
Artistic Vision: Painterly Rendering Using Computer Vision Techniques

Bruce Gooch
University of Utah

Greg Coombe
University of North Carolina at Chapel Hill

Peter Shirley
University of Utah

Abstract

We present a method that takes a raster image as input and
produces a painting-like image composed of strokes rather than
pixels. Our method works by first segmenting the image into
features, finding the approximate medial axes of these features,
and using the medial axes to guide brush stroke creation. Sys-
tem parameters may be interactively manipulated by a user to
effect image segmentation, brush stroke characteristics, stroke
size, and stroke frequency. This process creates images reminis-
cent of those contemporary representational painters whose work
has an abstract or sketchy quality. Our software is available at
http://www.cs.utah.edu/npr/ArtisticVision.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—2D Graphics

Keywords: image moments, image processing, medial axis, non-
photorealistic rendering, painting

1 Introduction

The art of painting relies on representation and abstraction. In rep-
resentational painting, the abstraction occurs when the detail of
real images is approximated with limited spatial resolution (brush
strokes) and limited chromatic resolution (palette). Economy is a
quality of many paintings, and refers to the use of only those brush
strokes and colors needed to convey the essence of a scene. This
notion of economy has been elusive for computer-painting algo-
rithms. We explore an automated painting algorithm that attempts
to achieve economy, particularly in its use of brush strokes.

There are two tasks involved in the creation of a digital paint-
ing. First is the creation of brush stroke positions, the second is the
rendering of brush strokes. If the brush stroke positions are man-
ually created by a user, then this is a classic paint program. If the
brush stroke positions are computed algorithmically, then this is an
automatic painting system. In either case, once the brush stroke ge-
ometry is known, the brush strokes must then be rendered, usually
simulating the physical nature of paint and canvas [4, 17, 24].

We review digital painting strategies in Section 2 and give an
overview of our algorithm in Section 3. The conversion from a sin-
gle segment of an image to a set of planned brush strokes, which is
the core of our contribution, is covered in Sections 4–8. We discuss
possible extensions to our method in Section 9.

2 Background

Two basic approaches to digital painting are used in computer
graphics. The first simulates the characteristics of an artistic
medium such as paint on canvas. The second attempts to automat-
ically create paintings by simulating the artistic process. These ap-
proaches can be combined because they deal with different aspects,
one low-level and one high-level, of painting.

Work intended to simulate artistic media can be further divided
into those which simulate the physics a particular medium, and
those which just simulate the look. Strassmann [24] simulated the

Figure 1: A landscape painting of Hovenweep National Monument.
This painting was automatically created using the system described
in this paper. The input was a scanned vacation photograph.

look of traditional sumi-e painting with polylines and a raster al-
gorithm. Pham [17] augmented this algorithm using B-splines and
offset curves instead of polylines to achieve smoother brush paths.
Williams [27] provides a method of merging painting and sculpting
by using the raster image as a height field.

Smith [22] points out that by using a scale-invariant primitive for
a brush stroke, multi-resolution paintings can be made. Berman et
al. [1] showed that multi-resolution painting methods are efficient in
both speed and storage. Perlin and Velho [16] used multi-resolution
procedural textures to create realistic detail at any scale.

Several authors have simulated the interaction of paper/canvas
and a drawing/painting instrument. Cockshott [4] simulated the
substrate, diffusion, and gravity in a physically-based paint system.
Curtis et al. [6] modeled fluid flow, absorption, and particle distri-
bution to simulate watercolor. Sousa and Buchanan [23] simulated
pencil drawing by modeling the physics and interaction of pencil
lead, paper, and blending tools.

While the works discussed above are concerned with the low-
level interaction of pigment with paper or canvas, other authors
aid a user in the creation of an art work, or automate the artistic
process. Haeberli [8] built a paint system that re-samples a dig-
ital image based on a brush. Wong [28] built a system for char-
coal drawing that prompts the user for input at critical stages of the
artistic process. Gooch et al. [7] automatically generated techni-
cal illustrations from polygonal models of CAD parts. Meier [15]
produced painterly animations using a particle system. Litwinow-
icz [14] produced impressionist-style video by re-sampling a digital

Figure 2: From left to right: An example of a segmented region. The region after the hole filling algorithm has been run. The region after
being opened. The region after being opened again. The region after having been closed.

Figure 3: First an image is segmented using flood filling. Next
each segment is independently decomposed into brush stroke paths.
Finally brush strokes are rendered to a raster image.

image and tracking optical flow. Hertzmann [11] refined Haeberli’s
technique by using progressively smaller brushes to automatically
create a hand-painted effect. Shiraishi et al. [21] use image mo-
ments to create digital paintings automatically.

The algorithm described in this paper should be grouped with the
latter set of works that simulate the high-level results of the artistic
process. Our technique results in a resolution-independent list of
brush strokes which can be rendered into raster images using any
brush stroke rendering method.

3 Algorithm

Our system takes as input a digital image which is first segmented
using flood filling (Sec 4). These segments are used to compute
brush stroke paths. Using image processing algorithms, the bound-
aries of each segmented region are smoothed and any holes in the
region are filled. The system next finds a discrete approximation to
the central axis of each segment called the ridge set (Sec 5). Ele-
ments of the ridge set are pieced together into tokens (Sec 6). These
tokens can, at the user’s discretion, be spatially sorted into ordered
lists. In the final image this second sorting has the effect of painting
a region with a single large stroke instead of many small strokes. Fi-
nally the brush paths are rendered as brush strokes (Sec 7). Figure 3
shows a diagram of our algorithm.

4 Segmentation and Smoothing

A technique sometimes used by artists is to first produce tonal
sketches of the scene being painted [22]. These sketches are in
effect low resolution gray scale images of the final painting that are
used as a reference for form and lighting. Guided by this observa-
tion, we employ an intensity-based method of segmenting images.

An image is segmented by selecting an unvisited pixel, and
searching outward for nearby unvisited pixels with similar inten-
sities. “Similar intensity” is defined by the number of segmentation
levels, and is based on a perceptual metric [9]. Pixels are marked as
visited, and a new unvisited pixel is chosen. This is repeated until
the entire image is quantized into independent segments.

Segments of similar intensity (such as the letters T and H in Fig-
ure 3) are not connected. This was useful in highly complex re-
gions (such as the forest in Figure 4) because we were able to use
the higher-level merging operations to chose stroke size rather than
the intensity operations. We experimented with a number of seg-
mentation operations, and found that this simple one was the most
flexible. However, given the importantance of segmentation on the
final result, we think that more sophisticated segmentation strate-
gies might prove beneficial.

4.1 Hole Filling

The segments produced in the previous step often have small holes
due to shadows or highlights in the image. We use a standard hole-
filling technique to remove these. Segmented regions are stored as
boolean arrays with true indicating membership in the region. Each
false pixel is queried to find how many true neighbors it has. Pixels
with more than five true neighbors are changed to true. If a pixel
has less than five neighbors, but is enclosed by an all true region,
then the pixel is also set to true.

4.2 Morphological Operations

Opening and closing operations are used to smooth the boundary
and remove noise. The Open operation changes every pixel from
false to true if any of its neighbors are true. The Close operation
changes every pixel from true to false if any of its neighbors are
false. In practice we have found that two Open operations followed
by a Close operation produced good results. The entire smooting
sequence is illustrated in Figure 2. Open and Close operations may
also be applied to the approximate medial axis (described in the
next section) with good results.

Figure 5: An example of a distance transform on a region from left to right. First each pixel in the region is initialized to 1 if it is in the
segmented region, and to 0 if it is not. Next multiple passes are made over the region. At each pass, a pixel value is incremented if all non-zero
neighbors have values less than or equal to the pixel’s current value. This example shows the increasing value of the pixels by changing the
pixel color to a lighter gray.

Figure 4: An example of varying the number of gray levels in im-
age segmentation. Top: the segmented image using 72 gray levels.
Bottom: the segmented image using 48 gray levels. Note that the
clouds have faded into the sky in the 48 gray level image.

5 Ridge Set Extraction

The medial axis of each segmented region is computed and used as
a basis for the brush stroke rendering algorithm. The medial axis of
a region is essentially the “skeleton” of an object. The medial axis
transform yields scale and rotation invariant measures for a seg-
ment, which is a big advantage over other systems which rely upon
grids. The medial axis was first presented by Blum [2], and has been
shown to be useful in approximating 2D [13] and 3D objects [12].
The medial axis has also been shown to be a good approximation
of the way the human visual system perceives shape [3].

While the medial axis is a continuous representation, there are
several types of algorithms for computing the medial axis in image
space, including thinning algorithms and distance transforms. Dis-
tance transform algorithms are not as sensitive to boundary noise
and produce width information, but tend to produce double lines
and don’t preserve connectedness [13]. Thinning algorithms, such
as Rosenfeld’s parallel algorithm [18], preserve the connectedness
and produce smooth medial axis lines. However these algorithms
are sensitive to boundary noise, which will result in undesirable
spurs along the medial axis. Another drawback to thinning algo-
rithms is that they do not produce information about the distance to
the boundary, which we need to estimate brush stroke width.

The positive aspects of both techniques are combined in our sys-
tem to form a hybrid method. We first apply the distance trans-
form to extract a discrete approximation of the medial axis called
the ridge set. We then thin the ridge set to remove spurs (caused
by boundary noise) and double lines (caused when the medial axis
falls between pixels). This combination of techniques results in a
ridge set with distance information, and reduced sensitivity to noise
along the boundary.

5.1 Distance Transform

For each pixel in the region, we compute the shortest distance to the
boundary [13]. On the first pass the distance transform algorithm
assigns a value of one to each pixel in the region. Subsequent passes
approximate a Euclidean distance transform by finding the smallest
non-zero neighbor of the current pixel. If this pixel value is larger
than the value of current pixel, it is incremented by 1 (

√
2 if it is

a diagonal neighbor). The algorithm proceeds until no values are
changed during a pass. This process is shown in Figure 5. The
number of passes is proportional to the radius of the largest circle
that touches both boundaries.

5.2 Approximate Medial Axis Extraction

The next step is to extract the medial axis from the distance-
transformed region. A discrete approximation to the medial axis
is the ridge set, which is the set of points that are further away from
the boundary of the region than any surrounding points. A pixel is
part of the ridge set if its values is greater than or equal to the value
of all 8 surrounding pixels [13].

This conservative definition of the ridge set may not yield a con-
nected set of lines, which necessitates some of the later grouping
algorithms. However, we found that using a less conservative test
resulted in noisy line segments and nervous, uncontrolled brush
strokes. This approximation avoids the problems of spurs associ-
ated with distance transforms, but produces numerous double lines.

To avoid these discretization problems, we are currently explor-
ing a Voronoi diagram method which produces a continuous medial
axis. However, the amount of computation required is usually larger
than for the discrete method.

5.3 Thinning the Approximate Medial Axis

To address the problem of double lines in the distance transform, we
use Rosenfeld’s parallel thinning algorithm [18]. This algorithm
removes “redundant” pixels from a binary image by testing small
neighborhoods of pixels. Each 8-pixel neighborhood is tested for
redundant pixels. We developed a fast, unique test for these pixel
neighborhoods; the details are discussed in the Appendix.

The thinning algorithm eliminates double-lines and other noise
from the ridge set. The algorithm typically requires two to three
passes over the ridge set. Another advantage of this thinning algo-
rithm is that points in the ridge set are guaranteed to have at most
three neighbors.

Figure 6: An example of ridge set extraction, thinning and grouping from left to right. First the ridge set is extracted from the distance
transformed image. Second our thinning algorithm is applied. Third the resulting ridge set is grouped into tokens. Forth the tokens are
merged into a stroke. The fifth image shows a set of tokens ready to be rendered

6 Ridge Set Tokenizing and Grouping

The combination of the distance transform and thinning algorithm
yields a set of approximate medial axis points with associated width
values. We next group spatially coherent points into tokens, as
shown in Figure 6. A token is a higher order primitive which con-
sists of 10 pixels. These tokens can then be grouped into strokes,
and finally strokes from different segmentation regions may be
grouped together. By operating on these higher order primitives
rather than on pixels, we reduce noise and smooth the strokes.

We explored two methods for grouping tokens which differ in
complexity, speed, and rendering techniques. These methods are
compared in Secs 6.2 and 6.3.

6.1 Forming Tokens

The first step in tokenizing the ridge set is to classify pixels based
on how many neighbors they have. Pixels are classified as follows:

orphan - no neighbors

seed - one neighbor

line - two neighbors

branch - three neighbors

Additional cases are not needed because the thinning algorithm
guarantees at most 3 neighbors. During classification, queues for
each type of point are created.

The tokens are grouped by performing a greedy search starting
at seed points. Token objects are initialized as a single seed pixel.
If the nearest neighbor to this point is also a seed, we start a new
token. If the nearest neighbor point is a line point, we add the point
to the token object and find the neighbor of the line point. If the
nearest neighbor point is a branch point, we add the point to the
token object, reclassify the point as a line point, and start a new
token. Once the ridge set is grouped into tokens as in Figure 6, the
tokens can be grouped into strokes.

In order to generate the color of a token, the color of each ridge
point is generated by sampling the original image. A color value
for the ridge point is calculated using the color ratios suggested by
Schlick [20]. The color value for the token is then computed by
taking a weighted average of all of the ridge points in the token.

6.2 Grouping Tokens via Moments

The first method we explored for grouping tokens into strokes was
to compute the image moment of the token using the width values as

weights. The first moments yield the center of mass for the token
which is used as the position. The second moments allow us to
construct a major and minor axis for the token which are used as
the length and width of the token. We were inspired by [21].

Using this moment information, we construct a dense graph of
possible merges, then reduce this graph using a variant of Prim’s
minimum spanning tree algorithm [5]. The graph is constructed by
connecting every pair of tokens that are within a distance tolerance
by an edge in the graph. A cost for each edge is computed by sum-
ming the differences of the tokens’ position, orientation, and color.
For example, tokens that are at right angles incur a high edge cost,
while tokens that are aligned have a low edge cost. These edges
are loaded into a priority queue, and one by one the lowest cost
edge is removed from the queue. If this candidate merge is feasi-
ble, then the tokens are merged. A merge is feasible if the tokens
haven’t already been merged with other tokens. This usually means
that the tokens are independent, or are at the ends of strokes. This
process is repeated by until all the tokens are merged into a single
stroke, or until all possible combinations of token merges have been
attempted.

The merging process generates a set of strokes which cover the
original set of tokens. Each token in the stroke has a width given by
the minor axis of the moment of the token. The main drawback of
this technique is computation time. The technique is O(N2) on the
number of tokens in the image and a large amount of computation
is performed for each token. However, since it is a global method it
tends to produce “optimal” strokes.

6.3 Grouping Tokens via Search Cones

We also explored a second method for grouping tokens which in-
volves a greedy search in a conical region extending from the token.
For each token, search cones are created along the major axis of the
token, extending out a small distance. Then the cones of every to-
ken are tested to see if they intersect the cone of any other token.
Tokens with intersecting cones are merged into strokes and the pro-
cess is repeated until no further merges are possible. Unmerged
tokens are made into single token strokes. Next, the algorithm at-
tempts to merge the orphan tokens into the existing strokes by test-
ing their positions verses the search cones.

The major advantages of this method over the moment method
are speed, the cone intersections can be hard coded, and merging
generally takes less than O(log(N)) passes over the data were N
is the number of tokens. In addition, in order to render this type
of stroke the ridge set points can be used directly without the over
head of computing B-spline curves. However, since this is a local
method it may self-intersect and lack smoothness.

Figure 7: An example of our method for drawing strokes based on moment tokens. First, points are grouped into tokens and the moment of
the group is taken. Second, points are replaced by the moment centroid and additional points are added to the beginning and end of the token
list. Third, the points are used as the control polygon of a B-spline curve. Forth, offset curves are computed based upon the width values.
Last, the stroke is rendered.

7 Rendering Images

Brush stroke rendering depends on the method of token grouping
used in the previous phase of the algorithm. Modified versions of
Strassman [24] and Pham’s [17] algorithms are used to render brush
strokes. Strassman and Pham modeled sumi-e brushes which taper
on from a point and taper off to a point during a brush stroke. We
choose to model a Filbert brush used in oil painting. Filbert brushes
are good all-purpose brushes combining some of the best features
of flat and round brushes [22]. To model a Filbert brush, the taper-
on is constrained to a circular curve and the taper-off constrained to
a parabolic curve. Examples of this type of simulated brush stroke
are shown in Figure 15.

7.1 Stroke Representation

Strokes made up of tokens that are grouped using the moment
method are rendered using the positions of the moments as the con-
trol points of a B-spline curve. This list of control points is called
the control polygon. Since B-spline interpolation has the side ef-
fect of shortening the stroke, we add extra points on the beginning
and the end to compensate (see Figure 7). In addition to the control
polygon, we compute a scalar spline curve that blends the width
values. Using this width spline and the control polygon, we render
the strokes by drawing parallel lines in the direction of the brush
stroke.

Strokes that are grouped using the search cone method are ren-
dered using a simpler method. Normals are calculated using the
finite differences of the token centers, and the widths are sampled
from the nearest token. From these values a quadrilateral is gener-
ated, and filled using lines perpendicular to the normal.

This method has the advantages of speed and a great deal less
computational and coding complexity than the B-spline method.
However, due to the absence of blending, this method can create
visible artifacts when used with alpha blending. The normal direc-
tions calculated for each of the stroke points can intersect, caus-
ing what Strassmann [24] called the “bow tie” effect. This effect
is demonstrated in Figure 9. When a low alpha values are used,
causing the brush stroke to appear opaque, and the brush stroke
contains these self intersections, these areas of the stroke appear
darker. In practice this effect is generally not noticeable with alpha
values higher than 0.75.

7.2 Grouping Strokes

In addition to grouping tokens and strokes inside a single segmented
region, strokes and tokens from different regions can be merged. An

Figure 8: A region painted without a grouping algorithm. (left im-
age: 62 strokes), and with (right image: 1 stroke)

example is shown in Figure 8. In theory, this should smooth strokes
and generate a more pleasing flow. In reality, the effect upon images
varies, and may not be suitable in every case. Stroke merging can
use either the moment method or the search cone method. The
moment method incurs a large memory overhead due to the fact
that all of the tokens and strokes from all regions need to be saved
and checked. In practice this slows the system down by between
one and two orders of magnitude depending on the image size and
the available memory.

8 Underpainting and Brush Effects

Underpainting is simulated by allowing the user to render strokes on
top of another image. Meyer [15], Hertzmann [11], and Shiraishi et
al. [21] discuss underpainting in their work. Meyer rendered brush
strokes on an a background image. Hertzmann and Shiraishi blur
the source image and render strokes on the blurred image.

Our system allows the user to import separate source images and
underpainting images. In this way, strokes can be rendered onto a
background image or onto blurred images. In addition the under-
painting can be used for artistic effect as in Figure 13. The output
of the system could also be used as an underpainting allowing a
painting to be built up in layers.

Painting effects such as brush artifacts, paint mixing between
layers, and stroke connection are also possible in the system. Alpha
blending is used to simulate paints of various opacity. Paints with a
high opacity will show the underlying substrate while paints with a
low opacity will block the view of the substrate. The alpha param-
eter controls the percentage of blending between the underpainting
and the brush strokes.

Figure 9: An example of our method for drawing strokes based on line lists. First, points are grouped into tokens. Second, tokens are grouped
into a list of points. Third, for every point a normal line is found. Forth, based on the normal directions and the width at each point edge
points for the stroke are computed. Last, a brush stroke is rendered.

Figure 10: An example of user-directed enhancement. The Feyn-
man portrait is deemed by the user to lack detail in regions sur-
rounding the eyes, mouth, and hand. The user selects these regions,
and raises the segmentation level. New higher frequency strokes
are drawn over the original strokes, hopefully improving the result.

8.1 User-Directed Enhancement

Human artists often apply brush strokes in a manner which com-
municates the underlying three dimensional structure of the sub-
ject. Because we have no three dimensional information about the
source image we implemented two heuristic techniques. The first
is to start brush strokes at the widest end of the stroke. The second
method allows the user to select areas of interest in the image and
resegment these areas with a higher number of gray levels. As dis-
cussed in Section 4, a single set of segmentation levels is chosen
for the entire image. Increasing the number of gray levels in the
segmentation increases the number of strokes, which changes the
impression of a painting. This difference has a strong effect on the
painted image as seen in Figure 14.

The user can select areas of interest in the image and these ar-
eas are repainted with a higher number of strokes. This allows the
user to direct the placement of high frequency information in the
image, and in many cases improves the visual appearance of the
painting. This is similar in spirit to the method of Hertzmann [10].
An example of this process is shown in Figure 10.

9 Extension: Depth Information

While working with this system, we have noticed that certain input
images generated nice paintings while others do not. In particular,
landscape scenes tend to work very well, while closeups (such as
portraits) tend not to turn out as well, and may require manual re-
segmentation. We believe that there are a number of reasons for

this, the primary one being painting is an inherently 3-dimensional
process. Artists have spent hundreds of years refining 3D tech-
niques, beginning in the Renaissance []. In addition, there have
been numerous computer 3D painting techniques []. We applied
some of these techniques to our system as a first step in incorporat-
ing 3D information into our 2D painting algorithm.

In Section 9.1, we talk about different techniques artists have
developed, and in Section 9.2 we talk about how we applied these
techniques to our painting system.

9.1 Artistic Techniques for Creating Space

Artists create space and distance using techniques such as perspec-
tive, detail variation, color saturation, atmospheric perspective, and
warm/cool fades. The perspective effect and the detail variation are
in some sense already present in images, from the mechanisms in-
herent in photography. We were most interested in applying the
warm-to-cool fade. The warm colors - red, orange, yellow - ”psy-
chologically suggest emotion, energy and warmth while optically
moving the subject to the foreground.” [19] The cool colors - green,
blue, violet ”appear to recede.” [19]

9.2 Applying these Ideas

There are a number of ways to generate depth information, in-
cluding depth-from-stereo, depth-from-shading, etc. [25], as well
as synthetic images, where the depth is explicitly represented in a
depth buffer.

Any of these techniques will work for our system. Synthetic im-
ages have an advantage in that they are easy to obtain and have a
regular, noise-free depth map. Depth-from-stereo produce some-
what noisy depth maps (based on image texture), can be hard to ob-
tain, and often require some manual input to identify corresponding
image features. However, these images are usually more visually
interesting than synthetic images.

Once the depth map has been calculated, it is fed into the paint-
ing system along with the input image. The depth is used as another
information channel to the segmentation process. Objects are first
differentiated using the depth, and these objects are further decom-
posed using intensity variation. This technique was chosen because
depth tends to be quite good at resolving object-object interactions,
but poor at chosing how to lay strokes across a surface. Likewise,
intensity can often fail to correctly identify seperate objects, but
does well at placing strokes across a surface.

The depth is used to vary the levels of segmentation in the image
by segmenting at a low level for distant objects and at a high level
for close objects. This tends to increase the detail in close objects
while decreasing detail in distant objects.

Figure 11: An example of using depth segmentation. From left to right: the original image, the depth image, the painting without using the
depth information, and the painting using depth information. No underpainting was used (for comparison)

The algorithm then uses these segments in the same way as be-
fore, and generates a set of strokes. These strokes maintain proper-
ties such as intensity and depth. The depth is then used to modu-
late the color of the stroke, using the warm-to-cool fade mentioned
above. In the future, we intend to also implement the color satu-
ration and atmosperic effects. These operations are shown in Fig-
ures 11 and 16.

9.3 Depth Extension Analysis

It is clear that using depth information can increase the quality of
the painting. We believe that this is because painting is an inher-
ently 3D process, and only using image processing techniques in
2D hinders the process. However, there are several issues still to be
considered.

The depth information is often noisy and incomplete, particulary
if the depth map is obtained using stereo cameras or other depth-
from-X techniques. This confuses the segmentation process, re-
sulting in a noisy segmentation (and ultimately, a noisy painting).
This could be handled by assigning weights to the intensity infor-
mation and depth information, allowing the user (or the algorithm)
to compensate for noisy or incomplete data. The technique is not
applicable to portrait painting, as the depth gradient is quite small
across a face. There may be other artistic techniques for portrait
painting that would be more amenable to computer implementa-
tion.

We intend to explore: Are there other techniques that could be
applied to computer algorithms? Are the applications of these tech-
niques used in this system correct, or do they bias the painting un-
neccesarily? Are there better ways of providing tools for users to
experiment? Perhaps users want more control over the process of
painting, instead of less control?

10 Conclusion and Future Work

We think productive future work would include improvements to
every stage of the algorithm. Images which require sophisticated
segmentation, and images where viewers are sensitive to the fea-
tures of the image, such as detailed portraits, can cause the method
to fail. Better segmentation, such as that given by anisotropic dif-
fusion [26], may yield immediate improvements in linking brush
strokes to salient features of the image. The computation of medial
axes might be less sensitive to noise if a continuous medial axis al-
gorithm based on Voronoi partitions were used. This may also sim-
plify the job of token-merging in our algorithm by reducing input
noise. A sophisticated ordering of brush strokes, such as optimizing
order based on edge correlation with the original image might im-
prove the painting, but would come with huge cost in computation

and memory usage. A more physically-based paint-mixing would
give a look more reminiscent of oil painting.

Our system might also benefit from a user-assisted stage at the
end to improve brush stroke ordering. An estimate of foveal at-
tractors in the image could allow brush stroke size to be varied with
probable viewer interest. Most challenging, our method could prob-
ably be extended to animated sequences, using time-continuous
brush-stroke maps to ensure continuity. However, it is not clear
what such animated sequences would look like, or to what extent
they are useful. The most exciting future effort is to create an ac-
tual stroke-based hard copy using robotics or other technology.

11 Acknowledgments

We would like to thank Amy Gooch, Kavita Dave, Bill Martin,
Mike Stark, Samir Naik, the University of Utah Graphics Group
and the University of North Carolina Graphics Group for their help
in this work. This work was carried out under NSF grants NSF/STC
for computer graphics EIA 8920219, NSF/ACR, NSF/MRI and by
the DOE AVTC/VIEWS.

Appendix: Thinning Algorithm

Rosenfeld’s thinning algorithm tests each pixel neighborhood for
redundant pixels. Since this test is performed at each pixel in the
image, it is important that it be fast. We have developed an original
technique for determining whether a pixel is redundant.

In this Appendix, we describe the test that is performed at each
pixel. The input is the pixel’s 8-neighborhood, and the output is
a boolean telling whether this pixel is redundant. The idea of this
test is to construct a graph of all of the paths through this neigh-
borhood, then test whether removing the center pixel breaks any of
these paths. If it does not, then the center pixel represents a redun-
dant path. If it does, then the center pixel must remain (this is called
8-simple).

Observations

The first step is to construct a graph G (V, E) that connects every
pixel, except for the center pixel, to its adjacent pixels. This is
illustrated in Figure 12.

This graph G represents the paths through this neighborhood.
The test for 8-simpleness just becomes a test for the connectedness
of G. We can use Euler’s Theorem for connected planar graphs,
which states that v+r−2 = e, where v denotes vertices, r denotes
regions of plane, e denotes edges. Rearranging the terms yields two
conditions for 8-simpleness in a pixel neighborhood: 1) there can
be no isolated pixels; 2) v − 1 ≤ e.

Figure 12: From left to right: The graph representation of a
full neighborhood. An 8-simple neighborhood. Another 8-simple
neighborhood. A non-8-simple neighborhood.

Implementation

Let the edges of G be Ei, and a graph representation of a full neigh-
borhood be N . Then the algorithm is:

for each i ∈ G {
//Test for isolated pixels
if (Ei ∩ N = φ) return not simple;
// Else add to the total edges
else edges += degree(Ei ∩ N) ;

}
// Euler’s Thereom.
if (edges ≥ v − 1) return simple;
else return not simple

Notes

We encoded the Ei and N in binary, resulting in a fast test. The only
storage requirements are the eight sets Ei, which can be stored as
eight integers. Most previous thinning algorithms in the computer
graphics literature enumerate and store every case, resulting in a
large overhead.

References

[1] BERMAN, D. F., BARTELL, J. T., AND SALESIN, D. H.
Multiresolution painting and compositing. Proceedings of
SIGGRAPH 94 (1994), 85–90.

[2] BLUM, H. A transformation for extracting new descriptions
of shape. Models for the Perception of Speech and Visual
Form (1967), 362–380.

[3] BURBECK, C. A., AND PIZER, S. M. Object representa-
tion by cores: Identifying and representing primitive spatial
regions. Vision Research 35, 13 (1995), 1917–1930.

[4] COCKSHOTT, T. Wet and Sticky: A Novel Model for
Computer-Based Painting. PhD thesis, University of Glas-
gow, 1991.

[5] CORMEN, T., LEISERSON, C., AND RIVEST, R. Introduc-
tion to Algorithms. MIT Press, 1990.

[6] CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEIS-
CHER, K. W., AND SALESIN, D. H. Computer-generated
watercolor. Proceedings of SIGGRAPH 97 (August 1997),
pages 421–430.

[7] GOOCH, B., SLOAN, P.-P. J., GOOCH, A., SHIRLEY, P.,
AND RIESENFELD, R. Interactive technical illustration. 1999
ACM Symposium on Interactive 3D Graphics (April 1999),
31–38.

[8] HAEBERLI, P. E. Paint by numbers: Abstract image represen-
tations. Proceedings of SIGGRAPH 90 24, 4 (August 1990),
207–214.

[9] HEARN, D., AND BAKER, M. P. Computer Graphics.
Prentice-Hall, 1986.

[10] HERTZMANN, A. Paint by relaxation. In Computer Graphics
International 2001 (July 2001), pp. 47–54. ISBN 0-7695-
1007-8.

[11] HERTZMANN, A. Painterly rendering with curved brush
strokes of multiple sizes. Proceedings of SIGGRAPH 98 (July
1998), 453–460.

[12] HUBBARD, P. M. Approximating polyhedra with spheres
for time-critical collision detection. ACM Transactions on
Graphics 15, 3 (July 1996), 179–210.

[13] JAIN, R., KASTURI, R., AND SCHUNCK, B. Machine Vision.
McGraw-Hill, 1995.

[14] LITWINOWICZ, P. Processing images and video for an im-
pressionist effect. Proceedings of SIGGRAPH 97 (August
1997), 407–414.

[15] MEIER, B. J. Painterly rendering for animation. Proceedings
of SIGGRAPH 96 (August 1996), 477–484.

[16] PERLIN, K., AND VELHO, L. Live paint: Painting with pro-
cedural multiscale textures. Proceedings of SIGGRAPH 95
(August 1995), 153–160.

[17] PHAM, B. Expressive brush strokes. Computer Vision,
Graphics, and Image Processing. Graphical Models and Im-
age Processing 53, 1 (Jan. 1991), 1–6.

[18] ROSENFELD, A. A characterization of parallel thinning algo-
rithms. InfoControl 29 (November 1975), 286–291.

[19] SASAKI, H. Color psychology.
http://www.shibuya.com/garden/colorpsycho.html (April
1991).

[20] SCHLICK, C. Quantization techniques for visualization of
high dynamic range pictures. Proceedings of the 5th Euro-
graphics Workshop (June 1994), 7–20.

[21] SHIRAISHI, M., AND YAMAGUCHI, Y. An algorithm for au-
tomatic painterly rendering based on local source image ap-
proximation. NPAR 2000 : First International Symposium
on Non Photorealistic Animation and Rendering (June 2000),
53–58.

[22] SMITH, A. R. Varieties of digital painting. Tech. rep., Mi-
crosoft Research, August 1995.

[23] SOUSA, M. C., AND BUCHANAN, J. W. Computer-
generated graphite pencil rendering of 3d polygonal models.
Computer Graphics Forum 18, 3 (September 1999), 195–208.

[24] STRASSMANN, S. Hairy brushes. Siggraph 20, 4 (Aug.
1986), 225–232.

[25] TRUCCO, E., AND VERRI, A. Introductory Techniques for
3-D Computer Vision. Prentice-Hall, 1998.

[26] TUMBLIN, J., AND TURK, G. LCIS: a boundary hierar-
chy for detail-preserving contrast reduction. Proceedings of
SIGGRAPH 99 (August 1999), 83–90. ISBN 0-20148-560-5.
Held in Los Angeles, California.

[27] WILLIAMS, L. 3D paint. 1990 Symposium on Interactive 3D
Graphics (1990), 225–233.

[28] WONG, E. Artistic rendering of portrait photographs. Mas-
ter’s thesis, Cornell University, 1999.

Figure 13: Underpainting is a method used by artists to block in basic forms and values in a painting. We simulate underpainting by allowing
the user to render strokes on top of another image. This example shows a source image. Next a painting made from this image using the
source image as an underpainting. The third image is an underpainting made by changing the color gamut of the original image and then
blurring the image. The final painting was made by painting strokes, using the first image as a source, onto the modified underpainting. This
technique can be expanded to create images with multiple painted layers.

Figure 14: An example of varying the number of gray levels in the segmentation and the resulting paintings.From top to bottom the images
were segmented using; 12, 48, 72, and 150 gray levels.

Figure 15: Digitally simulated brush strokes. These images demonstrate the range of brush effects.

Figure 16: An example of using depth segmentation. From left to right: the original image, the depth image, the painting without using the
depth information, and the painting using depth information. No underpainting was used (for comparison)

