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Abstract

Most o�set approximation algorithms for freeform curves and surfaces may be classi�ed
into two main groups� The �rst approximates the curve using simple primitives such as
piecewise arcs and lines and then calculates the �exact� o�set operator to this approximation�
The second o�sets the control polygon�mesh and then attempts to estimate the error of the
approximated o�set over a region� Most of the current o�set algorithms estimate the error
using a �nite set of samples taken from the region and therefore can not guarantee the o�set
approximation is within a given tolerance over the whole curve or surface�

This paper presents new methods to globally bound the error of the approximated o�set
of freeform curves and surfaces and then automatically derive new approximations with
improved accuracy� These tools can also be used to develop a global error bound for a
variable distance o�set operation and to detect and trim out loops in the o�set�

� Introduction

O�set surfaces are very important in manufacturing� and their computation and approximation
have undergone extensive research� The curve o�set is an intuitive operation and has been
mathematically known for more than a hundred years ��� ��� ���� The o�set operator is closed
for arcs and lines� i�e� the o�sets of an arc and a line are an arc and a line� respectively� This
is not so� in general� for Bezier and NURB curves� so approximations are usually derived�
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Two methods for �nding approximations to o�sets are commonly used for freeform
curves� The �rst approximates the curve using piecewise lines and arcs and then �nds the exact
o�set to the approximation� Such a technique was introduced ��	� and has been used success

fully ����� The second method attempts to approximate the o�set by directly transforming the
control polygon ���� �� �� �� ��� 	�� To improve the accuracy of the approximated o�set in
the second method� the original curve is usually subdivided or re�ned when the error is above�
prespeci�ed tolerance level and the same technique is applied to each of the subdivided pieces�
The original curves are usually subdivided in the middle of their parametric domain ���� �� ����
although that is not the optimal location� in general� Curve in�ection points have also been
considered as splitting points for o�sets �����

Both method are unable to bound the o�set error globally� In order to bound the error
introduced by the piecewise arcs and lines approximation� a curve
line and a curve
arc maximum
global distance computation is required� which is traditionally performed using a �nite set of
samples� A bound on the maximum error over the entire curve region can not be guaranteed
using such a technique� In the second method� a �nite number of samples are examined to
estimate the error for the entire curve region �typically one� in the middle of the parametric
domain�� which again can not insure global error bound� Both methods usually result in a
piecewise representation of the approximation to the o�set� a more di�cult representation to
use in further applications if the o�set is to be used as a modeling tool� Only the use of B

spline re�nement ���� results in a single curve� Approximations to o�sets of freeform surfaces
are more di�cult to determine because the subdivided components are subsurfaces� Bicubic
patches have been used to approximate the o�set surface of a given surface ��� This method
loses continuity across patches� unlike the re�nement technique ���� which can be adapted for
surfaces and which maintains the original continuity�

Because of the advantages of the curve�surface B
spline re�nement technique� we have
used this method as the basis of this implementation for bounding the global error� However�
the presented method for bounding error is not limited to this type of representation�

Trimming the loops formed by the self
intersection curves of the o�set is considered a
di�cult problem ����� An attempt has been made to attack this problem using numerical tech

niques by using a direct search for cusps to detect and identify self
intersections ���� However�
an approximation to the o�set may have no cusps simply because it is exactly that� an approxi

mation� Unidimensional successive searches have been used to isolate self
intersection points by
minimizing the ratio of the Euclidean space distance �which goes to zero at a self
intersection
point� over the parametric space distance �which should be nonzero at such point� ���� Since
this method converges to a local minimum� the initial guess location is crucial and is picked
at random� Thus robustness is not guaranteed� The curve of self intersection has been traced
using surface �walking� technique ��� and that method can be combined with the detection
methods developed here�

Section � develops the error bounding method and then shows how to use the informa

tion extracted from the curve in that method to isolate the maximum error regions� so local
improvement steps may be applied iteratively and in more a optimal way than using current
methods� Section � extends this method to support a variable o�set operator that can be used
as a modeling tool� Section � shows how to use the tools developed in section � to robustly
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detect and trim loops formed by self
intersections of the o�set� The Alpha � solid modeler�
using NURBs as its only representation� has been used to create all the examples in this paper�

� Global Bound for the o�set operator

Let C�t� be a regular planar parametrized curve� Without loss of generality� assume C�t� is in
the x� y plane� An o�set curve for C�t� by an amount d is de�ned mathematically as

�Cd�t� � C�t� �N�t�d ���

where N�t� is the unit normal to the curve at t� Since N�t� �ips its direction by ���o at
in�ection points� a di�erent de�nition for N�t� should be used to de�ne a manufacturing or
design o�set� De�ne the o�set binormal� Bo�t�� to always point in �z direction� and then de�ne
the o�set normal� No�t� as No�t� � Bo�t� � T �t�� where T �t� is the unit tangent to the curve�
Throughout this paper� and unless otherwise speci�ed� only the o�set normal� No�t�� will be
used�

Cd�t� � C�t� �No�t�d ���

Similarly for surfaces� an o�set surface for surface S�u� v� by an amount d is mathemat

ically de�nes as

Sd�u� v� � S�u� v�� n�u� v�d ���

where n�u� v� is the surface unit normal to the surface at parameter values �u� v��

Given two freeform NURB curves C��t� and C��t�� one can compute and represent as
B
spline curve their sum� di�erence and product ���� ��� Derivatives of NURB curves are also
representable as NURB curves� as are constant functions �i�e� d in Eqs� �����

Therefore� if No�t� �n�u� v�� could be computed and represented as a NURB� so could
Cd�t� �Sd�u� v��� Unfortunately� however� the representational form of a normal involves a
square root which is usually not representable in either P �polynomials� or in PP �piecewise
polynomials�� Thus� o�sets of freeform surfaces will� in general� be approximations�

Let Cad �t� be an approximation to the o�set curve of C�t� by an amount d �Eq� ��� and
let ��t� � Cad�t�� C�t� be the di�erence curve� Ideally� if Cad �t� � Cd�t�� ��t� � dNo�t��

Two tests can be applied to ��t� to determine the accuracy of the o�set approximation�
First� the deviation of ��t� from the direction of No�t� can be measured� If �T �t� � C��t�� the

T �t� �
�T�t�

k �T�t�k
is the unit tangent of C�t�� The deviation from the o�set normal direction can be

tested by �nding the deviation of the magnitude of
�T�t�

k �T�t�k
� ��t�
k��t�k� which is equal to the cosine

of the angle between the two vectors� and for the exact o�set curve is equal to �� However
�nding T �t� and k��t�k require representing square roots� and hence are quite impractical using
a piecewise rational representation� However one can represent the square of this inner product�
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� �T�t� � ��t��� �T�t� � ��t��
k �T�t�k�k��t�k� � ���

Although a representation for Eq�� is computable as a piecewise rational� it is a complex
process�

Instead� a second test can be applied to determine the accuracy of Cad�t� by measuring
the magnitude of ��t�� Computationally it is much more attractive� Current o�set techniques
usually evaluate this test on a set of sampled points� Direct representation of k��t�k still requires
the representation of a square root� so ��t� � k��t�k� is used instead and compared with d��

��t� � k��t�k� � �x�t�
� � �y�t�

� � �z�t�
� �	�

where �x�t�� �y�t� and �z�t� are the components of ��t��

Eq�	 can be directly represented using multiplication and addition which are computable
for rationals and piecewise rationals� Hereafter� assume ��t� can be computed and represented
as a scalar NURB curve� For exact o�sets� � is a constant curve equal to d� and by subtracting
d� from � one can �nd the di�erence curve for a particular approximation�

��t� � ��t�� d�� ���

The extremal values of the coe�cients of � provide a global error measure� It is important
to examine the consequences for computing ��t� instead of ��t� � k��t�k � d� the real error
between the exact o�set curve and its approximation�

��t� � ��t�� d� � k��t�k� � d� � ���t� � d�� � d� � ��t�� � �d��t� � �d��t� ��

In other words� by computing the di�erences of the squared magnitude� the resulting
error bound is scaled by the magnitude of twice the o�set distance� �d� which is a constant and
therefore easy to control� ��t�� has been ignored since it is much smaller than �d��t��

The problem of �nding the global o�set error has been reduced to a problem of �nding
the extrema of a freeform explicit curve� Since the values of a scalar B
spline curve over an
interval lie between the maximum and minimum values of the coe�cients of the non
zero B

spline functions� a simple and computationally e�cient way of locally bounding the curve is
immediately available�

The error between a C� continuous function and its Schoenberg variation diminishing
spline approximation over a knot vector ftig is O�jftigj��� where jftigj � maxifti�� � tig� By
using a sequence of Schoenberg variation diminishing spline approximations to No�t�� each one
based on a knot vector that is a re�nement of the previous one� and a sequence� fCi�t�g� of
re�ned representations to C� based on the same sequence of knot vectors� we form a convergent
sequence of approximations to Cd� If the approximation is close over one interval� it is unnec

essary to re�ne over that interval just to make the mesh norm smaller� since the approximation
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error is based on maximum error bounds over local regions� Hence� we need only re�ne over
intervals where the error is large� as determined by the extrema of ��

We derive an iterative algorithm in which each step uses the direct polygon transfor

mation method ��� to compute o�set approximations� The criteria for proceeding to the next
step uses the magnitude of the extrema of ��t�� Then� the locations of the extrema are used to
re�ne C�t� �going from Ci�t� to Ci���t� and to create a new approximation to the o�set� The
process terminates when the magnitudes of the extrema of � are within the tolerance�

Algorithm ���

Input�

Tolerance� required offset curve accuracy�

C�t�� input curve�

d� offset distance�

Output�

Ca
d �t�� offset curve approximation within Tolerance accuracy�

Algorithm�

C��t� � C�t�
i � �
Do

Compute offset approximation Ca
d�t� for Ci�t�

Compute offset error ��t� for Ci�t� and Ca
d�t� �Eqs� ����

Ci���t� � Ci�t� refined at ��t� highest error region�s��

i � i � 	

While ���t� highest error � Tolerance��

Alg� ��� retains its curve re�nement history in the Ci�t� sequence� The last curve in
the sequence can be o�set to within a provided tolerance by an amount d� Since the algorithm
�knows� more about the curve� improvements can be applied in a more optimal way than
simply subdividing the curve at its midpoint as has been done in the past� Even for polynomial
representations such as Bezier curves� it is common to split the curve at the middle of the
parametric domain if the accuracy of the o�set is not good enough� Using the global error
measure� one can now split the curve near the parameter value with the highest error� This
will usually result in requiring fewer subdivisions to achieve a given tolerance�

One can compute and re�ne the curve at the maxima of ��t� only in each iteration�
However� simultaneous re�nement of all regions whose respective errors were bigger than al

lowable was found to be much faster� The computation of ��t� is much demanding than single
knot insertion and by using simultaneous re�nement this computation is fully exploited�

Fig� � shows � stages of Alg� ���� using global re�nement� operating on a chess pawn
crosssection� Single knots have been inserted in all parametric regions whose error was above
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Max. Err. = 0.017198

Max. Err. = 0.004370

Max. Err. = 0.000344

Max. Err. = 0.000095

Num. Pts. = 17

Num. Pts. = 72

Num. Pts. = 253

Num. Pts. = 319

Figure �� � stages in global error bounding ��t� and simultaneous auto re�nement�

the tolerance level� Also provided in Fig� � are the number of control points and the respective
error function ��t� for each iteration� The error is improved by almost an order of magnitude
on each iteration up to the required tolerance of �������

Finding approximations to o�sets of surfaces are usually more di�cult� but the above
method can be applied to �nding errors of o�set surfaces as well� �� � and � would be simply
explicit surfaces instead of explicit curves� i�e� ��u� v�� ��u� v� and ��u� v�� In Fig� �� this error
bounding extension surface is used to automatically iterate� re�ne� and improve an o�set B

spline surface to a speci�ed tolerance� It is interesting to compare the two o�set surfaces in
Fig� �� They both have the same tolerance but the o�set distance is di�erent� The o�set error
increases as d becomes larger and therefore more re�nements are required to achieve the same
accuracy�

� The O�set Operator as a Modeling Tool

The o�set operator can be used as a modeling tool� In fact� one can extend the global error
�nding method developed in section � and allow variable distance o�sets as well� Given a
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Figure �� Error bounded o�set surface example� using simultaneous auto re�nement�

parameter value� t� one needs to specify the o�set distance required at that location� A scalar
explicit distance function d�t� �or d�u� v� for surfaces� having the same domain as C�t� �S�u� v��
can be used� The only change that must be made to the method developed in section � is that
Eq�� should now read�

��t� � ��t�� d��t�� ���

where d� which used to be constant� is now a distance function� In Eq� it was shown that
the global error bound depends on d� so now the extrema of d�t� are used to bound the error�
Alg� ��� described in section � is identical to the one that should be used here� Figs� � and �
show some simple examples of the operator�s power� for both curves and surfaces�

� Trimming Self Intersection Loops

Two types of loops are sometimes created in Ca
d �t� when C�t� is a C� continuous curve� If ��t��

the curvature of C�t�� is bigger than �
d
� where d is the o�set distance� a loop will be formed �see

Fig� 	�� Since this loop is local to a region in which the curvature is too high� this type of loops
will be referred to as a local loop� However� not all loops resulting from o�set operations are of
this kind� Some of the loops formed� as can be seen in Fig� � are the result of two separate
regions in C�t� so close that the o�set curve in those regions intersects itself� This type of loop
is referred to as a global loop�

Detection of these loops is a di�cult� A search for cusps was suggested as a method
to detect local loops ���� However� since Cad �t� is only an approximation� it is possible that no
cusps will be formed �see �rst �top� stage of Fig� ��� Moreover the cusps� when detected� must
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Figure �� Variable distance curve o�set �left� using a scalar distance function �right��

be grouped in pairs� which is not a natural process to this technique� We use a more robust
method to correctly detect all loops�

Luckily� local loops have a very distinct characteristic� If T �t� be the tangent vector to
Cd�t� and if ��t�� the curvature of C�t�� is equal to �

d
at t � t� then kT �t��k � � or Cd�t� has a

cusp at t� �see �	� and appendix A�� So� if C�t� is curvature continuous� each time ��t� � �
d

and N�t� � No�t�� kT �t�k � �� If ��t� � �
d
and the normals coincide� T �t� �ips its direction

���o� When ��t� continuously changes from � �
d
to � �

d
and then back to � �

d
and the normals

coincide� two cusps will be formed in Cd�t� at the places where ��t� � �
d
�

Using this characteristic� one can identify the cusp pairs by �nding the zero set of
	�t� � T �t� � T �t�� The regions where 	�t� is negative are the regions where T �t� �ips its
direction �i�e� normals coincide and ��t� � �

d
�� Fig� � demonstrates this process� The tangent

curves T �t� ��a� in Fig� �� and T �t� ��b� in Fig� �� have been derived� Their dot product ��c� in
Fig� ��� 	�t� � T �t� � T �t�� is computed and used to identify the two local loops in the resulting
o�set approximation in its two negative regions� ��d� in Fig� ��� Once the two loop have been
identi�ed� they can be trimmed away ��e� in Fig� ���

The usage of 	�t� to identify local loops make this process more robust� even if no cusps
are formed in the o�set approximation� The tangent vector� T �t�� still �ips its direction and
still makes 	�t� negative �Fig� � �c��� Furthermore� by detecting the negative regions of 	�t�
the cusps are virtually paired since each cusp pair is the negative 	�t� region boundary�

Once a local loop has been identi�ed using 	�t�� the curve should be split into three
parts� the region before the �rst cusp� the region after the second cusp� and the region between
the two cusps� The third part� between the cusps� must be deleted� The �rst two should then
be intersected against each other to �nd the self intersection point using standard curve
curve
intersection algorithms ��� ��� ���� trimmed properly to the intersection point� and then merged
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Figure �� Variable distance surface o�set �u direction linear� v constant��

Figure 	� O�set operation local loops are trimmed using a distinct characteristic�

back� See Figs� 	 and  for some examples�

Global loops have no such characteristic and are therefore more di�cult to isolate� It
is necessary to �nd all the self
intersections of a curve� However� a curve which is monotone
in one dimension can never intersect itself� Therefore� one way to approach this problem is to
split the curve into monotone subcurves� intersect all the subcurves against each other using
curve
curve intersection algorithms� and isolate all the self
intersection points if any� Loops
can now be formed by tracing the self
intersection points along the parameter space� Given
an intersection point Pi� when C�t�i � � C�t�i �� the sign of the dot product T �t�i � �No�t�i � may
be used to determine if a loop is to be purged or not� Given Pi� the normal No�t

�
i � de�nes

the relative position of the original and o�set curve� If the dot product is negative� it means
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(a) x

y

(b) x

y

(c)

t

m

(d) (e)

Figure �� Product of a curve and its o�set tangents is used to identify local loops�

Figure � Global loop are being trimmed using numerical techniques�

the intersecting curve �with tangent T �t�i �� in Pi is closer locally �P� in Fig� �� to the original
curve than the o�set amount� Since curves are continuous� it implies the whole loop is closer
than the o�set amount and therefore should be removed �loop � in Fig� ��� Similarly� the dot
product is found to be positive in P� �Fig� �� so in the neighborhood of P�� loop 	 distance
to the o�set curve in the N� direction is larger than the o�set amount and therefore loop 	
is locally �and globally� valid� The loops are tested while following the parameter values of
the curve beginning to its end� For each intersection of an untested loop i� the tangent Ti of
the current curve parameter is computed along with the o�set normal Ni for the other curve
parameter of the intersection point i� Using the example in Fig� � loop � is tested �rst� T� �N�

is found negative and therefore loop � should be purged� Since T� �N� is positive loop � should
not be purged etc�� This approach has been used to trim out the global loops of Fig� �

The curve o�set local loop detection method may be extended to surfaces as well� If
the surface radius is smaller than the o�set distance� the normal of the o�set surface �ips its
direction� Therefore the dot product of the original and o�set surface normals may be used
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T1 T2

T3

T4

T5

N1
N2

N3N4N5

1

2
3

4

5

P4P5

Start

Figure �� Global loop classi�cation is based on Ni�t
�
i � � Ti�t�i � sign�

in such detection� Trimming surface loops is much more di�cult since they are� in general�
not isoparametric� Furthermore surface self
intersections may not be complete� that is the
intersection curve may not subdivide the surface parameter space into two separate regions�
These topics are current research areas� The approach taken ��� for the self
intersection curve
tracing using surface �walking� may be used�
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Appendix

A Cusp existence proof

This appendix shows that a cusp is formed in the o�set curve Cd�t� any time the curve� C�t��
has curvature ��t� equal to �

d
where d is the o�set distance and the mathematical curve normal

N�t�� coincides with o�set normal No�t�� Conditions for detecting curvature higher than
�
d
are

also derived�

Let C�t� be a regular planar parametric curve� C�t� is not necessarily arc length pa

rameterized� Without lose of generality assume C�t� is in the x � y plane� Let Cd�t� be the
o�set curve of C�t� by amount d� Let T � N and T � N be their unit tangents and normals
respectively� A non unit length vector will be tagged with a hat� I�e �T �

The tangent T of the planar curve C is equal to

T �t� �
�T�t�

k �T�t�k �
�x��t�� y��t��p
x��t�� � y��t��

� ���

From di�erential geometry theory ���� ���

��t�B�t� �
C��t�� C ���t�

kC��t�k	 �
�x��t�� y��t�� ��� �x���t�� y���t�� ��p

x��t�� � y��t��
	 �

��� �� x��t�y���t�� y��t�x���t��

k �Tk	

�
��� ����

k �Tk	 � ����

Since Bo�t� as been selected to be in �z direction �see equations � and ��� No�t� is equal
to

No�t� � Bo�t�� T �t� �
��y��t�� x��t��p
x��t�� � y��t��

�
��y��t�� x��t��

k �Tk � ����

The o�set curve Cd�t� of the planar curve C�t� by amount d is de�ned as �equation ��

Cd�t� � C�t� �No�t�d � �x�t�� y�t�� �
��y��t�� x��t��

k �Tk d

�
�x�t�k �Tk � y��t�d� y�t�k �Tk� x��t�d�

k �Tk � ����

The �rst derivative �T �t� of the o�set curve Cd�t� is�

�T �t� � C�
d�t�
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�

�
�x��t�k �Tk� x�t�k �Tk� � y���t�d�k �Tk � �x�t�k �Tk � y��t�d�k �Tk�

k �Tk� �

�y��t�k �Tk� y�t�k �Tk� � x���t�d�k �Tk � �y�t�k �Tk� x��t�d�k �Tk�
k �Tk�

�

�

�
x��t�k �Tk� � y���t�k �Tkd� y��t�k �Tk�d� y��t�k �Tk� � x���t�k �Tkd� x��t�k �Tk�d

k �Tk�
�

����

We now ready to inspect the value of �T �t� in a case where d is equal to �
��t�

� Using
equation ���

d �
�

��t�
�
k �Tk	
j � j �

Substituting d in the x component of �T �t� we have�

�Tx�t� � x��t�k �Tk� � y���t�k �Tkd� y��t�k �Tk�d
k �Tk�

� x��t�� y���t�k �Tk�
j � j �

y��t�k �Tkk �Tk�
j � j

�
x��t� j � j �y���t�x��t�� � y���t�y��t�� � y��t�x��t�x���t� � y��t��y���t�

j � j

�
x��t� j x��t�y���t�� x���t�y��t� j �y���t�x��t�� � y���t�y��t�� � y��t�x��t�x���t� � y��t��y���t�

j x��t�y���t�� y��t�x���t� j

�

�
� �� � � �
� �x��t� � � �

����

since

k �Tkk �Tk� �
q
x��t�� � y��t��

�

�
p
x��t�� � y��t��

��x��t�x���t� � �y��t�y���t��

� x��t�x���t� � y��t�y���t�

and

k �Tk� � x��t�� � x��t���

d may be substituted into the y component of �T �t�� �Ty�t�� in a similar way for the same
result� Therefore �T �t� � � in this situation or C�t� has a cusp if � � x��t�y���t�� x���t�y��t� � �
or the binormal B�t� is positive and coincides with Bo�t� de�nition and so are N�t� and No�t��
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Moreover� if d � �
��t� then the tangent vector �T �ips direction as can be shown by its

dot product with �T � Rewriting equation �� as

�T �t� � �x��t�� y��t�� �
��y���t�� x���t��d

k �Tk �
�y��t���x��t��k �Tk�d

k �Tk�

and substituting it into

�T �t� � �T �t� �
�
�x��t�� y��t�� �

��y���t�� x���t��d

k �Tk �
�y��t���x��t��k �Tk�d

k �Tk�
�
� �x��t�� y��t��

� �x��t�� � y��t��� �
��y���t�x��t� � x���t�y��t��d

k �Tk � �x��t�� � y��t���� �d

k �Tk
since the last term of �T �t� is perpendicular to �T �t�� Using equation ���

�T �t� � �T �t� � �x��t�� � y��t���� �d

k �Tk

�

����
���

�x��t�� � y��t���� ��t��x��t���y��t���
�

� dp
x��t���y��t��

� �x��t�� � y��t������ ��t�d�� � � �

�x��t�� � y��t��� � ��t��x��t���y��t���
�

� dp
x��t���y��t��

� �x��t�� � y��t����� � ��t�d�� � � ��

Since C�t� is a regular curve� T �t� is never zero and so is �x��t���y��t��� which is positive
everywhere� Therefore for cases were the mathematical normal� N�t�� coincides with the o�set
normal� No�t� or � � � we get

sign� �T �t� � �T �t�� � sign��x��t�� � y��t������ ��t�d�� � sign��� ��t�d�� ��	�

Now for small ��t� or relatively straight curve �����t�d� is positive� When ��t� reaches
�
d
the expression becomes zero or �T �t� � � since �T �t� is never zero� if ��t� is bigger than �

d
the

expression becomes negative or �T �t� �ipped its direction�

If � � � the expression is never zero since both d and ��t� are positive scalar� This
is not surprising result since such o�set only increases the curve osculating circle radius and
hence can never make it vanish�


