On the Decidability of Shared Memory Consistency Verification

Ali Sezgin Ganesh Gopalakrishnan
Department of Computer Engineering School of Computing
Atilim University University of Utah
Golbasi, 06836 Ankara Salt Lake City, UT 84108
Turkey USA
asezgin@atilim.edu.tr ganesh@cs.utah.edu
Abstract ted to return for any program. Typical programs consist

of load s, store s, and other special instructions such as
We view shared memories as structures which define re-barrier s, andfence s. In this paper, we consider only
lations over the set of programs and their executions. Anim-load s (synonymous withhead s) andstore s (synony-
plementation is modeled by a transducer, where the relationmous withwrite s), as is customary in a study of basic
it realizes is its language. This approach allows us to cast shared memory consistency issues.
shared memory verification as language inclusion. We show For most practical purposes, weak shared memory mod-
that a specification can be approximated by an infinite hier- els such as the Sparc TSO [5] or the Itanium memory model
archy of finite-state transducers, called the memory model[6] are of interest. However, most programmers understand
machines. Also, checking whether an execution is generateghared memory in terms sequential consisten¢C) for
by a sequentially consistent memory is approached throughthree reasons: (i) SC has, traditionally, been the memory
a constraint satisfaction formulation. It is proved that if model of choice to support in hardware; (i) excellent theo-
a memory implementation generates a non interleaved se+etical understanding exists with respect to SC; and (iii) pro-
quential and unambiguous execution, it necessarily gener-grammers strive to obtain a semantics that matches SC for
ates one such execution of bounded size. Our paper sumparticular programs of interest by inserting the least num-
marizes the key results from the first author’s dissertation, ber of fences [7, 8]. Thus, it is important to have theoreti-
and may help a practitioner understand with clarity what cal issues about sequential consistency well understood by
“sequential consistency checking is undecidable” means. programmers in simple and intuitive terms, and in terms of
models that they can easily relate to. We believe that this
is not the case today: there are results which can be mis-
1. Introduction understood, pracf[ical is;ges that have not been considgred
adequately, and in addition, new results that warrant dis-

, .) semination at an intuitive level. The aim of this paper is to
Shared memory consistency models (“consistency mod-qer sch a perspective to practitioners as well as to those
els”) are centrally important in the design of high perfor- . tormal methods.

mance hardware based on shared memory multiprocessing As an example of what we mean, consider [9] in

(e.9., [1]) as well as high performance software based ON\vhich the authors have shown that the problem of verify-

shared memory m.ult|'-thread|ng e.g., [2). To mitigate the ing finite-state shared memory consistency protocols [10]
complexity of designing shared memory consistency pro- against the sequential consistency memory model is un-

tocols, eithe_r post-factq verification (e.g., [3]) or correct decidable. Upon closer examination, [9] daest offer

by constructlt_)n synthesis (e.g., [4]) are employed. Shareda definite verdict on the practical aspect of shared mem-
memory multiprocessor machines are programmed accord-Ory consistency protocol verification. What [9] show is
ing to their consistency models, which define the possiblethat if a shared memory system is viewed in terms of
outcomes of running concurrent programs. The Sem"’“mcstracesof executed instructions, then the problem of show-
of shar_ed memory are described by their consu;tency_ mOd'ing that these traces are contained in the language of se-
els which specify the set of values tiahd s are permit- guential consistency (formally defined in [9]) is unde-

*Supported in part by NSF grant ITR-0219805 and SRC Contract cidable. !n [11], we ShOV_V that if we .mOdel a finite-
1031.001 state consistency protocol in terms of triples of the form

(program, execution, correspondence), where we not justice to the level of detall it takes to explain these notions
only keep the executions (as in current approaches) but alsadequately (which is what [11, 16] do), what we hope to
(i) model the programs that gave rise to the executions, andachieve is an intuitive dissemination of our results which
(i) model a correspondence relation between which pro- our former publications do not do.

gram instructions appear where in the execution, then the

guestion of decidability remains open. We argue that our 2. Formalization of Shared Memory
way of modeling memory systems avoids all the problems

ertaining to realizability that a trace based view invites. L .
P g y Any work on shared memory formalization or verifica-

Moreover, we believe that our model is much more faithful tion has to start with derstandi f what
to reality in that a shared memory system iransducer lon has 1o start with an understanding of what a memory
entails. After all, shared memory is but a type of memory.

from programs to executions and not merely an autonomousIt . fice 10 | diatelv start with h
process that spews executed instructions. IS common practice 1o Immediately start with a mathe-

matical definition. Here, we will start with an intuitive ex-
As another example of a less known result, we recently |, ha4ion stating the obvious, and build our formalization
show [11] that forunambiguousexecutions (executions on top of that
where each addresss not written into with the same value

h h X £ verifvi b g We will explain a memory system using two orthogonal
more than once), the question of verifying SC becomes de-p, g complementary views: static and dynamic. Statically,
cidable. The manner in which this result was obtained is, in

