
A Generic Operational Memory Model
Specification Framework for Multithreaded

Program Verification ?

Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom

School of Computing, University of Utah
{yyang, ganesh, gary}@cs.utah.edu

Abstract. Given the complicated nature of modern architectural and
language level memory model designs, it is vital to have a systematic ap-
proach for specifying memory consistency requirements that can support
verification and promote understanding. In this paper, we develop a spec-
ification methodology that defines a memory model operationally using
a generic transition system with integrated model checking capability to
enable formal reasoning about program correctness in a multithreaded
environment. Based on a simple abstract machine, our system can be
configured to define a variety of consistency models in a uniform nota-
tion. We then apply this framework as a taxonomy to formalize several
well known memory models. We also provide an alternative specification
for the Java memory model based on a proposal from Manson and Pugh
and demonstrate how to conduct computer aided analysis for Java thread
semantics. Finally, we compare this operational approach with axiomatic
approaches and discuss a method to convert a memory model definition
from one style to the other.

1 INTRODUCTION

With the recent advances in multiprocessor shared memory architectures and
integrated threading support from programming languages such as Java, multi-
threaded programming is becoming an increasingly popular technique for devel-
oping better structured and high performance applications. Unlike a sequential
program, where each read simply returns the value written by the most recent
write according to program order, a multithreaded program relies on the mem-
ory model (also known as the thread semantics) to define how threads interact
in a shared memory system.

The memory model plays a critical role in developing and debugging concur-
rent programs. Consider, for example, Peterson’s algorithm [1] shown in Figure 1
designed to solve the two-thread mutual exclusion problem. Each thread first sets
its own flag indicating its intention to enter the critical section, and then asserts
that it is the other thread’s turn if appropriate. The eventual value of the variable
? This work was supported in part by Research Grant No. CCR-0081406 (ITR Pro-

gram) of NSF and SRC Task 1031.001.



(Initially, flag1 = flag2 = false, turn = 0)

Thread 1 Thread 2

flag1 = true; flag2 = true;

turn = 2; turn = 1;

while(turn == 2 && flag2) while(turn == 1 && flag1)

; ;

< critical section > < critical section >

flag1 = false; flag2 = false;

Fig. 1. Peterson’s algorithm for mutual exclusion.

Initially, flag1 = flag2 = false, turn = 0
Thread 1 Thread 2

flag1 = true; flag2 = true;
turn = 2; turn = 1;
r1 = turn; r3 = turn;
r2 = flag2; r4 = flag1;

Finally, can it result in r1 = 2, r2 = false, r3 = 1, and r4 = false?

Fig. 2. An execution that breaks Peterson’s algorithm.

turn determines which thread enters the critical section first. The correctness
of this well known programming pattern, however, heavily depends on certain
assumptions about the allowed thread interleavings. Figure 2 abstracts the key
memory operations from Peterson’s algorithm and illustrates a specific thread
behavior that breaks the algorithm. In Figure 2, if both threads can still ob-
serve the default flag values when the loop conditions are checked, they are able
to enter the critical section at the same time. Suppose the underlying memory
model permits such a program behavior (which happens to be the case for many
shared memory systems), programs relying on Peterson’s algorithm would be
erroneous.

Program fragments such as the one in Figure 2 are generally known as litmus
tests. Carefully studying these test programs can reveal critical memory model
properties, which is very helpful for programmers and compiler writers to make
right decisions in code selection and optimization. For simple cases, one can of-
ten follow a pencil-and-pen approach to reason about the legality of a litmus
test. But as bigger programs are involved and more complex models are used,
thread interleavings quickly become non-intuitive and hand-proving program
compliance can be very difficult and error-prone. The proliferation of various
proposed memory models also poses a major challenge for programmers to reli-
ably comprehend the differences as well as similarities among them, which are
often subtle yet critical. For example, even experts have experienced difficulties
in understanding the exact power of certain memory models [2].



Multithreaded programming is notoriously difficult. Developing efficient and
reliable compilation techniques for multithreaded programs is also hard. Given
that memory model compliance is a prerequisite for developing robust concurrent
systems, it is crucial to have a rigorous methodology for analyzing memory model
specifications. In this paper, we present a generic specification framework that
provides integrated model checking capability. We also demonstrate how to apply
this framework to perform multithreaded program verification.

1.1 Memory Model Overview

Memory consistency requirements often place various restrictions on program or-
der and visibility order among memory operations. Program order is the original
instruction order determined by software. Visibility order is the final observable
order of memory operations perceived by one or more threads (this is similar to
the notion of visibility order used in [3] and the notion of before order used in
[4]).

Memory model designs typically involve a tradeoff between programmability
and efficiency. For example, as one of the earliest memory models, Sequential
Consistency (SC) [5] is intuitive but restrictive. A memory system is sequen-
tially consistent if the result of an execution is the same as if the operations
of all the threads were executed in some sequential order, and the operations
of each individual thread appear in this sequence according to program order.1

Many weaker memory models (see [6] for a survey) have since been proposed to
enable higher performance implementations. Some of these models still require
Coherence [7] (also known as Cache Coherence or Cache Consistency). Infor-
mally, Coherence requires all operations involving a given variable to exhibit a
total order that also respects program order of each thread.

Early memory models, such as Sequential Consistency, are designed for sin-
gle bus systems, where a common visibility order is enforced for all observing
threads. Some other models, such as Parallel Random Access Memory (PRAM)
[8], allow each individual thread to observe its own visibility order. Informally,
PRAM requires the execution sequences containing all operations from the read-
ing thread and all write operations from other threads to exhibit a total order
that also respects program order of each thread. For example, the outcome of
the program shown in Figure 3 is not allowed by Sequential Consistency and Co-
herence since there does not exist a common visibility order that can be agreed
upon by both threads. However, the behavior is permitted by PRAM because
each thread can perceive its own visibility order. That is, thread 1 and thread 2
may observe interleaving (1)(3)(2) and (3)(1)(4), respectively. Using our frame-
work, we can formally analyze the behaviors of such test programs guided by
various memory models.

1 Architectural level memory models are usually described in terms of processes and
memory locations. Language level memory models, on the other hand, are often
discussed using threads and shared variables. In this paper, we adopt the latter
terminology for our discussion.



Initially, a = 0
Thread 1 Thread 2

(1) a = 1; (3) a = 2;
(2) r1 = a; (4) r2 = a;

Finally, can it result in r1 = 2 and r2 = 1?

Fig. 3. An execution prohibited by SC and Coherence but allowed by PRAM.

Many shared memory systems allow programmers to use special synchro-
nization operations in addition to read and write operations. In Lazy Release
Consistency [9], synchronization is performed by release and acquire operations.
When release is performed, previous memory activities from the issuing thread
need to be written to the shared memory. A thread reconciles with the shared
memory to obtain the updated data when acquire is issued. Lazy Release Con-
sistency requires Coherence. This requirement is further relaxed by Location
Consistency [10]. Operations in Location Consistency are only partially ordered
if they are from the same thread or if they are synchronized through locks.

1.2 The Existing Java Memory Model

Java is the first widely deployed programming language that provides built-in
threading support at the language level. Java developers routinely rely on threads
for structuring their programs, sometimes even without explicit awareness. As
future hardware architectures become more aggressively parallel, multithreaded
Java also provides an appealing platform for high performance software. The
Java memory model (JMM) is a critical component of the Java threading sys-
tem since it imposes significant implications on a broad range of activities, such
as programming pattern development, compiler optimization, and Java virtual
machine (JVM) implementation. Unfortunately, developing a rigorous and intu-
itive Java memory model has turned out to be very difficult.

