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Abstract
Despite the success of existing tensor factoriza-
tion methods, most of them conduct a multilin-
ear decomposition, and rarely exploit powerful
modeling frameworks, like deep neural networks,
to capture a variety of complicated interactions
in data. More important, for highly expressive,
deep factorization, we lack an effective approach
to handle streaming data, which are ubiquitous
in real-world applications. To address these is-
sues, we propose SBDT, a Streaming Bayesian
Deep Tensor factorization method. We first use
Bayesian neural networks (NNs) to build a deep
tensor factorization model. We assign a spike-
and-slab prior over each NN weight to encourage
sparsity and to prevent overfitting. We then use
the multivariate delta method and moment match-
ing to approximate the posterior of the NN output
and calculate the running model evidence, based
on which we develop an efficient streaming poste-
rior inference algorithm in the assumed-density-
filtering and expectation propagation framework.
Our algorithm provides responsive incremental
updates for the posterior of the latent factors and
NN weights upon receiving newly observed tensor
entries, and meanwhile identify and inhibit redun-
dant/useless weights. We show the advantages of
our approach in four real-world applications.

1. Introduction
Tensor factorization is a fundamental tool for multiway data
analysis. While many tensor factorization methods have
been developed (Tucker, 1966; Harshman, 1970; Chu &
Ghahramani, 2009; Kang et al., 2012; Choi & Vishwanathan,
2014), most of them conduct a mutilinear decomposition
and are incapable of capturing complex, nonlinear relation-
ships in data. Deep neural networks (NNs) are a class of
very flexible and powerful modeling framework, known to

1University of Uath 2Kwai Inc 3University of Rochester. Cor-
respondence to: Shandian Zhe < zhe@cs.utah.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

be able to estimate all kinds of complicated (e.g., highly
nonlinear) mappings. The most recent work (Liu et al.,
2018; 2019) have attempted to incorporate NNs into tensor
factorization and shown a promotion of the performance,
in spite of the risk of overfitting the tensor data that are
typically sparse.

Nonetheless, one critical bottleneck for NN based factoriza-
tion is the lack of effective approaches for streaming data.
In practice, many applications produce huge volumes of
data at a fast pace (Du et al., 2018). It is extremely costly
to run the factorization from scratch every time when we
receive a new set of entries. Some privacy-demanding ap-
plications (e.g., SnapChat) even forbid us from revisiting
the previously seen data. Hence, given new data, we need
an effective and efficient way to incrementally update the
model.

A general and popular approach is streaming variational
Bayes (SVB) (Broderick et al., 2013), which integrates the
current posterior with the new data, and then estimates a vari-
ational approximation as the updated posterior. Although
SVB has been successfully used to develop the state-of-
the-art multilinear streaming tensor factorization (Du et al.,
2018), it does not perform well for deep NN based factor-
ization. Due to the nested nonlinear coupling of the latent
factors and NN weights, the variational model evidence
lower bound (ELBO) that SVB maximizes is analytically
intractable and we have to seek for stochastic optimization,
which is unstable and hard to diagnose the convergence. We
cannot use common tricks, e.g., cross-validation and early
stopping, to alleviate the issue, because we cannot store or
revisit the data in the streaming scenario. Consequently, the
posterior updates are often unreliable and inferior, which in
turn hurt the subsequent updates and tend to result in a poor
final model estimation.

To address these issues, we propose SBDT, a streaming
Bayesian deep tensor factorization method that not only
exploits NNs’ expressive power to capture intricate relation-
ships, but also provides efficient, high-quality posterior up-
dates for streaming data. Specifically, we first use Bayesian
neural networks to build a deep tensor factorization model,
where the input is the concatenation of the factors asso-
ciated with each tensor entry and the NN output predicts
the entry value. To reduce the risk of overfitting, we place
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a spike-and-slab prior over each NN weight to encourage
sparsity. For streaming inference, we use the multivariate
delta method (Bickel & Doksum, 2015) that employs a Tay-
lor expansion of the NN output to analytically compute
its moments, and match the moments to obtain the its cur-
rent posterior and the running model evidence. We then
use back-propagation to calculate the gradient of the log
evidence, with which we match the moments and update
the posterior of the latent factors and NN weights in the
assumed-density-filtering (Boyen & Koller, 2013) frame-
work. After processing all the newly received entries, we
update the spike-and-slab prior approximation with expec-
tation propagation (Minka, 2001a) to identify and inhibit
redundant/useless weights. In this way, the incremental
posterior updates are deterministic, reliable and efficient.

For evaluation, we examined SBDT in four real-world large-
scale applications, including both binary and continuous
tensors. We compared with the state-of-the-art streaming
tensor factorization algorithm (Du et al., 2018) based on
a multilinear form, and streaming nonlinear factorization
methods implemented with SVB. In both running and final
predictive performance, our method consistently outper-
forms the competing approaches, mostly by a large margin.
The running accuracy of SBDT is also much more stable
and smooth than the SVB based methods.

2. Background
Tensor Factorization. We denote a K-mode tensor by
Y ∈ Rd1×...×dK , where mode k includes dk nodes. We
index each entry by a tuple i = (i1, . . . , iK), which stands
for the interaction of the corresponding K nodes. The
value of entry i is denoted by yi. To factorize the ten-
sor, we represent all the nodes by K latent factor matrices
U = {U1, . . . ,UK}, where each Uk = [uk1 , . . . ,u

k
dk

]>

is of size dk × rk, and each ukj are the factors of node j
in mode k. The goal is to use U to recover the observed
entries in Y . To this end, the classical Tucker factoriza-
tion (Tucker, 1966) assumes Y =W×1U

1×2 . . .×KUK ,
whereW ∈ Rr1×...×rK is a parametric tensor and ×k the
mode-k tensor matrix multiplication (Kolda, 2006), which
resembles the matrix-matrix multiplication. If we set all
rk = r andW to be diagonal, Tucker factorization becomes
CANDECOMP/PARAFAC (CP) factorization (Harshman,
1970). The element-wise form is yi =

∑r
j=1

∏K
k=1 u

k
ik,j

=

(u1
i1
◦. . .◦uKiK )>1, where ◦ is the Hadamard (element-wise)

product and 1 the vector filled with ones. We can estimate
the factors U by minimizing a loss function, e.g., the mean
squared error in recovering the observed elements in Y .