)) : X i a memory system is an array whose dimension is known as
itself, interesting. We show that given any unambiguous ex- the address spaceWhat each address can hold as datum
ecution, one can generate constraints that capture orderingg, ..« thedata spacef the memory. Dynamically, a mem-

that must balisobeyedor the execution _to b_e sequentially ory system is an interacting component which generates re-
consistent. We show that these constraints imply a bound ong;, g6 1o each instruction it receives. The instructions it
the size of executions to be searched. This result has beepq.oiyes are broadly classified as those that query and those
obtained without making any assumptions sucloaation 54 ,hqate. The instructions belonging to the former class
mOﬂO'[OﬂI.CI'[yO.I‘ symmetrythat are made in [12,' 13] It IS are usually calledeadinstructions; those in the latter class
a's_‘? the first tlme 'Fhat we believe that the notion of decid- are calledwrite instructions. The state of a memory system
ability and ambiguity have been related. can be uniquely defined as the combination of the contents
Views similar to ours exist in other work also: for exam- of its address space (static part) and the set of instructions it
ple, in [14], the authors point out that the class of protocols is processing (dynamic part).
considered by [9] possibly include instances that are irrel- what distinguishes a shared memory from other types of
evant (unrealizable) in practice. They go on to provide a memory is the environment with which the memory system
characterization of decidable families of protocols, as well interacts. In a shared memory, typically, there are several
as decision procedures. Others [15] have also pointed oujysers and each instruction is tagged with the identifier of
such decidable prOtOCOI classes. However, these dECidablg‘]e user issuing the instruction. Hence, Contrary to a sin-
SC characterizations leave out important classes of exeCUg|e user System’ not 0n|y does the memory differentiate an
tions that our approach considers. instruction according to its class or the address on which it
Roadmap. In Section 2, we define the notion of a mem- operates, but also according to its issuer.
ory model as a relation over programs and executions and A shared memory system has multiple users and as such
a shared memory system as a transducer. We addres# forms a concurrent system. Removing this concurrency
many details that are not addressed in related works (e.g.at the memory side goes against the raisdird’ of shared
[9, 14]) without which the connections between definitions memory systems, i.e. increased performance through paral-
and physically realizable systems are unclear; these includdelism. Allowing arbitrary behavior by the memory system
notions such as (i) establishing a relation between memorywould make programming infeasible. The middle ground is
requests and responses usirgpkoring relation (ii) the no- to define a set of behaviors: each instruction sequeprce (
tions ofimmediateandtabular that allow a finite-state pro- gram) is expected to result in one of the possibly several al-
tocol to interact with a (potentially) out-of-order memory lowed response sequencesécutions A shared memory
system and collect responses corresponding to requests. Imodeldefines this relation. When a shared memory system
Section 3, we describe what happens if we certify a mem-is claimed to conform to a certain shared memory model,
ory system to be correct solely based on executions (withoutit is to be understood that a program can only result in an
considering programs). In Section 4, we describe a finite ap-execution defined by this shared memory model. Formal
proximation to sequentially consistent shared memory sys-verification, then, is to prove thidaim.
tems. In Section 5, we present a constraint based approach We keep referring to two seemingly different notions: a
to verify finite executions, and state decidability results ap- shared memory model and a shared memory system. This
plicable to unambiguous executions. While we cannot do is not arbitrary. A shared memory model should be the defi-

nition of a relation (what it contains) and not its description

Here, Perm is the set of all permutations. We later em-

(how it realizes). A shared memory system, on the other ploy Perm,;, for the set of all permutations ovét ... k}.

hand, should be the formal model of a design. It should
describe how it is to behave for each program it receives.
In our framework, closely following intuition, a shared

memory model is a binary relation over programs and exe-

cutions, called apecification A specification is parameter-

We shall let:® denotedom(\®) (a relation ove(Z®)* x
(0%)*). X of a memory is expected to define the relation
between the input to a memory, a (finite) string drevhich
might be called rogramor aninstruction streamand the
output it generates for this input, a (finite) string ov@r

ized over the set of users, address space and data space. Thich might be called aexecutionor aresponse strearh
instructions or the responses that the memory might receiveFor each such program/execution pair of the memba}so
or generate and which response can be generated for whicldefines, through permutation, the mapping between an in-

instruction forms a structure calléaterfaceand is also part
of the specification.

Definition 1 A memory interfaceg, is a tuple(Z, O, p),
where

1. 7 and O are two disjoint, nonempty sets, called input
(instruction) and output (response) alphabets, respec-
tively. Their union, denoted by, is called the alpha-
bet.

2. p C O x Zis the response relation.

Definition 2 The rw-interface is the memory interfa®8V
with (hereN is the set of natural numbers):

1LIRW ={w } x N3U{r;} x N2
2. ORW — [, 1o} x N3

3. Foranyo; € I®”W, 0, € O®W, we have(o,,0;) €
p™W iff either the first component of, is w,, the first
component of; isw and they agree on the remaining
three components, or the first componentgfis r o,
the first component af; is r; and they agree on the
second and third components. Formally,

P ={((Wo, p,a,d), (W ,p,a,d)) | p,a,d € NJU
{((I’o,p,a,d), (ri apaa)) |pva7d € N}

Also, for ease of notation the following will be used:

1. A partition of X, { R, W}, where

R={ro} xN3u{r;} xN?
W = {w W} x N3

2. Three functionss, o, 5, where for anyoc € XRW,
m(o) is the value ob’s second component,(c) that
of the third component, and(o) that of the fourth
component if it exists, undefined (denoted.hyoth-
erwise.

Definition 3 A memory specificatiors, for a memory in-
terfaceg is the tuple(F, \), where) C ((Z5)* x (O%)*) x
Perm, is the input-output relation.

dividual instruction of the program and its corresponding
output symbol in the executich.

For instance, consider an input-output relation for
RW which has the following element:((((r i,1,1)
il)(Coll2 ¢ o0L14))).(21). In
the program, we have two reads issued by processor 1 to ad-
dress 1. The execution generates two different values read
for address 1; 2 and 4. By examining the permutation, we
see that the first instruction’s response is placed at the sec-
ond position of the output stream, whereby we conclude that
the returned value for the first read is 4. Similarly, the sec-
ond read’s value is 2. So, intuitively, if the permutation’s
it" value isj, the ;' symbol of the output stream is the
response corresponding to tifé instruction of the input
stream.

