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Air quality is important, varies across time and space, and is largely invisible. Pioneering past work deploying air quality
monitors in residential environments found that study participants improved their awareness of and engagement with air
quality. However, these systems fielded a single monitor and did not support user-specified annotations, inhibiting their
utility. We developed MAAV– a system to Measure Air quality, Annotate data streams, and Visualize real-time PM2.5 levels –
to explore how participants engage with an air quality system addressing these challenges. MAAV supports collecting data
from multiple air quality monitors, annotating that data through multiple modalities, and sending text message prompts
when it detects a PM2.5 spike. MAAV also features an interactive tablet interface for displaying measurement data and
annotations. Through six long-term field deployments (20-47 weeks, mean 37.7 weeks), participants found these system
features important for understanding the air quality in and around their homes. Participants gained new insights from
between-monitor comparisons, reflected on past PM2.5 spikes with the help of their annotations, and adapted their system
usage as they familiarized themselves with their air quality data and MAAV. These results yield important insights for
designing residential sensing systems that integrate into users’ everyday lives.
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1 INTRODUCTION
The World Health Organization estimates approximately 3 million people die annually as a result of ambient air
pollution [44]. Exposure to fine-particulate matter (PM2.5) – particles with diameters smaller than 2.5 microns
– has the greatest adverse health effects among air pollutants, linked with an increased incidence of cardiac
arrhythmia, lung cancer, heart disease, and mortality [4, 36, 45, 46, 53]. Levels of PM2.5 in urban areas are
measured largely by a sparse distribution of expensive, government-run sensors that fail to capture known
microenvironments of PM2.5 [5, 12, 54]. Recent advances in sensor technology, however, have enabled motivated
citizens, grass-roots organizations, and researchers to bring new, low-cost, real-time sensors online to address
measurement gaps [7, 29, 48], improving our understanding of outdoor air quality conditions and sources of
pollution [13, 21, 23, 35].
Although outdoor air quality is a growing concern for urban areas around the world, studies find poor

correlations between outdoor PM2.5 levels and personal exposure measurements due to the large percentage
of time that people spend inside [39]. For example, most Americans are estimated to spend upwards of 90% of
their time indoors, with about 70% of their day spent at home [32]. To empower residents to understand and
modify their personal, indoor environments, recent studies deploy low-cost air quality monitors coupled with
visualizations of the sensor data streams inside homes [16, 26, 29–31]. This work demonstrates the value of air
quality monitors in residential environments: study participants reported being more aware of the air quality in
their homes and more engaged in its management.
These same indoor studies, however, identify important deployment limitations. Studies deploying only one

monitor per home [16, 26, 29–31] cannot identify indoor and outdoor microenvironments, which requires multiple
monitors in order to reliably detect and characterize PM2.5 variability [40, 50]. Indoor and outdoor monitor
placements are also needed to understand the effect of outdoor conditions on indoor air quality [3, 33, 34, 41].
Furthermore, interpreting sensor data is often challenging without additional context [55], and user-driven

labeling of air quality events is additionally complicated by air quality’s invisibility. PM2.5 levels are often not
immediately or inherently apparent to residents in the moment, increasing the likelihood of forgetfulness when
revisiting data to annotate after the fact [52]. These issues limit the ability of residents to effectively characterize
and improve the air quality of their homes.
The goal of this work is to capture the additional value to residents when they have access to an air quality

monitoring system that collects data from multiple monitors, supports proactive and in situ annotation of that
data, and presents real-time air quality data and annotations in a interactive visualization. To accomplish this,
we developed MAAV, a system to Measure Air quality, Annotate data streams, and Visualize real-time PM2.5
levels. MAAV includes multiple air quality monitors placed both inside and outside a home to capture PM2.5
microenvironments; three different annotation modalities to enable residents to contextualize data streams,
including a system-initiated prompt; and a tablet-based interactive visualization for exploring measured PM2.5
levels and annotations.

We deployed MAAV to 6 families over a period of 20-47 weeks (mean 37.7 weeks). Over this time, we conducted
34 interviews with participant families to understand their experience with MAAV. Results extracted from the
interviews using qualitative analysis show that: 1) MAAV’s multiple monitors enabled residents to observe
variations in PM2.5 activity throughout the home; 2) the availability of multiple annotation modalities led
participants to generate many annotations throughout the deployment, sustaining long-term engagement; 3) the
interactive visualization and annotations and supported participants to explore and draw insights from their data;
and 4) participants remained engaged with MAAV over a long period of time, although with different patterns
of engagement initially versus later in the study. These results yield insights about new types of non-temporal
comparisons, the value of system-initiated annotation prompts, and the potential for a system interface that
changes over time.
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2 RELATED WORK
A significant amount of work explores the technical aspects of air quality sensing from various perspectives
and application areas: commercial monitoring and HVAC control [7, 25, 27], system infrastructure and platform
development [8, 26, 28, 47], mobile sensing [13, 21, 26], personal exposure monitoring [26, 42], and source
detection and classification [16, 49]. These studies primarily focus on a prototype’s technical contributions or
proof-of-concept systems architecture [7, 8, 21, 24, 25, 28, 47, 49]. Early work by Postolache et al. [47] proposes a
multi-monitor air quality sensing system, with significant work on modeling, calibrating, and processing sensor
data to ensure an accurate system. Jiang et al.’sMAQS system presents CO2 exchange rate and n-gram augmented
Bayesian room localization models to estimate indoor air quality and personal exposure, respectively [26]. Both
projects develop purpose-built systems for addressing research questions, but they do not explore the needs or
questions of the end-users.

The increasing availability of low-cost, commercially available PM2.5 sensors enables recent work to focus on
human-centered aspects of air quality sensing in the home. Early work by Kim et al. [29–31] deploy the inAir
system to support residents in understanding and managing potential air quality health threats. Using a single
PM2.5 monitor and ambient display, inAir succeeds in increasing participants’ awareness of and reflection on
indoor air quality, with an improved ability to make connections between in-home activities and air quality levels.
Despite visualizing indoor air quality for the user, the system’s ambient display did not support user-interactivity
or direct data annotation, making it difficult for residents to contextualize events and reason about their causality.
inAir also elicits feelings of powerlessness and frustration because residents can not determine the sources of
PM2.5 spikes in their homes [29]. Furthermore, single-monitor deployments prevent participants from knowing
the air quality within multiple indoor areas or the relationship between indoor and outdoor air quality in their
homes [30].

Subsequent work demonstrates the ability to automatically classify PM2.5 sources within a small set of detection
categories. Fang et al. [16] address the issue of PM2.5 source classification and targeted feedback with the use
of a machine learning model. Their AirSense system is able to automatically detect and identify three sources
of indoor pollution: cooking, smoking, and spraying pesticide. Their system also estimates personal exposure
and provides actionable suggestions to help people improve their air quality [16]. However, similar to inAir, this
system also fields only a single monitor and does not address issues related to source localization,outdoor air
quality, air quality in other parts of the home, or contextualization of collected data.

For those collecting and consuming air quality sensor data, its lack of context can complicate its interpretation.
Work by Tolmie et al. [55] identifieswhy annotation is important by demonstrating the large amount of articulation
work that goes into interpreting raw sensor data. They conclude that “data generated through [a] networked
sensing system is opaque when considered in isolation”. These findings highlight the importance of supporting
annotation in sensing systems not just to improve sensemaking, but also to reduce the amount of misplaced
effort and resources related to incorrect data interpretation. Yet, no systems support this low-barrier creation,
overlay, and review of annotation to contextualize the data. We incorporate these findings into MAAV and
support multiple integrated annotation mechanisms to allow participants to label and contextualize their indoor
air quality data in situ as it is collected.
Very limited work has been done to explore the nature of participant engagement with air quality sensing

systems over longer term deployments. Kim et al. finds participants’ degree of engagement remained constant in
separate 4-week [30] and 4-month [31] studies, although these results were based on self-report, and the broader
work primarily focuses on the quantifiable air quality improvements via participants’ behavior change – not the
evolution of their interactions with the system over time. Fang et al. similarly finds that hosting an air quality
sensing system improves participants’ sense of awareness and competence over 6- and 10-week deployments,
but their study did not explore the nature of participants’ engagement or use of the system beyond this period
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Fig. 1. Elements of a MAAV deployment. From left to right: a wireless Dylos air quality monitor, tablet display, Google
Home and Raspberry Pi gateway computer (front). Wireless connectivity allows distributed instrumentation throughout
participants’ homes. Each deployment received three air quality monitors but is capable of instrumenting many more.

