Welcome to the School of Computing

The School of Computing was originally founded as the Computer Science Department at the University of Utah in 1965 by three electrical engineering faculty members (In 2000, the department officially became the School of Computing). In 1985, the department reached 10 full-time faculty members. By 1996, it had doubled to 20. Today the School of Computing boasts 40 regular faculty members, four research faculty, and 19 adjunct faculty, with more than 420 CS undergraduate students, 90 CE undergrads, 140 enrolled in the M.S. program and 130 enrolled in the CS Ph.D. program.

The School of Computing at the University of Utah has a long history of distinguished faculty and alumni who have made substantial contributions to research and industry. SoC Ph.D. graduate John Warnock (1969) developed the Warnock recursive subdivision algorithm for hidden surface elimination, and later founded Adobe Systems, which developed the Postscript language for desktop publishing. Alan Ashton, 1970 Ph.D. graduate went on to teach at Brigham Young University and founded WordPerfect. Computer animation pioneer Ed Catmull, received both his B.S. and Ph.D. degrees in computer science from the University of Utah. Today he is the co-founder and president of Walt Disney and Pixar Animation Studios. He received a technical Academy Award in 1996 from the Academy of Motion Picture Arts and Sciences for “pioneering inventions in Digital Image Compositing.”

Today’s School of Computing faculty and students continue to carry the tradition of innovative research and technological advancements at the University of Utah.

“Our Research Areas Include:

• Computer Graphics and Visualization
• Computer Systems
• Information Management
• Natural Language Processing and Machine Learning
• Program Analysis, Algorithms and Formal Methods
• Robotics
• Scientific Computing
• Computer Architecture

“Almost every influential person in the modern computer-graphics community either passed through the University of Utah or came into contact with it in some way.”

-The Algorithmic Image: Graphic Visions of the Computer Age by Robert Rivlin
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Administration</td>
</tr>
<tr>
<td>5</td>
<td>Faculty and Office Staff</td>
</tr>
<tr>
<td>9</td>
<td>School of Computing Degrees</td>
</tr>
<tr>
<td>11</td>
<td>Computer Science Undergraduate Major Requirements for the CS Bachelor of Science Degree Four-Year Plan</td>
</tr>
<tr>
<td>19</td>
<td>Entertainment Arts and Engineering Program Requirements for the CS: EAE Bachelor of Science Degree Four-Year Plan: EAE</td>
</tr>
<tr>
<td>25</td>
<td>Prerequisite Course Requirements</td>
</tr>
<tr>
<td>26</td>
<td>Continuing Performance Requirements</td>
</tr>
<tr>
<td>27</td>
<td>Advanced Placement (AP) and Math Placement</td>
</tr>
<tr>
<td>29</td>
<td>Computer Science Minor Requirements</td>
</tr>
<tr>
<td>30</td>
<td>B.S./ M.S. Program</td>
</tr>
<tr>
<td>31</td>
<td>Scholarships</td>
</tr>
<tr>
<td>32</td>
<td>Student Involvement</td>
</tr>
<tr>
<td>35</td>
<td>Academic Support</td>
</tr>
<tr>
<td>38</td>
<td>Computer Science Courses</td>
</tr>
</tbody>
</table>
Administration

Departmental Leadership

Director, School of Computing

Al Davis
MEB 3190
Phone: 801-581-3991
ald@cs.utah.edu

Embedded/multi-core architecture, auto. domain specific architecture synthesis, VLSI, asynchronous circuits

Associate Director, School of Computing

Ellen Riloff
MEB 3140
Phone: 801-581-7544
riloff@cs.utah.edu

Natural language processing, information retrieval, and artificial intelligence

Associate Director, School of Computing

Ross Whitaker
WEB 3464
Phone: 801-587-9549
whitaker@cs.utah.edu

Computer vision, visualization, and image processing

Office Manager

Karen Feinauer
MEB 3190
Phone: 801-585-3551
karenf@cs.utah.edu

Undergraduate Program

Director, Undergraduate Studies

Jim de St. Germain
MEB 3190
Phone: 801-585-3352
germain@cs.utah.edu

Artificial Intelligence, parallel computing, autonomous agents

Director, Educational Programs

Joe Zachary
MEB 3190
Phone: 801-581-7079
zachary@cs.utah.edu

Application of computers to education

Director, Combined BS/MS Program

Thomas Fletcher
WEB 4686
Phone: 801-587-9641
fletcher@sci.utah.edu

Shape analysis, computer vision/image analysis, diffusion tensor image processing

Academic Advising Coordinator

Kelly Olson
MEB 3190
Phone: 801-581-8225
kelly@cs.utah.edu
Administration

Graduate Programs
Director, Graduate Studies
Director, Scientific Computing & CES
Mike Kirby
WEB 3602
Phone: 801-585-3421
kirby@sci.utah.edu
Scientific computing and visualization

Director, Computer Engineering
Erik Brunvand
MEB 3142
Phone: 801-581-4345
elb@cs.utah.edu
Computer architecture and VLSI systems

Executive Director, Master Games Studio
Robert Kessler
MEB 3146
Phone: 801-581-4653
kessler@cs.utah.edu
Systems software and software engineering

Director, Robotics MS Track
John Hollerbach
MEB 2196A
Phone: 801-585-6978
jmh@cs.utah.edu
Robotics, teleoperation, virtual reality, and human motor control

Director, Game Engineering
Master Games Studio
Mark van Langeveld
MEB 3122
Phone: 801-376-9071
longfieldstudio@gmail.com

BS/MS Advisor
Vicki Jackson
MEB 3190
Phone: 801-581-8224
vicki@cs.utah.edu

Director, Graphics/Visualization Track
Valerio Pascucci
WEB 4646
Phone: 801-587-9885
pascucci@sci.utah.edu
Computer graphics, computational geometry, geometric programming, solid modeling

Master's Advisor
Ann Carlstrom
MEB 3190
Phone: 801-581-7631
annnc@cs.utah.edu
Professor

Elaine Cohen
MEB 2891
Phone: 801-581-8235
cohen@cs.utah.edu

Computer graphics, scientific visualization, geometric modeling, mechanical design

Assistant Professor

Adam Bargteil
MEB 3456
Phone: 801-585-0132
adamb@cs.utah.edu

Computer graphics and animation

Professor

Martin Berzins
MEB
Phone: 801-585-1545
mb@cs.utah.edu

Adaptive numerical methods, parallel algorithms, computational fluid and solid mechanics applications

Professor & Dean, College of Engineering

Richard Brown
WEB 1692
Phone: 801-585-7498
brown@utah.edu

Microprocessor design, circuits to minimize leakage, solid-state chemical sensors.