Streaming Model Estimation. A general and popular
framework for incremental model estimation is streaming
variational Bayes(SVB) (Broderick et al., 2013), which is

grounded on the incremental version of Bayes’ rule,

p(θ|Dold ∪ Dnew) ∝ p(θ|Dold)p(Dnew|θ) (1)

where θ are the latent random variables in the probabilistic
model we are interested in, Dold all the data that have been
seen so far, and Dnew the incoming data. SVB approximates
the current posterior p(θ|Dold) with a variational posterior
qcur(θ). When the new data arrives, SVB integrates qcur(θ)
with the likelihood of the new data to obtain an unnormal-
ized, blending distribution,

p̃(θ) = qcur(θ)p(Dnew|θ) (2)

which can be viewed as approximately proportional to
the joint distribution p(θ,Dold ∪ Dnew). To conduct the
incremental update, SVB uses p̃(θ) to construct a vari-
ational ELBO (Wainwright et al., 2008), L(q(θ)) =
Eq[log

(
p̃(θ)/q(θ)

)
], and maximizes the ELBO to obtain

the updated posterior, q∗ = argmaxq L(q). This is equiv-
alent to minimizing the Kullback-Leibler (KL) divergence
between q and the normalized p̃(θ). We then set qcur = q∗

and prepare the update for the next batch of new data.
At the beginning (when we do not receive any data), we
set qcur = p(θ), the original prior in the model. For effi-
ciency and convenience, a factorized variational posterior
q(θ) =

∏
j q(θj) is usually adopted to fulfill cyclic, closed-

form updates. For example, the state-of-the-art streaming
tensor factorization, POST (Du et al., 2018), uses the CP
form to build a Bayesian model, and applies SVB to update
the posterior of the factors incrementally when receiving
new tensor entries.

3. Bayesian Deep Tensor Factorization
Despite the elegance and convenience of the popular Tucker
and CP factorization, their multilinear form can severely
limit the capability of estimating complicated, highly non-
linear/nonstationary relationships hidden in data. While nu-
merous other methods have also been proposed, e.g., (Chu &
Ghahramani, 2009; Kang et al., 2012; Choi & Vishwanathan,
2014), most are still inherently based on the CP or Tucker
form. Enlightened by the expressive power of (deep) neural
networks (Goodfellow et al., 2016), we propose a Bayesian
deep tensor factorization model to overcome the limitation
of traditional methods and flexibly estimate all kinds of
complex relationships.

Specifically, for each tensor entry i, we construct an input
xi by concatenating all the latent factors associated with
i, namely, xi = [

(
u1
i1

)>
, . . . ,

(
uKiK

)>
]>. We assume that

there is an unknown mapping between the input factors xi

and the value of entry i, f : R
∑K

k=1 rk → R, which re-
flects the complex interactions/relationships between the
tensor nodes in entry i. Note that CP factorization uses a
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multilinear mapping. We use an M -layer neural network
(NN) to model the mapping f , which are parameterized by
M weight matricesW = {W1, . . . ,WM}. Each Wm is
Vm × (Vm−1 + 1) where Vm and Vm−1 are the widths of
layerm andm−1, respectively. V0 =

∑K
k=1 rk is the input

dimension and VM = 1. We denote the output in each hid-
den layer m by hm (1 ≤ m ≤M − 1) and define h0 = xi.
We compute each hm = σ(Wm[hm−1; 1]/

√
Vm−1 + 1)

where σ(·) is a nonlinear activation function, e.g., ReLU
and tanh. Note that we append a constant feature 1 to intro-
duce the bias terms in the linear transformation, namely the
last column in each Wm. For the last layer, we compute the
output by fW(xi) = WM [hM−1; 1]/

√
VM−1 + 1. Given

the output, we sample the observed entry value yi via a
noisy model. For continuous data, we use a Gaussian noise
model, p(yi|U) = N

(
yi|fW(xi), τ

−1) where τ is the in-
verse noise variance. We further assign τ a Gamma prior,
p(τ) = Gamma(τ |a0, b0). For binary data, we use the
Probit model, p(yi|U) = Φ

(
(2yi − 1)fW(xi)

)
where Φ(·)

is the cumulative density function (CDF) of the standard
normal distribution.

Despite their great flexibility, NNs take the risk of over-
fitting. The larger a network, i.e., with more weight pa-
rameters, the easier the network overfits the data. In
order to prevent overfitting, we assign a spike-and-slab
prior (Ishwaran et al., 2005; Titsias & Lázaro-Gredilla,
2011) (that is ideal due to the selective shrinkage effect)
over each NN weight to sparsify and condense the net-
work. Specifically, for each weight wmjt = [Wm]jt,
we first sample a binary selection indicator smjt from
p(smij |ρ0) = Bern(smjt|ρ0) = ρ

smjt

0 (1− ρ0)1−smjt . The
weight is then sampled from

p(wmjt|smjt)
= smjtN (wmjt|0, σ2

0) + (1− smjt)δ(wmjt), (3)

where δ(·) is the Dirac-delta function. Hence, the selection
indicator smjt determines the type of prior over wmjt: if
smjt is 1, meaning the weight is useful and active, we assign
a flat Gaussian prior with variance σ2

0 (slab component); if
otherwise smjt is 0, namely the weight is useless and should
be deactivated, we assign a spike prior concentrating on 0
(spike component).

Finally, we place a standard normal prior over the factors U .
Given the set of observed tensor entriesD = {yi1 , . . . , yiN },
the joint probability of our model for continuous data is

p(U ,W,S, τ) =
∏M

m=1

∏Vm

j=1

∏Vm−1+1

t=1
Bern(smjt|ρ0)

·
(
smjtN (wmjt|0, σ2

0) + (1− smjt)δ(wmjt)
)

·
∏K

k=1

∏dk

j=1
N (ukj |0, I)Gamma(τ |a0, b0)

·
∏N

n=1
N (yin |fW(xin), τ−1) (4)

where S = {smjt}, and for binary data is

p(U ,W,S) =
∏M

m=1

∏Vm

j=1

∏Vm−1+1

t=1
Bern(smjt|ρ0)

·
(
smjtN (wmjt|0, σ2

0) + (1− smjt)δ(wmjt)
)

(5)

·
∏K

k=1

∏dk

j=1
N (ukj |0, I)

∏N

n=1
Φ
(
(2yin − 1)fW(xin)

)
.

4. Streaming Posterior Inference
We now present our streaming model estimation algorithm.
In general, the observed tensor entries are assumed to be
streamed in a sequence of small batches, {B1,B2, . . .}. Dif-
ferent batches do not have to include the same number of
entries. Upon receiving each batch Bt, we aim to update
the posterior distribution of the factors U , the inverse noise
variance τ (for continuous data), the selection indicators S
and the neural network weightsW , without re-accessing the
previous batches {Bj}j<t. While we can apply SVB, the
variational ELBO that integrates the current posterior and
the new entry batch will be analytically intractable. Take
binary tensors as an example. Given a new entry batch
Bt, the EBLO constructed based on the blending distribu-
tion (see (2)) is L = −KL

(
q(U ,S,W)‖qcur(U ,S,W)

)
+∑

n∈Bt
Eq
[

log Φ
(
(2yin−1)fW(xin)

)]
. Due to the nested,

nonlinear coupling of the factors (in each xin) and NN
weightsW in calculating fW(xin), the expectation terms in
L are intractable, without any closed form. Obviously, the
same conclusion applies to the continuous data. Therefore,
to maximize L so as to obtain the updated posterior, we have
to use stochastic gradient descent (SGD), typically with the
re-parameterization trick (Kingma & Welling, 2013). How-
ever, without the explicit form ofL, it is hard to diagnose the
convergence of SGD — it may stop at a place far from the
(local) optimums. Note that we cannot use hold-out datasets
or cross-validation to monitor/control the training because
we cannot store or revisit the data. The inferior posterior
estimation in one batch can in turn influence the posterior
updates in the subsequent batches, and finally result in a
very poor model estimation.

4.1. Online Moment Matching for Posterior Update

To address these problems, we exploit the assumed-density-
filtering (ADF) framework (Boyen & Koller, 1998), which
can be viewed as an online version of expectation propaga-
tion (EP) (Minka, 2001a), a general approximate Bayesian
inference algorithm. ADF is also based on the incremen-
tal version of Bayes’ rule (see (1)). It uses a distribution
in the exponential family (Wainwright et al., 2008) to ap-
proximate the current posterior. When the new data arrive,
instead of maximizing a variational ELBO, ADF projects
the (unnormalized) blending distribution (2) to the expo-
nential family to obtain the updated posterior. The projec-
tion is done by moment matching, which essentially is to
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minimize KL(p̃(θ)/Z‖q(θ)) where Z is the normalization
constant. For illustration, suppose we choose q(θ) to be a
fully factorized Gaussian distribution, q(θ) =

∏
j q(θj) =∏

j N (θj |µj , vj). To update each q(θj), we compute the
first and second moments of θj w.r.t p̃(θ), and match a
Gaussian distribution with the same moments, namely,
µj = Ep̃(θj) and vj = Varp̃(θj) = Ep̃(θ2j )− Ep̃(θj)2.

For our model, we use a fully factorized distribution in
the exponential family to approximate the current posterior.
When a new batch of data Bt are received, we sequentially
process each observed entry, and perform moment matching
to update the posterior of the NN weightsW and associated
latent factors. Specifically, let us start with the binary data.
We approximate the posterior with

qcur(W,U ,S)

=

M∏
m=1

Vm∏
j=1

Vm−1+1∏
t=1

Bern(smjt|ρmjt)N (wmjt|µmjt, vmjt)

·
∏K

k=1

∏dk

j=1

∏rk

t=1
N (ukjt|ψkjt, νkjt).

Given each entry in in the new batch, we construct the blend-
ing distribution, p̃(W,U ,S) ∝ qcur(W,U ,S)Φ

(
(2yin −

1)fW(xin)
)
. To obtain its moments, we consider the nor-

malizer, i.e., the model evidence under the blending distri-
bution,

Zn =

∫
qcur(W,U ,S)Φ

(
(2yin − 1)fW(xin)

)
dWdUdS.

(6)

Under the Gaussian form, according to (Minka, 2001b),
we can compute the moments and update the posterior of
each NN weight wmjt and each factor associated with in—
{ukink

}k by

µ∗ = µ+ v
∂ logZn
∂µ

,

v∗ = v − v2
[(∂ logZn

∂µ

)2 − 2
∂ logZn
∂v

]
, (7)

where µ and v are the current posterior mean and variance
of the corresponding weight or factor. Note that since the
likelihood does not include the binary selection indicators
S, their moments are the same as those under qcur and we
do not need to update their posterior.

However, a critical issue is that due to the nonlinear cou-
pling of the U andW in computing the NN output fW(xin),
the exact normalizer is analytically intractable. To over-
come this issue, we consider approximating the current
posterior of fW(xin) first. We use the multivariate delta
method (Oehlert, 1992; Bickel & Doksum, 2015) that ex-
pands the NN output at the mean ofW and U with a Taylor

approximation,

fW(xin) ≈ fE[W](E[xin ]) + g>n (ηn − E[ηn]) (8)

where the expectation is under qcur(·), ηn = vec(W ∪ xin),
gn = ∇fW(xin)|ηn=E[ηn]. Note that xin is the concatena-
tion of the latent factors associated with in. The rationale of
the approximation (8) is that the NN output is highly non-
linear and nonconvex in U andW . Hence, the scale of the
output change rate (i.e., gradient) can be much larger than
the scale of the posterior variances ofW and U , which are
(much) smaller than prior variance 1 (see (4) and (5)). There-
fore, we can ignore the second-order term that involves the
posterior variances. Note that despite the seemingly simpler
structure, our approximation in (8) is still very complex —
both the NN output and the Jacobian are highly nonlinear to
W , and hence the model expressiveness is not changed. We
have also tried the second-order expansion, which, however,
is unstable and does not improve the performance.

Based on (8), we can calculate the first and second moments
of fW(xin),

αn = Eqcur [fW(xin)] ≈ fE[W](E[xin ]),

βn = Varqcur(fW(xin)) ≈ g>n diag(γn)gn, (9)

where each [γn]j = Varqcur([ηn]j). Due to the fully factor-
ized posterior form, we have cov(ηn) = diag(ηn). Note
that all the information in the Gaussian posterior (i.e., mean
and variance) ofW and U have been integrated to approxi-
mate the moments of the NN output. Now we use moment
matching to approximate the current (marginal) posterior
of the NN output by qcur(fW(xin)) = N (fW(xin)|αn, βn).
Then we compute the running model evidence (6) by

Zn = Eqcur(W,U,S)[Φ
(
(2yin − 1)fW(xin)

)
]

= Eqcur(fW(xin ))[Φ
(
(2yin − 1)fW(xin)

)
]

≈
∫
N (fo|αn, βn)Φ

(
(2yin − 1)fo

)
dfo

= Φ
( (2yin − 1)αn√

1 + βn

)
, (10)

where we redefine fo = fW(xin) for simplicity. With
the nice analytical form, we can immediately apply (7) to
update the posterior forW and the associated factors in in.
In light of the NN structure, the gradient can be efficiently
calculated via back-propagation, which can be automatically
done by many deep learning libraries.

For continuous data, we introduce a Gamma posterior for
the inverse noise variance, qcur(τ) = Gamma(τ |a, b), in
addition to the fully factorized posterior forW , U and S as
in the binary case. After we use (8) and (9) to obtain the
posterior of the NN output, we derive the running model
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evidence by

Zn = Eqcur(W,U,S,τ)[N
(
yin |fW(xin), τ−1

)
]

= Eqcur(fo)qcur(τ)[N (yin |fo, τ−1)]

≈ Eqcur(τ)

[ ∫
N (fo|αn, βn)N (yin |fo, τ−1)dfo

]
= Eqcur(τ)[N (yin |αn, βn + τ−1)]. (11)

Next, we use the Taylor expansion again, at the mean of τ ,
to approximate the Gaussian term inside the expectation,

N (yin |αn, βn + τ−1) ≈ N (yin |αn, βn + Eqcur [τ ]−1)

+ (τ − Eqcur [τ ])∂N (yin |αn, βn + τ−1)/∂τ |τ=Eqcur [τ ]
.

Taking expectation over the Taylor expansion gives

Zn ≈ N (yin |αn, βn + Eqcur(τ)−1)

= N (yin |αn, βn + b/a). (12)

We now can use (7) to update the posterior ofW and the
factors associated with the entry. While we can also use
more accurate approximations, e.g., the second-order Taylor
expansion or quadrature, we found empirically our method
achieves almost the same performance.

To update qcur(τ), we consider the blending distribu-
tion only in terms of the NN output fo and τ so
we have p̃(fo, τ) ∝ qcur(fo)qcur(τ)N (yin |fo, τ−1) =
N (fo|αn, βn)Gamma(τ |a, b)N (yin |fo, τ−1). Then we
follow (Wang & Zhe, 2019) to first derive the conditional
moments and then approximate the expectation of the con-
ditional moments to obtain the moments. The details are
given in the supplementary material. The updated posterior
is given by q∗(τ) = Gamma(τ |a∗, b∗), where a∗ = a+ 1

2
and b∗ = b+ 1

2 ((yin − αn)2 + βn).

4.2. Prior Approximation Refinement

Ideally, at the beginning (i.e., when we have not received
any data), we should set qcur to the prior of the model (see
(4) and (5)). This is feasible for the factors U , selection
indicators S and the inverse noise variance τ (for continuous
data only), because their Gaussian, Bernoulli and Gamma
priors are all members of the exponential family. However,
the spike-and-slab prior for each NN weight wmjt (see (3))
is a mixture prior and does not belong to the exponential
family. Hence, we introduce an approximation term,

p(wmjt|smjt) ∝∼ A(wmjt, smjt)

= Bern
(
smjt|c(ρmjt)

)
N (wmjt|µ0

mjt, v
0
mjt), (13)

where∝∼means “approximately proportional to” and c(x) =
1/(1+exp(−x)). At the beginning, we initialize v0mjt = σ2

0

and µ0
mjt to be a random number generated from a standard

Gaussian distribution truncated in [−σ0, σ0]; we initialize

Algorithm 1 Streaming Bayesian Deep Tensor Factoriza-
tion (SBDT)

1: Initialize the spike-and-slab prior approximation and
multiply it with all the other priors to initialize qcur(·).

2: while a new batch of observed tensor entries Bt arrives
do

3: for each entry in in Bt do
4: Approximate the running model evidence with

(10) (binary data) or (12) (continuous data).
5: Update the posterior for W and the associated

factors {ukinj
}k,j with (7).

6: if continuous data then
7: Update the posterior for the inverse noise vari-

ance τ via conditional moment matching.
8: end if
9: Update the spike-and-slab prior approximation

with standard EP.
10: end for
11: end while
12: return the current posterior qcur(·).

ρmjt = 0. Obviously, this is a very rough approximation.
If we only execute the standard ADF to continuously in-
tegrate new entries to update the posterior (see (7)), the
prior approximation term will remain the same and never
be changed. However, the spike-and-slab prior is critical to
sparsify and condense the network, and an inferior approxi-
mation will make it noneffective at all. To address this issue,
after we process all the entries in the incoming batch, we
use EP to update/improve the prior approximation term (13),
with which to further update the posterior of the NN weights.
Hence, as we continuously process streaming batches of the
observed tensor entries, the prior approximation becomes
more and more accurate, and thereby can effectively in-
hibit/deactivate the redundant or useless weights on the fly.
The details of the updates are provided in the supplementary
material, where we also summarize our streaming inference
in Algorithm 1.

4.3. Algorithm Complexity

The time complexity of our streaming inference isO(NV +∑K
k=1 dkrk) where V is the total number of weights in the

NN. Therefore, the computational cost is proportional to N ,
the size of the streaming batch. The space complexity is
O(V +

∑K
k=1 dkrk), including the storage of the posterior

for the factors U , NN weightsW and selection indicators S ,
and the approximation term for the spike-and-slab prior.

5. Related Work
Classical CP (Harshman, 1970) and Tucker (Tucker, 1966)
factorization are multilinear and therefore are incapable of
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estimating complex, nonlinear relationships in data. While
numerous other approaches have been proposed (Shashua
& Hazan, 2005; Chu & Ghahramani, 2009; Sutskever et al.,
2009; Hoff, 2011; Kang et al., 2012; Yang & Dunson, 2013;
Choi & Vishwanathan, 2014; Hu et al., 2015; Rai et al.,
2015), most of them are still based on the CP or Tucker
form. To overcome these issues, recently, several Bayesian
nonparametric tensor factorization models (Xu et al., 2012;
Zhe et al., 2015; 2016a;b) were proposed to estimate the non-
linear relationships with Gaussian processes (Rasmussen &
Williams, 2006). The most recent work, NeuralCP (Liu
et al., 2018) and CoSTCo (Liu et al., 2019) have shown the
advantage of NNs in tensor factorization. CoSTCo also con-
catenates the factors associated with each entry to construct
the input and use the NN output to predict the entry value;
but to alleviate overfitting, CoSTCo introduces two convolu-
tional layers to extract local features and then feed them into
dense layers. By contrast, with the spike-and-slab prior and
Bayesian inference, we found that our model can also ef-
fectively prevent overfitting, without the need for extra con-
volutional layers. NeuralCP uses two NNs, one to predict
the entry value, the other the (log) noise variance. Hence,
NeuralCP only applies to continuous data. Our model can
be used for both continuous and binary data. Finally, both
CoSTCo and NerualCP are trained with stochastic optimiza-
tion, need to pass the data many times (epochs), and hence
cannot handle streaming data. Tillinghast et al. (2020) in-
serted NNs into kernels to conduct Gaussian process based
factorization. Apart from this, there are interesting works
using tensor factorization to compress NNs (Ye et al., 2018;
Bacciu & Mandic, 2020), which, however, are off our topic.

Expectation propagation (Minka, 2001a) is an approximate
Bayesian inference algorithm that generalizes assumed-
density-filtering (ADF) (Boyen & Koller, 1998) and (loopy)
belief propagation (Murphy et al., 1999). EP employs an
exponential-family term to approximate the prior and likeli-
hood of each data point, and cyclically updates each approx-
imation term via moment matching. ADF can be considered
as applying EP in a model including only one data point. Be-
cause ADF only maintains the holistic posterior, without the
need for keeping individual approximation terms, it is very
appropriate for streaming learning. EP can meet a practical
barrier when the moment matching is intractable. To address
this problem, Wang & Zhe (2019) proposed conditional EP
that uses conditional moment matching, quadrature and
Taylor approximations to provide a high-quality, analyti-
cal solution. Based on EP and ADF, Hernández-Lobato
& Adams (2015) proposed probabilistic back-propagation,
a batch inference algorithm for Bayesian neural networks.
PBP conducts ADF to pass the dataset many times and
re-update the prior approximation after each pass. A key
difference from our work is that PBP conducts a forward,
layer by layer moment matching, to approximate the poste-

rior of each hidden neuron in the network, until it reaches
the output. The computation is limited to fully connected,
feed-forward networks and ReLU activation function. By
contrast, our method computes the moments of the NN out-
put via the delta method (i.e., Taylor expansions) and does
not need to approximate the posterior of the hidden neurons.
Therefore, our method is free to use any NN architecture and
activation function. Note that the multi-variate delta method
was also used in Laplace’s approximation (MacKay, 1992)
for NNs and non-conjugate variational inference (Wang &
Blei, 2013). Furthermore, we employ spike-and-slab priors
over the NN weights to control the complexity of the model
and to prevent overfitting in the streaming inference.

