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Abstract
Tensor decomposition is a powerful framework
for multiway data analysis. Despite the success of
existing approaches, they ignore the sparse nature
of the tensor data in many real-world applica-
tions, explicitly or implicitly assuming dense ten-
sors. To address this model misspecification and
to exploit the sparse tensor structures, we propose
Nonparametric dEcomposition of Sparse Tensors
(NEST), which can capture both the sparse struc-
ture properties and complex relationships between
the tensor nodes to enhance the embedding es-
timation. Specifically, we first use completely
random measures to construct tensor-valued ran-
dom processes. We prove that the entry growth is
much slower than that of the corresponding tensor
size, which implies sparsity. Given finite obser-
vations (i.e., projections), we then propose two
nonparametric decomposition models that cou-
ple Dirichlet processes and Gaussian processes
to jointly sample the sparse entry indices and the
entry values (the latter as a nonlinear mapping of
the embeddings), so as to encode both the struc-
ture properties and nonlinear relationships of the
tensor nodes into the embeddings. Finally, we
use the stick-breaking construction and random
Fourier features to develop a scalable, stochas-
tic variational learning algorithm. We show the
advantage of our approach in sparse tensor gen-
eration, and entry index and value prediction in
several real-world applications.

1. Introduction
Multiway data, such as interactions between multiple nodes
(or entities), are ubiquitous in real-world applications. These
data are naturally represented by tensors. For example, we
can use a three-mode (customer, service-item, provider) ten-
sor to summarize consumer behaviors. Accordingly, tensor
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decomposition is a fundamental framework for multiway
data analysis. In general, tensor decomposition aims to es-
timate an embedding representation of the nodes in each
mode, with which to recover the observed entry values.
These embeddings can reflect hidden structures within the
tensor nodes, e.g., communities and outliers, and be used in
various downstream tasks, such as click-through-rate pre-
diction and commodity recommendation.

Although many excellent tensor decomposition methods
have been developed (Tucker, 1966; Harshman, 1970; Chu
and Ghahramani, 2009; Kang et al., 2012; Choi and Vish-
wanathan, 2014), they explicitly or implicitly assume that
the tensors have dense entries and overlook the sparse nature
of the data in numerous real-world applications. For exam-
ple, many algorithms (Kolda and Bader, 2009; Kang et al.,
2012; Choi and Vishwanathan, 2014; Xu et al., 2012) rely
on tensor algebras and require that all the possible entries
must have been generated — although most entry values can
be zero — so that they can operate on the entire tensor (fold-
ing, unfolding, multiplying with matrices, etc.). Although
quite a few methods can focus on a small set of entries and
only decompose the observed entry values (Rai et al., 2014;
Zhe et al., 2016b; Du et al., 2018), they essentially assume
that the tensor entries are generated by a random function
of the embeddings, which is equivalent to assuming the ten-
sor is exchangeable. That is, the distribution of the tensor
is invariant to the permutation of the nodes in each mode.
According to the Aldous-Hoover theorem (Aldous, 1981;
Hoover, 1979), the tensor is either trivially empty or dense,
i.e., the number of present entries grows linearly with the
tensor size (Θ(

∏
kMk) where Mk is the number of nodes

in mode k).

However, real-world tensor data are usually very sparse. The
number of present entries is way less than the tensor size
(o(
∏
kMk)). Therefore, existing models are often misspec-

ified, and unable to capture the valuable structure properties
within the observed sparse entries. To address these limita-
tions, we propose NEST, Bayesian nonparametric decompo-
sition models for sparse tensors. Our method not only is flex-
ible enough to capture the complex relationships between
the tensor nodes in generating the entry values, but also can
account for the generation of sparse entry indices, assim-
ilating both the hidden relationships and sparse structure
properties into the embedding representations. Specifically,
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to address the model misspecification, we first use Gamma
processes (ΓP) — a popular completely random measure
—- to construct sparse tensor-valued processes. We show
that the number of present entries is asymptotically much
smaller than the corresponding tensor size, i.e., o(

∏
kMk),

which guarantees sparsity. Next, given the finite observa-
tions, we propose two nonparametric decomposition models
that couple Dirichlet processes (DP) (i.e., normalized ΓP)
and Gaussian processes (GP). The first model uses DPs
to sample a random measure for each mode. The weights
of the measure are viewed as the sociability of the nodes
and are used to sample the indices of the observed entries.
The locations of the measure are considered as intrinsic
properties of the nodes. The weights and locations are con-
catenated to form the embeddings to sample the values of
observed entries with a GP. The second model samples mul-
tiple random measures in each mode, where the weights
are considered as multiple sociabilities of each node under
different (overlapping) groups/communities. These socia-
bilities are concatenated as the embeddings to sample both
the entry indices and values (with a GP for the latter). In
this way, both the sparse structure properties and nonlinear
relationships are absorbed into the embedding representa-
tions. Finally, we use the stick-breaking construction and
random Fourier features for GP approximation to derive a
tractable variational evidence lower bound, based on which
we develop a stochastic variational learning algorithm to
enable scalable and efficient model estimation.

For evaluation, we first tested tensor sampling. NEST in-
deed generates increasingly sparse entries along with the
growth of tensor size, while the existing (exchangeable)
models generates dense data. We also showcase the gen-
erated sparse tensors by NEST. We then evaluated NEST
in three real-world applications. In predicting both entry
values and entry indices (i.e., link prediction), NEST out-
performs the state-of-the-art multilinear and nonparametric
decomposition models, often significantly.

2. Background
Tensor Decomposition. A K-mode tensor is denoted by
Y ∈ RM1×...×MK , where each mode k includes Mk nodes
(or entities), e.g., customers or products. We index each
entry by i = (i1, . . . , iK), and denote the value of that entry
by yi. Given a set of observed entries and their values,
D = {(in, yin)}Nn=1, we aim to learn a set of embeddings
to represent the nodes in each mode, U = {U1, . . . ,UK}
where each row j in Uk is the embedding vector of the j-th
node in mode k, denoted by ukj . In practice, tensor data
are usually very sparse, i.e., the number of present entries
is much smaller than the tensor size, i.e., N �

∏K
k=1Mk.

Tensor data can be represented by hypergraphs, where a
present entry indicates a hyper-edge connecting K nodes,

and the entry value is the edge weight (see Fig. 1 in the
supplementary material). Note that a zero-valued entry is
totally different from a nonexistent entry. The former means
the hyper-edge exists but the edge weight is 0, while the
latter means the hyper-edge does not exist at all.

Dense Tensors and Exchangeable Arrays. Classical ten-
sor decomposition methods demand every entry should be
observed and so the tensor can be operated as a mathemati-
cal object. For example, Tucker decomposition (Tucker,
1966) models Y = W ×1 U1 ×2 . . . ×K UK , where
W ∈ Rr1×...×rK is a parametric core tenor, and ×k is
the mode-k tensor-matrix product (Kolda, 2006), which
generalizes the matrix-matrix product. If we restrictW to
be diagonal, Tucker decomposition is reduced to CANDE-
COMP/PARAFAC (CP) decomposition (Harshman, 1970).

However, assuming a fully observed tensor is usually unre-
alistic in practice. Many methods hence conduct an element-
wise decomposition over a small set of observed entry val-
ues (Zhe et al., 2016a; Zhe and Du, 2018; Rai et al., 2015;
Hu et al., 2015; Schein et al., 2015). These methods, from
a Bayesian point of view, can be considered as generating
tensor entries in the following way. First, we sample the
embeddings from a prior distribution p(U), e.g., Gaussian
(Zhe et al., 2016b; Du et al., 2018). Given the embeddings
U , we sample the presence of each entry independently,

zi ∼ Bern(f(xi)), (1)

where xi = [u1
i1

; . . . ;uKiK ], Bern(·) is the Bernoulli distri-
bution, and f(·) is a function of the associated embeddings,
e.g., the element-wise Tucker or CP form (Du et al., 2018;
Hu et al., 2015). To capture the (possible) nonlinear rela-
tionship between the tensor nodes, Xu et al. (2012); Zhe
et al. (2016a) placed a Gaussian process (GP) prior over
f(·). To sample the entry value, we can use other distribu-
tions, e.g., yi ∼ N (f(xi), σ

2) for continuous values and
Poisson distribution for count values (Schein et al., 2015).

While some existing models can avoid assuming the ob-
servation of the full tensor by performing element-wise
decomposition, they intrinsically sample exchangeable ar-
rays that (asymptotically) lead to dense tensors almost
surely (i.e., with probability one). Specifically, the ten-
sor entries (and values) are generated by a random func-
tion of the embeddings (see (1)). These embeddings, no
matter from what prior they are sampled from, can be
considered as a transform of uniform random variables.
Therefore, if we use these models to sample a sequence
of arrays with growing numbers of nodes in each mode,
according to the Aldous-Hoover theorem (Aldous, 1981;
Hoover, 1979), in the limit of infinite (countable) nodes,
the joint distribution of the tensor is exchangeable. That
is, the distribution is invariant to arbitrary permutations
of the nodes in each mode. The asymptotic portion of



Nonparametric Decomposition of Sparse Tensors

the present entries is ξ =
∫
f(xi)p(xi)dxi where p(xi)

is the prior (see (1)). As a consequence, the tensor is either
trivially empty (for ξ = 0) or dense almost surely, since
Θ(ξ

∏K
k=1Mk) = Θ(

∏K
k=1Mk).

3. Model
Despite the success of existing methods, their intrinsic na-
ture of sampling dense tensors can be a severe model mis-
specification for sparse data observed in numerous practical
applications. With this assumption, they miss capturing
the valuable structure properties within the sparsely present
entries that can potentially also benefit embedding estima-
tions. To overcome these limitations, we propose NEST, a
nonparametric decomposition approach of sparse tensors,
presented as follows.

3.1. Sparse Tensor Processes

First, we construct tensor-valued random process, which
guarantees almost surely sparsity at the limit (i.e., when the
number of sampled entries grows to infinity). Specifically,
for each mode k, we use a Gamma process (ΓP) (Hougaard,
1986; Brix, 1999) — a commonly used completely random
measure (CRM) (Kingman, 1967) — to sample a discrete
measure, where the locations are drawn from a finite interval
[0, α] to represent the tensor nodes. We then construct a
product intensity measure for a Poisson point process (PPP),
with which we sample the indices of the present entries. The
model is given by

Wα
k ∼ ΓP(λα)(1 ≤ k ≤ K),

T ∼ PPP(Wα
1 × · · · ×Wα

K), (2)

where λα is the Lebesgue measure with the support re-
stricted to [0, α](α > 0), Wα

k and T are discrete measures,

Wα
k =

∞∑
j=1

wαkj · δθkj ,

T =
∑
i∈S

ci · δθi
,

where δ[·] is the Dirac Delta measure, {wαkj} and {θkj } are
the weights and locations, each θkj represents the j-th node
in mode k, S are the (unique) indices of all the sampled
entries, θi = (θ1i1 , . . . , θ

K
iK

) is the position of the corre-
sponding point sampled by the PPP, and ci is the multiplicity
(or count) of the point θi. Note that a sampled point has
uniquely determined an entry index.

Although the model samples an infinite number of nodes
(i.e., locations) in each mode, the sampled tensor entries are
finite almost surely. This is because given any fixed α > 0,
the total mass of the PPP, bα =

∏
kW

α
k ([0, α]) <∞. The

count of the points sampled by the PPP follows a Poisson

distribution parameterized by bα, p(C) =
bCα
C! e
−bα . Hence

p(C = ∞) = 0 and p(C < ∞) = 1. Our model will
generate infinite entries only when α→∞.

We are interested in the active nodes that actually involve
in those entries, namely, the nodes whose indices show up
in the sampled entry indices. If we use the active nodes
to construct a tensor, the number of present entries should
be much smaller than the size of this tensor — that is our
intuition about sparsity. Let us denote by Mα

k the number
of active nodes in mode k, and by Nα the number sampled
entries. We have Mα

k = #{θkj |T (Aα
k,θkj

) > 0}, where #

means “the number of”, and Aα
k,θkj

= [0, α]× · · · × {θkj }×
· · · × [0, α]. The sparsity of our model is guaranteed by the
following lemma.