Associate Professor

Matthew Flatt
MEB 3122
Phone: 801-587-9091
mflatt@cs.utah.edu

Programming languages and systems

Professor

Guido Gerig
WEB 3686
Phone: 801-585-0327
gerig@sci.utah.edu

Medical image analysis

Professor

Ganesh Gopalakrishnan
MEB 3428
Phone: 801-581-3568
ganesh@cs.utah.edu

Dynamic formal verification of message passing (MPI), thread programs.
Faculty

Professor
Mary Hall
MEB 3466
Phone: 801-585-1039
mhall@cs.utah.edu
Optimization, parallelization and compilers

Professor
Charles Hansen
WEB 4692
Phone: 801-581-3154
hansen@sci.utah.edu
Visualization, computer graphics, parallel computation, computer vision

Professor
Tom Henderson
WEB 2871
Phone: 801-581-3601
tch@cs.utah.edu
Computer vision, mobile robotics

Professor
Lee Hollaar
MEB 4154
Phone: 801-581-8224
hollaar@cs.utah.edu
Digital intellectual property law

Professor
Peter Jensen
MEB 3148
Phone: 801-585-9418
pajensen@cs.utah.edu

Assistant Professor, Lecturer
Professor
Feifei Li
MEB 3464
Phone: 801-585-6673
lifeifei@cs.utah.edu
Databases, large-scale data management

Distinguished Professor
Chris Johnson
WEB 3850
Phone: 801-581-7705
crj@sci.utah.edu
Scientific computing, visualization, imaging, and problem solving environments

Associate Professor
Sneha Kasera
MEB 3408
Phone: 801-581-4541
kasera@cs.utah.edu
Computer networks/systems, mobile systems and wireless networks, network security

Assistant Professor
Charles Hansen
WEB 4692
Phone: 801-581-3154
hansen@sci.utah.edu
Visualization, computer graphics, parallel computation, computer vision

Assistant Professor
Lee Hollaar
MEB 4154
Phone: 801-581-8224
hollaar@cs.utah.edu
Digital intellectual property law

Assistant Professor
Feifei Li
MEB 3464
Phone: 801-585-6673
lifeifei@cs.utah.edu
Databases, large-scale data management
Assistant Professor

Miriah Meyer
WEB 4887
Phone: 801-585-6513
miriah@cs.utah.edu
Visualization and large multidimensional data

Assistant Professor

Zvonimir Rakamaric
MEB 3442
Phone: 801-581-6139
zvonimir@cs.utah.edu
Formal verification methods

Industrial Liaison
Assistant Professor

Matthew Might
MEB 3450
Phone: 801-581-8224
might@cs.utah.edu
Security, parallelism, verification and optimization

Industrial Liaison
Assistant Professor

John Regehr
MEB 3470
Phone: 801-581-4280
regehr@cs.utah.edu
Embedded, real-time & operating systems, sensor networks, static analysis

Assistant Professor, Lecturer

Erin Parker
MEB 3190J
Phone: 801-587-9505
parker@cs.utah.edu
Programming languages, Computer memory systems and performance

Assistant Professor

Jeff Phillips
MEB 3424
Phone: 801-585-7775
jeffp@cs.utah.edu
Algorithms, data mining and machine learning

Assistant Professor

Rich Riesenfeld
WEB 2897
Phone: 801-581-5843
rfr@cs.utah.edu
Computer graphics, geometric modeling, design

Assistant Professor

William Thompson
MEB 3446
Phone: 801-585-3302
thompson@cs.utah.edu
Computer vision, visual perception
Faculty/ Office Staff

Assistant Professor
Jur van den Berg
MEB 3138
Phone: 801-585-5379
Berg@cs.utah.edu
Robotics, virtual environments

Associate Professor
Kobus van der Merwe
MEB 3490D
Phone: 801-581-3012
kobus@cs.utah.edu
Network systems, cloud computing, security, mobile networking

Assistant Professor
Suresh Venkatasubramanian
MEB 3442
Phone: 801-581-8233
suresh@cs.utah.edu
Algorithms, computational geometry and data mining

Assistant Professor
Cem Yuksel
WEB 2686
Phone: 801-581-4439
cem@cemyuksel.com
Animation, computer graphics

School of Computing Staff
Communications
Chris Coleman
MEB 3190
Phone: 801-581-8580
coleman@cs.utah.edu

Accountant
Sara Mathis
MEB 3190
Phone: 801-581-8224
smathis@cs.utah.edu

Accountant
Callie Martens
MEB 3190
Phone: 587-3652
callie@cs.utah.edu

Accountant
Chethika Wijayawardhana
MEB 3190
Phone: 801-587-9266
chethika@cs.utah.edu
School of Computing Degrees

The School of Computing offers a Bachelor of Science degree in computer science. The undergraduate program begins with a set of three courses that give students a solid background in object-oriented programming while exposing them to the breadth of issues that arise in computer science.

Students then take seven core courses in discrete mathematics, software engineering, computer organization, algorithms and data structures, software systems, and theory. They build on this background by choosing seven electives from the breadth of the School’s course offerings (which includes advanced courses in theoretical computer science, scientific computing, artificial intelligence, databases, operating systems, computer networks, programming languages, graphics, computer architecture, and digital design).

Each student’s undergraduate program is capped with a senior project. Along with an in-depth study of computing, the curriculum encompasses a general education in mathematics, science, and the humanities.

The School also offers a combination B.S./M.S. degree for students who wish to complete both the Bachelor and Master of Science degrees in a total of five years. Students who want to use computers in another field may opt for a minor in computer science to supplement another degree at the University of Utah.

