
A TRANSFORMATIONAL APPROACH TO ASYNCHRONOUS HIGH�LEVEL SYNTHESIS

Ganesh Gopalakrishnan � Venkatesh Akella �

ganesh�cs�utah�edu� akella�eecs�ucdavis�edu�
University of Utah� University of California�
Dept� of Computer Science� Dept� of EE and Computer Engg��
Salt Lake City� UT ������ USA Davis� CA ��	�	� USA

UUCS�������

Department of Computer Science
University of Utah

Salt Lake City� UT ������ USA

July ��� ���

Abstract

Asynchronous high�level synthesis is aimed at transforming high level descriptions of algo�
rithms into e�cient asynchronous circuit implementations� This approach is attractive from
the point of view of the exibility it a�ords in performing high level program transforma�
tions on users� initial descriptions� the faithfulness with which it supports the communicating
process model of computation� and the ease with which it accommodates computations that
have data dependent control�ow decisions as well as data dependent execution times� In this
paper� we take the reader through the entire process of synthesizing two asynchronous cir�
cuits using our high level synthesis tool� SHILPA� starting from input descriptions in hopCP�
emphasizing the program transformation techniques employed in the process� Speci�cally�
we show how tail�recursive loops with accumulating parameters can be software pipelined�
by evaluating the accumulating parameters in separate processes� We then show how the
resulting hopCP ow graphs �HFGs� are transformed through action re�nement resulting in
normal form HFGs �NHFGs�� NHFGs are then technology mapped onto an Actel FPGA
implementation� Our results are illustrated on a pipelined factorial circuit and a pipelined
integer square�root circuit�

Keywords� Asynchronous�Self�timed Systems� High Level Synthesis� Program Transforma�
tions

�Supported in part by NSF Awards MIP ������� and �������
�The work reported here was part of this author�s PhD dissertation work� and was supported by a

University of Utah Graduate Fellowship

� Introduction

High level synthesis tools hold considerable promise towards facilitating the rapid creation
of error�free Very Large Scale Integrated �VLSI� designs ���� Most of today�s high level
synthesis tools are designed to generate synchronous circuits from high level descriptions�
For many practical reasons �explained in Section ��� it is becoming increasingly di�cult to
manually build or automatically synthesize large synchronous circuits� In this paper� we
show how these problems can be largely avoided through asynchronous high level synthesis�
the creation of e�cient asynchronous circuits starting from high level descriptions�

Having built such an asynchronous high level synthesis tool� SHILPA �detailed in Sec�
tion
�� one of the major challenges we are now faced with is in obtaining hardware de�

scriptions that can be compiled into e�cient asynchronous circuits� Users� initial hardware
descriptions are written with emphasis on clarity� and as such do not result in e�cient asyn�
chronous circuits when compiled� Although the compiled circuits can be subject to circuit
level optimizations ���� it is virtually impossible to employ circuit level optimizations to com�

pensate for the lack of high level optimizations �� Therefore� it appears that it is essential
to investigate high level optimizations for deriving e�cient asynchronous circuits�

We propose the use of program transformations to transform initial hardware descriptions
�written with emphasis on clarity� into ones that result in e�cient asynchronous circuits� We
present the following speci�c results� We show how tail�recursive functional programs with
accumulating parameters �
� can be transformed into software pipelined�concurrent commu�
nicating process descriptions �Section ��� To concretely illustrate this idea� we provide
an overview of how SHILPA compiles concurrent process descriptions in the input language
hopCP into asynchronous circuits� and proceed to show the derivation of the circuit realiz�
ing the pipelined factorial function �Section ����� We then show how the hopCP process
descriptions �internally stored as hopCP ow graphs �HFGs�� an annotated form of Petri
nets� can be further re�ned through a procedure action re�nement into asynchronous circuit
descriptions �Section �� and technology mapped into a circuit description� In the Appendix�
we also show how program transformations can be valuable in transforming imperative algo�
rithms� This method is illustrated on the speci�cation of the integer square�root computation�
These results� as well as similar results obtained by others �e�g�� ��� 	� ��� underscore the
importance of high level program transformations in the derivation of e�cient asynchronous
circuits� Section 	� draws conclusions based on our results so far�

�Doing so would be analogous to trying to perform machine code optimizations that give the same e	ect

as
e�g�� loop invariant optimizations� in a software compiler
�Software pipelining ��� is a term which describes the fact that the next iteration of a loop can be begun

before the current iteration �nishes�

� Motivations� and Related Work

From the point of view of circuit design in the large� asynchronous circuits are attractive in
several ways �see Brzozowski and Seger ���� and Gopalakrishnan and Jain ��� which are two
surveys� Sutherland ���� and Seitz ���� which are two widely cited articles� and the papers in
���� which are a collection of recent papers�� Asynchronous circuits avoid clock�distribution
problems that cost valuable design time in large synchronous systems ��
�� Asynchronous
circuits are easier to incrementally expand� as their operation is not based on global clock
schedules� High level synthesis of computations with data depend timings using the syn�
chronous paradigm is di�cult ����� Asynchronous circuits avoid this problem due to their
handshake based �self scheduling� nature� and can even exploit the data dependent nature
of operator timings ���� to gain average�case speed�up�

From the point of view of high level design derivation� asynchronous circuits pose several
interesting challenges� Given the high level description of a problem� obtaining a circuit
that is optimized for area and time in a pre�speci�ed way is one such challenge� As in
traditional compilers� the optimizations can be carried out at several levels� some of which
are� source�to�source level� ow�graph level� and �nal code level� Circuit level optimizations
of asynchronous circuits have been studied in ��� �	�� Flow�graph level optimizations have
been studied in ����� Source to source optimizations have been studied by Nielsen and
Martin in ���� by van Berkel in �	�� and Ebergen in ���� The works by Nielsen� Martin� and
Ebergen considers the derivation of regular structures� Our work is more along the lines of
that by van Berkel �	� in that we deal primarily with less regular computations �and �nal
circuits�� Our work is also somewhat related to that of Johnson ����� except that our target
is asynchronous circuits �while Johnson�s target is synchronous circuits�� Also� neither van
Berkel nor Johnson explore the derivation of software pipelined designs through program
transformations� We consider our approach to be attractive from the point of view of formal
veri�ability� and because it ties in quite well into the SHILPA system that has already been
built and tested on a number of designs� The fact that SHILPA can currently synthesize
Actel FPGA based asynchronous circuits from high level descriptions also a�ords us a exible
environment for experimentation with these ideas�

� Overview of SHILPA

Recently there has been a growing interest in the automated high level synthesis of asyn�
chronous circuits from concurrent process descriptions� Our work ���� ��� falls into this
category� Improvements in SHILPA over other e�orts in this area �e�g�� ��	� �� ��� ��� are
primarily the following� �i� hopCP� the source language for SHILPA� is a mixed process
and functional language tailored for hardware description with distributed shared variables�
barrier synchronization� and broadcast communication� It is more expressive than Martin�s
input language �CHP�� Brunvand�s version of �Occam�� or van Berkel�s language �Tangram��
In this paper� we show how certain hopCP descriptions written in the functional notation
can be transformed into the process notation� �ii� our graph�based compilation scheme is

amenable to ow�analysis based optimizations� �iii� SHILPA is an integrated collection of
tools in which the user can direct the outcome of the synthesis process through interactive
commands�

In this paper� we focus on certain high level optimizations to transform hopCP descriptions
into a form that engenders e�cient asynchronous circuits� We �rst take a familiar example�
a circuit to compute the factorial of an integer� We will initially transform the tail�recursive
de�nition of factorial with an accumulating parameter into two concurrent processes� where
the �rst process is the driver and the second process evaluates the accumulating parameter�
In the Appendix �Section A�� we will present similar transformations done on the imperative
speci�cation of the integer square�root function� In our presentations� we will employ a
pseudo�hopCP notation� which will be explained along with the examples�

� Transforming Functional Programs for Software�pipelining

Hardware description and synthesis using a purely functional notation has attracted much
interest lately ���� ���� Functional languages are attractive for system�level description due
to their referential transparency� their ability to state the desired behavior without any oper�
ational committments� their use of higher order functions� and the sophisticated type system
they come with ��
�� In this presentation� we stick to a �rst�order tail�recursive notation
similar to what ���� employs� The use of accumulating parameters is a popular way of con�
verting non tail�recursive descriptions to the tail�recursive form� Other researchers who use
the functional notation for hardware description have not �to the best of our knowledge�
studied the problem of deriving software�pipelined designs from functional descriptions� Al�
though Sheeran ���� has used the functional notation for hardware description� it was used
for deriving regular designs� Ebergen�s work ��� is in deriving regular asynchronous designs
from functional descriptions� Busvine ���� has studied the problem of translating SML pro�
grams to sequential Occam� code �he does not address deriving parallel�pipelined Occam�
programs��

We now illustrate our ideas on the familiar tail�recursive factorial description�

fact�n�a� �� �n��� �	 result
a �	 again�n �	 fact�n���

 �not �n���� �	 fact�n��� n�a�

Here� �� denotes sequencing and � denotes guarded choice� Process fact has a list of formal
parameters �n�a� which are initialized to suitable values to begin with� The construct
result�a is an output communication command �as in CSP�� and synchronizes with an
input communication command of the form result�variable within another process� The
construct again�n is an input communication command �as in CSP� which rendezvous with
an output communication command of the form again�expression from another process�

From the above de�nition� one can note that the value of n�a is bound to �a� upon each
tail�call� This fact can be made clear by slightly modifying the de�nition of fact� we also

introduce a concurrent process pa in the process�

fact�n�a� �� �n��� �	 result
a �	 again�n �	 fact�n���

 �not �n���� �	 mult
�n�a� �	 rslt�w �	 fact�n��� w�

pa�� �� mult��x�y� �	 rslt
�x�y� �	 pa��

Process pa is sent a pair 	n�a
 whenever n and a are to be multiplied� After multiplication�
process pa sends back the result through port rslt�

Notice that the value of �a� is not used immediately in the body of fact� Thus� the next
iteration of fact can be allowed to begin even before the evaluation of n�a �nishes� This
change is reected by letting process pa �own� the formal parameter �a�� and allowing process
pa to multiply the two numbers in the background� We also eliminate �a� from the �next
iteration� of fact �captured by process fact��� Notice that fact� does not wait for the
result of the multiplication to come back from pa before it tail�recurses once again�

fact�n�a� �� �n��� �	 result
a �	 again�n �	 fact�n���

 �not �n���� �	 mult
�n�a� fact��n���

fact��n� �� �n��� �	 senda
 �	 again�n �	 fact��n�

 �not �n���� �	 rslt�w �	 mult
�n�w� �	 fact��n���

pa�a� �� mult��x�y� �	 rslt
�x�y� �	 pa���

Since fact� is devoid of its second argument� it appeals to process pa through command
senda� whenever it needs to send the �nal answer� Thus� pa will end up having two
commands� indicated by a guarded choice in its de�nition� When n is not equal to zero�
fact� waits through the result of the previous multiplication �through rslt�w�� starts the
next multiplication� and proceeds�

Notice that fact and fact� are very similar� and it is redundant to keep both� We
therefore devoid fact also of parameter a� Also� consider the steps rslt�w �� mult�	n�w
�
fact� needn�t obtain the results of the multiplication� �w� from m� only to send it back to
process pa �as part of the tuple 	n�w
�� Thus� process fact� simply ends up sending �n� to
process pa� and asks it to multiply with the value of a that process pa is already holding�
Doing this �and renaming the combined factorial process factpipe� results in the following
description�

factpipe�n� �� �n��� �	 senda
 �	 again�n �	 factpipe�n�

 �not �n���� �	 mult
n �	 factpipe�n���

pa�a� �� mult�n �	 pa�n�a�

 senda� �	 result
a �	 pa���

s[x]

p?y

s[f(x,y)]

p?y

s

s

x <- f(x,y)

s’

RegX

RegY

p?y

s

s’

s BCel.in_i!!