[16]. Our work outlines shifts in participant engagement over long-term deployments ranging between 20 - 47
weeks (average 37.7 weeks) relating to changes in curiosity, familiarity, goals, and seasonality.

Our focus on end-users and data legibility is in line with a variety of research conducted broadly in the
space of eco-feedback, not just for air quality. For example, past work discusses the importance of disaggregated
measurements [19] to support a finer granularity of resource usage akin to multi-monitor deployments for
measuring air quality in different parts of the home. Past work has also explored the importance of technology
probes and display designs in the area of water conservation [18], specifically emphasizing views that support
different levels of data and time granularity. This same work prioritizes data comparison for highlighting relative
differences and deemphasizing absolute values and units. MAAV similarly supports participants to make relative
comparisons between monitors and over different granularities of time. Finally, research shows that systems
providing clear, specific, and frequent feedback via computerized and interactive tools successfully evoke lasting
engagement [17]. Each of these pieces – interactivity, annotation, comparative views, and active feedback – come
together in MAAV.
Building on this breadth of work, we deploy a flexible and open-ended technology probe utilizing multiple

wireless PM2.5 monitors, a host of annotation mechanisms, and an interactive tablet interface to focus on
participants’ goals and use cases of such a system in the home. This work complements the previous inAir
[29–31] and AirSense [16] systems by exploring the ways participants use a multi-monitor annotation-enabled
system, the questions they develop, and how these interaction mechanisms change over time. To the best of
our knowledge, this is the first study combining these system features, as well as the longest running indoor air
quality study with persistent deployments.

3 MAAV: A MULTI-MONITOR AIR QUALITY SENSING AND FEEDBACK SYSTEM
Drawing insights from past work, we developed a system toMeasure Air quality, Annotate data streams, and
Visualize real-time PM2.5 levels, which we call MAAV. MAAV consists of multiple low-cost air quality monitors,
a gateway device to upload air quality sensor data to our back end server, mechanisms for users to annotate
collected sensor data, and a tablet-based visualization that shows collected sensor data and annotations (Figure 1).
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Fig. 2. A PM2.5 cooking spike in the kitchen of Deployment 3. Note its diffusion and registration in the downstairs monitor a
short time after. Both rooms return to baseline levels after approximately two hours.

This project is part of a larger multi-institutional effort to develop epidemiological tools for conducting research
on the relationship between air quality and asthma. The following subsections detail each of MAAV’s components.

3.1 Low-Cost Monitors and Gateway Computer
MAAV brings together air quality data from multiple PM2.5 monitors. We use Dylos air quality monitors1 for
their sensitivity at low PM2.5 levels and ability to detect the full range of various household spikes (Figure 2).
These detectors operate via optical light scattering: ambient air is drawn in through the device and across a
laser, where an optical sensor measures the amount of light scattered by suspended particles in the airflow. This
detected level is output as a PM2.5 count, averaged over a 60-second window and logged each minute.

To integrate the stock air quality monitors within MAAV, we modified each with a BeagleBone Black embedded
computer2 for data formatting and wireless network connectivity. We also installed an improved RGB LCD for
communicating system status and measurements to participants and technicians. Once running, the monitors log
their measurements to internal memory and transmit them to a Raspberry Pi running Home Assistant3, which
acts as the local gateway computer.

Dylos monitors come precalibrated from the factory and have been found to closely track laboratory-grade air
quality instruments [56]. We validated this finding with a week-long pilot study involving 10 Dylos monitors
colocated with several calibrated, laboratory-grade air quality monitors4,5,6 in the first author’s home. All monitors
were subjected to a host of domestic activities: lighting and extinguishing candles, vacuuming, changing bed
sheets, and doing laundry, the results of which verify the monitors’ measurement accuracy against calibrated air
quality monitoring hardware [22]. During the study, a trained research assistant periodically cleaned participants’

1Dylos DC1100 Pro - http://www.dylosproducts.com/dcproairqumo.html
2https://beagleboard.org/black
3http://hass.io
4GRIMM 11-B: http://wiki.grimm-aerosol.de/index.php?title=IAQ-11-B
5Dustrack: http://www.tsi.com/DUSTTRAK-DRX-Aerosol-Monitor-8533/
6minivol: http://www.airmetrics.com/products/minivol/index.html
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air quality monitors following the manufacturer’s guidelines for maintaining the board-level air quality sensor
but did not recalibrate. To ensure Dylos monitors remained within a satisfactory operational envelope throughout
their deployment, we logged a variety of diagnostic and monitor health data, including case temperature, fan
speed, and network statistics. Although the potential for sensor drift exists, any such long-term changes were
overshadowed by PM2.5 spike dynamics and other events examined in this work. Furthermore, the qualitative
and human-centered approach of this study minimizes the need for quantitative metrics, instead focusing on the
impact of significant AQ changes in the home.
All air quality measurements and participant annotations recorded with this system are saved on a HIPAA-

compliant server. Back end services further monitor, analyze, and alert participants based on their indoor air
quality. More information on data aggregation and processing can be found in Lundrigan et al. [38], and our
Dylos testing procedures are outlined in Hegde et al. [22].

3.2 Contextualizing Air Quality Monitor Data with Annotation
Past work on data legibility has shown that “personal data generated through networked sensing systems are
opaque when considered in isolation . . . [and] that fine grain understandings of interaction cannot be ‘read off’
the data alone.” [55]. In the context of indoor air quality systems, Kim and Paulos [30] find that such a lack
of contextual awareness can produce feelings of frustration and powerlessness in end-users and, ultimately,
distrust in the system in severe cases. Annotation is therefore essential not only to improve data legibility but
also to empower users and help legitimize deployed systems. Finally, the act of annotating can encourage users
to reflect [10] on the connection between their daily activities and their indoor PM2.5 levels.

The open-ended nature of daily activities that can affect air quality requires manual, user-provided annotation.
However, manual annotation can also present a major burden for users. In an attempt to increase the convenience
and reduce the burden of manually annotating, MAAV supports multiple annotation modalities: a tablet-based
mechanism incorporated into the visualization interface; a text messaging prompt based on automatic detection
of PM2.5 spikes; and voice transcription via a smart speaker. We also offered participants the ability to manually
record their activities in Google Sheets as was done in previous studies [16], but all participants declined.
Annotations are stored in their own database, along with annotation modality origin, logs of PM2.5 spike activity,
deployment spike notifications, and all relevant timestamps. Each annotation modality offers different trade-offs
to support different situations where users may want to annotate their data.

3.2.1 Tablet. Users can record tablet annotations with a long-press at the desired location within the interface’s
main view area (Section 3.3). A pop-up window displays the selected date and time, along with a textbox for
typing the annotation. When submitted, descriptions appear as interactive glyphs on the visualization (Figure 3e).
Tablet annotation is effective in situations where users want to annotate an event when reviewing their air

quality data in the tablet interface. This modality is not always convenient, however, such as when the tablet is
not close at hand.

3.2.2 Text Messaging. MAAV incorporates text messaging7 to prompt users for an annotation when a PM2.5 spike
occurs. An online peak detection algorithm [1] evaluates incoming PM2.5 measurements, and those surpassing
independent rolling average and standard deviation thresholds are written to the database and generate a text
message to the participant, including the spike’s location and time: “We detected a PM spike in the bedroom at 10:56
AM. Any idea what caused it?”. Users’ replies are logged as annotations and associated with the time the PM2.5
spike was detected. Participants can also text the same phone number to record an unprompted annotation. Text
prompts are disabled during participant-specified quiet hours or within a defined proximity to other detected
peaks. For example, if a participant requests quiet hours from 9:00 PM - 9:00 AM, then MAAV will not send

7http://www.twillio.com
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Fig. 3. The tablet visualization interface. This image shows a number of indoor (blue) and outdoor (orange) spikes in the main
view related to PM2.5 measurements over a 24-hour time span. The annotation pane shows that the earliest and largest spike
is annotated with the participant message: “Started electric wood smoker”. These annotations lend context and legibility to
the air quality dynamics shown on the interface. The timeline view shows that this is one of many such contextualizing
annotations provided by the participant over their deployment.

text notifications for PM2.5 spikes within this time range. Similarly, participants requesting no more than three
notifications per hour will have messages rate-limited to a 20-minute wait time. The system uses detection time
to determine whether to actively prompt a participant to annotate.

Text messages are an obvious choice for delivering a prompt to annotate air quality data. Daily activities that
may have caused PM2.5 to spike can be easily forgotten. The immediacy of receiving a text message and the
convenience of responding to that message with a few short words offer users a high-value, low-burden solution.
Prompts can be responded to in the moment or at a later, more convenient time. On the other hand, it can be
useful to view PM2.5 data while annotating, which is not easily supported by text messages. Additionally, past
work has shown that people do not necessarily have their phones close at hand while at home [11].

3.2.3 Voice Annotation. As a complement to tablet and text modalities, MAAV also supports voice annotation.
MAAV leverages Google Home and Dialogflow8 to support users in dictating their annotations with a custom
command: “OK, Google . . . Tell MAAV [annotation text]”. Their annotation text is then transcribed and logged to
the database.
Voice annotations are especially useful when users are unable to type – such as when preparing dinner or

cleaning their home. Participants can dictate their annotations in these conditions, either in response to a text
notification or as stand-alone annotations. Similar to tablet annotations, physical proximity is also necessary to
engage with this modality, which can limit its utility and use-cases. Also, similar to text message annotation, it is
not possible to review PM2.5 data when providing voice annotations.

3.3 Tablet Visualization

8https://dialogflow.com/
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Fig. 4. Participant family structures for deployments D1 - D6. Yellow and red figures representmoderate and severe asthmatics,
respectively. Remaining figures are nonasthmatic.

MAAV uses an interactive tablet interface to allow users to engage with their PM2.5 data and annotations
(Figure 3). We designed the interface to default to a glanceable, always-on visualization that shows the most
recent 24 hours of data in a line chart (Figure 3b). The visualization is also interactive and designed to support
users in reviewing, exploring, and annotating the data. Participants can change the main view (Figure 3b) by:
• zooming in or out on the data at predefined intervals by tapping a button on the left (Figure 3d)
• scrubbing across the top timeline view to look at data from the previous 30 days (Figure 3a)
• toggling the line for a monitor on or off by tapping that monitor’s name in the legend (Figure 3c)

The visualization also shows annotations the user has provided for the data, represented by pink triangles
underneath the main view (Figure 3e). The user can tap on a triangle to view the text of that annotation. The
timeline view (Figure 3a) also shows pink asterisks at the top where there are annotations. As described in
Section 3.2.1, the user can also long-press on the main view to provide a new annotation. Figure 3 illustrates the
visualization’s interactive components.

This interface was implemented on an Amazon Fire HD8 tablet for its low cost and customizability [2],
using JavaScript and D3.js [6], and run in a kiosk browser9 to provide a fixed, full-screen environment.We
also incorporated Google Analytics to capture participants’ interactions with the interface throughout their
deployments.

4 FIELD DEPLOYMENTS
Prior work shows that single-monitor indoor air quality systems with basic visualization capabilities improve
participants’ air quality awareness and increase their engagement [29–31]. Building on this, we sought to better
understand how users would engage with MAAV’s interactive visualization and rich annotation capabilities to
support them in characterizing their home spaces. We deployed MAAV to six families for a longitudinal study and
conducted a series of interviews along the way to understand their experience. By recruiting entire households,
our goal was to observe ways in which the entire family’s engagement in and awareness of their indoor air
quality changed during the deployments. These field deployments were staggered across Summer 2017 into
Winter 2018 as participants were available and able to host MAAV.

4.1 Study Participants
We recruited eight households from a concurrent university-run medical study for families in which at least one
family member has moderate or severe asthma [43]. To be eligible for our study, families needed a high-speed
Internet connection and a wireless home network. They also needed to be willing to host a year-long system
9http://www.ozerov.de/fully-kiosk-browser/
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Fig. 5. The MAAV study timeline. Each phase corresponds to participants’ level of interaction with the system: Phase I - no
data provided (passive), Phase II - interactive feedback (active), Phase III - routine interaction (long-term deployment)

deployment. From these 8 families, 6 persisted throughout the study. Two families dropped out before we began
our deployments, citing measurement fatigue from the parent study. We labeled these remaining deployments D1
- D6. Although we encouraged the entire family to participate throughout the study and interview process, we
did not require their complete involvement. Each of the six deployments settled into a pattern with a singularly
motivated participant who assumed the primary communication and feedback role. We denote these participants
as primary participants, labeled P1 - P6 according to their deployment. Across all deployments, the primary
participant was either the enrolled participant from the parent study (P1, P5, P6) or the primary care giver to
the child who was enrolled in that study (P2, P3, P4). We also included P4’s teenage daughter, P4a, as she was
sufficiently involved in the deployment and interview process. None of the other children participated in the
Phase I & II interviews.

Figure 4 illustrates the family make-up, distribution of asthmatic participants, and ages of the children in the
long-term deployments. In deployments D1, D5, and D6, the primary participants (P1, P5, and P6) are the only
asthmatics. Deployment D2 is the only deployment with joint parent, child asthmatics. In deployments D3 and
D4, P3 and P4 are each primary caregivers to asthmatic children.
Participants’ asthma triggers were individually diverse, but all asthmatics reported experiencing their worst

symptoms during the winter months, especially because Salt Lake City, Utah often experiences periods of sustained
moderate to severe air pollution during these times. No participants had prior experience with commercial air
quality monitoring systems.

4.2 Phased Deployments
Participants received MAAV in a phased roll out to habituate them to hosting the system (Figure 5). These
phases are delineated by participants’ interaction with MAAV over the deployment: Phase I - passive deployment
with no interaction (6-13 weeks), Phase II - active deployment with high interaction (2-6 weeks), and Phase III -
long-term deployment with routine interaction (4 - 38 weeks), for a total operational time of 20-47 weeks (mean
37.7 weeks , Table 1). Each of the three phases began with user interviews to understand participants’ air quality
awareness (Phase I, predeployment interview), expectations for MAAV (Phase II, deployment interview), and
experience with MAAV (Phase III, postdeployment interview). Although we encouraged all family members to
participate, the majority of deployment families seemed disengaged and did not participate. These interviews
consequently focused on the primary participants. To better understand the (lack of) motivation for the remaining
family members, we conducted a fourth round of engagement interviews. Here, we separately interviewed each
parent per deployment, along with two additional interviews each with children from D3 and D5. In all, we
conducted 34 interviews with over 20 hours of interview audio (Table 1). All interview guides are available in
this manuscript’s supplemental material.

4.2.1 Phase I - Passive Deployment (No Interaction). Phase I began with installing air quality monitors in
participants’ homes to habituate them to hosting the hardware. Each deployment received three air quality
monitors and a small gateway computer for gathering, formatting, and packaging air quality measurements. A
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Table 1. Top: Phase durations for deployments D1-D6 (in weeks). Bottom: Number and length of participant interviews for
each deployment. Counts include predeployment, deployment, and postdeployment interviews with the primary participant,
plus separate engagement interviews for both the primary and non-primary participant(s), netting five interview sessions
per deployment. Deployments D3 and D5 had an additional two interviews each from separate non-primary engagement
interviews with their teenage children.

Deployment Duration D1 D2 D3 D4 D5 D6 Avg.

Phase I 6.3 7.3 7.1 9.7 12.7 5.9 8.2
Phase II 3.0 4.1 2.0 2.6 4.1 6.3 3.7
Phase III 37.9 35.7 34.9 34.7 4.0 7.9 25.9

Total 47.1 47.1 44.0 47.0 20.9 20.0 37.7

Participant Interviews Total

Number 5 5 7 5 7 5 34
Total Length (mins.) 139 192 160 245 230 258 1224

trained research assistant placed the monitors following the parent study’s established protocol to capture the
majority of possible indoor activity: 1 outside, 1 in a common living space (kitchen or living room), and 1 in the
asthmatic’s bedroom. She placed indoor monitors between tabletop and head height to measure air quality within
the breathing zone, approximately 30 - 60 inches, and away from vents, obstructions, or other environmental
obstacles for accurate measurements. Outdoor monitors were mounted on the home exterior by the front door at
shoulder-height. These monitors were additionally placed inside a vented, non-temperature-controlled enclosure
to permit sufficient airflow while keeping precipitation out. Outdoor monitors gave participants insights into the
air quality around their home as well as providing a comparative data stream when understanding and assessing
indoor air quality.