A Bachelor of Science in computer engineering is jointly offered by the School of Computing and the Department of Electrical and Computer Engineering. Information about that program is available in a separate handbook or from www.ce.utah.edu.

The School of Computing offers a computer science bachelor’s degree with an emphasis on Entertainment Arts and Engineering. The focus of this track is to provide interested students with the necessary skills and knowledge to enter the arena of computer gaming and animation.
BACHELOR OF SCIENCE DEGREE
The standard Bachelor of Science in computer science track is a software-oriented degree which includes 18 computer science courses, including required core, theory and elective courses. A student must be admitted as a computer science major by the School in order to take upper-division courses and pursue the computer science degree. Computer science pre-majors take five introductory math and computer science courses before applying to the major.

ENTERTAINMENT ARTS EMPHASIS
Interested students are encouraged to explore the Entertainment Arts and Engineering (EAE) emphasis through the computer science degree. This track requires courses which are relevant to computer game designers and computer animators, including drawing courses and film courses. The EAE curriculum results in a computer science degree, with an emphasis on the entertainment arts.

COMBINED B.S./ M.S. PROGRAM
The combined Bachelor of Science/Master of Science program in computer science allows students to earn a B.S. and M.S. in approximately five academic years. The B.S./M.S. can combine a B.S. in either computer science or computer engineering with an M.S. in either computer science or computing. Undergrads will begin graduate-level courses during the senior year in order to complete the master’s degree in just one additional year.
PRE-MAJOR STATUS

Any student can become a computer science pre-major by informing the University Registrar or the School of Computing academic advisor. It is advisable to do this early to ensure receiving information about the major and staying advised of any changes that may be made in degree requirements. Declaration as a pre-major will also enable participation in activities associated with the degree program, such as the Undergraduate Student Advisory Committee, and allows students to apply for School of Computing scholarships.

Pre-majors are required to take the following courses and must achieve a C- or better (note that the math department requires a C or higher to advance to the next level of math) and a 3.0 GPA in order to be admitted to full major status. Students should also hold a 3.0 cumulative GPA in all classes.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1400</td>
<td>Intro to Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>CS 1410</td>
<td>Object-Oriented Programming</td>
<td>4</td>
</tr>
<tr>
<td>CS 2420</td>
<td>Algorithms & Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>Math 1210</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Math 1220</td>
<td>Calculus II</td>
<td>4</td>
</tr>
</tbody>
</table>

1 CS 1400 may be waived by advanced students. Talk to the Director of Undergraduate Studies for the School of Computing for more information.
Computer Science Full Major

FULL MAJOR STATUS

In order to become a full major, a student must complete the required pre-major courses and then apply for full major status. An application may be submitted online via the CS website when the student expects to complete these requirements. Applications for admission are reviewed at the end of spring and summer semesters. New majors are only allowed into the major during fall semesters.

One may not pre-register for any upper division classes in computer science without first being admitted as a full major or a minor. Transfer students should be advised that they will only be allowed to start into full major status during the fall and should plan their transfer accordingly. Meeting with the academic advisor early to plan pre-major courses is the best way to ensure these requirements will be met in time for a fall start.

DOUBLE MAJORING

Some students may wish to earn a degree in computer science as their second bachelor’s degree. This is possible as long as the requirements for both degrees are met. In some cases, fewer additional class hours are needed for similar majors (ex: computer engineering, electrical engineering, or mathematics).

University general education and bachelor degree requirements will only need to be completed once and will be applied to both degrees. Students pursuing a double major must notify the academic advisor in both majors to become registered with the University and ensure they are meeting both sets of major requirements.

ADDING A MINOR

Students are encouraged to enhance their computer science education by adding a minor to their degree. A minor is not required, but may allow a CS student to explore other areas of interest at the University of Utah. Students may add a minor by contacting the departmental advisor for the minor for which they plan to pursue after they have been admitted to their intended major.
SCHOOL OF COMPUTING GRADUATION REQUIREMENTS

A minimum of 17 computer science classes must be taken. Ten CS classes (30 credits) must be taken at the University of Utah. A student may repeat major courses (CS/math/science) only once. All major classes taken to satisfy degree requirements must be taken for a letter grade; they may not be taken for CR/NC.

GENERAL EDUCATION REQUIREMENTS

Regardless of your major, every student must complete a set of University-wide graduation requirements before receiving their bachelor’s degree. The Office of Undergraduate Studies is responsible for overseeing this program. The General Education requirements are described in the University of Utah General Catalog. The requirements for computer science majors are more specific.

a. The writing requirement (WR2) is satisfied by either Wrtg 2010 or ESL 1060 (for students who speak English as a second language).

b. The quantitative reasoning (QR) requirement is satisfied by Math 1210 which is required for computer science pre-majors.

c. The two-course requirement in physical and life sciences (SF) is satisfied by classes required for the major, and no additional courses are needed.

d. Students must take two intellectual explorations courses in each of fine arts (FF), humanities (HF), and social sciences (BF). Two of these six courses must be upper division. [One should meet the diversity (DV) requirement, and one should meet the international (IR) requirement]. Students should consult with the CS academic advisor to be sure they select appropriate classes to satisfy these requirements with a minimum number of credit hours.

e. The American institutions (AI) requirement can be satisfied by taking one of Econ 1740, Hist 1700, PolS 1100, or Honors 2212.
University Bachelor Degree Requirements

<table>
<thead>
<tr>
<th>UNIVERSITY BACHELOR DEGREE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>The University graduation requirements for the Bachelor of Science degree are described in the University of Utah General Catalog.</td>
</tr>
</tbody>
</table>

| a. | The communication/ writing (CW) requirement: Computer science majors must take either Wrtg 3015, Wrtg 3014, Wrtg 3012, or Honors 3200 which may be taken by students participating in the University Honors Program. This class should be taken prior to taking the computer science senior project course. |

| b. | The quantitative intensive (QI) course requirement is satisfied by CS 3810, CS 4150 and CS 4400, all of which are required for CS majors. |

| c. | The diversity (DV) requirement can be satisfied by taking a course from an approved list as part of the intellectual explorations courses. |

| d. | The international (IR) requirement can be satisfied by taking a course from an approved list as part of the intellectual explorations courses. |

| e. | Students must complete a minimum of 122 total semester hours of course work. At least 40 of the 122 hours must be upper-division classes. Upper-division classes are numbered 3000 or above. Credits from two-year colleges will not count toward University upper division hours. At least 30 of the total credit hours and 20 of the last 30 hours must be taken at the University of Utah. |

It is possible to take some classes that can satisfy several general education requirements at once, such as incorporating the diversity, upper-division, and international requirements into your six required general education courses. Please ask the computer science academic advisor about such options.
Math, Science and Engineering Requirements

MATH, SCIENCE AND ENGINEERING REQUIREMENTS

Seven classes in math, science, and/or engineering are required. The School of Computing requires a grade of C- or better in each of these courses (CR/NC not accepted). Please note that the math department requires a solid “C” grade in prerequisite math courses in order to take the next math course.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 1210</td>
<td>Calculus I</td>
<td>4 credits</td>
</tr>
<tr>
<td>Math 1220</td>
<td>Calculus II</td>
<td>4 credits</td>
</tr>
<tr>
<td>Math 2210</td>
<td>Calculus III</td>
<td>3 credits</td>
</tr>
<tr>
<td>Physics 2210</td>
<td>Physics for Scientists and Engineers I</td>
<td>4 credits</td>
</tr>
</tbody>
</table>

One required math elective must be selected from the following two options:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2270</td>
<td>Linear Algebra</td>
<td>4 credits</td>
</tr>
<tr>
<td>CS 3130</td>
<td>Engineering Probability and Statistics</td>
<td>3 credits</td>
</tr>
</tbody>
</table>

Two additional math/ science courses, each of which must be at least three semester hours, may be chosen from among the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 2220</td>
<td>Physics for Scientists and Engineers II</td>
<td>4 credits</td>
</tr>
</tbody>
</table>

1. Math 2250 covers the same material as Math 2270 and 2280, although in less depth. Hence, if 2270 is used as a required elective, Math 2250 may not be counted as an elective.

2. If CS 3130 or ECE 3530 is used as one of the required math/science electives, Math 5010 and/or Math 3070 may not be counted as an elective.

3. Math 2200 will not be accepted. Biol 1210: Principles of Biology or Chem 1210: General Chemistry I may also be accepted as a math/ science elective (labs not required).
Computer Science Major Requirements

COMPUTER SCIENCE MAJOR REQUIREMENTS

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1400</td>
<td>Intro to Computer Science</td>
<td>3 credits</td>
</tr>
<tr>
<td>CS 1410</td>
<td>Intro to Object-Oriented Programming</td>
<td>4 credits</td>
</tr>
<tr>
<td>CS 2420</td>
<td>Intro to Algorithms & Data Structures</td>
<td>4 credits</td>
</tr>
<tr>
<td>CS 2100</td>
<td>Discrete Structures</td>
<td>3 credits</td>
</tr>
<tr>
<td>CS 3500</td>
<td>Software Practice I</td>
<td>4 credits</td>
</tr>
<tr>
<td>CS 3505</td>
<td>Software Practice II</td>
<td>3 credits</td>
</tr>
<tr>
<td>CS 3810</td>
<td>Computer Organization</td>
<td>4 credits</td>
</tr>
<tr>
<td>CS 4150</td>
<td>Algorithms</td>
<td>4 credits</td>
</tr>
<tr>
<td>CS 4400</td>
<td>Computer Systems</td>
<td>4 credits</td>
</tr>
</tbody>
</table>

Theory restricted elective. One of the following must be completed:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3100</td>
<td>Models of Computation</td>
<td>3 credits</td>
</tr>
<tr>
<td>CS 3200</td>
<td>Scientific Computing</td>
<td>3 credits</td>
</tr>
</tbody>
</table>

Seven CS elective classes: See next page for rules and restrictions

Capstone requirement: Choose one

CS 4500: Students enrolling in the Senior Capstone course (CS 4500) must graduate before the next offering of the course. The capstone course is about demonstrating the skills and abilities learned in other CS courses. It is highly recommended that a majority of your CS electives be completed before taking the capstone. It is also highly recommended for seniors to enroll in the Senior Capstone Design pre-project course, during the fall prior to taking CS 4500.

CS 4970: Approval from the Undergraduate Director and an advising faculty member is required. Students should begin research for the thesis course at least one semester before enrolling in CS 4970.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4500</td>
<td>Senior Capstone Project</td>
<td>3 credits</td>
</tr>
<tr>
<td>CS 4970</td>
<td>Bachelor’s Thesis</td>
<td>3 credits</td>
</tr>
</tbody>
</table>

1. CS 4515-EAE Senior Project II may be accepted as an alternate senior capstone project. Special permission is required by the EAE director for non-EAE students to enroll.
Computer Science Elective Requirements

Seven CS electives (3+ credits each), 3000-level or higher are required for the regular CS track. See track elective suggestions (following page) for suggestions or see the CS academic advisor.

Six (6) full CS courses (3-4 cr) must be taken.

The 7th course may be any combination of Senior Capstone Design, CS 3011, CS 3020, CS 4010, CS 4190 or CS 5040 (up to three credits). Four-credit classes cannot be combined with one or two-credit courses to equal the final elective.

Students should be aware of required pre-requisites and plan early for registration in desired electives. See additional requirements/restrictions below.

<table>
<thead>
<tr>
<th>ACCEPTED</th>
<th>NOT ACCEPTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>• One (1) independent study course (CS 4950), with approval</td>
<td>• CS 5010, 5020 and seminars</td>
</tr>
<tr>
<td>• One (1) internship course (CS 4010), with approval</td>
<td>• Non-CS courses</td>
</tr>
<tr>
<td>• Only two (2) EAE specialty courses (such as, but not limited to: CS 3650, CS 3660, CS 4055, CS 4060, Character Rigging) may be counted</td>
<td>• Any course taken for CR/NC</td>
</tr>
<tr>
<td>• CS 4510 with approval from the EAE director</td>
<td>• CS 3130 may not be used as a CS elective unless the student’s math/science requirements have already been fulfilled. See advisor.</td>
</tr>
<tr>
<td>• CS/ECE cross-listed electives</td>
<td>• CS major requirements: CS 2100, 3500, 3505, 3810, 4150, 4400, CS 3100 or 3200 (unless both are taken, then one will count as an elective), CS 4500, 4515, 4970</td>
</tr>
<tr>
<td>• Grad-level CS courses may be accepted with permission of the professor. See the advisor to adjust the DARS.</td>
<td>• Grad-level CS courses that will be counted as part of a MS or Ph.D. degree</td>
</tr>
<tr>
<td>Undergraduate Track Elective Suggestions</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>Computer Systems</td>
</tr>
<tr>
<td>4230: Parallel Programming</td>
<td>4230: Parallel Programming</td>
</tr>
<tr>
<td>4480: Computer Networks</td>
<td>4480: Computer Networks</td>
</tr>
<tr>
<td>4540: Web Software Architecture</td>
<td>5460: Operating Systems</td>
</tr>
<tr>
<td>5460: Operating Systems</td>
<td>5470: Compilers</td>
</tr>
<tr>
<td>5470: Compilers</td>
<td>5530: Database Systems</td>
</tr>
<tr>
<td>5530: Database Systems</td>
<td>Programming Languages</td>
</tr>
<tr>
<td>5540: Human Computer Interaction</td>
<td>5100: Foundations of CS</td>
</tr>
<tr>
<td>5785: Adv. Embedded Software</td>
<td>5470: Compilers</td>
</tr>
<tr>
<td>5xxx: Data Mining</td>
<td>5510: Programming Languages</td>
</tr>
<tr>
<td>5xxx: Scripting Language/Design</td>
<td>5xxx: Scripting Language/Design</td>
</tr>
<tr>
<td>Web/Mobile Development</td>
<td>Robotics</td>
</tr>
<tr>
<td>4540: Web Software Architecture</td>
<td>5300: Artificial Intelligence</td>
</tr>
<tr>
<td>4480: Computer Networks</td>
<td>5310: Robotics</td>
</tr>
<tr>
<td>5530: Database Systems</td>
<td>5320: Computer Vision</td>
</tr>
<tr>
<td>5540: Human Computer Interaction</td>
<td>5350: Machine Learning</td>
</tr>
<tr>
<td>5xxx: Scripting Language/Design</td>
<td>5780: Embedded System Design</td>
</tr>
<tr>
<td>5xxx: iPhone/Android Development</td>
<td>5xxx: Robot Control</td>
</tr>
<tr>
<td>Computer Organization</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>3700: Digital System Design</td>
<td>4640: Image Processing Basics</td>
</tr>
<tr>
<td>3710: Computer Design Lab</td>
<td>5130: Computational Statistics</td>
</tr>
<tr>
<td>5460: Operating Systems</td>
<td>5300: Artificial Intelligence</td>
</tr>
<tr>
<td>5710: Digital VLSI Design</td>
<td>5320: Computer Vision</td>
</tr>
<tr>
<td>5830: VLSI Architecture</td>
<td>5530: Machine Learning</td>
</tr>
<tr>
<td>Embedded Systems</td>
<td>5340: Natural Language</td>
</tr>
<tr>
<td>3710: Computer Design Lab</td>
<td>5350: Machine Learning</td>
</tr>
<tr>
<td>4480: Computer Networks</td>
<td>5xxx: Data Mining</td>
</tr>
<tr>
<td>5470: Compilers</td>
<td>Graphics/ EAE</td>
</tr>
<tr>
<td>5780: Embedded System Design</td>
<td>3200: Intro Sci Comp</td>
</tr>
<tr>
<td>5789: Embedded Sy/Kinetic Art</td>
<td>5320: Computer Vision</td>
</tr>
<tr>
<td>CAD for Digital Systems</td>
<td>5350: Machine Learning</td>
</tr>
<tr>
<td>5710: Digital VLSI Design</td>
<td>5600: Intro Computer Graphics</td>
</tr>
<tr>
<td>5740: Computer-Aided Design</td>
<td>5610: Interactive Comp Graph</td>
</tr>
<tr>
<td>5745: Testing/Verif. Digital Circuits</td>
<td>5630: Scientific Visualization</td>
</tr>
<tr>
<td>5750: Synthesis/Veri. VLSI Sys.</td>
<td>5650: Perception for Graphics</td>
</tr>
<tr>
<td>5830: VLSI Architecture</td>
<td>EAE Courses (2 allowed as electives)</td>
</tr>
<tr>
<td>Data</td>
<td>3650: 3D Modeling</td>
</tr>
<tr>
<td>5300: Artificial Intelligence</td>
<td>3660: Machinima</td>
</tr>
<tr>
<td>5350: Machine Learning</td>
<td>4055: Adv. 3D Modeling</td>
</tr>
<tr>
<td>5530: Database Systems</td>
<td>4060: Digital Figure Sculpting</td>
</tr>
<tr>
<td>5xxx: Data Mining</td>
<td>5xxx: Character Rigging</td>
</tr>
</tbody>
</table>
CS Degree Requirements

2012-2013 B.S. Degree Requirements

PRE-MAJOR REQUIREMENTS:
Required in order to apply for full major status: C- or better in each course, and a minimum 3.0 average GPA (overall and among the following courses):

1. CS 1400, Intro. to CS ________ (3-F/S/U)
2. CS 1410, Object-Orient. Prog. ________ (4-F/S)
3. CS 2420, Algorithms/Data Struct. ________ (4-S/U)
4. Math 1210, Calculus I (QR) ________ (4)
5. Math 1220, Calculus II (QR) ________ (4)

GENERAL EDUCATION REQUIREMENTS:

1. Wrtg 2010 (WR2) ________ (3)
 (Honor 2211 will also be accepted)
2. Wrtg 3012 or 3014 or 3015 (CW) ________ (3)
 (Honor 3200 will also be accepted)
3. American Institutions (AI) ________ (3)
 (Choose ONE: Econ 1740, Hist 1700, PolS 1100, Honor 2212)

A total of SIX courses, two courses from each area, must be taken:
Fine Arts, Humanities, Social/Behavioral Science. TWO of those six classes must be upper division (3000-level or above), ONE must satisfy the University Diversity requirement and ONE must satisfy the University International requirement.

4. Fine Arts (FF): ________ (3)
5. Fine Arts (FF): ________ (3)
6. Humanities (HF): ________ (3)
7. Humanities (HF): ________ (3)
8. Social/Behavioral Science (BF): ________ (3)

MATH / SCIENCE ELECTIVES:
C- or better required in all math / science courses. The two additional electives must be 3+ credits each, as follows:

Accepted: Math, science or engineering courses with Math 1220 as a pre- or co-requisite (See DARS). Biol 1210, Chem 1210 also accepted.

Not Accepted: CS courses (with the exception of CS 3130). Math 2200. Math 2250 not accepted if Math 2270 and/or Math 2280 are taken. Math 3010 and/or 3070 not accepted if CS 3130/CE 3530 is taken.

1. Physics 2210, Physics I ________ (4)
2. Math 2210, Calculus II (QR) ________ (3)
3. Math 2270 (QR) or CS 3130 (QI) ________ ()
4. ________ ()
5. ________ ()

The following requirements are restricted to FULL Majors:
C- or better required in all courses. 2.5 GPA (overall & among CS courses) required to graduate.

MAJOR REQUIREMENTS:

1. CS 2100, Discrete Structures ________ (3-F/S)
2. CS 3500, Software Practice I ________ (4-F)
3. CS 3505, Software Practice II ________ (3-S)
4. CS 3810, Computer Organization (QI) ________ (4-F)
5. CS 4150, Algorithms (QI) ________ (3-S)
6. CS 4400, Computer Systems (QI) ________ (4-F)

CS ELECTIVES:
Choose seven (7) CS courses, 3000-level or above. Each must be at least 3 credits.

Accepted: Only one Independent Study and one Internship (max. 3 credits each) allowed. Any combination of CS 3011, CS 3020, CS 5040, CS 4190 or Senior Capstone Design can be combined to fulfill one elective (up to three credits). Only two EAE specialty courses (CS 3650, 3660, 4055, 4060) may be taken for elective credit.

Not Accepted: Seminars. CS 3130. Any CS courses taken for a CR/NC grade.

1. CS ________ ()
2. CS ________ ()
3. CS ________ ()
4. CS ________ ()
5. CS ________ ()
6. CS ________ ()
7. CS ________ ()

THEORY RESTRICTED ELECTIVE
Choose ONE: (If both classes are taken, one will count as a CS elective above)

CS 3100, Models of Computation (QI) ________ (3-F)
or
CS 3200, Scientific Computing ________ (3-S)

CAPSTONE REQUIREMENT:
Choose ONE: (Permission required from the Undergraduate Director for thesis)

*CS 4500, Senior Capstone Project ________ (3-S)
or
CS 4970, Bachelor’s Thesis ________ (3)

*If selecting CS 4500, it is highly recommended that you take CS 4960-Senior Capstone Design (1 cr) in prior fall semester.

Updated 6/12/12
The CS degree can be completed in four full-time years if the student can take the pre-major courses during freshman year. It is possible to take general education and/or math requirements during the summer. This table is meant only as a guide, since the scheduling of electives may vary. See the departmental advisor for suggested changes to this sequence or an alternate five-year plan.

*In order to take CS 1410 during the freshman fall semester, students must pass a proficiency test to waive CS 1400. If 1400 is needed, students may take CS 1400 fall semester, 1410 in the spring and CS 2420 in the summer semester to stay on track.

<table>
<thead>
<tr>
<th></th>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>CS 1400 (or CS1410*)</td>
<td>CS1410 (or CS2420*)</td>
</tr>
<tr>
<td></td>
<td>Math1210 Calc I</td>
<td>Math1220 Calc II</td>
</tr>
<tr>
<td></td>
<td>General Education course</td>
<td>American Institutions course</td>
</tr>
<tr>
<td></td>
<td>General Education course</td>
<td>Wrtg2010 Writing</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td></td>
</tr>
<tr>
<td>Sophomore</td>
<td>CS3500 Software Prac. I</td>
<td>CS2100 Discrete</td>
</tr>
<tr>
<td></td>
<td>CS3810 Comp. Org.</td>
<td>CS3505 Software Prac. II</td>
</tr>
<tr>
<td></td>
<td>Math required elective</td>
<td>Phys2210 Physics I</td>
</tr>
<tr>
<td></td>
<td>General Education course</td>
<td>Wrtg3012, 3014 or 3015</td>
</tr>
<tr>
<td></td>
<td>(14)</td>
<td></td>
</tr>
<tr>
<td>Junior</td>
<td>CS4400 Comp. Systems</td>
<td>CS4150 Algorithms</td>
</tr>
<tr>
<td></td>
<td>CS elective</td>
<td>CS3200 Theory elective 1</td>
</tr>
<tr>
<td></td>
<td>CS elective</td>
<td>CS elective</td>
</tr>
<tr>
<td></td>
<td>General Education course</td>
<td>Math/ Science elective</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>General Education course</td>
</tr>
<tr>
<td>Senior</td>
<td>CS elective</td>
<td>CS4500 Capstone 2</td>
</tr>
<tr>
<td></td>
<td>CS elective</td>
<td>CS elective</td>
</tr>
<tr>
<td></td>
<td>International requirement</td>
<td>Math/ Science elective</td>
</tr>
<tr>
<td></td>
<td>General Education course</td>
<td>3000-level Diversity course</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>Free elective (if needed**)</td>
</tr>
</tbody>
</table>

1 If both CS 3100 and CS 3200 are taken, the second will count as a CS elective. CS 3100 is offered in the fall.

2 The thesis option requires special permission from the faculty. This option is intended for students who are considering graduate school.

** Free elective only needed if student has not yet reached the 122 total credit hours required to graduate.
ENTERTAINMENT ARTS AND ENGINEERING EMPHASIS

The School of Computing provides a specialty track through the computer science program with an emphasis on Entertainment Arts and Engineering (EAE). The EAE emphasis is a joint program between the School of Computing and the College of Fine Arts Division of Film Studies.

The purpose of this program is to provide an undergraduate, interdisciplinary academic path for those students that wish to have careers in the digital entertainment industry (video games, digital animation, computer generated special effects, etc.). There are currently two specified tracks: video games and animation, differing by the junior year game/animation series of classes.

The key feature of this program is its interdisciplinary nature. Students from both computer science and fine arts take common classes throughout their undergraduate years, culminating in a year-long senior studio project where students build a video game or animation from the ground up. Students in the program choose either a bachelor’s degree in film studies or computer science. The requirements listed below are for the computer science Bachelor of Science degree, with an emphasis in EAE.

All requirements of the general computer science degree must be met. The specifics of the track are listed below where they extend the requirements of the traditional computer science bachelor’s degree:

<table>
<thead>
<tr>
<th>EAE GENERAL EDUCATION REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as the regular CS track (page 13), with the following exception: Fine arts (FF) requirement — Art 1020 (Non-major Basic Drawing) replaces one fine arts elective.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EAE UNIVERSITY BACHELOR DEGREE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as the regular CS track (page 14) with the following exception: CW requirement — FA 3600 (Writing for New Media) replaces the upper division writing requirement.</td>
</tr>
</tbody>
</table>
EAE MATH, SCIENCE AND ENGINEERING REQUIREMENTS

Six classes in math, science, and/or engineering are required. The School of Computing requires a grade of C- or better in each of these courses (CR/NC not accepted). Please note that the math department requires a solid “C” grade in prerequisite math courses in order to take the next math course.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 1210</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Math 1220</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Math 2210</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>Physics 2210</td>
<td>Physics for Scientists and Engineers I</td>
<td>4</td>
</tr>
<tr>
<td>ECE 3530</td>
<td>Engineering Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>or CS 3130</td>
<td>Engineering Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Math 2270 (^1)</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>Biol 1210</td>
<td>Principles of Biology</td>
<td>4</td>
</tr>
<tr>
<td>Chem 1210</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>Physics 2220</td>
<td>Physics for Scientists and Engineers II</td>
<td>4</td>
</tr>
</tbody>
</table>

One additional course, at least three hours, may be chosen from the following:

- Math 2270 \(^1\)
- Any non-CS class from the Colleges of Engineering, Mines, or Science that requires Calculus II as a prerequisite or corequisite
- Biol 1210
- Chem 1210
- Physics 2220

\(^1\) CS 3130 or ECE 3530 covers material similar to Math 5010 and/or Math 3070, and as such Math 5010 and/or Math 3070 may not be counted as an elective. Math 2200 will not be accepted.

Biol 1210, Chem 1210, Phys 2210 and Phys 2220 additional labs not required.
COMPUTER SCIENCE EAE MAJOR REQUIREMENTS

A minimum of 18 computer science classes must be taken. Ten CS classes (30 credits) must be taken at the U of U. A student may repeat upper-division courses (3000-level or above) only once. All computer science classes taken to satisfy degree requirements must be taken for a letter grade; they may not be taken for CR/NC.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1400</td>
<td>Intro to Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>CS 1410</td>
<td>Intro to Object-Oriented Programming</td>
<td>4</td>
</tr>
<tr>
<td>CS 2420</td>
<td>Intro to Algorithms & Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>CS 2100</td>
<td>Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>CS 3500</td>
<td>Software Practice I</td>
<td>4</td>
</tr>
<tr>
<td>CS 3505</td>
<td>Software Practice II</td>
<td>3</td>
</tr>
<tr>
<td>CS 3810</td>
<td>Computer Organization</td>
<td>4</td>
</tr>
<tr>
<td>CS 4150</td>
<td>Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 4400</td>
<td>Computer Systems</td>
<td>4</td>
</tr>
<tr>
<td>CS 3650</td>
<td>3D Modeling</td>
<td>3</td>
</tr>
<tr>
<td>CS 3660</td>
<td>Machinima</td>
<td>3</td>
</tr>
<tr>
<td>CS 5300</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CS 5460</td>
<td>Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>CS 5470</td>
<td>Compilers</td>
<td>4</td>
</tr>
<tr>
<td>CS 5530</td>
<td>Databases</td>
<td>3</td>
</tr>
<tr>
<td>CS 3200</td>
<td>Scientific Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 3100</td>
<td>Models of Computation</td>
<td>3</td>
</tr>
</tbody>
</table>

Choose one:

EAE required CS courses

- **CHOOSE ONE:**
 - CS 5460 Operating Systems 4 credits
 - CS 5470 Compilers 4 credits
 - CS 5530 Databases 3 credits

Theory restricted elective. Students must choose one of the following:

- **CHOOSE ONE:**
 - CS 3200 Scientific Computing 3 credits
 - CS 3100 Models of Computation 3 credits
Film requirements. The following classes are required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILM 2700</td>
<td>Survey of Videogame Theory</td>
<td>3</td>
</tr>
<tr>
<td>FILM 3500</td>
<td>Film Production I</td>
<td>4</td>
</tr>
</tbody>
</table>

Series requirement. One of the following series must be taken (junior year):

COMPUTER ANIMATION SERIES:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILM 2610</td>
<td>Computer Animation I</td>
<td>4</td>
</tr>
<tr>
<td>FILM 2620</td>
<td>Computer Animation II</td>
<td>4</td>
</tr>
</tbody>
</table>

GAME DEVELOPMENT SERIES:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILM 3710</td>
<td>Game Develop: Historical, Traditional</td>
<td>4</td>
</tr>
<tr>
<td>FILM 3720</td>
<td>Game Develop: Contemporary</td>
<td>4</td>
</tr>
</tbody>
</table>

Additional suggested elective (not required). This courses will not count toward EAE degree requirements, but may count toward the required 122 University credits:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA 3350</td>
<td>Intro to 3D Computer Graphics</td>
<td>3</td>
</tr>
</tbody>
</table>

EAE computer science elective. Any CS elective 4000 level or above will be accepted. One of the following classes is **recommended**:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4480</td>
<td>Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>CS 4540</td>
<td>Web Software Architecture</td>
<td>3</td>
</tr>
<tr>
<td>CS 5350</td>
<td>Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 5600</td>
<td>Intro to Graphics</td>
<td>3</td>
</tr>
</tbody>
</table>

