
Temporally Coherent Interactive
Ray Tracing

W. Martin S. Parker E. Reinhard
P. Shirley W. Thompson

UUCS-01-005

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

May 15, 2001

Abstract

Although ray tracing has been successfully applied to interactively render large datasets, su-
persampling pixels will not be practical in interactive applications for some time. Because
large datasets tend to have subpixel detail, one-sample-per-pixel ray tracing can produce
visually distracting popping and scintillation. We present an algorithm that directs primary
rays toward locations rendered in previous frames, thereby increasing temporal coherence.
Our method tracks intersection points over time, and these tracked points are used as an or-
acle to aim rays for the next frame. This is in contrast to traditional image-based rendering
techniques which advocate color reuse. We so acquire coherence between frames which
reduces temporal artifacts without introducing significant processing overhead or causing
unnecessary blur.

Temporally Coherent Interactive Ray Tracing
W. Martin S. Parker E. Reinhard P. Shirley W. Thompson

University of Utah www.cs.utah.edu

Abstract. Although ray tracing has been successfully applied to interactively
render large datasets, supersampling pixels will not be practical in interactive ap-
plications for some time. Because large datasets tend to have subpixel detail,
one-sample-per-pixel ray tracing can produce visually distracting popping and
scintillation. We present an algorithm that directs primary rays toward locations
rendered in previous frames, thereby increasing temporal coherence. Our method
tracks intersection points over time, and these tracked points are used as an oracle
to aim rays for the next frame. This is in contrast to traditional image-based ren-
dering techniques which advocate color reuse. We so acquire coherence between
frames which reduces temporal artifacts without introducing significant process-
ing overhead or causing unnecessary blur.

1 Introduction

Improvements in general-purpose computer systems have recently allowed ray tracing
to be used in interactive applications [10, 13, 18]. On some applications such as isosur-
face rendering [14], ray tracing is superior to even highly optimized z-buffer methods.
In this paper we present an algorithm to reduce dynamic artifacts in an interactive ray
tracing system. This algorithm is relatively simple, and attacks what we believe is the
dominant visual artifact in current interactive ray tracing systems.

Because ray tracing has a computational cost roughly linear in the number of sam-
ples (primary rays), interactive implementations have used one primary ray per pixel
and relatively small image sizes, with 512 by 512 images being common. As raw pro-
cessor performance increases, these systems can improve by creating larger images,
increasing frame rate, or by taking multiple samples per pixel. Once the framerate is
at interactive levels (approximately 15 frames per second or higher), our experience is
that increasing the number of pixels is usually a better option than using multiple pri-
mary rays per pixel. Current systems that ray trace large datasets are approximately
one hundred times too slow to render to the highest resolution screens at thirty frames
per second1. This suggests that even if Moore’s Law continues to hold for another ten
years, we will still be taking only one primary ray per pixel until at least that time.

Unfortunately, one sample per pixel ray tracing introduces aliasing issues which
need to be addressed. Most anti-aliasing approaches were developed in an era where
the available processing power allowed only relatively simple scenes to be rendered and
displayed. As a consequence, the ratio of polygons to pixels was low, usually resulting
in long straight edges. Aliasing issues are particularly evident in such images, revealing
themselves in the form of jaggies and Moiré patterns [1, 2]. Animations of such scenes
cause the running ants effect along edges and visually distracting scintillations when
texture mapping is applied.

1Recent advances in display technology have produced LCD displays with approximately 9 million pixels,
which is a factor of 3 to 8 higher than currently common.

eye

new window

3D hitpoints from last frame

window from last frame

new window

new eye
new sample

discarded samplenew 3D hit point
discarded 3D hit point

Fig. 1. Point tracking algorithm.

Two solutions are common: spatially filtering the scene before sampling, or spa-
tially filtering the image after sampling [5, 9, 11, 12]. Pre-filtering the scene, e.g. using
LOD management or MIP-mapping, may not always be possible, as is the case for the
35 million sphere crack propagation dataset used in Parker et al. [14]. Super-sampling
the image is considered too costly for interactive systems, as argued above. Another
trade-off exists in the form of stochastic sampling to turn aliasing into visually less of-
fensive noise [4, 6]. A by-product of spatial filtering is that temporal artifacts are also
reduced, although temporal anti-aliasing methods have received some attention [8, 16].

Since the development of these anti-aliasing schemes, two things have been chang-
ing. Scene complexity now commonly far exceeds pixel resolutions and display devices
are about to become available at much higher resolutions. The combination of these two
leads to the presence of an approximate continuum of high frequencies in the image,
which causes spatial aliasing to be visually masked [3, 7]. Whenever this occurs, spatial
filtering produces images that contain more blur than necessary. Higher scene complex-
ity and device resolution do not tend to mask temporal aliasing artifacts as well. A good
solution to these issues would therefore preserve spatial crispness while at the same time
minimizing temporal artifacts.

Our approach is to revert to point sampling where sample locations in the current
frame are guided by results from previous frames. Such guidance introduces temporal
coherence that will reduce scintillation and popping. It is also computationally inexpen-
sive so that most of the processing power can be devoted to producing point samples of
highly complex scenes. Scene complexity in turn masks spatial aliasing. The method is
demonstrated using an interactive ray tracing engine for complex terrain models.

2 Point tracking algorithm

For high polygon to pixel ratios, the scene is sparsely sampled. In interactively ray
traced animations, a brute-force approach is likely to possess little temporal coherence.
With high probability, each pixel will have different scene features projected onto them
from frame to frame. This causes popping/scintillation which is visually distracting.

This effect can be minimized by using an algorithm which projects the same feature
within a region of a scene onto the screen over the course of a number of frames. We
therefore seek a method which keeps track of which points in the scene were sampled
during previous frames. This can be easily accomplished within a ray tracing frame-
work by storing the intersection points of the primary rays with their corresponding
pixels. Prior to rendering the next frame, these intersection points are associated with
new pixels using the perspective projection determined by the modified camera param-
eters. Instead of painting the reprojected points directly on the screen [19], which may
lead to inaccuracies, this reprojection serves the sole purpose of directing new rays
towards objects that have been previously hit.

After the reprojection of the last frame’s intersection points, for each pixel one of
three situations may arise:

• One intersection point was projected onto a pixel. This is the ideal case where
scintillation is avoided.

• Two or more intersection points were projected onto a single pixel. Here, an
oracle is required to choose which of the points is going to be used. We use a
simple heuristic which chooses the point with the smallest distance to the camera
origin. Points further away are more likely to be occluded by intervening edges
and are therefore less suitable candidates.

• Zero points were projected onto a pixel. For such pixels no guidance can be
provided and a regular or jittered ray is chosen instead.

For each pixel a new ray is traced. Instead of using image space heuristics to choose
ray directions, an object space criterion is used: we aim for the intersection points that
were projected onto each pixel. A new regular or jittered ray direction is chosen only
in the absence of a reprojected point for a given pixel.

Once stored intersection points have been used for the current frame, they are dis-
carded. The ray tracing process produces shaded pixel information for the current frame
as well as a list of intersection points to be used for the next frame.

3 Results

To demonstrate the effectiveness of this point tracking method, we use the interactive
ray tracer of Parker et. al. [13] to render two different terrain models, which are called
Hogum and Range-400. Images of these data sets are given in Figure 2 and their geo-
metric complexity is given in Table 1. The intersection routine is similar to that used for
isosurface rendering [14]. The height field is stored in a multiply nested 2D regular grid
with the minimum and maximum heights recorded for each grid cell. When a leaf cell
is an intersection candidate, the exact intersection is computed with the bilinear patch
defined by the four points. The measurements presented in this paper are all collected
using a 32 processor SGI Origin 3800. Each processor is an R12k running at 400 MHz.
We used 30 processors for each run plus an additional processor running the display
thread.

The computational cost of the point tracking system is assessed in Figure 3. In
this graph, we compare the interactive ray tracer with and without point tracking for
different image resolutions. For both data sets it appears that satisfactory frame-rates
can be achieved for image sizes up to5122 pixels.

The performance penalty of using the point tracking algorithm is roughly20%,
which is small enough to warrant its use. Although we compare with point sampled
images, to obtain similar (but more blurred) results, one would have to compare its
performance with super-sampled images, whose cost is linear in the number of samples
taken per pixel. Both single sample images with and without point tracking are vastly
less expensive than super-sampled images.

The visual appearance of the animations with and without point tracking are pre-
sented in the accompanying video2. Assuming a worst-case scenario, the point tracking
algorithm is most effective if a single intersection point projects onto a given pixel. This

2The video is in SVHS format and is captured using the direct SVHS output of the Origin system. This
does cause some blurring and also some extra popping. However, the relative magnitude of the visual artifacts
is approximately what we observe on the actual display.

Fig. 2. Hogum and Range-400 terrain datasets.

Terrain Resolution Texture resolution
Hogum 175 × 199 1740 × 1980
Range-400 3275 × 2163 3275 × 2163

Table 1. Terrain complexity

0 2 4 6 8 10 12

x 10
5

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Image size (in pixels)

T
im

e
pe

r
fr

am
e

(s
ec

on
ds

/fr
am

e)

Time per frame vs. image size

Hogum (brute force)
Range−400 (brute force)
Hogum (point tracking)
Range−400 (point tracking)

44−57 fps

5.4 fps

2.8 fps

3.7 fps

9.4 fps

5.0 fps

20.8 fps

12.4 fps

Fig. 3. Hogum and Range-400 data sets rendered with and without point tracking at image
resolutions of2562, 3842, 5122, 6402, 7682, 8962, and 10242 pixels. Shown is the average
frame-rate achieved for each animation.

Intersection points per pixel
Terrain 0 1 2 3 4
Hogum 21.93% 58.22% 18.18% 1.63% 0.04%
Range-400 19.68% 64.73% 14.21% 1.33% 0.05%

Table 2. Percentage of pixels that have 0 to 4 intersection points reproject to them. The ideal
case is where 1 intersection point projects to a pixel.

is when perfect frame-to-frame coherence is achieved. When zero points project to a
pixel, a ray cast for that pixel is likely to produce a contrast change, causing scintil-
lation. When more than one point reprojects to a single pixel, some information will
locally disappear for the next frame. This may also lead to scintillation.

For the above experiments, roughly60% of the pixels in each frame are covered
by exactly one intersection point (Table 2). In the remaining cases, either zero or more
than one intersection point reprojects to the same pixel. Hence, one could argue that our
algorithm presents a60% visual improvement over standard point sampled animated
imagery. Note that these numbers are dependent on both the model and camera speed.

4 Conclusions

Our paper has assumed that multisampled spatial filtering will not soon be practical for
interactive ray tracing. Anticipating a trend towards higher resolution display devices,
it is also likely that spatial filtering to achieve anti-aliasing will become less necessary,
because the effect of spatial aliasing will largely be masked. However, the same is not
true for temporal aliasing. Combining the performance advantage of point sampling
over super-sampling with a mechanism to reduce temporal aliasing, we have achieved
visually superior animations at a cost that is only slightly higher than point sampling
alone. Moreover, its computational expense is much less than the cost of conventional
anti-aliasing schemes such as super-sampling. Using this point tracking algorithm, the
increase in computational power which is to be expected according to Moore’s Law can
be spent on rendering larger images, rather than on expensive filtering operations.

We speculate that, in the future, the point tracking technique may be applied inde-
pendent of the reconstruction used for display. If we allow tracked points to persist even
when they co-occupy a pixel, then more sophisticated reconstruction methods could be
applied to increase point reuse. This would be in the spirit of Simmons et al. [17]
and Popescu et al. [15]. We have not pursued this in the present work, noting that the
former use sparser sample sets than we do, and the latter technique requires special pur-
pose hardware. Nonetheless, we believe progress in computational performance will
continue to outpace improvements in screen resolution, and conclude that such sophis-
ticated reconstruction using tracked points will eventually be possible.

Acknowledgments

The authors would like to thank Brian Smits for insightful discussions. This work was
supported in part by the NSF Science and Technology Center for Computer Graph-
ics and Scientific Visualization (ASC-89-20219), and NSF grants 97-31859, 99-78099,
and 97-20192. All opinions, findings, conclusions or recommendations expressed in
this document are those of the authors and do not necessarily reflect the views of the
sponsoring agencies.

References

1. BLINN , J. F. Return of the jaggy.IEEE Computer Graphics and Applications 9, 2 (March
1989), 82–89.

2. BLINN , J. F. What we need around here is more aliasing.IEEE Computer Graphics and
Applications 9, 1 (January 1989), 75–79.