Once instrumented, we began collecting deployment-specific baseline data for use in the deployment interview.
We disabled the monitor’s on-board LCD display to not influence participants during this initial phase. Next we
conducted the predeployment interview, with questions relating to the participants’ awareness, understanding,
and perception of air quality, both indoors and outdoors.
Phase I lasted 6-13 weeks (mean 8.2 weeks) and ended when we deployed the visualization and annotation

modalities during the deployment interview. This deployment interview included an in-home demonstration of
MAAV’s interface, interactivity methods, and various annotation options. Participants saw the month of data
that had been collected for the first time during the demonstration, which motivated a personalized explanation
of their indoor air quality and exploration of the interactive tablet interface. We also conducted a separate data
literacy exercise to gauge participants’ ability to interpret time series information. Each participant understood
the data abstraction, and none had any difficulty using the tablet interface to answer questions about the data.
We conducted the interview in tandem with the system demonstration in order to capture the participants’

reaction to seeing their data for the first time, along with their expectations of how they would use MAAV. When
demonstrating the annotation modalities, we stressed that data annotation was completely optional and not a
requirement for participating in the study. The Google Home and text message annotation modalities were also
an optional deployment item; however, all participants elected to receive both modalities. We also purposefully
did not provide any information on ways participants could improve their air quality to increase the likelihood
that changes observed in subsequent interviews could be attributed to their use of the system.
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4.2.2 Phase II - Active Deployment (High Interaction). Phase II began after the deployment interview when
participants were able to annotate and explore their air quality data. Phase II ran for a period of 2 - 6.3 weeks
(average = 3.7 weeks), subject to participants’ availability. During this phase, participants were free to use and
interact with MAAV at their convenience. This deployment phase ended when we returned to conduct our
postdeployment interview.

During the postdeployment interview, we focused on how participants used the system and on any insights or
outcomes as a result of exploring their air quality data and making annotations. We asked additional questions
for comparison against previous expectations relating to indoor air quality variability, system sensitivity, air
quality awareness and engagement, and overall reflection on system utility. At the end of this interview, we gave
each participant the option to return some or all of MAAV. Only P4 opted to return anything: Google Home.

4.2.3 Phase III - Long-Term Deployment. Phase III began after the postdeployment interview, with the goal of
leaving MAAV in place to capture the evolution of the participants’ opinions and interactions after several months
of familiarity. Phase III is ongoing and has run for a range of 4 - 38 weeks (average = 25.9 weeks) at the time of
this writing.
We conducted a follow-up engagement interview 4 - 35 weeks (average = 23.3 weeks) after the participants’

postdeployment interview to investigate whether or not they were still using MAAV and how their use had
evolved since they first received it. We also questioned the remaining non-primary participants to gain insights
into their perceptions of the system, its relevance to them, and mechanisms for their disengagement.

4.3 Qualitative Data Analysis
We transcribed and analyzed all interviews via case study analysis [20] and thematic analysis [9] to distill themes
across the entire data set.
This joint approach allowed us to identify and analyze within-interview-round themes between individual

deployment phases (thematic analysis) and within-participant themes across all deployment phases (case study
analysis).
We conducted the first round of qualitative analysis with data from participants P1-P4 and proceeded by

deployment phases. One researcher open-coded initial interviews to characterize participant replies, and two
additional researchers then joined to collaboratively refine these codes, developing a set of closed codes. The
original researcher then applied these closed codes to the remainder of the interviews in that phase and repeated
this process for each phase. We met again at the end of coding each interview phase to iterate on codes and
group them into higher level themes.
After completing our analyses with P1-P4, we enrolled P5 and P6 to validate our initial findings and verify

thematic saturation. These additional participants received the same system through the same phases with
identical interviews. This second round of qualitative analysis proceeded by coding P5 and P6 interviews using
the closed codes identified in the first round, but with an eye to identifying anything new. No new codes were
found, but the feedback and insights provided by these extra participants helped refine our findings. All resulting
themes from the analysis are available in the supplemental materials.

5 FINDINGS
Results from deploying MAAV highlight the benefits of a flexible multi-monitor deployment and the diversity of
tasks and questions it enabled participants to address. Findings in this section are deeply rooted in the particular
context of each deployment. Drawing on interview data, we characterize each participant (see Table 2), which is
useful for understanding and interpreting participants’ perspectives throughout this section.
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Table 2. Participant characterizations.

P1
Stay-at-home mom and adult asthmatic. Self-identifies as non-technical, passive, and reactionary with
regard to asthma management. Admitted she was not overly engaged with checking air quality conditions,
despite sensitivities. Primarily interested in using MAAV to inform her family’s outdoor activities.

P2
Medically disabled from asthmatic symptoms. Non-technical, but engaged due to her and her child’s more
severe asthma symptoms. Actively seeks air quality forecast information through a combination of phone
app and local forecasts. Curious what she could learn through using MAAV.

P3
Work-from-home mom, non-asthmatic. Two of four children are asthmatic: one suffers from Common
Variable Immune Deficiency and asymptomatic asthma. Interested in using MAAV to experiment to find the
cause of spikes and to monitor indoor air quality to guard against potential triggers.

P4, P4a
Nurse at a university hospital and caregiver to a teenage asthmatic daughter (P4a, student). Both were
initially disengaged from air quality monitoring, but became more aware over the course of the deployment.
Interested in drawing health correlations from visualizations.

P5 Public school administrator and severe asthmatic. Already aware of personal triggers, P5 was eager to use
MAAV to explore spike sources and understand room activity levels.

P6 Public health employee and adult asthmatic. Motivated to use MAAV to characterize living space and
improve personal sense of air quality control.

5.1 Multi-Monitor Deployments Enable Comparisons in and around the Home

In addition to showing the benefits from deploying a single monitor [16, 26, 29–31], MAAV supported participants
in making comparisons between monitors. With three monitors, participants could observe and perform between-
room and indoor/outdoor comparisons. These comparisons led to insights on home characteristics from observing
PM2.5 spike diffusivity (i.e., comparing two indoor monitors) and the ability to draw comparisons between indoor
and outdoor monitors (Figure 6). Some participants found these comparisons so compelling that they asked if they
could receive monitors for every room in their home. Similarly, when asked about their opinions on the adequacy
of 3 monitors versus 1, participants unanimously preferred the flexibility of seeing multiple measurements at
once.

P5: It was nice to see there are differences, like what’s going on in different rooms. If there’s just one
sensor for an entire house, it doesn’t really tell you anything.

5.1.1 Between-Room Comparisons. When air quality changes within a home, it does not happen uniformly.
Instead, it is subject to characteristics of the home itself, such as air exchange rates and airflow between rooms.
During the deployment, participants used MAAV to reason about ways that the home itself might influence air
quality. For example, P2 noticed differences in how PM2.5 spikes diffused from one room to another:

P2: It has surprised me to see that when [the living room] spikes, [the bedroom] tends to spike too.
But when [the bedroom] has any activity [the living room] doesn’t necessarily. I don’t know if that’s
just the way the air flows in the house, or what.

Having multiple air quality monitors also enabled participants to detect air quality spikes that would otherwise
be missed had there only been a single monitor.
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Fig. 6. Impact of July 4th fireworks on outdoor and indoor air quality. Indoor PM2.5 readings noticeably increase for P1 and
P2 whereas P3 shifts only slightly. In each case, it takes several hours for PM2.5 readings to return to baseline levels. The
readings from the outdoor monitors are different between deployments as well, highlighting the value of deploying monitors
outdoors.

P1: I find it humorous that I can tell the days – when it’s a Wednesday, my husband works from
home and lights incense in the office downstairs, and there’s a spike downstairs.
P3: I was definitely looking at the kitchen a lot because I think things change a lot more in the
kitchen than the bedroom. Everything that happens in the house, happens in the kitchen. So it was
always interesting when I saw a bedroom spike because . . . what did they do? Seems really strange.

These situations where air quality events occur in localized spaces demonstrate microenvironments within
the home, a phenomenon that can be observed only when there are at least two indoor monitors. Participants
recognized these dynamics in their own living spaces, making observations and building a more nuanced
understanding of how indoor air quality changes in the home.

P4a: It’s really interesting that we can compare [PM2.5 spikes in different rooms] and see how some
things that happen in different parts of the house can still affect other parts . . . I think it’s interesting
that if there’s big spikes outside, if you open the door – just a little bit – it affects the inside of the
house. And it doesn’t affect it just while the door’s open, it kind of stays around for a while, because
it’s been let in. I think that’s pretty interesting.

P4a’s experience highlights the importance of multiple monitors. With MAAV, she was able to reflect on the
source of an indoor spike by relating it to the air quality outside, something that would not have been apparent
from a single-monitor deployment.
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5.1.2 Indoor/Outdoor Comparisons. Past work indicates participants in single-monitor deployments have wanted
to relate their indoor and outdoor air quality [29], and the primary method for doing so has been to pull data
from third parties, such as local air quality agencies [7, 8, 31]. Unfortunately, these external sources are typically
government-run sensors operating in fundamentally different ways, and providing PM2.5 measurements at
different time resolutions, spatial scales, and measurement units. It is therefore difficult to directly compare
these third party measurements with a participant’s own monitor. Moreover, many local activities (e.g., vehicular
traffic, neighbors mowing their lawns, or barbecuing) do not show up at the municipal level, but they can directly
influence air quality around a home. For example, Figure 6 shows very different outdoor readings across three
different deployments during 4th of July fireworks.

MAAV’s outdoor monitor lets participants directly compare indoor and outdoor measurements. They reported
they were glad to have access to this information, and, in some cases, came to rely on this data in lieu of less
representative public sources.

P6: I wanna see what’s happening with all three sensors. The outdoor is usually the one that stands
out. Historically, that’s where the higher [readings are].

Participants in this study all had some concerns about indoor air quality because someone in their home –
either themselves or their child – had asthma. Before receiving MAAV, their only options for managing indoor
air quality were to react quickly when symptoms manifest, guess about sources of poor air quality and manage
them, or follow generalized medical advice. For asthmatics, one common guideline recommends to stay indoors
and keep windows closed, carrying the implicit assumption that the air quality indoors is generally better than
outdoors. Despite this recommendation, past work has found indoor air quality can oftentimes be worse than
outdoor [57].

Prior to receiving MAAV, participants had no way of verifying that indoor air quality was actually better at a
given moment and whether the best course of action was to keep windows closed or air out their homes:

P2: Sometimes you feel that people are like, oh, you should stay in because the [outdoor] air’s bad.
But, is it really that much worse than what’s in my house?

After receiving MAAV, participants made use of the indoor and outdoor monitors to track fluctuations and
trends between the two environments. By facilitating comparisons between indoor and outdoor PM2.5 measures,
MAAV empowered participants to evaluate the current situation, rather than depending on the generalized
advice:

P3: I have learned to pay a lot more attention to the difference between the air quality inside and the
air quality outside. I think previously, I just kinda assumed that the air quality inside was always
really great, because our windows are shut and our doors are shut and we don’t open our windows
. . . and that’s what I was told: just don’t open your windows and use air conditioning and you’re
good. But I realized that’s not really always the case. And that’s been a big eye-opener for me.

Whereas P2 and P3 were relieved to find their indoor air quality was often better than the outdoors, P4 was
relieved to see that their outdoor air quality was oftentimes just as good.

P4:We open the windows all the time if the weather is nice, and I haven’t noticed many spikes. That
surprised me that there weren’t that many.

P4’s observation allowed her to relax from strictly following the generalized advice to always keep the windows
closed. These findings indicate that having monitors both inside and outside of the home empowered participants
to make informed, personalized decisions based on the unique environments in and around their homes. For
many participants, the most compelling aspect of this comparison was the peace of mind in knowing that their
indoor air quality was better than outdoors.
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P3: I loved that it showed that the inside didn’t get really bad. That’s one thing I was looking for –
how was the outdoor air quality affecting indoor air quality.
P6: The [greatest] value is knowing, “Hey, we’re better than outside . . . the air’s better in here, guys”,
and checking that every day and having that reassurance. I don’t know if I expected that that would
be my best value, or my most favorite value.

Section 5.1 Takeaway: Participants made use of multiple monitors in their deployment to make comparisons
between monitors, which supported new insights into the environment in and around their homes.

5.2 Annotation Improves User-Experience, Engagement
The ability to annotate in MAAV enabled participants to reflect and reason about the ways their behaviors
impacted indoor air quality. Figure 7 illustrates participants’ various use patterns and annotation modality
preferences along with the evolution of those behaviors longitudinally over the deployments. All participants
noted that annotation was essential for helping them recall past events, make connections, and find patterns.

P2: I’m really glad those annotations are in there. It makes it easier to understand and put value on
the data I’m seeing.
P3: I don’t think this [visualization] would do me much good without annotations . . . You have to
have the combination of [data and annotation]; otherwise [the visualization] is kind of useless.
P4a: I look at annotations a lot. I like being able to see it. What I look at them for, I pay attention for
if there’s repeating things [patterns]. Today we played with the dog, and last week we played with
the dog, but the spike is bigger.

Tolmie and Crabtree [55] found that raw sensor data is difficult to interpret without contextualizing annotations.
By tightly integrating tablet, text, and voice annotationmodalities into our system, participants could contextualize
their data with personally meaningful annotations in whichever way suited their interaction preferences. Early
versions of inAir [29, 30] provided a website for reviewing past data and logging activities via a calendar interface,
although this manual form of journaling was not overlaid on the PM2.5 data. Despite the effort to contextualize
raw sensor data, participants reported feelings of powerlessness and frustration over a lack of context for the
current data they were shown [29]. By tightly integrating annotation methods and interactive visualization,
participants were able to use MAAV to alleviate this shortcoming and make annotations available for review as
they were captured.

Annotations were facilitated through user-initiated and system-initiated annotations. User-initiated annotations
relied on action from the user to engage, such as with the tablet interface or voice annotation, whereas system-
initiated annotations were directly generated by MAAV to prompt participants for action.

5.2.1 User-Initiated Annotations: Engaging through Tablet and Voice. Participants recorded user-initiated annota-
tions through the tablet interface and voice modalities, often reviewing their data on the interface to explore
the detected event, verify their annotation, and explore previous activities captured by past annotations. The
combination of increased engagement and improved data legibility led participants to reason on the cause-effect
relationships between their behaviors and the air quality in their homes. During the deployment interview, P3
speculated about the potential for MAAV to support self-experimentation:

P3: It would be nice to see if there’s changes depending on when I have to use our giant oven versus
the little convection oven and what difference that makes. I think I would definitely annotate those
things as I start to make dinners.

Afterwards, P3 used MAAV to methodically test cooking behaviors and deduce sources of cooking spikes
(Figure 2). When we returned for the postdeployment interview, P3 shared her process for annotating her cooking
activities to determine which decisions influenced spikes – the combination of real-time sensing, longitudinal
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Fig. 7. Long-term system interaction over phases II and III for deployments D1 - D6. This plot illustrates the daily distribution
of system-initiated notifications (black), received text annotations (light blue), tablet annotations (blue green), and voice
annotations (blue), along with participants’ interface interactions (light purple). Interaction patterns for D2, D3, and D4 show
varied cycles of engagement, and patterns for D3 and D6 exhibit re-engagement with the system immediately after the
engagement interview. D3 also shows patterns of making voice annotations when experimentally determining spike sources.
All participants came to rely on test messaging for their primary annotation mechanism as the study progressed.

visualization, and annotation across multiple monitors enabled her to perform classic A/B experimental design
and keep track of her test cases:

P3: If my theory is that it went really high that day because I used the stove top and used something
that made a lot of smoke, then the next time I’m gonna do that, I’d start that and [annotate] “I’m
doing this again,” and then see what happened.
I figured out I get kitchen spikes when I cook with olive oil instead of avocado oil . . . I don’t use olive
oil any more. I haven’t had nearly as many kitchen spikes since then. Kinda cool.
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Table 3. Deployment annotations per modality over phase II and III. The annotation column is the sum of all annotation
modalities. Participant annotations include thosemade in response toMAAV notifications as well as user-initiated annotations,
exceeding 100% compliance rates for many deployments.

Phase I I −Compliance Phase I I I −Compliance

Text Tablet Voice Anno. Notif. (%) Text Tablet Voice Anno. Notif. (%)

D1 4 4 1 9 8 112.5% 47 9 0 56 110 50.9%
D2 16 5 3 24 18 133.3% 81 7 3 91 103 88.3%
D3 5 4 12 21 5 420.0% 81 8 20 109 98 111.2%
D4 7 5 2 14 14 100.0% 61 2 1 64 382 16.8%
D5 19 9 4 32 19 168.4% 8 11 0 19 7 271.4%
D6 31 1 1 33 36 91.7% 24 0 0 24 33 72.7%

P3’s annotation led her to conclude that cooking with olive oil contributed to kitchen spikes and that using
avocado oil eliminated these spikes. This is another case where participants performed comparisons and reached
conclusions that would not have been possible without the use of integrated annotation and visualization
capabilities with the sensing system. Of further note, P3 used voice annotations for self-experimentation, which
allowed her to continue cooking without taking the time to type an annotation.

5.2.2 System-Initiated Annotations: Push Notifications Engage Participants and Improve Awareness in Real-Time.
One important feature for facilitating annotation in MAAV was the inclusion of system-initiated notifications
via text alerts. These alerts actively engaged the users, prompting them to annotate the spike with a returned
text message. Motivated by work on just in time interventions [51], the prompt system notifies participants as
spikes occur in order to maximize the likelihood that they will be able to accurately annotate the data. Whereas
all participants used more than one annotation modality during their deployment, text message annotation in
response to notifications was the most common and consistent mode across participants (Figure 7).

P2: The thing I found most helpful were the texts. I love that it’s “hey, we had a spike” and I’m just
like “this is what it is”. This is what I’m doing right now, or in the last 10 minutes. That’s my favorite
feature. I love being able to see how much and what is causing spikes.

Beyond presenting an opportunity to contextualize air quality data, text alerts also became proxies for other
indicators. In postdeployment and engagement interviews, P4 and P4a talked about using MAAV’s sensitivity to
infer others’ daily schedules, such as leaving for work or getting home from school.

P4a: I’ll wake up to a text: “at this time in the morning there was a spike . . . ” Oh, that’s when my
parents went to work! Or when I get home from school, the rooms will spike.
P4: I have noticed a small pattern . . . It’s a little more common to get spikes around 3:30pm.
P4a: That’s when I come home, drop all my stuff, and get food. I actually dance more until parents
get home. I don’t dance when my parents are home.

5.2.3 Annotation Modality Influenced by Review Routine. Participants’ personal schedules, asthmatic sensitivities,
and goals helped influence the way they interacted with and annotated their air quality data (Table 2). Figure 7
and Table 3 show how participants used MAAV over time. P1’s outdoor sensitivities motivated her to regularly
check the tablet interface to keep informed of her immediate outdoor air quality which, combined with her habit
of reviewing her indoor air quality data at night, found her logging half of her annotations through the tablet
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interface over phase II. P2 adopted a weekly interface review regimen, leading her to be more reliant on text
notifications to gauge indoor air quality. Therefore, P2 relied on the receipt of text notifications to know when
her air quality became worse. Consequently, she annotated much more frequently using the texting modality. P3
engaged in self-experimentation to understand the impact of alternative behaviors on her in-home air quality,
causing her to rely on voice annotation for annotating her self-experiments.

Deployment D4 was slightly unique from others in the study in that the primary participant (P4) was consider-
ably less engaged with MAAV than other primaries in their deployments, which stemmed from two main factors.
First, P4’s job outside the home meant she was frequently away from the house when receiving text notifications.
Her solution to this was to text P4a to determine what was going on at home. Second, the tablet interface was
set up in P4a’s room, meaning P4 had comparatively less access and opportunity to review the data than the
primaries in the other deployments. Deployment D4 experienced an equal number of text and tablet annotations
within phase II, but as the deployment progressed, they came to rely on text messaging as the primary mode of
annotation.

Both P5 and P6 adopted an after-work routine to review their data and annotations out of curiosity and were
equally engaged with MAAV, primarily relying on text messaging to maintain high compliance rates with system
notifications.

Section 5.2 Takeaway: Participants used different annotation modalities to annotate their data in different
situations that seem to be tied to the affordances of that modality, indicating that the availability of multiple modalities
led to more annotations.

5.3 The Interactive Tablet Interface and Annotations Enabled Data Exploration
To address prior findings that users wanted a larger snapshot of time when reviewing their air quality information
[30], the tablet interface provides a one-month backlog of data to explore. Within phase II, all participants
frequently engaged with their tablet interface for reviewing and exploring their air quality data (Figure 7).
Participants appreciated the ability to scroll back to review their annotations and prior PM2.5 spikes, although
most primarily used the interface to explore the previous 1-2 days.

P2: I’m more interested in what is happening right now, the last couple of hours, how it’s affected (or
might affect) what’s going on today or tomorrow. I liked the idea of being able to go back a month or
more, at first. I’m just finding I’m not using that.
P5: I was more just [looking at] current data, like the last day or two.

The ability to look back farther also motivated some to explore the full extent of their data.
P4a: I’d go back as far as it would let me. Most of the time I probably go 1-2 weeks back. Depends if
I’ve looked at the spikes before . . . Most of the time I’ll just look over the past week. Especially the
day that I’m looking at it and the day before, ‘cause those ones are the most . . . newer spikes that I
haven’t seen yet. Sometimes I’ll go back and “what was I doing”. Oh yeah, and I’ll add an annotation.

Several participants reported not being interested in the value of the readings themselves and that seeing
the relative dynamics was enough, echoing findings from design in eco-feedback [18]. Instead, they primarily
focused their attention on the presence and distribution of spikes, along with their previous annotations.

P1: I’m definitely more of a visual [person], so seeing the spikes, to me, is enough of an [indicator].
P4a:Most of the time I’ll just look at new spikes, but then I’ll look at the little bar at top and “hey!
there’s a whole bunch of [annotations] here. I don’t remember what this was” and I’ll go back and
look through it.

When reasoning about PM2.5 spikes, some participants expressed interest in discovering and comparing
patterns that MAAV’s visualization does not make salient.
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P1: It would be kind of cool to see, “You’ve done these last 5 things cooking dinner. Here’s how they
overlap and compare.” That would be an interesting thing.

This desire to view and compare groups of activities over time suggests that realizing the value of a longer data
history might require alternative visualization and processing techniques beyond the pervasive time series view.

Section 5.3 Takeaway: Participants used the tablet interface to review their annotations and air quality data,
drawing insights that would not have been possible without annotated data.

5.4 Participants Maintained Long-Term Engagement, but Changed That Use over Time
Many facets of user engagement and system integration cannot be fully observed or validated over a short-term
deployment. For air quality, long-term effects of the changing seasons can have a significant impact on the nature
of data shown to participants and, correspondingly, can affect their sense of engagement. In this context, our
long-term deployment provides a rigorous probe into the notion of disengagement by avoiding short-term effects
or confounds. Figure 8 and Table 4 provide evidence for deployments’ continued involvement on the days where
they received at least one text prompt, showing an 80% or greater compliance rate for 5 out of 6 deployments. We
did not track days without system notifications as these indicate days with few or no significant changes to indoor
air quality in participants’ homes. Consequently, we would not necessarily expect participants to interact with
the system under these circumstances. By focusing on notification days, we can track the methods of participants’
responses, which serve as a reasonable proxy for user engagement. Although participants were primarily driven
by curiosity to explore their data when first receiving the interface, their motivations evolved as deployments
wore on. Mechanisms for this shift included an increase in familiarity with the data and a corresponding lack
of surprises, but also evolving goals and seasonal impacts, as well as participants changing the questions they
sought to answer.

P2: I used it more in the winter when we have such bad air quality [. . . ] I’ve not been using it as
much [recently], but mostly because as the seasons have changed we’re not having that terrible air
anymore.

Participants also began to engage the data with more specific questions as their experiences grew, which our
technology probe was not well suited to answer.

P2: If it were to be something that I could have a more personalized overview that I could take to my
doctor, I would probably use it more and be more interested in keeping track of a daily “how I’m
feeling” [. . . ] To be able to connect health with the data is important.

It is important to note that changes in participant use patterns were not always a result of disinterest. P3’s
interest in self-experimentation lent itself to periodic engagement (Figure 7).

P3: Once I figured some things out . . . the kitchen thing . . . I had a lot of fun trying to figure out why
it would go off at various times in the kitchen. So I did a lot of experimenting early on, but once I
had my questions answered it was good.

Regardless of these variations, participants’ text response rate was largely unchanged throughout the deploy-
ment and had become the preferred annotation method for most participants by the time of the engagement
interview (Figure 7).

P1: Honestly . . . I didn’t think the text messages would be as easy to respond to . . . It’s a matter of, if
it texts me right away, “hey this happened at this.” I can either go “Oh yeah, I know what that is”,
annotate, done. That ease of [answering] even if I’m outside or [away from home] . . . honestly, that’s
what’s changed how much I’ve annotated, is just that ease of the text message.
P5: Phone texting was much more immediate and much more responsive. [texts] would draw out a
response immediately that we would look into.
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E. I.

E. I.

E. I.

Phase II

View interface AnnotateAnnotate and view No response

Fig. 8. Engagement chart for deployments D1 - D6. Boxes represent individual days when a deployment received at least
one notification from MAAV, indicating significant air quality changes in the home. We focus on these days as we do not
expect that participants would necessarily interact with MAAV on days without notifications. Each box is color-coded
according to the deployment’s response to the notification on that day: both viewing the interface and annotating (orange),
only viewing the interface (purple), only making an annotation (green), or not responding that day (gray). The sparsity of
gray boxes illustrates participants’ willingness to engage when we should expect it, serving as a proxy for their continued
engagement. Outside of D4, which received significantly more notifications than other deployments, the remaining homes
all had engagement rates above 80% (Table 4).