Lemma 3.1. If the tensor entries are sampled by the model
defined in (2), we have Nα = o(

∏K
k=1M

α
k ) almost surely

as α→∞, namely,

lim
α→∞

Nα∏K
k=1M

α
k

= 0 a.s.

The proof is given in the supplementary material. Note that,
formally, the sparsity is defined asymptotically, namely, the
growth of entries is slower than the growth of tensor size.
This is consistent with the definition of sparse graphs (Caron
and Fox, 2014; Crane and Dempsey, 2015; Cai et al., 2016).
We can further extend the model (2) by sampling multiple
measures in each mode k, and constructing a summation
of the product intensity measure for the PPP to sample the
entries,

Wα
k,r ∼ ΓP(λα) (1 ≤ k ≤ K, 1 ≤ r ≤ R),

T ∼ PPP(

R∑
r=1

Wα
1,r × · · · ×Wα

K,r). (3)

According to the Poisson process superposition theo-
rem (Cinlar and Agnew, 1968), it is straightforward to show
this model also guarantees sparsity.

Corollary 3.1.1. If the tensor entries are sampled by the
model defined in (3), we also have Nα = o(

∏K
k=1M

α
k )

almost surely as α→∞.

The proof details are given in the supplementary material.
We will use model (3) to estimate multiple sociabilities
(reflected in overlapping communities or groups) as the
embeddings of the tensor nodes (Model-II in Sec. 3.2).

3.2. Nonparametric Decomposition of Finite
Observations

In practice, we can only observe a finite number of tensor
entries. Accordingly, we adjust our models (2) and (3) to
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sample the observed N entry indices and values. Since N is
fixed, we can replace the Gamma processes by their normal-
ized version, i.e., Dirichlet processes (DP) (Ferguson, 1973),
to sample N times, each time an entry. This is equivalent
to the original models, but is much more convenient for
inference.

Model-I. Specifically, we develop two decomposition mod-
els. Denote the dimension of the embeddings byR. The first
model is based on (2), and considers the embedding of each
tensor node is composed of two parts — a scalar sociability
and an intrinsic property vector (R − 1 dimensional). For
each mode k, we first sample a random measure from a DP
(i.e., normalized ΓP),

Lk ∼ DP
(
β, ρ
)
, (4)

where β is the strength parameter and ρ the base probability
measure. We set ρ to the product of R− 1 uniform proba-
bility measures in [0, α], and β = αR−1. This is equivalent
to extending the Lebesgue measure λα in (2) to R − 1 di-
mensional space, with support [0, α] × . . . × [0, α]. Note
that this does not affect the sparsity guarantee, i.e., Lemma
3.1 (see the supplementary material). We now have

Lk =

∞∑
j=1

ωkj · δθkj . (5)

We view the weights {ωkj } as the sociabilities of the nodes
in mode k to interact with others so as to generate observed
entries, and the locations {θkj } the inherent properties of
these nodes that are only used to generate the entry values.
The embedding of node j in mode k is defined as ujk =
[ωkj ;θkj ]. Now, given {Lk}Kk=1, we independently sample
N entries and their values. For the n-th entry, we first
sample the node index and location in each mode k from

θikn ∼ Lk, (6)

where ikn ∈ {1, 2, . . .}. We then assemble the node indices
to obtain the entry index, in = (i1n, . . . , i

K
n ). Given the

entry index, we sample the entry value from

yin ∼ N (·|f(xin), τ−1), (7)

where xin = [u1
i1n

; . . . ;uKiKn
] is the associated embeddings,

f(·) is a latent function, and τ is the inverse noise variance.
In this work, we only consider continuous values and hence
use the Gaussian distribution. We can adopt other distribu-
tions for different types of values. In order to capture the
complex, nonlinear relationships between the tensor nodes,
we further place a Gaussian process (GP) prior (Rasmussen
and Williams, 2006) over f(·). Hence, the function values at
all the observed entries, f = [f(xi1), . . . , f(xiN )]>, follow
a multivariate Gaussian prior distribution,

p(f) = N (f |0,K) (8)

where K is a kernel matrix on {xin}Nn=1, each [K]mn =
κ(xim ,xin), and κ(·, ·) is a kernel function.

Model-II. In our second model, we aim to capture richer
structural information from the sparse tensor entries. To this
end, we assume the nodes in each mode have R overlap-
ping communities (or groups). Correspondingly, for each
mode k, we sample R random measures from a Griffiths-
Engen-McCloskey (GEM) distribution (Griffiths, 1980; En-
gen, 1975; McCloskey, 1965),

Lrk ∼ GEM(β) (1 ≤ r ≤ R, 1 ≤ k ≤ K). (9)

A GEM distribution samples the weights in the same way
as in DPs but does not sample locations (or in other words,
the locations are positive integers). Therefore, we obtain

Lrk =

∞∑
j=1

ωkjr · δj . (10)

We view each weight ωkjr as the r-th sociability of node
j in mode k. We use these sociabilities to construct the
embedding, ukj = [ωkj1, . . . , ω

k
jR]>. Given the embeddings,

we construct a discrete probability measure to sample the
entry indices,

T =

(∞,...,∞)∑
i=(1,...,1)

wiδi, (11)

where i = (i1, . . . , iK) is entry index, and

wi =
1

R

R∑
r=1

K∏
k=1

ukikr. (12)

Note that we have
∑

i wi = 1. Hence, this is a normalized
version of the mean measure in (3). We independently
sample N entries from T ,

in ∼ T. (13)

Then given each entry in, we sample the entry value from

yin ∼ N (·|f(xin), τ−1). (14)

Again, we place a GP prior over f(·) to estimate the (possi-
ble) nonlinear relationships of the tensor nodes in terms of
their embeddings.