Definition 4 A memory specificatio® is called proper if
1. 1% is length preserving.

2. Foranyp € (Z9)*, there existgy € (O®)* such that
(p,q) € u°.

3. 0 = (p,q) € 1 impliesd # A\°(c) C Perm,, and
foranyn € A (o), 7(j) = k impliesp® (qx, p;).

If the first condition holds, the memory specification is
length-preservingThen, a length-preserving memory spec-
ification is one which matches the length of its input to its
output. Note that, without the third requirement, it is not
of much useExample: SNP = (RwW, \NP), whereo =
((p,a),n) € A\NP impliesp € (Z?)*, q € (OR”W),

lpl = lal, p™"(g;,p;) andn(j) = j, for j € [pl],

n ~ n (n is the permutation represented hy. The shared
memory SNP is length-preserving. If the second condi-
tion holds, a memory specification é@emplete(e.g., SV

is complete). Completeness is the requirement that a mem-
ory specification should not be able to reject any program

1Although we are using the worgsogramandexecution we do not
claim that the input is required to be the unfolding of a program and the
output to be its associated execution. This might or might not be the case,
depending on where exactly the interface, user and memory are defined.
One choice might put the compiler at the user side, quite possibly resulting
in an input stream that is different from the actual ordering of instructions
in a program due to performance optimizations.

2By itself, p defines theypeof response relations allowed.

as long as it is syntactically correct with respect to the in- and implementations. Some of these conditions are:

terface. This property, despite its simplicity, is one which
has been neglected by all previous work on shared memory
formalization, to the best of our knowledge ([17] considers
some of these issues). The third condition is saying that
any permutation used as a mapping from the instructions of
the input to the responses of the output should be respect-
ing the response relation of the interface. There are some
subtle points to note. First, it requires that the length of the
output stream|q|, to be at least as much as the length of
the input stream|p|; it could be greater (a problem which
is taken care of by the requirement of length-preserving).
Second, even for the same input/output pair, there can be
more than one permutation. Since we are trying to define a
correct specification without any assumptions, these seem-
ingly not tight enough requirements are favored for the sake
of generality. S P satisfies this third property.

Consistency models are viewed as sets of triples

(program_string, execution_string, permutation)

— The specification and implementation effect length-

preserving maps from programs to executions.

— The implementation cannot accumulate an arbitrary

number of instructions that it has ingested.

The color sets are finite. This models the fact that in
any finite-state implementation of a consistency pro-
tocol, the number of outstanding (unfinished) memory
instructions is bounded.

The implementation makes a “color association” be-
tween input symbols and output symbols that does not
change as more instructions are considered. This cap-
tures that the association is decided by a deterministic
process carried out by a finite-state protocol (we call
this propertyimmediatg.

The color association is defined Ipendinginstruc-
tions alone. In other words, “finished input instruction

/ output response” pairs have no effect in deciding the
nature of the color association for future instructions

where the permutation describes the association be- (we call this propertyabular).

tween the individual instructions in the program string There is one additional and important problem: the map-
and the corresponding “finished” (or executed) el- ping between instructions and their associated responses.
ements in the execution string. For example, the triple The usual solution is to impose certain restrictions on the
<Prog: write(pl,a,2); read(p2,a), Exec: memory system such as in-order completion. For instance,
read(p2,a,0); write(pl,a,2), Perm: 21> if two read instructions of the same address by the same user
(where permutation 21 is an abbreviation for await responses, the first suitable generated response (same
{(1,2),(2,1)} — focussing only on the range elements), address and user) belongs to the instruction that was issued
could be one element in the set that defines sequentiafirst. We feel that this is an unnatural restriction and cannot
consistency. Note that the standard notion of “program be reasonably enforced on all memory systems.
order” can be extracted from the first element of the triple Had we been dealing with infinite state machines, the so-
(the program string) by projecting the string to individual |ution would have been trivial: mark each instruction with
processors. a unique natural number and tag its response with the same
The execution strings, which represent the temporal or-number. This is, in fact, employed in defining specifica-
der, can be transformed, possibly into a different structure, tions as we saw above. For finite-state systems, an infi-
such as a poset, such that the predicate of the consistencyite alphabet is not possible. Instead, we will let these ma-
model is satisfied. For sequential consistency, however, achines have alphabets where each instruction and response
poset structure is not needed; one can transform the execuis paired withcolors These colors will serve as a “marker
tion strings to aserial logical order, which is a total order dye”. We color an instruction (e.g(7as, blue)) when it
as described earlier. enters the system. When a (colored) response emerges from
Consistency protocolsare viewed as finite-state ma- the memory system, we can tell from its color which in-
chines over finite strings. The alphabet of these struction gave rise to it.
machines consists of instructions paired with colors. In the most general case, a function has to be supplied
The colors serve as a “marker dye”. We color to interpret pairs of strings over colors: given any pair of
an instruction (e.g.,<write_i(p,a,d),blue> or strings of equal length, this function would generate a per-
<read_i(p,a),green>) when it enters the system mutation which would map instructions to responses. A
(also notice our use of thei subscript to denote the is- color set together with such ednversioffunction is called
suing event corresponding to these instructions). When theacoloring schemeit is not hard to see that this might result
instruction emerges after having being executed, we can tellin syntactically different, semantically equivalent strings,
by observing its color which program instruction gave rise something we are trying to avoid. Fortunately, we can do
to it (and also we mark the completion event of these in- better. In order to justify the use of a canonical coloring,
structions by the o subscript). we allude to finitary arguments. When a user issues an in-
We state well-formedness conditions for specifications struction, it must have a certain mechanism to tell which

response it receives actually corresponds to that instructionyerification of sequential consistency.
especially when both the user and the memory system op- In trace-theoretical representation, we use a partially
erate in a setting where out of order execution and pend-commutative monoid instead of the free monaid. Let
ing instructions, instructions that have not yet received a o, o2 be strings ovel:, let s, ¢ be symbols in¥ and let
response from the memory system, are allowed. Let us asv = o;stos. Then the stringritsos is 1-step equivalent to
sume that is an instruction that the user issued and the o if 7(s) # w(t). An equivalence class is the transitive clo-
response is the symbol that the memory system generated sure of 1-step equivalence. We can say that two strings not
for i. When the user receivesrom the memory system, it necessarily syntactically equal but belonging to the same
should be able to match it withwithout waiting for other ~ equivalence class have the same semantic value.
responses. Furthermore, onandr are paired by the user, A string 0 = s189---5, for s; € X is serial
they should remain so; a future sequence of instructions andinterleaved-sequential) if for any < n such thats; =
responses should not alter the once committed matchingsr(p,a,d) is a read event, either there exigts< < with
Since the user is a finite-state entity, it can retain only a fi- a(s;) = a, (s;) = d, and there does not exigt< k < i
nite amount of information about past input; most likely, it such thatv(s,) = a andd(si) # d, or d is the initial value
will only keep track of thependingnstructions. These ideas of a. For simplicity, we will assume that the initial value
are the basis for requiring implementations tdrbenediate for each address & This is the standard definition for se-
andtabulaf11]. guential consistency; it requires that each execution allow a
Once an implementation is assumed to be immediate andlogical) reordering such that any read of an address returns
tabular, and this assumption only depends on the finitenesghe value of the most recent write to the same address.
of the system and the users, we can do away with arbitrary In this formalization, an execution is a string overThe
colorings and work with a canonical coloring. We have model predicate for sequential consistency is as follows: An
proved the existence of an equivalent canonical coloring for execution is sequentially consistent if it is in the equivalence
an arbitrary coloring in [11]. This means that any shared class of a serial string. We say that a memory system is
memory system can be modeled by a transducer which usesequentially consistent if all its executions are sequentially
the canonical coloring. consistent.
Based on this formalization, it has been claimed that [9]
a sequentially consistent finite-state memory system has a
sequentially consistent regular language. Consequently, in
. . , [9], it is proved that it is undecidable to check for an arbi-
An altemative, _and vwdely adopted, way 0 formallzg trary finite-state memory system whether it is sequentially
memory system_s 'S to view th(_em as machines gener.at'ngconsistent or not. This result has been cited in almost all
responses. In this view, @xecutiorof a memory.system IS" of the subsequent work such as [21, 22, 20, 23]. Before ar-
the collection of responses, also calagntsin this frame- guing the relevance of this result, however, it first behooves

work,_thls memory system generates. A memory model is us to talk about an assumption that has not been explicitly
described in terms of model predicat®ver executions. A stated

memory system satisfies a memory model if all the execu-
tions the system generates satisfies the model predicate. 5 1 140 hased Formalization and In-order Com-
As usual, a memory system is parameterized over the set’ "™ pletion
of users, the set of addresses and the set of different data
values each address can hold, representel,by and D,
respectively. We will take all these sets as finite. A read
eventis represented byp, a, d) wherep € P is the proces-
sor that issued the instructiom,c A is the address queried
by the read instruction anfle D is the data value returned
by the memory. Similarly, a write event is represented by

with ndd having th me meanin . - .)
w(p,a,d) with p, a, andd having the same meanings; these two seemingly contradicting facts lies in a crucial as-

is the alphabet containing all read and write events. The o .
. : sumption: the memory system is expected to complete the
parameters of a read (write) event are extracted using the

functionsr, a ands. That is, fors — r(p, a, d), 7(s) = p, requests it receives in an o_rder which respects per proces-
sor issuing order. That is, if the memory system receives
a(s) = aandi(s) = d.

. L instructioni, at timet; from processomp, instructionis
How an execution is represented results in different for- at £, again from the same processor and< £.. then it
malizations. There have been research that used partial or:_ > 9 P ! 2

ders [18], graphs [19, 20] and traces [9, 14, 21, 22]. We will is assumed that; completed beforei,. That is precisely
consider the latter which has almost always been used in the 3This notion might also be called “commitment”.

3. Execution-based Formalism

We have said that the definition of sequential consis-
tency, or any memory model for that matter, required in-
formation on the sequential order of instructions issued per
processor, also known as the program order. On the other
hand, we have not really talked about program order in the
context of trace-based formalization. The conciliation of

why the equivalence classes defined above do respect pro- However, we believe that this characterization of finite-
gram order; events belonging to the same processor are natess is inadequate. Consider the following set of execu-
allowed to commute, hence at each 1-step equivalence théions, given as a regular expression:
program orders remain the same.
It is highly questionable whether this assumption can w(l,a,2)r(1,a,1)"r(2,a,2)"w(2,a,1)
stay valid, given the ever ambitious optimizations done for) o . .
memory systems. There are already memory systems whictf\ccording to the definition of sequential consistency, the
process their requests out of issuing order. memory systgm genera'tlng this !anguage is sequentlglly
Consider the following scenario. Procesgoiissues conS|st_ent. It is sequentially con_3|stent becaL_Jse any s_:tn_ng
r(p,a)* and then issues(p,b). If the second read com- belo_nglng to this regula_r expression has as_erlal string in its
pletes before the first one, what we observe in the executiorfauivalence class. For instance, the execution
will be of the formao 7 (p, b, d)oar(p, a, d’)os for stringso;
over Y. Any string in the equivalence class of this string
will always haver(p, b, d) beforer(p,a,d’), contradicting
the initial program order.
One can say that an intermediate machine that would
convert what the memory system generates into a string for w(l, o 2)r(2 6, 2)w(2, 0, r(l, . 1)
which the assumption holds can be constructed. We could | et us assume thal is the cardinality of the state space
then take the combination of the memory system and thatof the finite-state memory system generating this regular
machine and work on the output of the intermediate ma- expression. Think of the execution where we havé
chine without any problem. However, there are cases Where,a(17 a,1) events an®N r(2,a,2) events. By the execu-
a finite-state machine simply cannot generate such an outtion string, we know that the first eventis(1,a,2). This
put. is to be followed by the read eventl, a, 1). Note that, by
Consider now a slight variation of the above scenario. the assumption discussed in the previous section, we know
Processop issuesr(p,a) and then issues an unbounded that, without any information about the relative issuing or-
number ofr(p,b). That is, after reading addressit polls ders among read instructions belonging to different proces-
the address$ for an unbounded number of times. Assume sors, at leas? NV instructions must be issued by the second
further that the read of does not return a value unless all processor before the write instruction which is the last to be
the reads ob complete. This will mean that the finite-state committed is issued by this same processor.
intermediate machine must have the capability of storingan However, this cannot be done by a sequentially consis-
unbounded amount of information, in this case all the read tentand finite-statenachine. Noting that the cardinality of
events of addreds This is clearly and theoretically impos- the state space of the machine weésthere are two possi-
sible. bilities:
This assumption of in-order completion found in trace-
based formalization, therefore, restricts its use to a subset 1. The machine generates the read eveita, 1) be-

w(l,a,2)r(l,a,1)r(2,a,2)w(2,a,1)

is equivalent to the serial string

of all possible memory systems, not all of which are pure fore the issuing of the instruction corresponding to the
theoretical concoctions. eventw(2,a,1). If at the instant the machine gener-
Unfortunately, not only all possible finite-state memory ates this read event we stop feeding the finite-state ma-
systems cannot be formalized using trace theory, the finite- chine with instructions, it will either terminate with an
ness of a memory system in this formalization cannot be execution that does not have a serial string in its equiv-
formulated either. We will argue this point next. alence class or it will hang waiting for issuing of the
write instruction itguessed The former case results
3.2. Finiteness and Trace-based Formalization in a non-sequentially consistent execution. The latter

case where the memory system simply refuses to ter-

It has been argued in [9] that since a memory system is minate computation will be discussed below.

basically a finite-state automaton whose language is a sub- ,
set of 3*, the memory system is finite-state if and only if

its language is regular. Furthermore, as we have previously
mentioned, this implies that a finite-state memory system is
sequentially consistent if and only if its language is regular
and sequentially consistent.

. The machine generates the first read event after the is-
suing of the instruction corresponding to thé2, a, 1)
event. This means that the machine has not generated
any event for at leastNV steps. This in turn implies
that, since there ar® states, there exists at least one
state,s, which was visited more than once, such that on

4This is the representation of the instruction whose response is the read one path froms to s, the machine inputs instructions
eventr(p, a, d) for somed € D. but does not generate any events. Let us assume that

the mentioned path fromto s was takerk times. Con- consistency of a finite-state memory system is still an open
sider a different computation where this path is taken problem.

2k times; each time this path is taken in the original

computation, in the modified computation it is taken 4 Finite Approximations to Sequential Consis-
twice. Itis not difficult to see that this will change the tency

program, the number of instructions issued, but will
leave the execution the same; no output is generated
on the path frons to s. Hence, we obtain an execution
which does not match its program; the program’s size
becomes larger than the size of execution. Put in other
words, the finite-state memory ignores certain instruc-
tions and does not generate responses.

In this section, we will define for each shared memory
instance a set of machines whose language-union will cover
all possible interleaved-sequential program/execution pairs
of that instance at the initial state

Input instruction

The basic fallacy here is the abstraction of input, or the pro- srem
gram. In the first case, where the memory system hangs

or does not terminate, the memory system cannot be con- $ $ $ $ Oommit$ $
sidered correct in any reasonable sense. A memory system Quees
should always generate an execution as long as the stream .

sizej sizek

of memory accesses, or instructions, are syntactically cor-
rect. In the second case, we have a memory system which

Processor

generates its output regardless of what it receives as input. Quees memery

There should be a well-defined correspondence between the

instructions a memory system receives and the responses it O”‘p“t@ gfpe:;*
generates.

Remember that the initial motivation for shared memory
models was to capture some sort of correctness for shared
memory systems. The twoleswe have mentioned above,
that the memory system does not deadlock and that the pro-
gram and its execution must be related, should be properties L€t P be a parameterized instan¢®, A, D), C' be a
that are satisfied by any memory system, not only sequen-color set and lef, k& € N. For simplicity, we will assume
tially consistent systems. However, it is impossible to char- thatP = [|P[]°, A = [|A|], C = [|C|]. Then, the machine
acterize these requirements when only execution is presen® C(»,c) (J; k) is defined as follows:
in the formalization. There arg P| processorfifo queues each of sizesuch

If the reader is not convinced about the necessity of rules, that each queue is uniquely identified by a numbe?inC'
we could propose an alternative argument. Going back tocommitfifo queues each of sizg again each with a unique
the original definition, we note that a sequentially consis- identifier fromC', and thememory arraymem, of size|A|.
tent memory system is required to behave as if it is a single Nitially, the queues are empty, and the memory array agrees
user system. A single user memory system, on the otheWith ¢, that is,mem(i) = (i), for all i € dom(:). At
hand, cannot exhibit any of the behaviors mentioned aboveeach step of computation, the machine can perform one of
(deadlock or arbitrary execution) and be deemed correct. the following operations: read an instruction, commit an

It is therefore not correct to prove a property in trace- instruction or generate a response. The choice is done non-
based formalization and then claim that property to hold for deterministically among those operations whose guards are
memory systems in general. The reverse direction holdssatisfied.
as well: certain properties of memory systems cannot be Leto = (p, c) be the first unread instruction. The guard
expressed in trace-based formalization. Finiteness is ondOr reading such an instruction is that thép)"" processor
such property. We have been so far unable to characterizélueue and the’” commit queue are not full. If this opera-
for the trace-based formalization the set of executions whichion is chosen by the machine, then one copy &finserted
can be generated by finite-state memory systems. to the end of ther (p)*" processor queue, another is inserted

Another property that has been proved to hold for mem- t0 the end of the” commit queue and a link is established
ory systems in trace-based formalization is the undecidabil-Petween the two entries.
ity we mentioned above. As a corollary of the argument The guard for committing an instruction is the existence
we have given for the finiteness, the result of undecidabil- Of at least one nonempty processor fifo queue. If this guard

ity is not applicable to finite memory systems in general. — sgor 4 seta, 4| gives the cardinality oft. For a natural numbes,
We claim that the decidability of checking the sequential [n] gives the se{0,1,...,n — 1}.

Figure 1. The diagram of SCp (4, k)

is satisfied and the commit operation is chosen, then the5. A Constraint Satisfaction Approach
head of one of the nonempty processor queues is removed

from its queue. Let us denote that entry by c). If We said that a concurrent execution is a combination of
q € R, then the respongér o, 7(q), a(q), mem(a(q))), c) sequential executions, one per processor and the concurrent
replaces the entry linked @, c) in the c!* commit queue. execution is interleaved-sequential if a certain interleaving
If ¢ € W, then the responsgw,, 7(q), a(q),d(q)),c) re- of the sequential executions appears as if executed by a sin-

places the entry linked @, c) in thec!” commit queue and gle processor. Let us call this thegical order of a con-
thea(q)!" entry of the memory array is updated to the new current execution. The logical order, then, is a fictitious or-
valued(q), i.e.,mem[a(q)] = (q). der that conforms to all the requirements enforced by each
processor. But what exactly do we mean by these require-
The guard for outputting a response is the existence ofments?
at least one nonempty commit queue which has a com-

pleted response at its head position. If indeed there are such Pl P2 P3
nonempty queues and the output operation is chosen, then

one of these commit queues is selected randomly, its head r(la1) @ @
entry is output by the machine and removed from the com- W22 1) W3 a2

mit queue. f(1a2)
Let the language of anSCp c(j,k) machine,

L(SCp,c(j,k)), be the set of pairs of input accepted))

by the machine and output generated in response Figure 2. Sample concurrent execution, Gi.

to that input. LetLp o denote the (infinite) union

U renat LISCp.c(j, k). In [11], we prove that any pro- quk at the concurrent e.xecutiaﬂhl of Fig. 2. We have
gram/execution pair is interleaved-sequential only if it can four instructions. The requirement of processor 2 is that a
be generated by sont#&” machine. This implies thatp write of value 1 to addressexists. Besides that, itimposes

contains all and only interleaved-sequential executions; that0 ordering with respect to any other instruction. Same with
is, it is equivalent to the set of all sequentially consistent Processor 3. Processor 1, on the other hand, requires that the

program/execution pairs. read of value 1 precede the read of value 2 at addreBhis

has an indirect effect on the write ordering(a,1) © must
The relation realized by a finit6Cp ¢ (j, k) is also the ~ preceden(a,2) . Hence, a logical order, in case it exists,

language of a 2-tape automaton, since it is finite-state andmust satisfy all these requirements. For this instaficé,

length preserving (see [24]). The same can be said about#, 2 is the required logical order.

length-preserving shared memory implementations of a fi- p1

nite instance. Since the emptiness problem for regular lan-

guages is decidable, it follows that it is decidable to check r(1,a 1)

whether a finite instance implementation realizes a relation

that is included in the language of sorfi€’ machine. Fur-

thermore, completeness of an implementation of a finite

instance is also decidable; it suffices to construct a new r(1,b, 1)

automaton with the same components whose transition la-

bels are projected to the first (input) alphabet and then to

check for its universality. These observations allow us to ~ Figure 3. Sample concurrent execution, Gs.

claim that it is decidable to check whether a memory sys-))

tem M is complete and has a language that is subset of Now, look at a snippet of a concurrent executics,

SCp o (4, k), for somej, k € N. Note thatSC machines N Fig. 3. One requirement is thafl, a,1) precede

allow a semi-decision procedure for sequential consistency'(, ©,1) . Itis also required that(a,1) andw(b,1)

conformance of a protocol to be obtained through Ianguageex'St- However, it does not seem to relate these writes. We

containment (since we do not know how to boynandk might conclude that this is all the requirement enforced by
yet, a decision procedure is not obtained). this pair of reads to different addresses and we would be
wrong!

As a case study for the above ideas, in [11], we prove The trick is in negation. .Instead of expressing the re-
finite instances of lazy caching [25] sequentially consistent. quirements aenforcedorderings, we could express them
T.he method we Use_d i_s based on (regular) language inclu- ethis is a shorthand fon(p, a,1) for somep € P. Since we are
sion and, thus, in principle, could be fully automated. dealing with unambiguous runs exclusively, there is at most one such write.

asforbiddenorderings. For instance, in Fig. 2, we could w1, b, 1) @
say that processor 1 forbids the ordering whexe:,2)
precedesw(a,1l) . In the case of binary orderings, the

difference is superfluous. However, for Fig. 3, if we say r(i1,a, 1) ﬁ\\ } @ w2, a, 1)
that, for any other write td, w(b, d) such thatd # 1, we RN

cannot havewv(b,1) precedew(b, d) when both precede RN

w(a,1) ,we introduce a new requirement. w1, c,1) @ \x@> W 2, a, 2)

It turns out that a formalization of the above ideas to
form a set of impossible orderings over the writes of a con-
current execution helps us form a new problem, equivalent r(i,b,1) @s-.:.j - - —__—_;>1E)> w2, b, 2)
to interleaved-sequentiality checking. For a given concur-
rent execution, we define a set of constraints which basi-

cally combines all possible kinds of forbidden orderings for r(i,a, 4) @ 1:1> W 2, c, 2)
the execution. L
Theorem Let G, be a legal (unambiguous) concurrent ex- W1, a, 3) @ /7 @ W2, a, 4)
ecution andCS,. be its constraint set. Therf.. is 7
interleaved-sequential if and onlydfS.. is satisfiable. L7
Previous work on interleaved-sequentiality checking ei- r(1,c, 1) (D(

ther completely ignored the problem of finding the subset
of the execution that violated the property [26], or tried to
characterize it in terms of cycles [20]. With the constraint
sets, we can define what it means to have a minimal subset
of a non interleaved-sequential (i-s, for short) concurrent
execution such that the minimal subset still is a violating
execution, but any execution subset of it is not.
Let us examine the concurrent executi@p that is not

i-s, given in Fig. 4 Assume that a logical order is be-
ﬁgnste;‘r%rlggef:srgrg %zcsuég)?r'&i\t>ni’f{;) rr)1 :]?Ssrtel;q:we- of CS., is a set which itself is unsatisfiable but any proper

ordered befor® (w(2, a,2)) since(8,9) € E.. This subset of it is not. o
ordering implies tha® (r(1, a,1)) is ordered beforé® Note that there can be more than one minimal set for a

W(2, a,2)). Since(1,2) € E.and(9,10) € E., we giyen G.. This definition f_;lllows us to define minimality
have to ordefl before10 which implies the ordering of with respect to the constraint set.
before10 (hence the dashed line frothto 10). Contin- For P, A, D all finite, we prove in [11] that the size of
uing in this manner, we eventually come to a point where any minimal instruction set of any non-i-s unambiguous
we have to orde$ before12, which would violate a prop- ~ concurrent execution is bounded. An implementation has
erty of interleaved-sequentiality. A similar analysis could @ non i-s unambiguous concurrent execution if and only if
be performed for the dotted lines which is the result of or- there exists a run that does not visit any state more than
dering12 before6 due to the edgés,6) € E... 4|A|*(|D] + 1)? times, generating a non i-s concurrent ex-
Given the above examp|e' it is not clear how, 30|e|y ecution. This bound makes it possible to have a decision
based on cycles, we can pick a minimal set of vertices thatprocedure for detecting non i-s unambiguous concurrent ex-
still is not i-s. Clearly, just picking, say, verticdsand10 ecutions in a memory system.
because there is a cycle between the two will not be cor- Even though, this result might seem intuitively trivial
rect. Actually, this concurrent execution is minimally non since there are only finitely many different write events in
i-s, that is, any removal of a vertex from the graph would the (infinite) set of unambiguous executions for finite val-
make the remaining subset i-s. This is precisely where weues of P, A andD, it was not possible to obtain it using the
can use the constraint set. previous methods based on cycle analysis. The most impor-
Definition: Let G. be a non i-s concurrent execution and tant aspect is that we have not resorted to making assump-
CS. its constraint set. Then a minimal constraint set, subsettions about the concurrent executions, about certain rela-
"We have added some edges - dotted and dashed lines - that are not paHonS be.tween instructions and responses. There is a'$° an
of the concurrent execution for llustration purposes. These edges actuallylNteresting open problem. When we talk about constraints,
would have been added by the algorithm given in [20] or [23]. we do not take into account the fact that the machine that

Figure 4. Sample non-i-s concurrent execu-
tion Gj illustrating cycles and the minimal set.
The dashed lines are the result of ordering
w(a,1l) before w(a,2) . The dotted lines are
the result of ordering w(a,4) before w(a,3) .

generates the execution is actually finite-state. Due to this
finiteness, the executions cannot be arbitrary but follow a
certain regular pattern, which so far we have not been able
to characterize. That might render the definition of a certain [8]
equivalence relation, having only a finite number of equiv-
alence classes, possible.

6. Conclusion

This paper attempts to allay the notion that the issue of
decidability of sequential consistency is a closed chapter.
It offers a transducer based definition of sequential consis- 10]

tency that addresses implementation constraints. In this set-
ting,
adopting a constraint-based approach, one can, for unam-

decidability is still an open problem. However, by

[9]

biguous executions, obtain a decision procedure. The proq11]
cedure for generating these constraints itself forms an al-
ternative to analyzing cycles (e.g., [27]), and may form the
basis for a more efficient SAT-based execution checking ap-
proach than reported in [28]. All these will form the subject

of our continued research.