Table 4. Engagement data from Figure 8. ‘Notification Days’ lists the number of boxes for each deployment and its corre-
sponding percentage of deployment time. Participant response is further binned by ’Days Ignored’ (gray boxes), and ’Days
Engaged’ (non-gray boxes). The final column is the percentage of notification days garning a deployment response. Total
engagement with MAAV was above 80% for 5 out of 6 total deployments for the entire study.

Phase II & III
Length (days)

Notification
Days

% Days
Notified

Days
Ignored

Days
Engaged

% Notification
Days Engaged

D1 265 78 29.4% 0 78 100.0%
D2 250 95 36.0% 15 80 84.2%
D3 244 81 33.2% 4 77 95.1%
D4 243 144 59.3% 70 74 51.4%
D5 28 18 64.3% 0 18 100.0%
D6 55 45 81.8% 2 43 95.6%

Not everyone remained engaged with text messaging, however. Both P4 and P4a reduced their annotations,
but for different reasons.

P4: It just got tedious. I figured out that everything in the house makes this room spike. It doesn’t
matter what we’re doing. But I just got tired of repeating the same thing over and over again.
P4a: When I first started [annotating], it was because I could annotate everything. I would still
probably be doing that. I thought of it as “this is cool – this will help me realize what causes me to
stop breathing as much”. That was really exciting. I stopped annotating as much because [the tablet
died].
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Due to an uncommunicated hardware error, P4a was left without a functioning tablet at the end of their
long-term deployment phase. P4a’s feedback on how the ability to review their data motivated annotation points
to a synergy between annotating and reviewing data not found in extant literature.

For those who continued annotating, their messages became shorter as they defaulted to a subset of personally
relevant keywords to describe tasks that set off text alerts.

P1: I would say it’s much more succinct. “Doing laundry”, “cooked dinner”, instead of being, “I cooked
dinner and there was burnt pizza on the bottom and there was smoke and blah blah blah”. They’re
kind of more “oh yeah” reminders than “oh ‘this is this . . . ’ ” and I need to explain this whole situation.
It’s definitely condensed down to keywords.

Fang et al. [16] have developed an air quality sensing platform for detecting and classifying three common
sources of indoor pollution: cooking, smoking, and spraying pesticide. Although we found a moderate amount
of overlap in participants’ keywords, we did not have instances of smoking or pesticide use. The remaining
annotated activities, and participants’ convergence to a set of abbreviated keywords, point to a more diverse set
of in-home activities capable of generating PM2.5 spikes. Moreover, arriving at these personalized, ecologically
valid keywords takes time and would not necessarily be achieved within the shorter term deployments in past
work.

5.4.1 Lack of Family Engagement. Maintaining deployments over many months allowed us to observe usage
patterns and characteristics that would be challenging to discern over shorter term installations. One observation
was how each deployment contained at most one engaged participant from the onset of the study.

In discussing their own senses of engagement, primary participants highlighted a division of labor or a sense
of responsibility very early in the deployment and postdeployment interviews.

P3: Anyone in my family? Nooooooo. The reason is because I’m the one that takes care of the stuff.
If they don’t feel responsibility to take care of it, then they don’t care.

This sentiment was shared by spouses:
P6 Spouse: I don’t really get involved – it’s his thing. He shares everything anyway, so I hear about
it that way [. . . ] my schedule is already pretty busy and this is just another thing.
P4 Spouse: Yeah, [poor air quality] sucks for some people, but it doesn’t affect me.

We were able to rule out insufficient communication or interview scheduling as engagement barriers over
time, and conducted a dedicated fourth round engagement interview with the goal of understanding why certain
participants were engaged and others were not.

When discussing engagement with non-asthmatic participants, we asked whether they could imagine circum-
stances where their level of engagement may have been different. Each cited their lack of asthma as a barrier.
We also observed that age influenced a participant’s willingness to engage; other than P4a, no other teenage or
younger participant was aware of, or concerned with, air quality issues.

Engagement interviews also identified inconvenience and unintentional gate-keeping as other factors affecting
people’s ability to engage with the interface. By coordinating interviews with a single family contact, in some
deployments it came to be seen as “their thing”, or “the study’s”, which limited others’ sense of responsibility.

P5: Putting it over there so that my family didn’t break it probably didn’t help them to be more
interactive with it.

Family dynamics are complex and vary between households. It is possible that with targeted effort we could
have seen more engagement by multiple family members, but their reactions here suggest that, left to their own
devices, they may also naturally settle into a routine where only one person is primarily concerned with their air
quality monitoring system.
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5.4.2 Participants Converged to a Single Interaction, Annotation Modality over Time. As tablet use decreased,
participants relied more on text alerts to annotate and gauge their indoor air quality:

P6: If it sucks enough for you to message me, that’s going to indicate that something is up.
When asked what motivated them to continue annotating, primary participants cited text messaging’s low

barrier to responding and the importance of contextualizing their data. Some also mentioned a hope of receiving
more accurate medical recommendations or individually tailored air quality advice as a future study benefit.
Mobile interaction proved popular with participants, and although feedback during postdeployment interviews
indicated that participants enjoyed having a dedicated tablet for the visualization, by the time of the engagement
interview, each primary participant – and even some non-primary participants – identified that a mobile app
would be more useful and would improve their engagement.

P1 Spouse: If it had been an app rather than in one place in the house, I could see being a lot more
involved. Have the sensors running here [home], then I can pull it up at work, and see how things
are at the house. It would become a thing like checking weather, I think. Before work, I check the
weather on my phone. I check the air quality around the house just the same.
P6: If I had an app that would show me the exact same thing, I would use that app a ton.

Participants’ convergence toward text notifications as their primary annotation and interaction modality
lends strong support for the power of system-initiated prompts delivered with a mobile device for long-term
engagement (Table 3).
Section 5.4 Takeaway: Participants changed how they engaged with MAAV over time, transitioning from an

initial phase of deeper regular engagement to a maintenance mode, while their family members remained mostly
disengaged throughout.

6 DISCUSSION
In our long-term deployment of MAAV, participants exhibited several behaviors not observed, or possible,
in previous work. These behaviors included drawing insights from multi-monitor comparisons, leveraging
annotations to facilitate both awareness and sensemaking, and changing – while still sustaining – their use of
the system over time. These results have several important implications. First, annotations have the potential to
facilitate new types of comparisons in users’ data. Second, the surprising long-term adherence to our mobile
phone push notifications offers a promising direction for data labeling and collection in future studies, and
perhaps in different contexts. Third, participants’ shifting usage of MAAV over time suggests opportunities for a
user interface that supports different stages of system use. We discuss each of these implications in detail.

6.1 Beyond Direct Temporal Comparison
Participants in this study were able to view synchronized and annotated data from multiple monitors and use that
representation to draw insights that would not have been possible without between-monitor comparisons and
contextualizing annotations. Integrating annotation into MAAV supported participants in making the data legible
[55]. When reviewing their data, participants were less interested in scales, magnitudes, or baseline fluctuations
communicated by the time series representation, but instead focused on the locations and distributions of PM2.5
spikes. Reviewing annotated data, complete with personal activities and routines, allows participants to go beyond
the numerical representation and reason about these trends and impacts at a higher level than would be possible
without the context afforded by annotated data.

Over time, participants wanted to go beyond the comparison capabilities supported by MAAV. Through
our interviews, we observed participants thinking across time and wanting to compare relationships between
temporally disjoint events, e.g. compare the five most recent times I vacuumed. The fact that participants requested
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this type of feature demonstrates the value of annotations and of collecting long-term data logs. Supporting
such user-driven cuts [14] requires re-thinking annotation logs. Currently, our annotation mechanism tags single
points in time, though the tracked activities may describe events taking place over a duration. At a conceptual
level this type of comparison interface is straightforward to describe, but the implementation details it are less
straightforward. For example, developing methods on how best to define, capture, and align a collection of PM2.5
events, and the corresponding semantic rules or computational metrics for comparing event similarity are much
more involved. Although neither MAAV nor other interfaces in the air quality literature support these temporal
cuts, future systems should consider event tracking and processing techniques for supporting comparisons across
time, place, and activity.

6.2 System-Initiated Notifications Sustained Engagement
From the perspective of sustained participant engagement, much of the success of MAAV seems to come from the
system-initiated text message prompts. Figure 8 shows the majority of participants remained engaged with MAAV
throughout their deployment, with majority engagement rates over 80% on days they received notifications.
During interviews, participants indicated that the text messages were useful as a proxy for gauging indoor air
quality and that the messages were lightweight and easy to respond to. Yet for P4, who received comparably
more notifications than other deployments, these messages led to frustration over their repetition (Table 3).
As an outlier, P4’s experience points to a possible upper bound for user notifications, above which participant
engagement may decline or drop off entirely (Figure 8). Based on P4’s notification-fatigue, it may be preferable to
allow participants to selectively mute specific indoor monitors or have control over their system’s thresholding
and rate-limiting parameters. Another possibility is to analyze spikes in the context of past spikes and user
engagement to dynamically adjust which notifications to deliver. For example, multiple spikes that seem to be
similar might be bundled together, or notifications might be reserved for spikes that appear to be sufficiently
different from past spikes.

System notifications make people aware of changes in their environment in a way that is easy to miss with an
ambient display. The next-longest longitudinal indoor air quality study [31] utilized ambient displays, requiring
those participants to be in front of the monitor to witness spike activity, which even then showed only the most
recent four hours of data. Thus, these results are new and novel for the way that they directly elicit and probe
user engagement.
As an annotation prompt technique, text messaging was successful at keeping participants engaged with

MAAV and thinking about air quality without requiring them to proactively and regularly check the monitor.
The fact that our participants sustained their engagement, measured by response rate to text message prompts,
over a long period of time suggests this level of engagement may be a reasonable steady state for an air quality
monitoring system. Eventually, with enough labeled data, it might become possible to train a machine learning
model to identify the highest frequency data labels, which could support labeling household-specific events,
rather than focusing on a closed label set, e.g. Fang, et al.’s classifier for cooking, smoking, and pesticide events
[16].

6.3 Evolving System Usage during Long-Term Deployments
Whereas prior work focuses on the benefits of deploying residential air quality monitor systems and its impact
on air quality [16, 29–31], this work focuses on how users engage with an air quality sensing system and how
this engagement changes over time. It is notable that MAAV’s tablet interface seems to have served participants
well through their trajectory of system usage, starting at a high engagement level during an initial period of
discovery and sensemaking, and then transitioning into a steady-state maintenance mode of sustained lower
activity. Although the current interface supported this transition in some ways, future systems could design for
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these stages more directly. Toward the beginning, the system could take advantage of high engagement to learn
more about the user’s interests and relevant lifestyle factors. As data begins to accumulate, the system could
begin to suggest comparisons, correlations, or views on the data. As the user transitions into a maintenance mode,
the system could similarly scale back to a lighter weight visualization. It could even streamline annotation, such
as asking the participant to confirm predicted annotations, rather than typing them out from scratch. This notion
of an evolving interface could be more generally useful in other human-in-the-loop data collection domains,
including eco-feedback and personal informatics.

Interpreting air quality monitoring within a personal informatics framework is compelling because we did not
initially consider environmental measurements within this domain. Air quality, even indoors, is often perceived
as a characteristic of an area. Yet, air quality’s influence is clearly relevant to personal informatics when relating
it to personal health impacts. Findings in this work also show PM2.5 to be an unexpected proxy for human
activity. Reflecting further on participants’ evolving engagement, we began to consider this work in the context
of personal informatics models [15, 37], with the initial high engagement similar to the discovery phase in Li’s
stage-based model for personal informatics systems [37]. Participants also exhibited changes in their engagement
related to increased familiarity, seasonality, and new questions, leading to periodic interaction with the tablet
(D2, D3, D4, D6) and voice annotation modality (D3). Participants’ periodic engagement with MAAV maps neatly
to the lapsing and resuming cycles described in Epstein’s lived informatics model [15]. Shorter term deployments
D5 and D6 exhibited similar behavior, notably with occasional tablet use (D5) and re-engagement with the tablet
interface (D6) immediately after the engagement interview.
The diversity in PM2.5 activity between deployments offers opportunities to reflect on a residence’s impact

on indoor air quality and engagement. The combination of D4’s low participant engagement and burden of
high text notifications may account for their comparably low notification compliance, but we have no insight
into mechanisms behind their increased PM2.5 activity. Home permeability, furnace efficiency, and behavioral
patterns can contribute to better understanding these causes, but these factors were outside the scope of this
work. Extrapolating or incorporating direct measurement of any of these factors could help account for what
seemed an overly sensitive system for P4. Conversely, the highest compliant deployments (D3, D5) were those
most curious to find out what was going on in their homes. This innate curiosity, along with co-enrollment in an
ongoing clinical study, helped sustain participants’ engagement. Moving forward, the findings of this work will
help us to design systems and interfaces to foster engagement and curiosity, enabling users to pose and answer
their own questions through more sophisticated exploration, comparison, and hypothesis generation techniques.
Implementing these features in an adaptive system would provide more relevant and actionable information to
end-users.

7 LIMITATIONS
The findings presented in this paper should be interpreted in the context of specific limitations and study design
decisions. Recognizing that multiple factors affect and influence indoor air quality, it is important to acknowledge
that any self-labeled annotations reasoning about PM2.5 spikes represent a participant’s best guess and are not
necessarily indicative of the reported source.
The air quality monitor’s design – in particular the monitor’s internal air quality sensor – was a source of

some initial confusion. These sensors measure airborne particle concentration, and say nothing about chemical
composition or its health impact. Therefore, an increase in PM2.5 particle counts does not necessarily correlate to
an unhealthy source. For example, humidity can create significant spikes. This distinction became clear, however,
as participants recognized the monitor’s responsiveness to a range of activities.
Our participants were concurrently enrolled in an ongoing medical study, which has both benefits and

drawbacks. Advantageously, we engaged a highly motivated population already familiar with data collection
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and interested in supporting the project. However, their involvement in a clinical study came with a number
of caveats regarding the information we could disclose to avoid introducing confounds. While clinicians are
interested in participants self-labeling and contextualizing data, our findings show participants who engage with
and annotate their own air quality data are also inclined to connect air quality to their own behaviors, reflect
on that relationship, and take action to improve their PM2.5 exposure. To mitigate these broader concerns over
how our interviews may influence participants and potentially confound the parent study’s clinical findings, our
interview questions were vetted by practitioners in the parent project to ensure we were not encouraging or
influencing participants to change their behavior.
Further, our field deployments consisted of six households, limiting the generalizability of our findings to a

larger population, as does the asthmatic status of the participating families. This status also influences baseline
levels of engagement, as asthma severity has been shown to be positively correlated with engagement of a
technology probe [58].

We also encountered some technology limitations. Early in phase II, our voice transcription skill went offline
from automated firmware updates, preventing some participants from using this feature and consequently
losing faith in this annotation modality. Furthermore, two participants experienced difficulty with Google
Home recognizing and parsing their voice commands, further reducing its appeal. Lastly, staggered deployment
scheduling resulted in deployments D5 and D6 starting later than the other participants, leading to a shorter
overall deployment length.

8 CONCLUSIONS AND FUTURE WORK
Air quality and PM2.5 exposure are important and often invisible aspects of personal health. We deployed MAAV,
a multi-monitor air quality measurement, annotation, and visualization system, in a longitudinal field study with
six families to understand how this combination of features could support participants in managing their air
quality at home. The results of the deployment indicate that MAAV supported participants in gaining insights by
comparing multiple monitor streams, recording and exploring annotations for contextualizing their air quality
data, and remaining engaged over their long-term deployments by relying on low-burden text message alerts.
Participants appropriated the tool in various ways that suited their needs and produced individual, personalized
insights into the air quality in and around their homes.
Building on the work presented here, we plan to focus on redesigning the interface as an event viewer.

Participants were less interested in seeing precise values and instead evaluated their data based on the presence
and frequency of detected spikes. This event viewer could propose multiple comparative views to better externalize
differences between events and across time, while evaluating air quality measurements between rooms and
inside and outside the home. We also plan to re-engineer the annotation system to facilitate sorting, searching,
highlighting, and filtering across a variety of dimensions, including time, specific keywords, and classes of
activities. These additional features would enable users to perform more complex filtering queries such as
reviewing ‘All cooking events on Monday evenings.’
Another possibility would be to investigate the potential of a mobile application to integrate notifications

and data review, which would provide greater control over interaction mechanisms and a more personalized
air quality exposure. Such a mobile application could integrate a variety of external data sources by leveraging
output from mobile health sensors such as smartwatches or other wearables. Incorporating next-generation air
quality hardware would allow systems to measure more air pollutants (lead, ozone, SO2, NO2, fine and course
particulate matter, CO2) in a mobile platform. Incorporating new data streams provides greater opportunities to
not only augment standard health metrics, but also provide supplemental context via a visual overlay for viewing
PM2.5 events in relation to other data such as health events. This collection of modular sensors could integrate
within our system and provide external triggers to collect further feedback on user health and well-being.
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