4. Algorithm
The inference of our model is challenging not only in the
infinite discrete measures (see (5) and (10)), but also in the
GP prior that samples the entry values (see (8)). When the
number of observed entries is large, we have to compute
a huge covariance matrix, its inverse and log determinant,
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which is very costly. To overcome these issues, we use the
stick-breaking construction (Sethuraman, 1994) and random
Fourier features (Rahimi et al., 2007; Lázaro-Gredilla et al.,
2010) to develop a scalable variational learning algorithm.

We will mainly discuss the estimation of the first model
(Model-I). It is straightforward to extend the method for the
second model (Model-II). Specifically, to obtain each DP
sample Lk in (4), we use the stick-breaking construction.
We first sample

vkj ∼ Beta(1, β) (1 ≤ j ≤ ∞) (15)

and then construct each ωkj in (5) by

ωkj = vkj
∏j−1

t=1
(1− vkt ). (16)

We sample each location θkj = [θkj1, . . . , θ
k
jR−1] in (5) from

p(θkj ) =
∏R−1

r=1
Uniform(θkjr|0, α). (17)

Next, we consider a sparse GP approximation to deal
with a large number of entry values. We will use ran-
dom Fourier features, i.e., the spectrum GP (Lázaro-
Gredilla et al., 2010). The idea comes from the fact
that a stationary kernel κ(a1,a2) = κ(a1 − a2) is
the Fourier transform of a probability density scaled by
κ(0) (Lázaro-Gredilla et al., 2010; Akhiezer and Glaz-
man, 2013), κ(a1 − a2) =

∫
κ(0)eis

>(a1−a2)ds =

κ(0)Ep(s)[eis
>a1
(
eis

>a2
)†

], where † is the complex con-
jugate. Therefore, we can view the kernel as an expectation,
and from p(s) we can draw F independent frequencies,
S = {s1, . . . , sF }, to construct a Monte-Carlo approxima-
tion of the kernel,

κ(a1,a2) ≈ κ(0)

F

F∑
m=1

eis
>
ma1
(
eis

>
ma2
)†

=
κ(0)

F

·
F∑

m=1

(
cos(s>ma1) cos(s>ma2) + sin(s>ma1) sin(s>ma2)

)
=
κ(0)

F
φ(a1)>φ(a2), (18)

where

φ(a) = [cos(s>1 a), sin(s>1 a), . . . , cos(s>F a), sin(s>F a)].

We can see that φ(·) is a 2F dimensional nonlinear fea-
ture mapping, which is often referred to as Fourier fea-
tures. Based on (18), we can approximate the GP with
linear Bayesian regression over the random Fourier fea-
tures. Specifically, we use the RBF kernel, κ(a1,a2) =
exp(− 1

2η‖a1 − a2‖2). The corresponding frequency distri-
bution (in the Fourier transform) is p(s) = N (s|0, ηI). We

sample F frequencies S = {s1, . . . , sF } (F � N ) , from
p(S) =

∏F
m=1N

(
sm|0, ηI

)
, and a weight vector h for the

random Fourier features, from p(h) = N (h|0, 1
F I). The

nonlinear function f(·) in (7) is then constructed by

f(xin) = φ(xin)>h, (19)

where the input xin is from the embeddings associated with
the entry in, namely, the sociabilities {ωkink}k and locations
{θkink}k. Since the sociabilities can be very small and close
to 0 (see (16)), we use their logarithm to ensure an effective
estimation. Hence, we have

xin =
[
log(ω1

in1
);θ1

in1
; . . . ; log(ωKinK );θKinK

]
. (20)

If we marginalize out h, we can recover the joint Gaussian
distribution in (8), and the kernel function takes the approxi-
mate form (18). By keeping and inferring h, we do not need
to compute the huge full covariance matrix, and therefore
can scale to a large number of observations.

Denote byMk the number of active nodes in mode k. Given
the observations D = {(in, yn)}Nn=1, the joint probability
of our model is given by

p({vkj ,θkj }1≤j≤Mk,1≤k≤K ,h,S, {in, yn}Nn=1)

= Gam(τ |a0, b0)N (h|0, η0
F
I)

F∏
m=1

N
(
sm|0, ηI

)
·
K∏
k=1

Mk∏
j=1

Beta(vkj |1, β)
∏
r

Uniform(θkjr|0, α)

·
N∏
n=1

(
K∏
k=1

ωkink

)
N
(
yin |φ(xin)>w, τ−1

)
. (21)

Note that the stick-breaking variables and locations that
bind to the inactive nodes (i.e., their indices do not appear
in the observed entries) have been marginalized out. We
use variational inference (Wainwright and Jordan, 2008) to
estimate all vkj and θkjr for the active nodes, and the poste-
rior of h. Specifically, we introduce a variational posterior
q(h) = N (h|µ,LL>) where L is a lower triangular matrix
to ensure the covariance is positive definite. We construct a
model evidence lower bound,

L = Eq [log (p(Joint))] + H(q(h)), (22)

where p(Joint) is (21) and H(·) is the entropy. Obviously,
the ELBO is additive over the observed entries,

L = −KL(q(h)‖p(h))

+ log(p(Ψ)) +

N∑
n=1

(
K∑
k=1

log(ωkink)

)

+

N∑
n=1

(
K∑
k=1

Eq
[
log
(
N (yn|φ(xn)>w, τ−1)

)])
,



Nonparametric Decomposition of Sparse Tensors

where Ψ are all the variables other than h, and p(Ψ) is their
prior in (21). Accordingly, we use mini-batch stochastic
optimization to efficiently maximize L for model estimation.

Algorithm Complexity: The time complexity of our infer-
ence isO(NF 2) whereN is the number of observed entries.
Since F is fixed and F � N , the time complexity is linear
in N . The space complexity is O(F 2 + F +

∑
kMkR),

which is to store the embeddings, the frequencies, and the
posterior of the weight vector.

5. Related Work
Classical and popular tensor decomposition methods include
Tucker (Tucker, 1966) and CP (Harshman, 1970) decom-
positions. While many other approaches have also been
proposed, such as (Shashua and Hazan, 2005; Chu and
Ghahramani, 2009; Sutskever et al., 2009; Acar et al., 2011;
Hoff, 2011; Kang et al., 2012; Yang and Dunson, 2013; Rai
et al., 2014; Choi and Vishwanathan, 2014; Hu et al., 2015;
Zhao et al., 2015; Rai et al., 2015; Du et al., 2018), most of
them are inherently based on Tucker or CP forms, which are
multilinear and inadequate to estimate complex, nonlinear
relationships in data. Recently, several Bayesian nonpara-
metric decomposition models (Xu et al., 2012; Zhe et al.,
2015; 2016a;b; Pan et al., 2020; Tillinghast et al., 2020)
have been developed. They use GPs to estimate the entry
values as a (possible) nonlinear function of the embeddings,
and hence can flexibly capture a variety of complex relation-
ships in tensors. The exact inference of GP models is known
to be prohibitively expensive for massive training examples.
To overcome this problem, many sparse GP approxima-
tions have been developed, e.g., (Schwaighofer and Tresp,
2003; Titsias, 2009; Lázaro-Gredilla et al., 2010; Hensman
et al., 2013; 2017); see an excellent survey in (Quiñonero-
Candela and Rasmussen, 2005). Zhe et al. (2016b) used
the variational sparse GP (Titsias, 2009; Hensman et al.,
2013) while Pan et al. (2020) the spectrum GP approxima-
tion, i.e., random Fourier features; both methods achieve the
state-of-the-art performance in entry value prediction.

Despite the success of the existing tensor decomposition
methods, they essentially assume dense data and hence are
misspecified for many sparse tensors in real-world appli-
cations. In theory, theses methods (when generalized as
Bayesian models) are instances of the random function prior
models for exchangeable arrays (Lloyd et al., 2012), where
the number of entries is proportional to the entire array size
in the limit. The pioneering work of Caron and Fox (2014;
2017) proposes to use completely random measures (King-
man, 1967; 1992; Lijoi et al., 2010) to generate asymptoti-
cally sparse graphs. Williamson (2016) considered the finite
case when the number of edges is known, and hence also
used DPs to develop link prediction models. NEST can be
viewed as an extension of these pioneering works in the

tensor domain. However, by coupling with GPs, NEST not
only models the generation of the sparse (hyper-)edges, but
also the entry values, i.e., edge weights. The sociabilities
of the tensor nodes are used as embeddings to sample both
the edges and edge weights. In so doing, NEST simulta-
neously decomposes the sparse tensor structure and their
entry values, assimilating both the structure properties and
nonlinear relationships of the nodes into the embedding
representation. In addition, we have developed a scalable
and efficient variational model inference algorithm for large
data. Recently, Crane and Dempsey (2015); Cai et al. (2016)
proposed the edge-exchange random graph generation mod-
els, which also exhibit sparsity. A more thorough discussion
is given in (Crane and Dempsey, 2018).

6. Experiment
6.1. Tensor Sampling

We first examined if NEST can indeed generate sparse ten-
sors. To this end, we used the prior of NEST (see Sec.
3.2) to sample a set of tensors with growing numbers of
present entries. Specifically, each time, we first sample the
total mass of the mean measure of the PPP in (2) or (3) to
construct a Poisson distribution, with which we sampled
the number of present entries. Then we sample the indices
of these entries according to the our model description in
Sec. 3.2. We looked at the number of active nodes (i.e., the
nodes that involve in the generated entries) in each mode,
and calculated the ratio between the entry number and the
size of the tensor constructed from the active nodes (which
we refer to as the active tensor). The ratio indicates the
sparsity. Note that the active tensor is the smallest tensor
that can include all the sampled entries. The number of
entries is determined by α in (2) and (3). The larger α, the
more entries will be generated and also the larger the size
of the (active) tensor. We increased α from 1 to 10, and
examined how the ratio between the entry number and ten-
sor size (i.e., sparsity) varies. For each particular α, we ran
our sampling procedure for 100 times, and calculated the
average ratio, which gives a reliable estimate of the sparsity.
We denote our two models by NEST-1 and NEST-2. To
sample the DP and GEM weights in (5) and (10), we used
the stick-breaking construction. Since the weights became
extremely small or simply below the machine precision
when j > 2000, we truncated them to zero accordingly. We
set R = 3 for both NEST-1 and NEST-2. As a comparison,
we also used two popular Bayesian tensor decomposition
models to sample tensor entries: CP-Bayes (Zhao et al.,
2015; Du et al., 2018) and GPTF (Zhe et al., 2016b; Pan
et al., 2020), where we first sampled the embeddings from
the standard Gaussian distribution, and then independently
sampled each entry from (1). In CP-Bayes, the function f(·)
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Figure 1. The ratio of the sampled entries vs. tensor size. Each
ratio was averaged from 100 runs.

is the element-wise CP form,

f(xi) =
∑K

k=1
1>(u1

i1 ◦ . . . ◦ u
K
iK )

where xi = [u1
i1

; . . . ;uKiK ] and ◦ is the element-wise prod-
uct. In GPTF, f(·) is sampled from a GP prior. However,
the exact GP prior cannot sample a large number of entries
(due to the huge covariance matrix). To address this issue,
we used the random Fourier features to construct a sparse
GP approximation (the same as in our model estimation).
We used 100 frequencies (F = 100). We kept increasing
the the number of nodes in each mode so as to increase the
tensor size and examined how the proportion of the sampled
entries varied. At each tensor size, we repeated the sampling
procedure for 100 times, and calculated the average ratio
between the entry number and tensor size. Note that both
CP-Bayes and GPTF generate exchangeable infinite arrays
in the limit.

The results are reported in Fig. 1a and b. As we can see,
both NEST-1 and NEST-2 generated very sparse tensors,
where the number of sampled entries is way smaller than the
tensor size. When the tensor size grows, the ratio between
the entry number and tensor size keeps decreasing, showing
a trend to converge to 0 at the limit. This is consistent with
the sparse guarantee in Lemma 3.1 and Corollary 3.1.1. By
contrast, both CP-Bayes and GPTF produced dense tensors
where the ratio is almost constant, which implies the number
of entries are (asymptotically) linear to the tensor size. We
then showcase a 10 × 10 × 10 tensor sampled by each
model in Fig. 2. We can see that the tensors generated by
CP-Bayes and GPTF are much denser, but more uniform.
This is because their priors are symmetric (or exchangeable),
and hence each entry has the same chance to be sampled
(see Sec. 2).

6.2. Missing Entry Value Prediction

We next evaluated the predictive performance. To this end,
we used three real-world datasets. (1) Alog (Zhe et al.,
2016b), a three-mode tensor of size 200 × 100 × 200.
Each entry represents a three-way interaction (user, ac-
tion, resource) in a file access log. The entry value is

the logarithm of the access frequency. The dataset com-
prises 13, 172 entries, taking 0.3% of the tensor size. (2)
MovieLens (https://grouplens.org/datasets/
movielens/100k/), a three-mode tensor about movie
ratings. The size is 1000 × 1700 × 31. Each entry is in-
dexed by a (user, movie, time) triple, and the entry value
is the rating. There are 100K entries (0.19% of the tensor
size). The entry values (ratings) were normalized in [0, 1]
(by dividing the highest rating 10). (3) SG (Li et al., 2015),
a three-mode tensor extracted from data in Foursquare in
Singapore. The size is 2321 × 5596 × 1600. Each entry
represents a (user, location, point-of-interest) check-in. The
data was processed as by Liu et al. (2019). The entry value
is the check-in frequency normalized in [0, 1]. There are
105, 764 entries, taking 0.0005% of the tensor size. As we
can see, all these tensors are very sparse.

Competing Methods. We compared with the following
state-of-the-art tensor decomposition methods. (1) CP-
Bayes (Zhao et al., 2015; Du et al., 2018), a Bayesian ver-
sion of CP decomposition that samples the embeddings from
a standard Gaussian prior, and then samples each existing
entry value from p(yi|U) = N (yi|

∑K
k=1 1

>(u1
i1
◦ . . . ◦

uKiK ), τ−1), where the mean is the element-wise CP form
and τ the inverse noise variance. Note that the model is
the same as the one mentioned in Sec. 6.1 except that we
used a Gaussian likelihood for continuous entry values. (2)
GPTF (Zhe et al., 2016b; Pan et al., 2020), the same as in
the one used in Sec. 6.1 except that we used a Gaussian
distribution to sample the value of each existing entry. Note
that we used the same spectrum GP approximation (i.e.,
random Fourier features) as in NEST for scalable inference.
(3) CP-ALS (Bader et al., 2015), an efficient CP decom-
position approach that updates the embeddings through al-
ternating least squares. (4) P-Tucker (Oh et al., 2018), an
efficient Tucker decomposition algorithm that conducts par-
allel row-wise updates of the embedding matrices, and (5)
CP-WOPT (Acar et al., 2011), CP decomposition that uses
conjugate gradient descent to optimize the embeddings.

Settings and Results. We implemented NEST-1, NEST-2,
CP-Bayes and GPTF with TensorFlow (Abadi et al., 2016).
All these methods used stochastic optimization, where
the learning rate was chosen from {10−4, 2 × 10−4, 5 ×
10−4, 10−3, 5× 10−3, 10−2}. The mini-batch size was set
to 200 for Alog and MovieLens, and 512 for SG. To ensure
convergence, we ran for 700 epochs on Alog, for 300 epochs
on MovieLens and for 500 epochs on SG using ADAM
(Kingma and Ba, 2014). For CP-ALS, P-Tucker and CP-
WOPT, we used their original implementations and default
settings. Note that while all the other methods decompose
the existent entry values only, CP-ALS needs to fake zeros
values for all the nonexistent entries so as to operate the
entire tensor. For each dataset, we randomly split the exis-
tent entries into 80% for training and the remaining 20% for

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/100k/
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Figure 2. A 10× 10× 10 tensor generated by each method.
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Figure 3. Prediction accuracy of entry values (a-c, e-g) and entry indices, i.e., links (d, h). Note that in (a), part of the results of CP-WOPT
was not shown because they were too large and were truncated. In (a-c, e-g), some methods performed much worse and their results were
not included in the figures.

test. To evaluate the prediction accuracy, we calculated the
mean-square-error (MSE) and mean-absolute-error (MAE).
We varied the dimension of the embeddings, i.e., rank, from
{3, 5, 7, 9}. For each rank, we conducted the experiment for
five times, and calculated the average MSE, average MAE
and their standard deviations. We reported the results in
Fig. 3 (a-c, e-g). As we can see, in all the cases, NEST-1
and NEST-2 outperform all the competing approaches, of-
tentimes by a large margin, demonstrating the advantage of
our methods in prediction. GPTF also obtains much smaller
error than the other methods, except in Fig. 3g, GPTF is
worse than CP-Bayes. This might because both our method
and GPTF use GPs to model the entry value as a latent
function of the embeddings. The nonparametric nature of
the GP prior allows us to flexibly estimate the function to
capture the complex relationships in data. While compared
with GPTF, NEST-1 only introduces one sociability into the
embeddings, it consistently improves upon GPTF in all the
case, and the improvement is often significant (p < 0.05).
The results demonstrate that capturing and exploiting the
sparse structure properties (reflected in the sociability of
each tensor node) can indeed boost the embedding estima-

tion and predictive performance. Finally, NEST-2 in general
is even better than NEST-1, showing that using more socia-
bilities to capture richer structure information can further
improve the embedding estimation, even when the internal
features (like the DP locations in NEST-1) of the nodes are
missing.

6.3. Missing Entry Prediction

Finally, we applied NEST to predict missing entries (i.e.,
entry indices). This can be viewed as the link prediction
task extended to tensors. We tested on Alog and MovieLens
datasets. For each dataset, we randomly sampled 80% of the
existent entry indices for training. We used the remaining
existent entries and sampled ten times nonexistent entries
for test. We expect that the prediction scores will be high for
existent entries and low for nonexistent ones. We did not use
all the nonexistent entries for test, because they are too many,
and can dominate the test performance. We compared with
CP-Bayes, GPTF and P-Tucker. To evaluate the prediction
accuracy, we calculated the area under ROC curve (AUC) of
predictions on the test data . For each method, we repeated
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the experiment for five times, and calculated the average
AUC and its standard deviation. As shown in Fig. 3d
and h, NEST-1 and NEST-2 exhibit much better prediction
accuracy than the competing approaches. While CP-Bayes
is close to NEST on Alog (Fig. 3d), we found that the
prediction scores of CP-Bayes have tiny differences between
existing and nonexistent entries, typically 10−4, showing
that it actually does not capture the sparse structures and
differentiate the existing entries from the nonexistent ones
very well, despite the high AUC scores.

7. Conclusion
We have presented NEST, a first nonparametric decomposi-
tion approach for sparse tensors. The nonparametric prior
of NEST guarantees to sample sparse tensors and addresses
the model misspecification in many existing approaches.
NEST can capture the valuable structure information from
the sparse tensor entries, estimate the nonlinear relations
between the tensor nodes, and assimilate both the structure
properties and nonlinear relationships into the embeddings.
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Lázaro-Gredilla, M., Quiñonero-Candela, J., Rasmussen,
C. E., and Figueiras-Vidal, A. (2010). Sparse spec-
trum Gaussian process regression. Journal of Machine
Learning Research, 11:1865–1881.
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Figure 1: Hypergraph representation of a sparse 2 × 2 × 3 tensor. Nodes in different codes
represent different modes. Each (hyper-)edge represents an existent entry, where the edge weight
is the entry value.
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1 Sparse Tensor Models
1.1 Completely Random Measures and Gamma Processes

A completely random measure (Kingman, 1967, 1992; Lijoi et al., 2010) µ on a Rd
+ is a

random variable that takes values in the space of measures on Rd
+ such that for any col-

lection of disjoint subsets A1, . . . , An ⊂ Rd, the random variables µ(A1), . . . , µ(An)
are independent. This independence condition has the implication that CRMs are
discrete measures. That is,

µ =

∞∑
i=1

wiδθi . (1)

The theory of CRMs is intimately connected to Poisson Point Processes (PPP). We
can characterize CRMs by the mean measure of a PPP. If (wi,θi) ∈ (R+,R

d
+) has

the distribution of a Poisson Point Process with intensity (mean) measure ν(dwdθ),
then the resulting discrete measure is a CRM. If we assume that the weights are
independent of the locations in the CRM, the measure ν can be decomposed as
ν(dwdθ) = ρ(w)µ0(dθ).

A Gamma process (Hougaard, 1986; Brix, 1999) with the base measure µ0, denoted
by ΓP(µ0), is the CRM that arises when

ν(dwdθ) = w−1e−wdwµ0(dθ).

Since ∫
w−1e−wdw =∞

for any measurable subset Θ ⊂ Rd with µ0(Θ) > 0, the ΓP will have an infinite number
of atoms (locations). This is why in our sparse tensor process where we set µ0 = λα,
the Lebesgue measure with support restricted to [0, α]d, we still generate an infinite
number of nodes in each mode (see (2) in the main paper). However when the PPP with
the product of ΓPs as the mean measure is sampled to generate tensor entries, only a
finite number of those nodes in each mode become active, because the the number of
entries is finite (with probability one); see Sec. 3.1 of the main paper for more details.

Now suppose g ∼ ΓP(µ0), then it can be shown g(Θ) follows a Gamma distribution
with the shape parameter µ0(θ) for any measureable Θ ⊂ Rd

+. This implies that if µ0

is a finite measure, then g(Rd
+) is finite almost surely and g/g(Rd

+) is a well defined
probability measure. Furthermore,

g/g(Rd
+) ∼ DP(µ0(Rd

+), µ0/µ0(Rd
+))

where DP is a Dirichlet process with the strength µ0(Rd
+) and base probability measure

µ0/µ0(Rd
+).

1.2 Sparsity

Now we will prove Lemma 3.1 and Corollary 3.1.1. Our sparse tensor process is
summarized as

Wα
k ∼ ΓP(λα)(1 ≤ k ≤ K),

T ∼ PPP(Wα
1 × · · · ×Wα

K). (2)

2



We will first list a few lemmas the will be important to finish the proof.

Lemma 1.1 (Campbell’s Theorem (Kingman, 1992)). Let Π be a Poisson Process on S
with mean measure ν and suppose f : S → R is a measureable function, then

E

[∑
x∈Π

f(x)

]
=

∫
S

f(x)ν(dx).

Lemma 1.2 ( (Caron and Fox, 2014) Lemma 17). Let µ be a random almost surely
positive measure on R+ and let

N |µ ∼ PoissonPoint(µ).

Define N̂t = N [0, t] and µ̂t = µ([0, t]) then

N̂t|µ ∼ Poisson(µ̂t).

Furthermore if µ̂t →∞ and limt→∞
µ̂t+1

µ̂t
= 1, then

N̂t
µ̂t
→ 1 a.s.

Lemma 1.3 (Poisson Superposition Theorem (Cinlar and Agnew, 1968)). Suppose Π1

and Π2 are Poisson point process on S with mean measure µ1 and µ2 respectively. Then
Π1 + Π2 is a Poisson point process on S with mean measure µ = µ1 + µ2

Lemma 1.4 (Marking Theorem (Kingman, 1993)). Let Π be a Poisson process on S
with mean measure µ. Suppose for each X ∈ Π we associate a mark mX ∈M from a
distribution px()̇, that may depend onX but not other points. Then the cartesian product
{(X,mX)|X ∈ Π} is a Poisson process on S ×M with mean measure µ(dx)px(dm).

1.2.1 Proof of Lemma 3.1 and Corollary 3.1.1

We will prove Lemma 3.1 in two steps. For simplicity we will assume λα is the
Lebesgue measure on [0, α] and λ is the Lebesgue measure on [0,∞].The extension to
the Lebesgue measure on [0, α]d is straightforward.

It follows from the properties of the ΓP that if W∞ ∼ ΓP(λ) and if Wα ∼ ΓP(λα)
then the distribution of the measure W∞ restricted to [0, α] is identical to Wα. Thus
instead of generating a new CRM for Wα each time with α increased, we assume the
same CRM, W∞ is restricted to the growing set [0, α].

Let Mα
k be the number of active nodes in mode k and let Nα be the number of

entries. Let
Aαk,θki

= [0, α]× · · · × {θki } × · · · × [0, α].

Then we have
Mα
k = #{θki ∈ [0, α]|T (Aαk,θki

) > 0}.

In the first step, we will show limα→∞
α
Mα
k

= 0 a.s. for all k ∈ {1, . . . ,K}. Then

in the second step , we will show that lim supα→∞Nα/αK <∞ a.s. Together this
implies

lim
α→∞

Nα∏K
k=1M

α
k

= 0 a.s
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because
Nα∏K
k=1M

α
k

=
Nα

αK

K∏
k=1

α

Mα
k

.

Step 1. First note that T (Aα
k,θki

)|{W∞k }Kk=1 has a Poisson distribution so

Pr(T (Aαk,θki
) > 0|{W∞k }Kk=1)) = 1− exp

−W∞k ({θki })×
∏
j 6=k

W∞j ([0, α])

 .

Additionally, the set of points {T (Aα
k,θki

) > 0}i can be interpreted as random
binary marks on the Gamma process W∞k when conditioned on {W∞j }j 6=k. Hence,
according to the Poisson marking theorem (Lemma 1.4), the marked Gamma process
{(θki , T (Aα

k,θki
) > 0)} conditioned on {W∞j }j 6=k is generated by a Poisson point

process on R+ × R+ × {0, 1}. Thus Mα
k |{W∞i ([0, α])}i 6=k is a Poisson random

variable. We compute the expectation of Mα
k given the ΓPs of the other modes to

characterize the distribution of Mα
k |{W∞i }i6=k. Using the law of total expectation, we

have

E[Mα
k |{W∞j }j 6=k] = E

 ∑
θi∈[0,α]

1(T (Aαk,θki
) > 0)

∣∣∣∣{W∞j }j 6=k


= E

 ∑
θi∈[0,α]

E[1(T (Aαk,θki
) > 0)|{W∞k }Kk=1]

∣∣∣∣{W∞j }j 6=k


= E

 ∑
θi∈[0,α]

1− exp

−W∞k ({θki } ×
∏
j 6=k

W∞j ([0, α])

∣∣∣∣{W∞j }j 6=k
 .

For the expectation, because (θki , w
k
i ) is a Poisson process due to the construction of

the CRM, we can apply Lemma 1.1. Together this gives

E[Mα
k |{W∞j ([0, α])}j 6=k]

=

∫ ∞
0

∫ ∞
0

1− exp

−w ×∏
j 6=k

W∞j ([0, α])

w−1e−wdwdλα

= α

∫ ∞
0

1− exp

−w ×∏
i 6=k

W∞i ([0, α])

w−1e−wdw.

Let

ψ(t) =

∫ ∞
0

(1− exp(−wt))w−1e−wdw,

then our work shows

Mα
k |{W∞j }j 6=k ∼ Poisson

α · ψ
∏
j 6=k

W∞j ([0, α])

 .
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AsW∞j ([0, α]) is Gamma distributed with shape parameterα, limα→∞Wα
j ([0, α]) =

∞ a.s. We also have limt→∞ ψ(t) =∞. This follows immediately from the monotone
convergence theorem as

∫∞
0
w−1e−wdw =∞. Together this implies

lim
α→∞

αψ
(∏

j 6=kW
∞
j ([0, α])

)
α

=∞ a.s. (3)

Applying Lemma 1.2 the Poisson process with mean measure, τ where τ([a, b]) =

bψ
(∏

i 6=kW
∞
i ([0, b])

)
− aψ

(∏
i 6=kW

∞
i ([0, a])

)
then implies

Pr

(
lim
α→∞

Mα
k

α · ψ(
∏
i6=kW

α
i ([0, α]))

= 1

∣∣∣∣{W∞i }i 6=k
)

= 1.

Taking the expectation on both sides of the above expression implies

lim
α→∞

Mα
k

α · ψ(
∏
i 6=kW

α
i ([0, α]))

= 1 a.s.

Combining the above with with equation (3) completes the first step and implies

lim
α→∞

α

Mα
k

= 0 a.s.

Step 2. As it is possible for the point process to sample more than one point at a single
location, the number of points generated from the point process may not equal to the
number of (distinct) tensor entries. Let Dα be the actual number of points sampled.
Note Nα < Dα.

Now consider j ∈ N and Dj = T ([0, j]K). We have

Dj |{W∞1 , . . .W∞K } ∼ Poisson

(
K∏
k=1

W∞k ([0, j])

)
.

By the independence of the CRM on disjoint sets, it follows immediately by the strong
law of large numbers

lim
j→∞

W∞k ([0, j])

j
=

∑j
i=1W

∞
k ((i− 1, i])

j
= E[W∞k ([0, 1])] = 1 a.s.

as W∞k ((i− 1, i]) are i.i.d Gamma random variables. This implies

lim
j→∞

∏K
k=1W

∞
k ([0, j])

jK
= 1 a.s. (4)

But applying Lemma 1.2 implies

Pr

(
lim
j→∞

Dj∏K
k=1W

j
k ([0, j])

= 1

∣∣∣∣{W∞i }Ki=1

)
= 1
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Taking the expectation of both sides of the above expression and combining with
equation (4) implies

lim
j→∞

Dj

jK
= 1 a.s.

The above only holds for natural numbers. To extend to real numbers note for any
α, there exists, j ∈ N such that j ≤ α ≤ j + 1. Thus

jK

(j + 1)K
Dj

jK
≤ Dα

αk
≤ (j + 1)K

jK
Dj+1

(j + 1)K
,

so taking α→∞ proves

lim
α→∞

Dα

αK
= 1.

Recalling Nα ≤ Dα completes the proof.

Proof of Corollary 3.1.1 By the Lemma 1.3 (Poisson superposition theorem)

T ∼ PPP(

R∑
r=1

Wα
1,r × · · · ×Wα

K,r)

can be constructed as

T =

R∑
r=1

PPP(Wα
1,r × · · · ×Wα

K,r).

Now lemma 3.1 applies to each of the individual Poisson processes which implies the
result.
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