The existing Java memory model is given in Chapter 17 of the Java Language
Specification [11]. It specifies that every variable has a working copy stored in
the working memory. Threads communicate via the main memory. Java thread
semantics is defined by eight different actions that are constrained by a set of
informal rules. Due to the lack of rigor in specification, however, non-obvious
implications can be deduced by combining different rules [12]. As a result, the
existing Java memory model is flawed and hard to understand. Some of its major
issues are listed as follows.

– The model requires Coherence. Because of this restriction, important com-
piler optimizations such as fetch elimination are prohibited (see [12] for a
detailed example).

– The model requires a thread to flush all variables to main memory before re-
leasing a lock, imposing a strong restriction on visibility order. Consequently,
some seemingly redundant synchronization operations (such as thread local
synchronization blocks) cannot be optimized away.



– The ordering guarantee for a constructor is not strong enough. On weak
memory architectures such as Alpha, uninitialized fields of an object can be
observable under race conditions even after the object reference is initialized
and made visible to other threads. This problem opens a security hole to
malicious attacks via race conditions.

– Semantics for final variable operations is omitted.
– Volatile variable operations specified by the existing Java memory model

do not have synchronization effects on normal variable operations. Con-
sequently, volatile variables cannot be applied as synchronization flags to
indicate the completion of non-volatile variable operations.

1.3 A Java Memory Model Proposed by Manson and Pugh

Several improved Java thread semantics have been proposed, including a pro-
posal from Manson and Pugh [13,?] (referred to as JMMMP in this paper). Since
the core semantics of JMMMP is adapted as a concrete case study in this paper,
we briefly describe JMMMP here as an overview. Readers are referred to [13] for
more details.

JMMMP is based on an abstract global system that executes one operation
from one thread at each step. An operation corresponds to a JVM opcode, which
occurs in a total order that respects the program order from each thread. The
only ordering relaxation explicitly allowed is for prescient writes under certain
conditions. A write is defined as a tuple of 〈variable, value,GUID〉, uniquely
identified by its global ID GUID. JMMMP uses set to store history information
of memory activities. In particular, allWrites is a global set that records all
write events that have occurred. Every thread, monitor, or volatile variable k
also maintains two local sets, overwrittenk and previousk. The former stores the
obsolete writes that are known to k. The latter keeps all previous writes that are
known to k. When a new write is issued, writes in the thread local previous set
become obsolete to that thread and the new write is added to the previous set as
well as the allWrites set. When a read action occurs, the return value is chosen
from the allWrites set. But the writes stored in the overwritten set of the
reading thread are not eligible results. A write w may be performed early under
certain situations. To capture the prescient write semantics, a write action is
split into initWrite and performWrite. A special assertion is used in performWrite
to ensure that proper conditions are met. To solve the Java memory model
problems listed in Section 1.2, JMMMP proposes the following thread properties
and mechanisms for achieving them.

– The ordering constraint should be relaxed to enable common optimizations.
JMMMP essentially follows Location Consistency, which does not require
Coherence.

– The synchronization mechanism should be relaxed to enable the removal of
redundant synchronization blocks. In JMMMP, visibility states are only syn-
chronized through the same lock. The thread local overwritten and previous
sets are synchronized between threads through release/acquire actions. An



unlock acts as a release, which passes the local sets from a thread to a moni-
tor. A lock acts as an acquire, which passes the sets associated with a monitor
to a thread.

– Java safety should be guaranteed even under race conditions. JMMMP en-
forces that all final fields should be initialized properly from a constructor.

– Reasonable semantics for final variables should be provided. In JMMMP, a
final field v is frozen at the end of the constructor before the reference of
the object is returned. If the final variable is “improperly” exposed to other
threads before it is frozen, v is said to be a pseudo-final field. Another thread
would always observe the initialized value of v unless it is pseudo-final, in
which case it can also obtain the default value.

– Volatile variables should be specified to be more useful for multithreaded pro-
gramming. JMMMP proposes to add the release/acquire semantics to volatile
variable operations to achieve synchronization effects for normal variables.
A write to a volatile field acts as a release and a read of a volatile field acts
as an acquire. JMMMP allows volatile write operations to be non-atomic. To
capture this relaxation, a volatile write is split into two consecutive instruc-
tions, initVolatileWrite and performVolatileWrite. Special assertions are also
used to impose proper conditions.

1.4 Summary of Results

We present a Uniform Memory Model (UMM) specification framework, which
uses an abstract machine associated with a transition table to execute thread
instructions in an operational style. Coupled with a model checking utility, it
can exhaustively exercise a test program to cover all thread interleavings. Fur-
thermore, the simple and flexible design of the system enables one to define
different thread semantics by crafting a customized transition table. These ad-
vantages make UMM suitable as a generic formalism for creating executable
memory model definitions. Our main insight is that by using two separate kinds
of buffers, namely local instruction buffers (LIB) and global instruction buffers
(GIB), we can separately capture requirements on program order and visibility
order, two pivotal properties for understanding shared memory thread behaviors.
Relaxations of the program order are configured through a bypassing table and
rules in first-order logic are used to express these bypassing policies. Completed
instructions in GIB are used to construct the legal visibility order subject to
certain visibility ordering rules. With this approach, variations between memory
models can be isolated into a few well-defined places such as the bypassing table
and the visibility ordering rules, enabling easy comparison and configuration.

We offer the following contributions in this paper. First, we develop a generic
transition system that can be used to produce executable memory model spec-
ifications. One main result in this paper is to show that this particular design
of an operational model can capture not only architectural level memory mod-
els but also language level memory models. No previous work has treated both
these categories of memory models in a uniform framework; yet, the importance
of doing so is growing, especially with the advent of multiprocessor machines



on whose architectural memory models one has to support the language level
memory model in the most efficient manner. Second, we apply this framework
as a taxonomy to formalize a variety of well known memory model properties
and use those executable specifications to perform program verification. Third,
we provide an alternative Java thread specification, based on the semantics pro-
posed by Manson and Pugh, and demonstrate how to conduct automated ver-
ification for a complex language level memory model. Inconsistencies from the
proposed semantics are also uncovered. Finally, we discuss the relationship of
our operational specification approach with trace-based axiomatic specification
approaches and propose a mechanism to transform a memory model definition
from one style to the other.

Road Map In the next section, we discuss the related work. Then we present an
overview of our specification framework in Section 3. In Section 4, we show how
to apply our approach to formalize several well known memory model properties.
Our alternative formal specification of the Java memory model is described in
Section 5. In Section 6, we provide a thorough analysis of JMMMP. We conclude
and explore future research opportunities in Section 7.

2 RELATED WORK

Extensive research has been conducted in the area of model checking based verifi-
cation of multithreaded Java programs, for example [15,?,?,?,?]. A tool was also
developed in [20] to analyze Java byte code. These efforts, however, do not specif-
ically address the Java memory model issues. The memory operations analyzed
in these tools are interpreted using sequentially consistent behaviors instead of
a strict memory model. Therefore, they cannot be used to analyze fine-grained
thread interleavings under race conditions. We can imagine our proposed Uni-
form Memory Model being incorporated into these tools to make their analysis
more realistic. In [21], a type-based framework for race analysis is proposed.
These authors also seem to tacitly assume Sequential Consistency.

The Java memory model problems were pointed out in [12]. Several efforts
have been conducted to formalize the existing Java memory model [22,?,?].
Improved Java thread semantics have also been proposed to replace the cur-
rent Java memory model. Besides JMMMP, there was another proposal from
Maessen, Arvind, and Shen [24] (referred to as JMMCRF in this paper) based
on the Commit/Reconcile/Fence (CRF) framework. The Java memory model is
currently under an official revision process [25]. There is an ongoing discussion
through the Java memory model mailing list [26]. Most recently, Manson and
Pugh announced a new Java memory model draft [26] for community review.

Although JMMMP and JMMCRF have initiated promising improvements on
Java thread semantics, they are not as easily comprehensible and compara-
ble as first thought. JMMCRF inherits the design from its predecessor hard-
ware model [27]. Java operations have to be divided into fine grained Com-
mit/Reconcile/Fence instructions to capture the precise thread semantics. On



the one hand, this translation process adds complexities for describing memory
properties. On the other hand, the dependency on a cache based architecture
also prohibits JMMCRF from describing more relaxed models. JMMMP uses sets
of memory operations to record the history of memory activities. Instead of spec-
ifying the intrinsic memory model properties such as the ordering rules, it resorts
to nonintuitive mechanisms to enforce the desired behaviors. While this nota-
tion might be sufficient to express the proposed semantics, adjusting it to specify
different properties is not trivial. Since designing a memory model involves a re-
peated process of testing and fine-tuning, a generic specification framework is
needed to provide such flexibility.

The area of memory model specification has been pursued under different ap-
proaches. Some researchers have used non-operational (also known as axiomatic)
specifications, in which the desired properties are directly defined. Other re-
searchers have employed operational style specifications, in which the update of
the global state is defined step-by-step with the execution of each instruction.

As an example of non-operational approaches, Collier [28] described mem-
ory requirements based on a formal theory of memory ordering rules. Using
methods similar to Collier’s, Gharachorloo [7] developed a generic framework
for specifying the implementation conditions for various memory models. The
shortcoming of their approaches is that it is nontrivial to infer program behaviors
from a combination of several ordering constraints. In fact, the lack of a means
for automatic execution is a noticeable limitation for most specifications with
a declarative style. In a separate research effort [29], we developed a method
to capture memory ordering rules as axioms and encode these non-operational
models into a machine recognizable format. We then made the specifications
executable by applying a constraint solver or a boolean SAT solver to check the
existence of a legal execution for a given test program.

To make an operational memory model executable, Park and Dill [30,?] pro-
posed a method to integrate a model checker with the Sparc Relaxed Memory
Order [32] specification for verifying small assembly synchronization routines. In
our previous work on the analysis of JMMCRF [33], we extended this method-
ology to the domain of Java thread semantics and demonstrated its feasibility
and effectiveness for analyzing language level memory models. After adapting
JMMCRF to an equivalent executable specification implemented with the Mur-
phi [34] model checking tool, we systematically exercised the underlying model
with a suite of test programs to reveal pivotal properties and verify common
programming idioms, e.g. the Double-Checked Locking [35] algorithm. Roychoud-
hury and Mitra [36] also applied techniques similar to [33] to study the existing
Java memory model. They formalized the current Java memory model with an
operational representation using a local cache and a set of read/write queues
and implemented the specification with an invariant checker. Although [33] and
[36] have improved their respective target models by making them executable
and more rigorous, they are limited to the specific designs from the original
proposals. As a result, they are not suited as a generic specification framework,
and the intuitions for the memory model requirements based on those notations



GIB

LIB i LIB j

Thread i Thread j

Fig. 4. Basic conceptual architecture of the UMM specification framework.

are not immediately apparent. Furthermore, the complexity of the specific data
structures demands more memory consumption during model checking, which
would worsen the state space explosion problem. In [37], a formal operational
framework was developed to verify protocol implementation against weak mem-
ory models using model checking. In that framework, however, data structures
of the transition system vary depending on whether a single visibility order or
multiple visibility orders need to be defined. These variations make it difficult
to create a parameterizable analysis tool. This paper improves the method by
providing a generic abstraction mechanism for executable models based on a
simple transition system.

Non-operational and operational specification styles are complementary tech-
niques. The non-operational approach is often more intuitive due to its declara-
tive nature. But it does not directly help people (such as the compiler writers) to
build a mental process of how the desired properties can be achieved. While op-
erational descriptions often mirror a system’s behavior and can be exploited by
a model checker, they tend to emphasize the how aspects through their usage of
specific data structures, not the what aspects that formal specifications are sup-
posed to stress. Hence, it is essential for an operational specification framework
to employ a generic abstract machine that can represent primitive consistency
properties as opposed to specific architectural designs. In Section 4.7, we also
explore a method to transform a memory model definition from one style to the
other.

3 OVERVIEW OF THE FRAMEWORK

The UMM specification framework consists of an abstract transition system with
an associated transition table. Figure 4 illustrates the basic conceptual architec-
ture of the UMM transition system. Each thread k has a local instruction buffer
LIBk that stores its pending instructions in program order. Thread interactions



are communicated through a global instruction buffer GIB, which stores all pre-
viously completed memory instructions that are necessary for fulfilling a future
read request.

The specification of a memory system is precisely defined in a transition table
based on guarded commands. Memory operations are categorized as events that
may be completed by carrying out some actions when certain conditions are
satisfied. At a given step, any eligible event may be nondeterministically chosen
and atomically completed by the abstract machine. The sequence of permissible
actions from various threads constitutes an execution. A legal execution is defined
as a serialization of these memory operations, i.e., a read operation returns the
value from the most recent previous write operation on the same variable subject
to the ordering constraints specified by the transition table. A memory model
M is defined by the results perceived by each read operation in legal executions.
An actual implementation of M, IM, may choose different architectures and
optimization techniques as long as the legal executions allowed by IM are also
permitted by M.

Our notation based on guarded commands has been widely used in architec-
tural models [38], making it familiar to hardware designers. In contrast to most
processor level memory models that apply a cache structure, only two layers are
used in the UMM system, one for thread local information and the other for
global trace information. For clarity, our framework applies a bypassing table
called BYPASS to configure the ordering policy for issuing instructions. These
bypassing rules used in the instruction selection process serve two purposes. One
is to impose an interleaving close to the memory model requirement. The other
is to presciently enable certain operations when needed. Completed instructions
in GIB are used to form the legal visibility order. The visibility ordering rules are
imposed as a final filtering mechanism to guarantee proper serialization. Instead
of a fixed size main memory, we apply a global instruction buffer whose size may
be increased if necessary, which is needed to specify relaxed memory models that
require to keep a trace of multiple writes on a variable.

Integrating the Model Checking Technique To make the memory models
executable, we encode them in Murphi [34], a description language with a syn-
tax similar to C as well as a model checking system that supports exhaustive
state space enumeration. Since Murphi naturally supports specifications based
on guarded commands, this translation process is straightforward. The Murphi
program consists of two parts. The first part implements the formal specification
of a memory model. The transition table is specified as Murphi rules. Bypassing
conditions and visibility conditions are implemented as Murphi procedures. The
second part comprises a large collection of idiom-driven test programs. These
test programs are designed to reveal specific memory model properties or to
simulate common programming idioms. Each test program is defined by specific
Murphi initial state and invariants, which can be executed with the guidance
of the transition system to reveal pivotal properties of the model. When a test
program is executed under the guidance of the UMM transition system, the Mur-



phi model checker exhaustively exercises all possible executions allowed by the
memory model. Our system can detect deadlocks and invariant violations. To
examine test results, two techniques can be applied. The first one uses Murphi
invariants to specify that a particular scenario can never occur. If it does occur,
a violation trace can be generated to help understand the cause. The second
technique uses a special “thread completion” rule, which is triggered only when
all threads are completed, to output all possible final results.

The Murphi implementation is highly configurable. It allows one to easily set
up different test programs, abstract machine parameters, and memory model
properties. The executable memory model can also be treated as a “black box”
whereby the users are not necessarily required to understand all the details of the
model to benefit from the specification. Our operational definition employs rules
expressed in first-order logic to capture details. Thus, in a sense, it has a dual
status: the big picture is captured operationally, while the details are captured
in a declarative manner. This style is also found in some related efforts, e.g. [38].
Here, our contributions are twofold: (i) we employ this style for a wide spectrum
of memory models; (ii) we retain the first-order logic style in our Murphi model
which supports first-order logic quantifiers (they are unravelled through state
enumeration). This also helps make the implementation of the memory model
reliable.

4 FORMALIZING COMMON MEMORY MODEL
PROPERTIES

The UMM framework can be configured to produce executable specifications for
a variety of memory consistency properties. The general strategy is to customize
the bypassing table to control the interleaving and impose proper visibility or-
dering constraints on the execution trace in GIB. This configuration process is
typically very straightforward for memory models involving a single visibility or-
der. For models requiring per-thread visibility orders, a write instruction needs
to be decomposed into multiple sub-write instructions targeting each different
thread (including the issuing thread) so that the single GIB can be used to re-
trieve a unique visibility order for every observing thread. This technique is
inspired by similar methods applied in [3,?].

We demonstrate our approach by formalizing several memory model require-
ments representing different categories. In this section, Sequential Consistency
and Coherence are presented to show the method of defining models involving a
single visibility order and PRAM is described to serve as an example of models
requiring per-thread visibility orders. In Section 5, the core semantics of JMMMP

is captured to illustrate how synchronization instructions may be handled.

4.1 Instructions

For the common memory models discussed in this section, an instruction i is
represented by a tuple 〈t, pc, op, var, data, target, time〉, where



t(i) = t : issuing thread;
pc(i) = pc : program counter;
op(i) = op : operation type, can be Read or Write;
var(i) = var : variable;
data(i) = data : data value;
target(i) = target : target thread observing a write;
time(i) = time : global time stamp, incremented each time

when an instruction is added to GIB.

4.2 Initial Conditions

Initially, LIB contains all instructions from each thread in their original program
order. For Sequential Consistency and Coherence, writes do not need to be de-
composed. For PRAM, a write instruction i is converted to a set of sub-write
instructions for each thread k (target(i) = k). The sub-write instructions that
originate from the same write instruction share the same program counter. GIB
contains the default write instructions for every variable v, with the default value
of v, a special thread ID tinit, and a time field of 0. After the abstract machine
is set up, it operates according to the transition table.

4.3 Transition Table

The generic transition table for Sequential Consistency, Coherence, and PRAM
is given in Table 1. A read instruction completes when the return value is bound.
A write instruction completes when it is added to GIB. A multithreaded program
terminates when all instructions from all threads complete.

Event Condition Action

read ∃i ∈ LIBt(i) : i.data := data(w);
ready(i) ∧ op(i) = Read ∧ LIBt(i) := delete(LIBt(i), i);
(∃w ∈ GIB : legalWrite(i, w))

write ∃i ∈ LIBt(i) : GIB := append(GIB, i);
ready(i) ∧ op(i) = Write LIBt(i) := delete(LIBt(i), i);

Table 1. Transition table for Sequential Consistency, Coherence, and PRAM.

4.4 Bypassing Rules

Table 2 outlines the bypassing rules for Sequential Consistency, Coherence, and
PRAM. An entry BYPASS[op1][op2] in the bypassing table determines whether
an instruction with type op2 can bypass a previous instruction with type op1. Val-
ues used in table BYPASS include Yes, No, DiffVar, and DiffTgt. Informally, Yes



SC Coherence PRAM

2nd ⇒ Read Write Read Write Read Write
1st ⇓
Read No No DiffVar DiffVar No DiffTgt
Write No No DiffVar DiffVar DiffTgt DiffTgt

Table 2. Bypassing table for Sequential Consistency, Coherence, and PRAM.

permits the bypassing, No prohibits it, DiffVar conditionally enables the bypass-
ing only if the variables are different and not aliased, and DiffTgt conditionally
enables the bypassing when a sub-write targeting a different thread is involved.
According to Table 2, no bypassing is allowed for Sequential Consistency. For
Coherence, instructions operated on different variables can be issued out of or-
der. For PRAM, to allow each thread to perceive an independent visibility order,
two sub-writes targeting different threads can be reordered. In addition, a sub-
write can be reordered with a read if the sub-write targets another thread. To
make these bypassing rules precise, they are formally defined in condition ready.

ready(i) ≡
¬∃j ∈ LIBt(i) : pc(j) < pc(i) ∧
(BYPASS[op(j)][op(i)] = No ∨
BYPASS[op(j)][op(i)] = DiffVar ∧ var(j) = var(i) ∨
BYPASS[op(j)][op(i)] = DiffTgt ∧ op(j) = Write ∧ op(i) = Read ∧

target(j) = t(i) ∨
BYPASS[op(j)][op(i)] = DiffTgt ∧ op(j) = Read ∧ op(i) = Write ∧

t(j) = target(i) ∨
BYPASS[op(j)][op(i)] = DiffTgt ∧ op(j) = Write ∧ op(i) = Write ∧

target(j) = target(i))

4.5 Visibility Ordering Requirement

Condition legalWrite is a guard that guarantees the serialization requirement. It
specifies that a write instruction w is not eligible for a read instruction r if there
exists an intermediate write instruction w′ on the same variable between r and
w in the ordering path. The legalWrite definition of PRAM is slightly different
from that of Sequential Consistency and Coherence because a reading thread t
can only observe a sub-write targeting t or the default write.

For Sequential Consistency and Coherence:

legalWrite(r, w) ≡
op(w) = Write ∧ var(w) = var(r) ∧
(¬∃w′ ∈ GIB : op(w′) = Write ∧ var(w′) = var(r) ∧
time(r) > time(w′) ∧ time(w′) > time(w))



For PRAM:

legalWrite(r, w) ≡
op(w) = Write ∧ var(w) = var(r) ∧ (target(w) = t(r) ∨ t(w) = tinit) ∧
(¬∃w′ ∈ GIB : op(w′) = Write ∧ var(w′) = var(r) ∧ target(w′) = t(r) ∧
time(r) > time(w′) ∧ time(w′) > time(w))

4.6 Verifying Programming Patterns with Executable Specifications

The executable specifications coded in Murphi can help one analyze common
programming patterns against different memory models. For example, recall
the litmus test shown in Figure 2, which reveals a scenario that would make
Peterson’s algorithm erroneous. If this program is executed under PRAM or
Coherence, the tool immediately detects certain thread interleaving that would
allow the results to occur, indicating that Peterson’s algorithm is broken for
these memory models. Under Sequential Consistency, however, the execution in
Figure 2 would not be possible.

4.7 Relationship to Axiomatic Specification Methods

Despite its operational style, the UMM framework is closely related to axiomatic
specification methods such as [29]. An axiomatic approach divides the global or-
dering relation in terms of facets, each of which constraints a specific aspect of
the global ordering. In [29], the visibility order of a memory model is defined
as a complete set of ordering rules, including a fully explicit description about
general ordering properties, such as totality, transitivity, and circuit-freeness. To
take a concrete example, the PRAM memory model can be defined in an ax-
iomatic style as a set of constraints imposed to an execution trace ops, shown
in predicate legal. Predicate restrictThread selects a subset of memory oper-
ations from ops, which contains all operations from the observing thread t and
all writes from other threads.

legal ops ≡ ∀ t ∈ T. (∃ order.
requireProgramOrder (restrictThread ops t) order ∧
requireWeakTotalOrder (restrictThread ops t) order ∧
requireTransitiveOrder (restrictThread ops t) order ∧
requireAsymmetricOrder (restrictThread ops t) order ∧
requireReadValue (restrictThread ops t) order)

Each constraint is then precisely defined. For example, the program order defi-
nition can be specified as follows:

requireProgramOrder ops order ≡
∀i, j ∈ ops. ((t i = t j ∧ pc i < pc j) ∨ (t i = tinit ∧ t j 6= tinit)) ⇒
order i j



The UMM framework applies a two-layer architecture to make memory mod-
els operational. Variations of memory consistency properties are parameterized
as different bypassing rules (defined in condition ready) and visibility ordering
rules (defined in condition legalWrite). As illustrated by the common memory
model properties defined in this section, the totality requirement can be implic-
itly built up during the execution based on interleavings allowed by the bypassing
rules. If a model allows all instructions to be sent to GIB in any arbitrary order
and then impose additional ordering constraints when read values are obtained,
a UMM specification degenerates to an axiomatic one.

Each of the two styles has its own advantages. The axiomatic approach is
declarative and more flexible. One can disable/enable the constraints and study
the impact on the global orderings. However, each constraint itself may involve
aspects that pertain to both program orderings and global visibility, which can-
not be easily distinguished. The operational style, on the other hand, can sep-
arate these matters clearly and often simplify the rules using its interleaving
mechanism. Understanding the different specification mechanisms can help one
to transform a memory model definition from one style to the other. To capture
an axiomatic definition using UMM, one needs to consider all the ordering rules
and extract those that can be imposed using the front-end instruction selection
process of the UMM framework. To convert a UMM specification to an axiomatic
definition, one must encode all the ordering requirements implied by the UMM
front-end process and add them as axioms to the final execution trace.

5 AN ALTERNATIVE SPECIFICATION OF THE
JAVA MEMORY MODEL

We provide an alternative Java memory model specification to show how mem-
ory models involving synchronization operations may be defined using our frame-
work. In addition, it illustrates how to resolve some of the language level memory
model issues, such as the treatment of local variables. Lastly, it demonstrates the
feasibility of our methodology for analyzing non-trivial memory model designs.
The core Java memory model semantics formalized in this section, including
definitions of normal memory operations and synchronization operations, is pri-
marily based on JMMMP [13] as of January 11, 2002.

5.1 Variables and Instructions

In the Java memory model, a global variable refers to a static field of a loaded
class, an instance field of an allocated object, or an element of an allocated
array. It can be further categorized as a normal, volatile, or final variable. A local
variable corresponds to a Java local variable or an operand stack location. In our
examples, we follow a convention that uses a, b, c to represent global variables,
r1, r2, r3 to represent local variables, and 1, 2, 3 to represent primitive values.

The instruction tuple in the Java memory model is extended to carry lo-
cal variable and locking information. An instruction i is denoted by a tuple
〈t, pc, op, var, data, local, useLocal, lock, time〉, where



Thread

LK

GIB

i

LV i LIB i LIB j j

Thread j

LV

Fig. 5. Extended conceptual architecture for the Java memory model.

t(i) = t: issuing thread;
pc(i) = pc: program counter;
op(i) = op: operation type;
var(i) = var: variable;
data(i) = data: data value;
local(i) = local: local variable;
useLocal(i) = useLocal: tag to indicate if the write value is provided by local(i);
lock(i) = lock: lock;
time(i) = time: global time stamp, incremented each time

when an instruction is added to GIB.

Since the proposed semantics does not enforce a unique per-thread visibility
order for any observing thread, write instructions do not need to be decomposed
into sub-writes.

5.2 The Extended Conceptual Architecture

To capture the additional requirements regarding local variables and locks in
the Java memory model, the conceptual architecture of the transition system is
slightly extended. Figure 5 shows the abstract machine for modelling the Java
memory model. In addition to the local instruction buffer, each thread k also
maintains a set of local variables in a local variable array LVk. Each element
LVk[v] contains the data value of the local variable v. To maintain the locking
status, a dedicated global lock array LK is also added. Each element LK[l] is a
tuple 〈count, owner〉, where count is the number of recursive lock acquisitions
and owner is the owning thread.

Need for Local Variable Information Because traditional memory models
are designed for processor level architectures, aiding software analysis is not a



common priority in those specifications. Consequently, a read instruction is usu-
ally retired immediately when the return value is obtained. Following the same
style, neither JMMMP nor JMMCRF keeps track the return values from read op-
erations. However, most programming activities in Java, such as computation,
flow control, and method invocation, are carried out using local variables. In or-
der to analyze straight-line code, it is desired to extend the scope of the memory
model framework by recording the values committed to local variables as part
of the global state. The addition of local variable arrays in the transition system
also provides a clear separation of local data dependency and memory model
ordering requirements, which will be further discussed in Section 5.5.

5.3 Initial Conditions

Initially, LIB contains instructions from each thread in their original program
order. GIB contains the default write instructions for every variable v, with the
default value of v, a special thread ID tinit, and a time field of 0. The count
fields in LK are set to 0.

5.4 The Transition Table for the Java Memory Model

Java memory operations are defined in the transition table given in Table 3. A
read operation on a global variable corresponds to the Java program instruction
with a format of r1 = a. It always stores the data value in the target local
variable. A write operation on a global variable can have two formats, a = r1
or a = 1, depending on whether the useLocal tag is set. The format a = r1
allows one to examine the data flow implications caused by the nondeterminism
of memory behaviors. If all write instructions have useLocal = false and all
read instructions use non-conflicting local variables, the system degenerates to
traditional models that do not keep local variable information. Lock and unlock
instructions are issued as determined by the Java keyword synchronized. They
are used to model the mutual exclusion effect as well as the visibility effect. A
special freeze instruction for every final field v is added at the end of the con-
structor that initializes v to indicate v has been frozen. Since we are defining the
memory model, only memory operations are identified in our transition system.
Instructions such as r1 = 1 and r1 = r2 + r3 are not included. However, the
UMM framework can be easily extended to a comprehensive program analysis
system by adding semantics for computational instructions.

5.5 Bypassing Policy and Data Dependency

Table BYPASS shown in Table 4 specifies the bypassing rules for the Java mem-
ory model. Since JMMMP respects program order except for prescient writes,
Table 4 only allows normal write instructions to bypass certain previous in-
structions. Although it might be desired to enable more reordering, e.g. between
two normal read operations, the specification presented here follows the same
guideline from JMMMP to capture similar semantics.



Event Condition Action

readNormal ∃i ∈ LIBt(i) : ready(i) ∧ op(i) = ReadNormal ∧ LVt(i)[local(i)] := data(w);
(∃w ∈ GIB : legalNormalWrite(i, w)) LIBt(i) := delete(LIBt(i), i);

writeNormal ∃i ∈ LIBt(i) : ready(i) ∧ op(i) = WriteNormal if (useLocal(i))
i.data := LVt(i)[local(i)];

end;
GIB := append(GIB, i);
LIBt(i) := delete(LIBt(i), i);

lock ∃i ∈ LIBt(i) : ready(i) ∧ op(i) = Lock ∧ LK[lock(i)].count :=
(LK[lock(i)].count = 0 ∨ LK[lock(i)].count + 1;
LK[lock(i)].owner = t(i)) LK[lock(i)].owner := t(i);

GIB := append(GIB, i);
LIBt(i) := delete(LIBt(i), i);

unlock ∃i ∈ LIBt(i) : ready(i) ∧ op(i) = Unlock ∧ LK[lock(i)].count :=
(LK[lock(i)].count > 0 ∧ LK[lock(i)].count− 1;
LK[lock(i)].owner = t(i)) GIB := append(GIB, i);

LIBt(i) := delete(LIBt(i), i);

readVolatile ∃i ∈ LIBt(i) : ready(i) ∧ op(i) = ReadVolatile ∧ LVt(i)[local(i)] := data(w);
(∃w ∈ GIB : legalV olatileWrite(i, w)) GIB := append(GIB, i);

LIBt(i) := delete(LIBt(i), i);

writeVolatile ∃i ∈ LIBt(i) : ready(i) ∧ op(i) = WriteVolatile if (useLocal(i))
i.data := LVt(i)[local(i)];

end;
GIB := append(GIB, i);
LIBt(i) := delete(LIBt(i), i);

readFinal ∃i ∈ LIBt(i) : ready(i) ∧ op(i) = ReadFinal ∧ LVt(i)[local(i)] := data(w);
(∃w ∈ GIB : legalF inalWrite(i, w)) LIBt(i) := delete(LIBt(i), i);

writeFinal ∃i ∈ LIBt(i) : ready(i) ∧ op(i) = WriteFinal if (useLocal(i))
i.data := LVt(i)[local(i)];

end;
GIB := append(GIB, i);
LIBt(i) := delete(LIBt(i), i);

freeze ∃i ∈ LIBt(i) : ready(i) ∧ op(i) = Freeze GIB := append(GIB, i);
LIBt(i) := delete(LIBt(i), i);

Table 3. Transition table for the alternative Java memory model.



2nd ⇒ Read Write Lock Unlock Read Write Read Write Freeze
1st ⇓ Normal Normal Volatile Volatile Final Final

Read Normal No Yes No No No No No No No
Write Normal No Yes No No No No No No No

Lock No RdtLk No No No No No No No
Unlock No Yes No No No No No No No

Read Volatile No RdtLk No No No No No No No
Write Volatile No Yes No No No No No No No

Read Final No Yes No No No No No No No
Write Final No Yes No No No No No No No
Freeze No No No No No No No No No

Table 4. Bypassing table for the alternative Java memory model.

In JMMMP, different threads are only synchronized via the same lock. No
ordering restriction is imposed by a Lock instruction if there is no synchroniza-
tion effect associated with it. Since most redundant synchronization operations
are caused by thread local and nested locks, Table 4 uses a special entry RdtLk
to enable optimization in the cases involving redundant locks. A WriteNormal
instruction can bypass a previous Lock or ReadVolatile instruction when the pre-
vious instruction does not impose any synchronization effect. Condition ready
enforces the bypassing policy of the memory model as well as local data depen-
dency. The helper function notRedundant(j) returns true if instruction j does
have a synchronization effect.

The data dependency imposed by the usage of conflicting local variables is
expressed in condition localDependent. The helper function isWrite(i) returns
true if the operation type of i is WriteNormal, WriteVolatile, or WriteFinal. Simi-
larly, isRead(i) returns true if the operation of i is ReadNormal, ReadVolatile, or
ReadFinal.

ready(i) ≡
¬∃j ∈ LIBt(i) : pc(j) < pc(i) ∧
(localDependent(i, j) ∨
BYPASS[op(j)][op(i)] = No ∨
BYPASS[op(j)][op(i)] = RdtLk ∧ notRedundant(j))

localDependent(i, j) ≡
t(j) = t(i) ∧ local(j) = local(i) ∧
(isWrite(i) ∧ useLocal(i) ∧ isRead(j) ∨
isWrite(j) ∧ useLocal(j) ∧ isRead(i) ∨
isRead(i) ∧ isRead(j))



5.6 Visibility Ordering Requirement for the Java Memory Model

JMMMP applies an ordering constraint similar to Location Consistency. As cap-
tured in condition LCOrder, two instructions are ordered if one of the following
cases holds:

1. they are ordered by program order;
2. they are synchronized by the same lock or the same volatile variable; or
3. there exists another operation that can transitively establish the order.

LCOrder(i1, i2) ≡
(t(i1) = t(i2) ∧ pc(i1) > pc(i2) ∨ t(i1) 6= tinit ∧ t(i2) = tinit) ∨
synchronized(i1, i2) ∨
(∃i′ ∈ GIB : time(i′) > time(i2) ∧ time(i′) < time(i1) ∧
LCOrder(i1, i′) ∧ LCOrder(i′, i2))

The synchronization mechanism is formally captured in condition synchronized.
Instruction i1 can be synchronized with a previous instruction i2 via a re-
lease/acquire process, where a lock is first released by t(i2) after i2 is issued
and later acquired by t(i1) before i1 is issued. Release can be triggered by an
Unlock or a WriteVolatile instruction. Acquire can be triggered by a Lock or a
ReadVolatile instruction.

synchronized(i1, i2) ≡
∃ l, u ∈ GIB :

(op(l) = Lock ∧ op(u) = Unlock ∧ lock(l) = lock(u) ∨
op(l) = ReadVolatile ∧ op(u) = WriteVolatile ∧ var(l) = var(u)) ∧
t(l) = t(i1) ∧ (t(u) = t(i2) ∨ t(i2) = tinit) ∧
time(i2) ≤ time(u) ∧ time(u) < time(l) ∧ time(l) ≤ time(i1)

After establishing the ordering relationship by condition LCOrder, the re-
quirement of serialization is enforced in legalNormalWrite. A write instruction w
cannot provide its value to a read instruction r if there exists another interme-
diate write instruction w′ on the same variable between r and w in the ordering
path.

legalNormalWrite(r, w) ≡
op(w) = WriteNormal ∧ var(w) = var(r) ∧
(t(w) = t(r) → pc(w) < pc(r)) ∧
(¬∃w′ ∈ GIB : op(w′) = WriteNormal ∧ var(w′) = var(r) ∧
LCOrder(r, w′) ∧ LCOrder(w′, w))

The mutual exclusion effect of Lock and Unlock operations is enforced by
updating and tracking the count and owner fields of each lock as specified in
the transition table.



5.7 Volatile Variable Semantics

When JMMMP was proposed, the exact ordering requirement for volatile vari-
able operations was still under debate. One suggestion was to require volatile
variable operations to be sequentially consistent. Another suggestion was to re-
lax Write Atomicity. Although JMMMP provides a formal specification to allow
non-atomic volatile write operations, recent consensus favors Sequential Consis-
tency for all volatile variable operations. Therefore, we define volatile variable
semantics based on Sequential Consistency in this paper.

With the uniform notation of our framework, pre-defined memory require-
ments can be easily reused. Hence, the formal definition of Sequential Consis-
tency described in Section 4 is applied to define ReadVolatile and WriteVolatile
operations. The bypassing table shown in Table 4 prohibits any reordering among
volatile operations. Condition legalVolatileWrite, which follows legalWrite in Se-
quential Consistency, defines the legal results for ReadVolatile operations.

legalV olatileWrite(r, w) ≡
op(w) = WriteVolatile ∧ var(w) = var(r) ∧
(¬∃w′ ∈ GIB : op(w′) = WriteVolatile ∧ var(w′) = var(r) ∧
time(r) > time(w′) ∧ time(w′) > time(w))

5.8 Final Variable Semantics

In Java, a final field can either be a primitive value or a reference to another object.
When it is a reference, the Java language only requires that the reference itself can-
not be modified in the program after its initialization but the fields of the object it
points to do not have the same guarantee. JMMMP proposes to add a special rule to
those non-final sub-fields that are referenced by a final field: if such a sub-field is as-
signed in the constructor, its default value cannot be observed by another thread after
normal construction. To achieve this, JMMMP uses a special mechanism to “synchro-
nize” initialization information from the constructing thread to the final reference and
eventually to the elements contained by the final reference. However, without explicit
support for immutability from the Java language, this mechanism makes the memory
semantics substantially more difficult to understand because synchronization informa-
tion needs to be carried by every variable. It is also not clear how the exact proposed
semantics can be efficiently implemented to support weak memory architectures such
as Alpha since it involves run-time reachability analysis.