3. BOLIN, M. R., AND MEYER, G. W. A perceptually based adaptive sampling algorithm.
Proceedings of SIGGRAPH 98(July 1998), 299–310. ISBN 0-89791-999-8. Held in Or-
lando, Florida.

4. COOK, R. L. Stochastic sampling in computer graphics.ACM Transactions on Graphics 5,
1 (January 1986), 51–72.

5. CROW, F. C. A comparison of antialiasing techniques.IEEE Computer Graphics and
Applications 1, 1 (January 1981), 40–48.

6. DIPPÉ, M. A. Z., AND WOLD, E. H. Antialiasing through stochastic sampling. InComputer
Graphics (SIGGRAPH ’85 Proceedings)(July 1985), B. A. Barsky, Ed., vol. 19, pp. 69–78.

7. FERWERDA, J. A., PATTANAIK , S. N., SHIRLEY, P., AND GREENBERG, D. P. A model
of visual masking for computer graphics.Proceedings of SIGGRAPH 97(August 1997),
143–152. ISBN 0-89791-896-7. Held in Los Angeles, California.

8. GRANT, C. W. Integrated analytic spatial and temporal anti-aliasing for polyhedra in 4-
Space. InComputer Graphics (SIGGRAPH ’85 Proceedings)(July 1985), B. A. Barsky,
Ed., vol. 19, pp. 79–84.

9. MITCHELL, D. P. Generating antialiased images at low sampling densities. InComputer
Graphics (SIGGRAPH ’87 Proceedings)(July 1987), M. C. Stone, Ed., vol. 21, pp. 65–72.
held in Anaheim, California; 27 – 31 July 1987.

10. MUUSS, M. J. towards real-time ray-tracing of combinatorial solid geometric models. In
Proceedings of BRL-CAD Symposium(June 1995).

11. NORTON, A., ROCKWOOD, A. P., AND SKOLMOSKI, P. T. Clamping: A method of an-
tialiasing textured surfaces by bandwidth limiting in object space. InComputer Graphics
(SIGGRAPH ’82 Proceedings)(July 1982), vol. 16, pp. 1–8.

12. PAINTER, J., AND SLOAN, K. Antialiased ray tracing by adaptive progressive refinement.
In Computer Graphics (SIGGRAPH ’89 Proceedings)(July 1989), J. Lane, Ed., vol. 23,
pp. 281–288. held in Boston, Massachusetts; 31 July – 4 August 1989.

13. PARKER, S., MARTIN, W., SLOAN, P.-P. J., SHIRLEY, P., SMITS, B., AND HANSEN, C.
Interactive ray tracing. 1999 ACM Symposium on Interactive 3D Graphics(April 1999),
119–126.

14. PARKER, S., PARKER, M., LIVNAT, Y., SLOAN, P.-P., HANSEN, C., AND SHIRLEY, P.
Interactive ray tracing for volume visualization. InIEEE Transactions on Visualization and
Computer Graphics(July-September 1999).

15. POPESCU, V., EYLES, J., LASTRA, A., STEINHURST, J., ENGLAND, N., AND NYLAND ,
L. The WarpEngine: An architecture for the post-polygonal age.Proceedings of SIG-
GRAPH 2000(July 2000), 433–442. ISBN 1-58113-208-5.

16. SHINYA , M. Spatial anti-aliasing for animation sequences with spatio-temporal filtering.
In Computer Graphics (SIGGRAPH ’93 Proceedings)(1993), J. T. Kajiya, Ed., vol. 27,
pp. 289–296.

17. SIMMONS, M., AND SÉQUIN, C. H. Tapestry: A dynamic mesh-based display representa-
tion for interactive rendering.Rendering Techniques 2000: 11th Eurographics Workshop on
Rendering(June 2000), 329–340. ISBN 3-211-83535-0.

18. WALD , I., SLUSALLEK , P., BENTHIN, C., AND WAGNER, M. Interactive rendering with
coherent ray tracing. InEurographics 2001(2001).

19. WALTER, B., DRETTAKIS, G., AND PARKER, S. Interactive rendering using the render
cache. InRendering Techniques ’99(1999), D. Lischinski and G. W. Larson, Eds., Euro-
graphics, Springer-Verlag Wien New York, pp. 19–30.