6. Experiment
6.1. Predictive Performance

Datasets. We examined SBDT on four real-world,
large-scale datasets. (1) DBLP (Du et al., 2018), a
binary tensor about bibliography relationships (author
conference, keyword), of size 10, 000× 200× 10, 000, in-
cluding 0.001% nonzero entries. (2) Anime(https:
//www.kaggle.com/CooperUnion/
anime-recommendations-database), a two-
mode tensor depicting binary (user, anime) preferences.
The tensor contains 1, 300, 160 observed entries, of
size 25, 838 × 4, 066. (3) ACC (Du et al., 2018), a
continuous tensor representing the three-way interactions
(user, action, file), of size 3, 000 × 150 × 30, 000, includ-
ing 0.9% nonzero entries. (4) MovieLen1M (https:
//grouplens.org/datasets/movielens/), a
two-mode continuous tensor of size 6, 040 × 3, 706,
consisting of (user, movie) ratings. We have 1, 000, 209
observed entries.

Competing methods. We compared with the following
baselines. (1) POST (Du et al., 2018), the state-of-the-
art probabilistic streaming tensor decomposition algorithm
based on the CP model. It uses streaming variational Bayes
(SVB) (Broderick et al., 2013) to perform mean-field pos-
terior updates upon receiving new entries. (2) SVB-DTF,
streaming deep tensor factorization implemented with SVB.
(3) SVB-GPTF, the streaming version of the Gaussian pro-
cess(GP) nonlinear tensor factorization (Zhe et al., 2016b),
implemented with SVB. Note that similar to NNs, the ELBO
in SVB for GP factorization is intractable and we used
stochastic optimization. (4) SS-GPTF, the streaming GP fac-
torization implemented with the recent streaming sparse GP
approximations (Bui et al., 2017). It uses SGD to optimize
another intractable ELBO. (5) CP-WOPT (Acar et al., 2011),
a scalable static CP factorization algorithm implemented
with gradient-based optimization.

Parameter Settings. We implemented our method, SBDT

https://www.kaggle.com/CooperUnion/anime-recommendations-database
https://www.kaggle.com/CooperUnion/anime-recommendations-database
https://www.kaggle.com/CooperUnion/anime-recommendations-database
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
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Figure 1. Predictive performance with different numbers of factors (top row) and streaming batch sizes (bottom row). In the top row, the
streaming bath size is fixed to 256; in the bottom row, the factor number is fixed to 8. The results are averaged over 5 runs.
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Figure 2. Running prediction accuracy along with the number of processed streaming batches. The batch size was fixed to 256.

with Theano, and SVB-DTF, SVB/SS-GPTF with Ten-
sorFlow. For POST, we used the original MATLAB im-
plementation (https://github.com/yishuaidu/
POST). For SVB/SS-GPTF, we set the number of pseudo
inputs to 128 in their sparse approximations. We used
Adam (Kingma & Ba, 2014) for the stochastic optimization
in SVB-DTF and SVB/SS-GPTF, where we set the number
of epochs to 100 in processing each streaming batch and
tuned the learning rate from {10−5, 5 × 10−5, 10−4, 3 ×

10−4, 5 × 10−4, 10−3, 3 × 10−3, 5 × 10−3, 10−2}. For
SBDT and SVB-DTF, We used a 3-layer NN, with 50 nodes
in each hidden layer. We tested ReLU and tanh activations.

Results. We first evaluated the prediction accuracy after all
the (accessible) entries are processed. To do so, we sequen-
tially fed the training entries into every method, each time a
small batch. We then evaluated the predictive performance
on the test entries. We examined the root-mean-squared-

https://github.com/yishuaidu/POST
https://github.com/yishuaidu/POST
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error (RMSE) and area under ROC curves (AUC) for con-
tinuous and binary data, respectively. We ran the static
factorization algorithm CP-WOPT on the entire training set.
On DBLP and ACC, we used the same split of the training
and test entries as in (Du et al., 2018), including 320K and
1M training entries for DBLP and ACC respectively, and
100K test entries for both. On Anime and MovieLen1M, we
randomly split the observed entries into 90% for training
and 10% for test. For both datasets, the number of training
entries is around one million. For each streaming approach,
we randomly shuffled the training entries and then parti-
tioned them into a stream of batches. On each dataset, we
repeated the test for 5 times and calculated the average of
RMSEs/AUCs and their standard deviations. For CP-WOPT,
we used a different random initialization for each test.

We conducted two groups of evaluations. In the first group,
we fixed the batch size to 256 and examined the predictive
performance with different numbers of the factors, {3, 5, 8
10}. In the second group, we fixed the factor number to 8,
and examined how the prediction accuracy varies with the
size of the streaming batches, {26, 27, 28, 29}. Obviously,
the more the factors/larger the batch size, the more expen-
sive for SBDT to factorize in each streaming batch. Hence
both settings examined the trade-off between the accuracy
and computational complexity. The results are reported in
Fig. 1. As we can see, SBDT (with both tanh and ReLU)
consistently outperforms all the competing approaches in
all the cases and mostly by a large margin. First, SBDT
significantly improves upon POST and CP-WOPT — the
streaming and static multilinear factorization, confirming
the advantages of the deep tensor factorization. It worth
noting that CP-WOPT performed much worse than POST
on ACC and MovieLen1M, which might be due to the poor
local optimums CP-WOPT converged to. Second, SVB/SS-
GPTF are generally far worse than our method, and in many
cases even inferior to POST (see Fig. 1b, d, f and h). SVB-
DTF is even worse. Only on Fig. 1c, the performance of
SVB-DTF is comparable to or better than CP-WOPT, and
in all the other cases, SVB-DTF is much worse than all the
other methods and we did not show its curve in the figure
(similar for CP-WOPT in Fig. 1g). Those results might be
due to the inferior/unreliable stochastic posterior updates.
Lastly, although both SBDT-ReLU and SBDT-tanh outper-
form all the baselines, SBDT-ReLU is overall better than
SBDT-tanh (especially Fig. 1g).

6.2. Prediction On the Fly

Next, we evaluated the dynamic performance. We randomly
generated a stream of training batches from each dataset,
upon which we ran each algorithm and examined the pre-
diction accuracy after processing each batch. We set the
batch size to 256 and tested with the number of latent factors
r = 3 and r = 8. The running RMSE/AUC of each method

0.3 0.5 1

posterior selection

-1

-0.1
0

0.1

1

p
o
s
te

ri
o
r 

m
e
a
n

0.3 0.5 1

posterior selection

0

0.1

0.5

1

p
o

s
te

ri
o

r 
v
a

ri
a

n
c
e

Figure 3. Posterior selection probability c(ρ∗mjt) vs. the posterior
mean and variance of each NN weight wmjt

are reported in Fig. 2. Note that some curves are missing or
partly missing because the performance of the correspond-
ing methods are much worse than all the other ones. In
general, nearly all the methods improved the prediction ac-
curacy with more and more batches, showing increasingly
better factor estimations. However, SBDT always obtained
the best AUC/RMSE on the fly, except at the beginning
stage on Anime and MovieLen1M (r = 8). The trends of
SBDT and POST are much smoother than that of SVB-DTF
and SVB/SS-GPTF, which might again because the stochas-
tic updates are unstable and unreliable. Note that in Fig. 2b,
SVB-DTF has running AUC steadily around 0.5, implying
that SVB actually failed to effectively update the posterior.

Efficiency. We implemented SBDT by Theano and SVB-
DTF, SVB-GPTF, SS-GPTF by TensorFlow. POST was im-
plemented with Matlab. We ran all the methods on a desktop
machine with Intel i9-9900K CPU and 32GB memory. We
did not use GPU acceleration to run SBDT for a fair compar-
ison. SBDT is faster than POST on MovieLen1M but slower
on the other datasets. For example, for r = 8 and batch-
size 128, the running time (in seconds) are {SBDT-ReLU:
6,928, SBDT-tanh: 8,566, POST: 40,551} on MovieLen1M,
{SBDT-ReLU: 13,742, SBDT-tanh: 15,641, POST: 1,442}
on ACC, {SBDT-ReLU: 5,255, SBDT-tanh: 5,356, POST:
2,459} on Anime and {SBDT-ReLU: 1,349, SBDT-tanh:
1,481, POST: 371} on DBLP. Note that on different datasets,
POST may need a different number of iterations to converge
in the mean-field variational updates. The tolerance level
was set to 10−5 and the maximum number of iterations 500.
The results are reasonable, because SBDT is based on neural
networks, including much more parameters than CP factor-
ization, and the computation is much more complex. The
other methods are in general faster than SBDT. This might
be partly due to the difference in efficiency between Theano
and TensorFlow libraries. Nonetheless, the predictive per-
formance of those methods are much worse than SBDT and
even often worse than POST.

Network Sparsity. Finally, we looked into the estimated
posterior distribution of the NN weights. We set the number
of latent factors to 8 and streaming batch-size to 256, and
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ran SBDT on DBLP dataset with ReLU. In Fig. 3, we show
the posterior selection probability c(ρ∗mjt) vs. the posterior
mean µ∗mjt for each weight wmjt, and c(ρ∗mjt) vs. the pos-
terior variance v∗mjt for each weight. As we can see, when
the posterior selection probability is less than 0.5, i.e., the
weight wmjt is likely to be useless/redundant, both its pos-
terior mean and variance are small and close to 0. The more
the posterior selection probability approaches 0, the closer
µ∗mjt and v∗mjt to 0, exhibiting a shrinkage effect. Thereby
the corresponding weight wmjt is inhibited or deactivated.
By contrast, when the posterior selection probability is big-
ger than 0.5, the posterior mean and variance have much
larger scales and ranges, implying that the corresponding
weight is active and estimated from data freely. Therefore,
SBDT can effectively inhibit redundant/useless NN weights
to prevent overfitting during the factorization.

7. Conclusion
We have presented SBDT, a streaming probabilistic deep
tensor factorization approach, which can effectively lever-
age neural networks to capture complicated relationships
for streaming factorization. Experiments on real-world ap-
plications have demonstrated the advantage of SBDT.
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Supplementary Material

1 Online Posterior Update for the Inverse Noise Variance
To update qcur(τ), we consider the blending distribution only in terms of the NN output fo and τ ,

p̃(fo, τ) ∝ qcur(fo)qcur(τ)N (yin |fo, τ−1) = N (fo|αn, βn)Gamma(τ |a, b)N (yin |fo, τ−1). (1)

Following the conditional expectation propagation (CEP) framework proposed by Wang and Zhe
(2019), we first derive the conditional moments of τ given fo and then approximate the expectation
of the conditional moments to obtain the moments and update the posterior of τ . Specifically, from
(1), we can easily derive the conditional blending distribution,

p̃(τ |fo) = Gamma(τ |â, b̂) (2)

where â = a+ 1
2 and b̂ = b+ 1

2 (y2in − 2fo + f2o ). We can obtain the conditional moments of τ ,

Ep̃(τ |fo)[τ ] =
â

b̂
, Ep̃(τ |fo)[log(τ)] = Ψ(â)− log(b̂).

where Ψ(·) is the digamma function. Note that these moments are based on the sufficient statistics of
Gamma distribution, which are standard for moment matching in ADF and EP framework. The true
moments can therefore be calculated by taking the expectation of the conditional moments,

Ep̃[τ ] = Ep̃(fo)Ep̃(τ |fo)[τ ] = Ep̃(fo)[
â

b̂
],

Ep̃[log(τ)] = Ep̃(fo)Ep̃(τ |fo)[log(τ)] = Ep̃(fo)[Ψ(â)− log(b̂)].

However, the normalization constant for (1) is intractable and it is difficult to compute the marginal
blending distribution p̃(fo). To overcome this problem, we approximate p̃(fo) with the current
posterior of fo, namely qcur(fo). This is reasonable, because p̃(fo) is an integration of q(fo) and one
new data point; when we have processed many data points, adding one more data point is unlikely to
significantly change the posterior. In other words, we can assume q(fo) and p̃(fo) are close in high
density regions. Hence, we can approximate

Ep̃[τ ] ≈ Eqcur(fo)[
â

b̂
],

Ep̃[log(τ)] ≈ Eqcur(fo)[Ψ(â)− log(b̂)].

A second problem is that due to the nonlinearity of the conditional moments, even with qcur(fo)
(which has a nice Gaussian form), we still cannot analytically compute the expectation. To address
this issue, we further observe that the conditional moments are functions of fo and f2o ,

h1(fo, f
2
o ) =

â

b̂
=

a+ 1
2

b+ 1
2 (y2in − 2fo + f2o )

,

h2(fo, f
2
o ) = Ψ(â)− log(b̂) = Ψ(a+

1

2
)− log

(
b+

1

2
(y2in − 2fo + f2o )

)
.

Define f = [fo, f
2
o ]>. We use a Taylor expansion at the mean of fo and f2o to approximate the

conditional moments,

h1(fo, f
2
o ) ≈ h1(Eqcur [fo],Eqcur [f

2
o ]) + (f − Eqcur [f ])

>∇h1|f=Eqcur [f ]
,

h2(fo, f
2
o ) ≈ h2(Eqcur [fo],Eqcur [f

2
o ]) + (f − Eqcur [f ])

>∇h2|f=Eqcur [f ]
. (3)

We take expectation over the Taylor expansion, and obtain a closed-form result,

Ep̃[τ ] = Ep̃[h1] ≈ a∗

b∗
, Ep̃[log τ ] = Ep̃[h2] ≈ Ψ(a∗)− log(b∗) (4)

where
a∗ = a+

1

2
, b∗ = b+

1

2
((yin − αn)2 + βn).

Finally, from these moments, we can obtain the updated posterior, q(τ) = Gamma(τ |a∗, b∗).

1



2 The Updates for Spike-and-Slab Prior Approximation

In our streaming posterior inference, after we execute ADF to process all the entries in the newly
received batch, we use standard EP to update the spike-and-slab prior approximation. In this way, we
can refine the approximation quality so as to effectively sparsify and condense the neural network
to prevent overfitting. Specifically, for each weight wmjt, we first divide the posterior by the prior
approximation to obtain the calibrated (or context) distribution,

q\(wmjt, smjt) ∝
qcur(wmjt, smjt)

A(wmjt, smjt)
= Bern(smjt|ρ0)N (wmjt|µ\mjt, v

\
mjt)

where A(wmjt, smjt) = Bern
(
smjt|c(ρmjt)

)
N (wmjt|µ0

mjt, v
0
mjt) (see (13) in the main paper).

Because both qcur and A belong to the exponential family, this can be easily done by subtracting the
natural parameters. Note that Bern(smjt|ρ0) is the prior of smjt (see (4) and (5) in the main paper)
— this comes from the fact that the (approximate) posterior of smjt is proportional to the product of
its prior and the approximation term in A.

Next, we combine the calibrated distribution and the exact prior to obtain a tilted distribution (which
is similar to the blending distribution in the streaming case),

p̃(wmjt, smjt) ∝ q\(wmjt, smjt)
(
smjtN (wmjt|0, σ2

0) + (1− smjt)δ(wmjt)
)
. (5)

We then project p̃ to the exponential family to obtain the updated posterior,

q∗(wmjt, smjt) = Bern(smjt|c(ρ∗mjt))N (wmjt|µ∗mjt, v∗mjt),

where c(·) is the sigmoid function,

ρ∗mjt = log
(N (µ

\
mjt|0, σ2

0 + v
\
mjt)

N (µ
\
mjt|0, v

\
mjt)

)
, (6)

µ∗mjt = c(ρ̂mjt)µ̂mjt, (7)

v∗mjt = c(ρ̂mjt)
(
v̂mjt + (1− c(ρ̂mjt))µ̂2

mjt

)
, (8)

(9)

and

ρ̂mjt = ρ∗mjt + c−1(ρ0),

v̂mjt =
((
v
\
mjt

)−1
+ σ−20

)−1
,

µ̂mjt = v̂mjt
µ
\
mjt

v
\
mjt

.

Finally, we can update the prior approximation term via dividing the updated posterior by the
calibrated distribution, A∗(wmjt, smjt) ∝ q∗(wmjt, smjt)/q

\(wmjt, smjt). Now, we replace the
current prior approximation by A∗ and set qcur = q∗, to prepare the steaming inference for the next
batch. Therefore, the learned posterior weights and selection probabilities are consistent, and they
effectively deactivate many weights to adjust the complexity of the network.

References

Wang, Z. and Zhe, S. (2019). Conditional expectation propagation. In UAI, page 6.

2