BCel.out_i??

Reg.ld!!

Reg.ldack??

Ctree.in_i!!

Ctree.out??

s’

ld

ldack

Reg

in_i

out

in1
in2

inN

out1
out2

outN

in_i out_i

ctl (done by p!E)

in_1 in_N

Acts as an
ack for p!E

Multi-
 cast

Refine Input Action

Eliminate
Data Path
Variables

BCel

Ctree

Broadcast

Figure �� An Example of Action Re�nement

Processes factpipe and pa when started in parallel with n holding the desired number� and
with a initialized to � calculates factorial of n� Thereafter� factpipe seeks the next number
to work on� through the input communication command again�n�

One of the advantages of using a mixed process�functional notation for the above deriva�
tion is quite apparent� operational details of program evaluation can be elegantly captured
using the process description sub�language� The derivation evolves� gradually substituting
the process component for the functional component� hopCP does have a formal semantic
description ����� however� we do not yet have an algebra that can support the above kind
of derivations� �We would like to investigate such an algebra�� The work of Page and Luk
���� who have studied process�level transformations in Occam is quite relevant to cite in this
connection�

� From hopCP Descriptions to Asynchronous Circuits

In SHILPA� we synthesize transition style circuits with data bundling ����� Each hopCP
description is internally represented through a ow graph �called the hopCP ow graph� or
HFG�� An HFG is similar to a Petri�net in that it has both places and transitions� however�
these are annotated with data path states and�or communication actions� In Figure �� a
transition �S�x�� p�y� S�f�x� y��� from an HFG is shown� This transition starts at state S�x�
which evolves through input rendezvous action p�y to state S�f�x� y��� According to our
conventions� process S is making a tail call back to itself� and updating its internal variable
x with f�x� y� in the process� The �rst step in re�ning this action is to allocate register x

to hold the data state and register y to hold the input value received� as shown� The data
state update is made explicit by introducing a register transfer action x� f�x� y��

Next� we take the transition �S� p�y� S
�

� and re�ne it by invoking a pre�de�ned expansion
for the input communication action� Since input rendezvous actions follow the multiway

f (x , y)

Procedure
expressionRefine

getReg getReg

p?y

s

s

x <- f(x,y)

s’

RegX

RegY

Procedure
expressionRefine

Procedure
updateAction

Procedure
actionRefine

RegX RegY

FAB_f

arg_1 arg_2

rslt

C

arg2.ld!!arg1.ld!!

arg1.ldack?? arg2.ldack??

FAB_f.init!!

FAB_f.done??

Regrslt.ld!!

Regrslt.ldack??

RegX.ld!!

RegX.ldack??

Figure �� An Example of Action Re�nement �contd��

rendezvous semantics� in SHILPA we generate an interconnection of c�elements called the
�broadcast c�element�� or BCel� which has N�� inputs and N outputs� where N is the
number of receivers reading from the channel �� BCel has the property that as soon as a
transition has been produced on input in i and the sender has produced a transition on input
ctl� a transition is produced on output out i� This loads the data into a register �Reg� that
is also allocated� The acknowledge from the register goes to a completion tree� The output
of the completion tree is an acknowledgement for the sender that the value has been latched
by all the receivers� The acknowledgement for each receiver is taken to be the register load
acknowledge signal� resulting in the multicast semantics� This is indicated in Figure � by
the dotted box labeled �Multicast�� meaning that the last Petri�net transition enclosed by
this dotted box� Ctree�in i��� can be taken as the acknowledgement signal by the ith receiver�
If broadcast semantics is desired� the completion signal for the receivers should also be the
output of the completion tree� as shown by the correspondingly named dotted box in the
same �gure�

Continuing with this example� we next take the register�transfer action x � f�x� y� for
re�nement� by invoking procedure actionRe�ne� This recursively calls procedure expression�
Re�ne to re�ne expression f�x� y�� In compiling the application of a function f � its arguments
are recursively re�ned� to begin with� In this case� the arguments are both variables� whose
re�nement results in calls to getReg� that retrieves the registers already allocated correspond�
ing to these variables� Thereafter� a function action block �FAB� is allocated corresponding
to f � The NHFG shown in Figure � is then generated� As can be seen� this NHFG captures
control sequencing that �rst loads the argument registers of FAB f� initiates the function
evaluation� loads the result register� and then loads RegX to complete the required evalua�
tion�

�A Petri net transition annotated with �M�p� reads � apply a signal transition on module M�s port p�

likewise� �M�q��� denotes awaiting a transition�

��� Obtaining a Pipelined Factorial Circuit

We synthesize those versions of processes factpipe and pa given last in Section �� We

show here only factpipe� First� the description is subject to action re�nement through

command�

���� bliss�cs� SHILPA

val it � true � bool

� val 	g
t
r
n
f
c
typ
fvd� � ar �examplefactpipe�h��

Detecting Sharing ���������

�������Found � shared actions

Inserting CALL and BCALL Modules appropriately ���������

Modifying NHFG to reflect Sharing ���������

Generating MERGE elements ����

The above command results in the initial resource list �the purpose of each resource is also

explained��

� printResource r�

REG���argument for AB���arg�n C����data query for again�n

REG���argument for AB���arg�n REG���query var for n

PAB���� for zero REG���result for �

AMUX����� for n FAB���� for 	decr n�

XOR����� for control��

Next� we eliminate argument� and result registers that are not needed� The idea is� �elim�

inate short of creating combinational loops�� �We could have retained the argument and

result registers� had we been interested in micropipelining the design�� SHILPA automati�

cally recon�gures the circuit to compensate for the lack of these registers�

val it � 	� � unit

� val 	t�
r�
n�� � eliminate�argument�register 	t
r
n���
���

Generating MERGE elements ����

Finally� we invoke our technology mapper� to create an Actel FPGA wire�list �le�

� hopCP�actel r� n� f typ fvd�

Module Name � factpipe

The resulting circuit for factpipe is in Figure
 The circuit works as follows� Initially�
transition start is applied to the XOR� This triggers module ZERO to test whether n�� The
�true� transition� T� triggers SENDA OUT� which implements the senda� communication�
When the acknowledgement SENDA IN comes� it triggers the C element which �res when
AGAIN IN also arrives �the communication again�n�� and when it does� loads the new n

through the asynchronous multiplexor AMUX into register n� The �false� transition� F� triggers
MULT OUT� which implements mult�n� When MULT IN arrives �the acknowledge for mult�n��
the decrementer module decr is triggered� Its ack loads the result register of n� and is routed
to register n through the asynchronous multiplexor AMUX upon tail�call�

CLR

T

F
REQ

A[7:0]

ZERO

I3
I2
I1

XOR3OUT

MC

C
A

B
OUT

CACK

C[7:0]

CREQ

BACK

B[7:0]

BREQ

AACK

A[7:0]

AREQ
AMUX

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

decr
CLR

ACK

OUT[7:0]

REQ

A[7:0]

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

START SENDA_OUT

SENDA_IN

MULT_OUT

MULT_IN

CLR

AGAIN_OUT

AGAIN_IN
MULT_DATA[7:0]

IN5[7:0]

IN4[7:0]

IN2[7:0]

AGAIN_DATA[7:0]

Figure
� The Pipelined Factorial Circuit� process factpipe

� Summary and Conclusions

We have found that a transformational approach to asynchronous circuit synthesis is
promising in a number of ways� In this paper� we show how to derive software pipelined
asynchronous circuit implementations of tail�recursive programs through program transfor�
mations� We then present the approach of transforming process descriptions from HFGs to
NHFGs through action re�nement� and point out its advantages� �i� it allows graph based
algorithms to be used for optimizations� �ii� it is modular� re�ning each HFG fragment with
its associated NHFG elaboration and the associated resources� �iii� users can modify the
NHFG through interactive commands� and hence can have direct control over the �nal cir�
cuit that emerges� �iv� it also allows the application of graph�based performation evaluation
techniques �see below��

A related question we are answering at this stage is the following� �when is it worthwhile
to perform a high�level optimization�� This question has not been answered satisfactorily
by the high�level synthesis community� for a collection of communicating processes� Ku ����
has done pioneering research in estimating the performance of concurrent computations� We
are gravitating more towards the work pioneered by Zuberek ��	�� as well as Burns ����� as
our HFG based internal representation �ts well with the Petri net based representation used
by Zuberek and Burns�

Through simulation studies� we have observed that software pipelining can be good �as we
observed for a pipelined minmax circuit� or that the overheads can sometimes overshadow
the bene�ts �as we observed when we pipelined a serial�parallel multiplication algorithm�
����� As part of our future work� we plan to explore performance evaluation techniques in
greater detail�

References

�� Michael C� McFarland� Alice C� Parker� and Raul Camposano� The high�level synthesis of

digital systems� Proceedings of the IEEE� �����	
���
��� February ���

�� Erik Brunvand� Translating Concurrent Communicating Programs into Asynchronous Circuits�

PhD thesis� Carnegie Mellon University� ���

� Peter Henderson� Functional Programming� Prentice Hall� ����

�� John Hennessy and David Patterson� Computer Architecture� A Quantitative Approach� Mor�

gan Kaufman� ���

�� Christian Nielsen and Alain Martin� The derivation of a multiply�accumulate unit� In Pro�

ceedings of the ��th Hawaiian International Conference on System Sciences� January �
�

�� Kees van Berkel� An error decoder for the compact disc player as an example of vlsi program�

ming� In Proceedings of the ���� EURODAC� pages ����� March ���

�� Jo C� Ebergen� The derivation of a serial�parallel multiplier and divisor� Technical report�

Department of Computer Science� University of Waterloo� ���

�� John Brzozowski and Carl�Johan Seger� Advances in Asynchronous Circuit Theory	 Part I	

Gate and Unbounded Intertial Delay Models� and Part II	 Bounded Intertial Delay Models�

MOS Circuits� Design Techniques� Technical report� University of Waterloo� ���

� Ganesh Gopalakrishnan and Prabhat Jain� Some recent asynchronous system design method�

ologies� Technical Report UUCS�TR������� Dept� of Computer Science� University of Utah�

Salt Lake City� UT ������ ���

��� Ivan Sutherland� Micropipelines� Communications of the ACM� June ��� The ���� ACM

Turing Award Lecture�

��� C� A� Mead and L� Conway� An Introduction to VLSI Systems� Addison Wesley� ���� Chapter

�� entitled 	System Timing
�

��� Ganesh Gopalakrishnan and Erik Brunvand� Mini�track coordinators� introduction to papers

on asynchronous circuits and systems� January �
�

�
� Information on the DEC Alpha Processor� FTP�able from DEC� details are obtainable from

hudson�tolkin�enet�dec�com�Also� the story �How DEC developed Alpha�� IEEE Spectrum�

July� ��� pages ���
��

��� David Ku� Constrained Synthesis and Optimization of Digital Integrated Circuits from Behav�

ioral Speci�cations� PhD thesis� Department of Computer Science� Stanford University� June

���

��� Ted E�Williams and Mark Horowitz� A zero�overhead self�timed ���ns ��bit cmos divider�

IEEE Journal of Solid State Circuits� ������	���������� November ���

��� Alain J� Martin� Programming in VLSI	 From communicating processes to delay�insensitive

circuits� In editor C�A�R� Hoare� editor� UT Year of Programming Institute on Concurrent

Programming� Addison�Wesley� ���

��� Ganesh Gopalakrishnan and Venkatesh Akella� High level optimizations in compiling process

descriptions to asynchronous circuits� VLSI and Signal Processing� May �
� To Appear in a

Special Issue on Asynchronous Design�

��� Stephen Johnson� B� Bose� and C� Boyer� A tactical framework for hardware design� In Graham

Birtwistle and P�A�Subrahmanyam� editors� VLSI Speci�cation� Veri�cation and Synthesis�

pages
��
�
� Kluwer Academic Publishers� Boston� ���� ISBN�����
��������

�� Venkatesh Akella� Action re�nement based transformation of concurrent processes into asyn�

chronous hardware� Ph�D� research in progress�

��� Venkatesh Akella and Ganesh Gopalakrishnan� Shilpa	 A high�level synthesis system for self�

timed circuits� In International Conference on Computer Aided Design �ICCAD� Santa Clara�

November ��� To appear�

��� Kees van Berkel� Handshake circuits� an intermediary between communicating processes and

VLSI� PhD thesis� ���

��� Mary Sheeran� mufp� a language for vlsi design� In Proceedings of the ACM Symposium on

Lisp and Functional Programming� pages �������� ����

�
� John Hughes� Why functional programming matters� Technical Report ��� Programming

Methodology Group� University of Goteborg and Chalmers Institute of Technology� Sweden�

November ����

��� David Busvine� Translation of SML to Sequential Occam�� Technical report No� ���� Dept�

of Computer Science� Heriott�Watt University� U�K�� ���

��� Ian Page and Wayne Luk� Compiling Occam into Field�Programmable Gate Arrays� In Inter�

national Workshop on Field Programmable Logic and Applications� September ��� September

���� ����� Oxford University� UK�

��� W�M� Zuberek� Timed petri nets and preliminary performance evaluation� In �th Annual

International Symposium on Computer Architecture� pages ����� ����

��� Stephen Burns� Performance evaluation of asynchronous circuits� Technical Report TR�����

Computer Science Dept�� California Institute of Technology� ���

��� Ganesh Gopalakrishnan and Venkatesh Akella� Speci�cation� simulation� and synthesis of self�

timed circuits� In Proceedings of the ��th Hawaiian International Conference on System Sci�

ences� January �
�

�� Nachum Dershowitz� The evolution of programs� Birkhauser� ��
�

A Transforming Imperative Programs

A large majority of algorithms are expressed in an imperative style� Therefore it is de�
sirable to apply the techniques we have proposed thus far for for transforming imperative
programs to perform optimizations such as software pipelining� We follow the lead of Der�
showitz ����� who shows how imperative programs may be transformed to achieve operator
strength reduction �replacing costly operations by cheaper equivalent operations�� avoiding
recomputing loop invariants� etc� We pick his integer square�root program ���� Page ��	��
After program transformations� the resulting square root program has been devoid of costly
operations such as multiply� it is given below in C�

main��

� long a� u� v� w��� t� z�

printf���n Give a�n��� scanf���d���a��

while ���a 	� w� w���w� u��a� v�w���

while �w	�� � w�w��� v��v�w����

t�u�v� if�t����� u�t� v�v�w� ��

z��v������ printf��z � �d�n�� z��

Expressed in hopCP� this program reads�

�isqrt�� �� get�number�a �	 getw����mult� a��a��

�

�getw�w�twicea�a� �� ��twicea � w� �	 after�getw�w��div� w�����neg a���

 ��not �twicea � w�� �	 getw��times� w�� twicea�a ���

�

�after�getw�w�v�t�u� ��

��le� w� �	 final�answer
�div� �minus� v�� �	 isqrt���

 ��not �le� w�� �	 w �� �div� w�

�	 v �� �div� �minus v w��

�	 t �� �plus u v�

�	 ��gt� t� �	 after�getw�w�v�t�u��

 ��not �gt� t�� �	 after�getw�w��plus v w��t�t����

After applying software pipelining transformations presented in this paper on process after getw

�which has an accumulating parameter�� we have the following two equivalent �but pipelined�
processes�

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

MC

C
A

B
OUT

MC

C
A

B
OUT

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

OUT[7:0]

IN2[7:0]

IN1[7:0]

FAB

REQ
ACK

PAB

IN2[7:0]

IN1[7:0]
T

REQ
F

CACK

C[7:0]

CREQ

BACK

B[7:0]

BREQ

AACK

A[7:0]

AREQ
AMUX

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

OUT[7:0]

IN2[7:0]

IN1[7:0]

FAB

REQ
ACK

I3
I2
I1

XOR3OUT

CACK

C[7:0]

CREQ

BACK

B[7:0]

BREQ

AACK

A[7:0]

AREQ
AMUX

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

c
t
r
e
e
2

CLR

OUT

IN2

IN1

reg8

ACK
CLR

I[7:0] O[7:0]

REQ
MC

C
A

B
OUT

B

A
XOR

Y
MC

C
A

B
OUT

PAB

IN2[7:0]

IN1[7:0]
T

REQ
F

reg8

ACK
CLR

I[7:0] O[7:0]

REQOUT[7:0]

IN2[7:0]

IN1[7:0]

FAB

REQ
ACK

A[7:0]

B[7:0]

REQ

T

F

CLR

LT
reg8

ACK
CLR

I[7:0] O[7:0]

REQ

OUT[7:0]

IN2[7:0]

IN1[7:0]

FAB

REQ
ACK

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

OUT[7:0]

IN2[7:0]

IN1[7:0]

FAB

REQ
ACK

OUT[7:0]

IN2[7:0]

IN1[7:0]

FAB

REQ
ACK

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

c
t
r
e
e
2

CLR

OUT

IN2

IN1

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

D
[
7
:
0
]

D
R
E
Q

CACK

C[7:0]

B
R
E
Q

AACK

A[7:0]

AREQ

B
[
7
:
0
]

B
A
C
K

CREQ

D
A
C
K

AMUX3

reg8

ACK
CLR

I[7:0] O[7:0]

REQ

B

A
XOR

Y

START

REG_28_LDACK

REG_28_LD

REG_14_LDACK

REG_14_LD

PAB_54_IN2

PAB_20_IN2

INITV_OUT

INITV_IN

FAB_39_IN2

FAB_29_IN2

FAB_24_IN2

FAB_16_IN2

FAB_10_IN2

DIV2MINUSVW_OUT

DIV2MINUSVW_IN

C_45_IN2

C_43_IN1

C_42_IN1

C_15_IN2

CLR

ADDW_OUT

ADDW_IN

VPORTACK_DATA[15:0]

REG_28_IN[7:0]

REG_14_IN[7:0]

INITV_DATA[15:0]

IN336[15:0]

IN334[15:0]

IN331[15:0]

IN329[15:0]

IN327[15:0]

IN323[15:0]

IN319[15:0]

IN315[15:0]

IN313[15:0]

IN312[15:0]

IN311[15:0]

IN307[15:0]

IN305[15:0]

IN299[15:0]

IN297[15:0]

IN296[15:0]

IN295[15:0]

IN294[15:0]

IN293[15:0]

DIV2MINUSVW_DATA[15:0]

AMUX_58_IN1[15:0]

AMUX_56_IN2[15:0]

Figure �� A Portion of the Pipelined Integer Square�root Circuit

�after�getw�w�t�u� ��

��le� w� �	 send�final�answer
 �	 psqrt���

 ��not �le� w�� �	 w �� �div� w� �	 div�minusvw
w �	 vport

�	 vportack�v� �	 t �� �plus u v��

�	 ��gt� t� �	 after�getw�w�t�u��

 ��not �gt� t��

�	 addw
w �	 after�getw�w�t�t�� ��

�pv�v� �� �div�minusvw�w� �	 pv��div� �minus v w�����

�vport� �	 vportack
v �	 pv�v��

�addw�w� �	 pv��plus v w����

�send�final�answer� �	 final�answer
�div� �minus� v�� �	 pv�v��

�initv�v �	 pv�v���

The resulting circuit for psqrt �the pipelined counterpart of isqrt�� getw� and the pipelined
version of after getw is shown in Figure ��

