, having only a finite number of equiv-
alence classes, possible.

6. Conclusion

This paper attempts to allay the notion that the issue of
decidability of sequential consistency is a closed chapter.
It offers a transducer based definition of sequential consis-
tency that addresses implementation constraints. In this set-
ting, decidability is still an open problem. However, by
adopting a constraint-based approach, one can, for unam-
biguous executions, obtain a decision procedure. The pro-
cedure for generating these constraints itself forms an al-
ternative to analyzing cycles (e.g., [27]), and may form the
basis for a more efficient SAT-based execution checking ap-
proach than reported in [28]. All these will form the subject
of our continued research.

References

[1] N.R. Adiga. An overview of the bluegene/l super-
computer. InConference on High Performance Net-
working and Computing: SC2002, pages 60–60, 2002.
(with 30 co-authors).

[2] William Pugh. The java memory model is fatally
flawed. Concurrency: Practice and Experience,
12(1):1–11, 2000.

[3] Shared memory consistency models and protocols,
October 2004. Invited Tutorial by Ching-Tsun
Chou, Steven German, and Ganesh Gopalakrishnan.
http://www.cs.utah.edu/˜ganesh/presentations/
fmcad04_tutorial2/ .

[4] Arvind. Bluespec: A language for hardware de-
sign, simulation, synthesis and verification. InMEM-
OCODE, 2003.

[5] David L. Weaver and Tom Germond.The SPARC Ar-
chitecture Manual – Version 9. P T R Prentice-Hall,
1994.

[6] A Formal Specification of Intel(R) Itanium(R)
Processor Family Memory Ordering, 2002.
http://www.intel.com/design/
itanium/downloads/251429.htm .

[7] Denis Shasha and Marc Snir. Efficient and correct ex-
ecution of parallel programs that share memory.ACM

Transactions on Programming Languages and Sys-
tems, 10(2):282–312, April 1988.

[8] S. P. Midkiff, J. Lee, and D.A. Padua. A compiler for
multiple memory models.Concurrency, Practice and
Experience, 16(2):197–220, February 2004.

[9] Rajeev Alur, Ken McMillan, and Doron Peled. Model-
checking of correctness conditions for concurrent ob-
jects. InSymposium on Logic in Computer Science,
pages 219–228. IEEE, 1996.

[10] Sarita V. Adve and Kourosh Gharachorloo. Shared
memory consistency models: A tutorial.Computer,
29(12):66–76, December 1996.

[11] Ali Sezgin. Formalizing and Verification of Shared
Memory. PhD thesis, The University of Utah, 2004.
http://www.cs.utah.edu/˜ganesh/
unpublished/sezgin_phd_04.pdf .

[12] Thomas Henzinger, Shaz Qadeer, and Sriram Raja-
mani. Verifying sequential consistency on shared-
memory multiprocessor systems. In Nicolas Halb-
wachs and Doron Peled, editors,Computer Aided Ver-
ification99, volume 1633 ofLecture Notes in Com-
puter Science, pages 301–315, Trento, Italy, July
1999. Springer-Verlag.

[13] Ratan Nalumasu. Formal design and verification
methods for shared memory systems. PhD thesis, Uni-
versity of Utah, Salt Lake City, UT, USA, December
1998.

[14] Jesse D. Bingham, Anne Condon, and Alan J. Hu. To-
ward a decidable notion of sequential consistency. In
Proceedings of the fifteenth annual ACM symposium
on Parallel algorithms and architectures, pages 304–
313. ACM Press, 2003.

[15] Shaz Qadeer. Verifying sequential consistency on
shared-memory multiprocessors by model checking.
IEEE Transactions on Parallel and Distributed Sys-
tems, 14(8), August 2003.

[16] Ali Sezgin and Ganesh Gopalakrishnan. On the defi-
nition of sequential consistency. Submitted for publi-
cation. Preliminary version at
http://www.cs.utah.edu/˜ganesh/
unpublished/sc_definition.pdf , 2004.

[17] M. Frigo. The weakest reasonable memory. Mas-
ter’s thesis, Department of Electrical Engineering and
Computer Science, MIT, 1998.

10

[18] Prince Kohli, Gil Neiger, and Mustaque Ahamad. A
characterization of scalable shared memories. Tech-
nical Report GIT-CC-93/04, College of Computing,
Georgia Institute of Technology, January 1993.

[19] Kourosh Gharachorloo.Memory Consistency Mod-
els for Shared-Memory Multiprocessors. PhD thesis,
Stanford University, December 1995.

[20] Ratan Nalumasu.Design and Verification Methods for
Shared Memory Systems. PhD thesis, Department of
Computer Science, University of Utah, 1999.

[21] Anne E. Condon and Alan J. Hu. Automatable veri-
fication of sequential consistency. In13th Symposium
on Parallel Algorithms and Architectures, pages 113–
121. ACM, 2001.

[22] Thomas A. Henzinger, Shaz Qadeer, and Sriram K.
Rajamani. Verifying sequential consistency on shared-
memory multiprocessor systems. InProceedings of
the 11th International Conference on Computer-aided
Verification (CAV), number 1633 in Lecture Notes in
Computer Science, pages 301–315. Springer-Verlag,
July 1999.

[23] Shaz Qadeer. Verifying sequential consistency on
shared-memory multiprocessors by model checking.
Technical Report 176, Compaq SRC, December 2001.

[24] Jean Berstel. Transductions and context-free lan-
guages. Teubner, 1979.

[25] Yehuda Afek, Geoffrey Brown, and Michael Mer-
ritt. Lazy caching. ACM Transactions on Program-
ming Languages and Systems, 15(1):182–205, Jan-
uary 1993.

[26] William W. Collier. Reasoning about Parallel Archi-
tectures. Prentice-Hall, Inc., 1992.

[27] W. W. Collier. Reasoning About Parallel Architec-
tures. Prentice-Hall, Englewood Cliffs, NJ, 1992.

[28] Ganesh Gopalakrishnan, Yue Yang, and Hemanthku-
mar Sivaraj. QB or not QB: An efficient execu-
tion verification tool for memory orderings. InCAV
(Computer Aided Verification), pages 401–413, 2004.
LNCS 3113.

11