References

(1]

(2]

(3]

(4]

(5]

(é]

(7]

N.R. Adiga. An overview of the bluegene/l super-
computer. InConference on High Performance Net-
working and Computing: SC200Rages 60-60, 2002.
(with 30 co-authors).

William Pugh. The java memory model is fatally
flawed. Concurrency: Practice and Experience
12(1):1-11, 2000.

[12]

[13]

Shared memory consistency models and protocols,[14]

October 2004. Invited Tutorial by Ching-Tsun
Chou, Steven German, and Ganesh Gopalakrishnan.
http://www.cs.utah.edu/"ganesh/presentations/
fmcad04_tutorial2/

Arvind.
sign, simulation, synthesis and verification. NHEM-
OCODE 2003.

David L. Weaver and Tom Germondhe SPARC Ar-
chitecture Manual — Version.9P T R Prentice-Hall,

Bluespec: A language for hardware de- [15]

1994, [16]
A Formal Specification of Intel(R) Itanium(R)
Processor Family Memory Ordering, 2002.
http://www.intel.com/design/
itanium/downloads/251429.htm 17

Denis Shasha and Marc Snir. Efficient and correct ex-
ecution of parallel programs that share mema#&gM

10

Transactions on Programming Languages and Sys-
tems 10(2):282-312, April 1988.

S. P. Midkiff, J. Lee, and D.A. Padua. A compiler for
multiple memory modelsConcurrency, Practice and
Experiencel6(2):197-220, February 2004.

Rajeev Alur, Ken McMillan, and Doron Peled. Model-
checking of correctness conditions for concurrent ob-
jects. InSymposium on Logic in Computer Science
pages 219-228. IEEE, 1996.

Sarita V. Adve and Kourosh Gharachorloo. Shared
memory consistency models: A tutoriaComputer
29(12):66—-76, December 1996.

Ali Sezgin. Formalizing and Verification of Shared
Memory PhD thesis, The University of Utah, 2004.
http://www.cs.utah.edu/"ganesh/
unpublished/sezgin_phd_04.pdf

Thomas Henzinger, Shaz Qadeer, and Sriram Raja-
mani. Verifying sequential consistency on shared-
memory multiprocessor systems. In Nicolas Halb-
wachs and Doron Peled, edito@omputer Aided Ver-
ification99 volume 1633 ofLecture Notes in Com-
puter Science pages 301-315, Trento, ltaly, July
1999. Springer-Verlag.

Ratan Nalumasu. Formal design and verification
methods for shared memory systeBD thesis, Uni-
versity of Utah, Salt Lake City, UT, USA, December
1998.

Jesse D. Bingham, Anne Condon, and Alan J. Hu. To-
ward a decidable notion of sequential consistency. In
Proceedings of the fifteenth annual ACM symposium
on Parallel algorithms and architecturepages 304—
313. ACM Press, 2003.

Shaz Qadeer. Verifying sequential consistency on
shared-memory multiprocessors by model checking.
IEEE Transactions on Parallel and Distributed Sys-
tems 14(8), August 2003.

Ali Sezgin and Ganesh Gopalakrishnan. On the defi-
nition of sequential consistency. Submitted for publi-
cation. Preliminary version at
http://www.cs.utah.edu/"ganesh/
unpublished/sc_definition.pdf , 2004.

M. Frigo. The weakest reasonable memory. Mas-
ter’s thesis, Department of Electrical Engineering and
Computer Science, MIT, 1998.

[18] Prince Kohli, Gil Neiger, and Mustaque Ahamad. A
characterization of scalable shared memories. Tech-
nical Report GIT-CC-93/04, College of Computing,
Georgia Institute of Technology, January 1993.

[19] Kourosh Gharachorloo.Memory Consistency Mod-
els for Shared-Memory Multiprocessor®hD thesis,
Stanford University, December 1995.

[20] Ratan NalumaswDesign and Verification Methods for
Shared Memory SystemPhD thesis, Department of
Computer Science, University of Utah, 1999.

[21] Anne E. Condon and Alan J. Hu. Automatable veri-
fication of sequential consistency. 18th Symposium
on Parallel Algorithms and Architecturepages 113—
121. ACM, 2001.

[22] Thomas A. Henzinger, Shaz Qadeer, and Sriram K.
Rajamani. Verifying sequential consistency on shared-
memory multiprocessor systems. Roceedings of
the 11th International Conference on Computer-aided
Verification (CAV) number 1633 in Lecture Notes in
Computer Science, pages 301-315. Springer-Verlag,
July 1999.

[23] Shaz Qadeer. Verifying sequential consistency on
shared-memory multiprocessors by model checking.
Technical Report 176, Compaq SRC, December 2001.

[24] Jean Berstel. Transductions and context-free lan-
guages Teubner, 1979.

[25] Yehuda Afek, Geoffrey Brown, and Michael Mer-
ritt. Lazy caching. ACM Transactions on Program-
ming Languages and Systenib(1):182-205, Jan-
uary 1993.

[26] William W. Collier. Reasoning about Parallel Archi-
tectures Prentice-Hall, Inc., 1992.

[27] W. W. Collier. Reasoning About Parallel Architec-
tures Prentice-Hall, Englewood Cliffs, NJ, 1992.

[28] Ganesh Gopalakrishnan, Yue Yang, and Hemanthku-
mar Sivaraj. QB or not QB: An efficient execu-
tion verification tool for memory orderings. IBAV
(Computer Aided Verificationpages 401-413, 2004.
LNCS 3113.

11