Since the main goal of this paper is to illustrate our methodology, finding the
most reasonable solution for final field semantics is an orthogonal task. To make our
Java memory model specification complete, yet not to distract readers with the details
specific to certain semantics, we provide a straightforward definition for final fields.
It is different from JMMMP in that it only requires the final field itself to be a con-
stant after being frozen. The visibility criteria for final fields is shown in condition
legalF inalWrite. The default value of the final field (when t(w) = tinit) can only be
observed if the final field is not frozen. In addition, the constructing thread cannot
observe the default value after the final field is initialized.

legalF inalWrite(r, w) ≡
op(w) = WriteFinal ∧ var(w) = var(r) ∧



Initially, a = 0
Thread 1 Thread 2

a = 1; a = 2;
r1 = a; r3 = a;
r2 = a; r4 = a;

Finally, can it result in r1 = 1, r2 = 2, r3 = 2, and r4 = 1?

Fig. 6. Write Atomicity test.

(t(w) = tinit →
((¬∃i1 ∈ GIB : op(i1) = Freeze ∧ var(i1) = var(r)) ∧
(¬∃i2 ∈ GIB : op(i2) = WriteFinal ∧ var(i2) = var(r) ∧ t(i2) = t(r))))

6 Analysis of JMMMP

After adapting JMMMP using our system, we are able to systematically exercise it
with idiom-driven test programs and gain substantial insight about the underlying
semantics. Since we have also developed formal executable models for JMMCRF [33],
we can perform a comparison analysis by running the same test programs on both
models. This helps us understand the subtle differences between the two models.

Running on a PC with a 900 MHz Pentium III processor and 256 MB of RAM, most
of our test programs complete in less than one second. Our Java memory model Murphi
implementation is available at http://www.cs.utah.edu/formal_verification/umm.

6.1 Analyzing Memory Model Properties

Coherence Test Recall the litmus test shown in Figure 3, which reveals an execu-
tion prohibited by Coherence. When variable a is configured as a normal variable, an
exhaustive enumeration of this test program under JMMMP reports that the outcome
is indeed permitted. To further help the users understand the scenario, the UMM tool
can output an interleaving that would allow such a result. Thus, based on this simple
litmus test (without even looking into the internals of the memory model), one can
make an immediate conclusion that JMMMP does not enforce Coherence.

Write Atomicity Test The execution in Figure 6 illustrates a violation of Write
Atomicity. When this test program (for a normal variable a) is run using our tool, one
can quickly find out that the result in Figure 6 is allowed by JMMMP but forbidden
by JMMCRF. This reveals a difference between the two models regarding the require-
ment on Write Atomicity for normal variables. A more thorough analysis of JMMCRF

indicates that the requirement of Write Atomicity in JMMCRF is a direct consequence
of the CRF architecture because it uses the shared memory as the rendezvous point
between threads and caches.

Causality Test Causal Consistency [39] requires thread local orderings to be transi-
tive through a causal relationship. The program shown in Figure 7 reveals a violation
of causality. When it is executed with our verification system, a legal interleaving that
allows such a behavior is immediately detected. This proves that JMMMP does not



Initially, a = b = 0
Thread 1 Thread 2 Thread 3

a = 1; r1 = a; r2 = b
b = 1; r3 = a

Finally, can it result in r1 = r2 = 1 and r3 = 0?

Fig. 7. Causality test.

Initially, a = 0
Thread 1 Thread 2

r1 = a; r2 = a;
a = 1; a = r2;

Finally, can it result in r1 = 1 and r2 = 1?

Fig. 8. Prescient write test.

enforce Causal Consistency for normal variable operations.

Prescient Write Test Figure 8 reveals an interesting case of prescient write, where r1
in Thread 1 can observe a write that is initiated by a later write on the same variable
from the same thread. Our system detects that such a non-intuitive execution is indeed
allowed by JMMMP. Therefore, programmers should not assume that antidependence
(dependency of Write after Read on the same variable) among global variable opera-
tions is always enforced.

Initially, reference = field = 0
Thread 1 Thread 2

field = 1; r1 = reference;
Membar1; Membar2
reference = 1; r2 = field;

Finally, can it result in r1 = 1 and r2 = 0?

Fig. 9. Constructor test.

Constructor Property The constructor property is illustrated by the program in Fig-
ure 9. Thread 1 simulates the constructing thread. It initializes the field before releasing
the object reference. Thread 2 simulates another thread accessing the object field with-
out synchronization. Membar1 and Membar2 are some hypothetic memory barriers
that prevents instructions from crossing them, which can be easily implemented in our
program by simply setting some test specific bypassing rules. This program essentially
simulates the object constructing mechanism used by JMMCRF, where Membar1 is a
special EndCon instruction used in JMMCRF to indicate the completion of a construc-
tor and Membar2 is due to data dependency enforced by program semantics when
accessing field through reference. If field is a normal variable, this mechanism works
under JMMCRF but fails under JMMMP. In JMMMP, the default write to field is still a
valid write for the reading thread since there does not exist an ordering requirement on
non-synchronized writes. However, if field is declared as a final variable and the Freeze



instruction is used for Membar1, Thread 2 would never observe the default value of
field if reference is initialized. This illustrates the different strategies used by the two
models for preventing premature releases during object construction. JMMCRF treats
all fields uniformly and JMMMP guarantees fully initialized fields only if they are final
or pointed by final fields.

6.2 Verifying Programming Patterns

In [33], we have proposed to apply the model checking technique for verifying common
synchronization idioms, such as the Double-Checked Locking algorithm, for memory
model compliance. As also demonstrated by Peterson’s algorithm in Section 1, many
popular programming patterns developed under certain memory consistency assump-
tions might break for more relaxed memory models. An effective strategy for developing
robust multithreaded programs is to carefully analyze them based on formal methods.
For example, when the test program in Figure 2 is executed using normal variables, it
is shown that such a violation scenario is indeed allowed by the Java memory model.
Based on this experiment, one can immediately conclude that the algorithm is unsafe to
use in Java programs without applying additional synchronization operations. On the
other hand, if one use volatile variables and run the test again, the violation scenario
would not occur.

6.3 Inconsistencies in JMMMP

Non-Atomic Volatile Writes JMMMP provides a formal definition that allows volatile
write operations to be non-atomic. One of the proposed requirements for non-atomic
volatile write semantics is that if a thread t has observed the new value of a volatile
write, it can no longer observe the previous value. In order to implement this require-
ment, a special flag readThisV olatilet,〈w,infot〉 is initialized to false in initVolatileWrite
[13, Figure 14]. When the new volatile value is observed in readVolatile, this flag should
be set to true to prevent the previous value from being observed again by the same
thread. However, this critical step is missing and the flag is never set to true in the
original proposal. This omission causes inconsistency between the specification and the
intended goal.

Final Variable Semantics A design flaw in the final variable semantics has also been
discovered. This is about a corner case in the constructor that initializes a final variable.
The scenario is illustrated in Figure 6.3. After the final field a is initialized, it is read by
a local variable in the same constructor. The readFinal definition [13, Figure 15] would
allow r to read back the default value of a. This is because at that time a has not been
“synchronized” to be known to the object that it has been frozen. But the readFinal
action only checks that information from the kF set that is associated with the object
reference. This scenario compromises program correctness because data dependency is
violated.

7 CONCLUSIONS

We have presented a specification methodology for formalizing memory consistency
models in general, and the Java memory model in particular. Coupled with a model



class foo {

final int a;

public foo() {

int r;

a = 1;

r = a; // can r = 0?

}

}

Fig. 10. A flaw in the final variable semantics.

checking tool, it provides a powerful framework for conducting memory model anal-
ysis and multithreaded program verification. The flexibility of the transition system
provides a generic abstraction mechanism for executable consistency models. Our op-
erational specifications are written in a parameterizable style. Users can redefine the
bypassing table and the visibility ordering rules to obtain an executable specification
for another memory model. In addition, the simple abstract machine architecture elim-
inates unnecessary complexities introduced by implementation specific data structures.
Hence, it helps clarify the essential semantics of the shared memory system.

Future Works A reliable specification framework may lead to several interesting fu-
ture works. First, currently people need to develop test programs by hand to conduct
verification. To automate this process, programming pattern annotation and infer-
ence techniques can play an important role. Second, traditional compilation techniques
should be systematically analyzed for memory model compliance in a multithreaded
environment and new optimization opportunities allowed by more relaxed consistency
requirements should be explored. Lastly, architectural memory models and the Java
memory model may be compared through refinement analysis to aid efficient JVM
implementations. We hope our work can help pave the way towards future studies in
these exciting areas.

Acknowledgments

We sincerely thank all contributors to the Java memory model mailing list for their in-
spiring discussions about many aspects of the Java Memory Model. We especially thank
Bill Pugh for his insightful comments about our work. We also thank the anonymous
referees of this paper and Konrad Slind for their detailed suggestions.

References

1. G. L. Peterson. Myths about the mutual exclusion problem. Information Processing
Letters, Volume 12, Number 3, June 1981.

2. Mustaque Ahamad, Rida Bazzi, Ranjit John, Prince Kohli, and Gil Neiger. The
power of Processor Consistency. In the 5th Annual ACM Symposium on Parallel
Algorithms and Architectures, 1993.



3. A formal specification of Intel Itanium processor family memory ordering, Appli-
cation Note, Document Number: 251429-001, October 2002.

4. Rajeev Joshi, Leslie Lamport, John Matthews, Serdar Tasiran, Mark Tuttle, Yuan
Yu. Checking cache-coherence protocols with TLA+, Volume 22, Issue 2, Pages
125-131, March 2003.

5. L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers, C-28(9):690–691, 1979.

6. S. V. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial.
IEEE Computer, 29(12):66–76, 1996.

7. K. Gharachorloo. Memory consistency models for shared-memory multiprocessors.
Technical Report CSL-TR-95-685, Stanford University, December 1995.

8. R. J. Lipton and J. S. Sandberg. PRAM: a scalable shared memory. Technical
Report CS-TR-180-88, 1988.

9. P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency for software
distributed shared memory. In the 19th International Symposium of Computer
Architecture, pages 13-21, May 1992.

10. G. Gao and V. Sarkar. Location consistency - a new memory model and cache con-
sistency protocol. Technical Report, 16, CAPSL, University of Delaware, February
1998.

11. J. Gosling, B. Joy, and G. Steele. The Java language specification, chapter 17.
Addison-Wesley, 1996.

12. W. Pugh. The Java memory model is fatally flawed. Concurrency: Practice and
Experience, 12(1):1-11, 2000.

13. J. Manson and W. Pugh. Semantics of multithreaded Java. Technical Report
UMIACS-TR-2001-09, 2002.

14. J. Manson and W. Pugh. Core semantics of multithreaded Java. In ACM Java
Grande Conference, June 2001.

15. Klaus Havelund and Thomas Pressburger. Model checking JAVA programs using
JAVA PathFinder. In International Journal on Software Tools for Technology
Transfer, volume 2, number 4, pages 366-381, 2000.

16. W. Visser, K. Havelund, G. Brat, and S. Park. Java PathFinder - second generation
of a Java model checker. In Post-CAV Workshop on Advances in Verification,
Chicago, 2000.

17. James C. Corbett. Evaluating deadlock detection methods for concurrent software.
In IEEE Transactions on Software Engineering, volume 22, number 3, pages 161–
180, March 1996.

18. James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Pasareanu, Robby, and Hongjun Zheng. Bandera: extracting finite-state models
from Java source code. In International Conference on Software Engineering, pages
439-448, 2000.

19. D. Park, U. Stern, and D. Dill. Java model checking. In the First International
Workshop on Automated Program Analysis, Testing and Verification, Limerick,
Ireland, 2000.

20. J. Moore, R. Krug, H. Liu, and G. Porter. Formal models of Java at the JVM
level – a survey from the ACL2 perspective. In Workshop on Formal Techniques
for Java Programs, in association with ECOOP 2001, June 2001.

21. Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity.
PLDI’03.

22. A. Gontmakher and A. Schuster. Java consistency: non-operational characteriza-
tions for Java memory model. In ACM Transactions On Computer Systems, vol.
18, No. 4, pages 333-386, November 2000.



23. Y. Gurevich, W. Schulte, and C. Wallace. Investigating Java concurrency using
abstract state machines. Technical Report 2000-04, University of Delaware, De-
cember 1999.

24. J.-W. Maessen, Arvind, and X. Shen. Improving the Java memory model using
CRF. In OOPSLA, pages 1-12, October 2000.

25. Java Specification Request (JSR) 133: Java memory model and thread specification
revision.
http://jcp.org/jsr/detail/133.jsp.

26. Java memory model mailing list.
http://www.cs.umd.edu/ pugh/java/memoryModel/archive.

27. X. Shen, Arvind, and L. Rudolph. Commit-Reconcile & Fences (CRF): a new mem-
ory model for architects and compiler writers. In the 26th International Symposium
On Computer Architecture, Atlanta, Georgia, May 1999.

28. W. W. Collier. Reasoning about parallel architectures. Prentice-Hall, 1992.
29. Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and Konrad Slind. Analyzing

the Intel Itanium memory ordering rules using logic programming and SAT. In
the 12th Advanced Research Working Conference on Correct Hardware Design and
Verification Methods (CHARME 2003), Springer Verlag LNCS, October 2003.

30. D. Dill, S. Park, and A. Nowatzyk. Formal specification of abstract memory models.
In the 1993 Symposium for Research on Integrated Systems, pages 38-52, 1993.

31. S. Park and D. Dill. An executable specification and verifier for Relaxed Memory
Order. IEEE Transactions on Computers, 48(2):227-235, 1999.

32. D. Weaver and T. Germond. The SPARC Architecture Manual Version 9. Prentice
Hall, 1994.

33. Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom. Analyzing the CRF Java
memory model. In the 8th Asia-Pacific Software Engineering Conference, pages
21-28, 2001.

34. D. Dill. The Murϕ verification system. In 8th International Conference on Com-
puter Aided Verification, pages 390-393, 1996.

35. Philip Bishop and Nigel Warren. Java in pratice: design styles and idioms for
effective Java, chapter 9. Addison-Wesley, 1999.

36. A. Roychoudhury and T. Mitra. Specifying multithreaded Java semantics for pro-
gram verification. In International Conference on Software Engineering, 2002.

37. Prosenjit Chatterjee, Hemanthkumar Sivaraj, and Ganesh Gopalakrishnan. Shared
memory consistency protocol verification against weak memory models: refinement
via model-checking. In Computer-Aided Verification (CAV’02), July, 2002.

38. R. Gerth. Introduction to Sequential Consistency and the lazy caching algorithm.
Distributed Computing, 1995.

39. Mustaque Ahamad, Phillip W. Hutto, Gil Neiger, James E. Burns, and Prince
Kohli. Causal memory: definitions, implementation and programming. Technical
Report GIT-CC-93/55, Georgia Institute of Technology, July 1994.