Capstone requirement. Both of the following courses are required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4510</td>
<td>Senior Project I</td>
<td>3</td>
</tr>
<tr>
<td>CS 4515</td>
<td>Senior Project II</td>
<td>3</td>
</tr>
</tbody>
</table>

1 Must be 3-4 credits. Excludes CS 4055, CS 4060, CS 4500, and CS seminars.
EAE Degree Requirements

2012-2013 B.S. Degree Requirements Updated 9/18/12

PRE-MAJOR REQUIREMENTS:
Required for full major status: C- or better in each course, and a minimum 3.0 average GPA (overall & among the following courses):

1. CS 1400, Intro. to CS __________________________ (3-F/S/U)
2. CS 1410, Object-Orient. Prog. ______________________ (4-F/S)
3. CS 2420, Algorithm/Data Struct. ____________________ (4-S/U)
4. Math 1210, Calculus I (QR) _______________________ (4)
5. Math 1220, Calculus II (QR) _______________________ (4)

GENERAL EDUCATION REQUIREMENTS:
Honors options also accepted for WR2, CW, and AI requirements.

1. Wrtg 2010 (WR2) ______________________________________ (3)
2. FA 3600 (CW) __ (3)
3. American Institutions (AI) ___________________________ (3)

A total of SIX courses must be taken (two from each) in the following areas: Fine Arts, Humanities, Behavioral/Social Science. TWO of those six classes must be upper division (3000 level or above), ONE must satisfy the University Diversity requirement and ONE must satisfy the University International requirement.

4. ART 1020 Basic Drawing (FF): ______________________ (3)
5. Fine Arts (FF): ______________________________________ (3)
6. Humanities (HF): ____________________________________ (3)
7. Humanities (HF): ____________________________________ (3)
8. Social/Behavioral Science (BF): ______________________ (3)
9. Social/Behavioral Science (BF): ______________________ (3)
 • Upper Division 1
 • Upper Division 2
 • Diversity (DV)
 • International (IR)

MATH / SCIENCE ELECTIVES:
C- or better required in all math/ science courses.

ONE additional math/science elective is required (at least three credits). Choose any non-CS math or science class with Math 1220 (Calculus II) as a pre- or co-requisite. Physics 2220 will also be accepted. Math 2200, 5010, 3070 not allowed.

1. Physics 2210, Physics I ________________________________ (4)
2. Math 2210, Calc III (QR) _____________________________ (3)
3. CS 3130, Eng Prob & Stats (QI) _______________________ (3)
4. __ ()

FILM REQUIREMENTS:

1. FILM 2700, Intro to Video Games _______________________ (3)
2. FILM 3500, Film Production ___________________________ (4)

The following requirements are restricted to FULL Majors:
C- or better required in all courses. 2.5 GPA (overall & among CS courses) required to graduate.

MAJOR REQUIREMENTS:

1. CS 2100, Discrete Structures ________________________ (3-F/S)
2. CS 3500, Software Practice I ________________________ (4-F)
3. CS 3505, Software Practice II ________________________ (3-S)
4. CS 3810, Computer Organization (QI) ________________ (4-F)
5. CS 4150, Algorithms (QI) ____________________________ (3-S)
6. CS 4400, Computer Systems (QI) ______________________ (4-F)

EAE REQUIREMENTS:

1. CS 3650, 3D Modeling ______________________________ (3-F/S)
2. CS 3660, Machinima ________________________________ (3-S)
3. CS 5300, Artificial Intelligence ______________________ (3-S)
4. CS 5530, Databases _________________________________ (3-S)

5. Choose ONE: (If both classes are taken, one counts as the CS elective below)
 CS 5460, Operating Systems __________________________ (4-S)
 or
 CS 5470, Compilers __________________________________ (4-S)

CS ELECTIVE
Choose ONE: 4000+ level CS course (3 cr). Seminars, CS 4055, CS 4060, CS 4500 may not be counted. (Suggested: CS 4480, 4540, 5150, 5350, 5600, 5630)

1. __ (3)

SERIES REQUIREMENT:
Choose ONE:

ANIMATION SERIES
FILM 3610, Computer Animation I ______________________ (4-F)
FILM 3620, Computer Animation II ______________________ (4-S)

GAME DESIGN SERIES
FILM 3710, Game Design I ______________________________ (4-F)
FILM 3720, Game Design II ______________________________ (4-S)

THEORY RESTRICTED ELECTIVE
Choose ONE:

CS 3100, Models of Computation (QI) ___________________ (3-F)
or
CS 3200, Scientific Computing __________________________ (3-S)

CAPSTONE REQUIREMENT

1. CS 4510, Senior Project I _____________________________ (3-F)
2. CS 4515, Senior Project II ____________________________ (3-S)
EAE Suggested Course Outline

The CS degree can be completed in four full-time years of study if the student can take the pre-major courses during freshman year. It is possible to take general education and/or math requirements during the summer to ease the load. This table is meant only as a guide, since the scheduling of electives and general education classes may vary.

*In order to take the EAE-CS 1410 course during the freshman fall semester, students must pass a proficiency test to waive CS 1400. If 1400 is needed, EAE students may take CS 1400 fall, and the regular 1410 and CS 2420 courses spring and summer semesters to stay on track.

<table>
<thead>
<tr>
<th>Freshman (27 credits)</th>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1400 (or CS 1410*)</td>
<td>3</td>
<td>CS1410 (or CS 2420*)</td>
</tr>
<tr>
<td>Math1210 Calc I</td>
<td>4</td>
<td>Math1220 Calc II</td>
</tr>
<tr>
<td>Art1020 Basic Drawing</td>
<td>3</td>
<td>Wrtg2010 Writing</td>
</tr>
<tr>
<td>General Education course</td>
<td>3</td>
<td>Film 2700 Video Games</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>(14)</td>
</tr>
<tr>
<td>Summer - if needed -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophomore (31 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS2420 Intro to Algorithms & Data Structures</td>
<td>4</td>
<td>CS3660 Machinima</td>
</tr>
<tr>
<td>Math2210 Calculus III</td>
<td>3</td>
<td>Phys2210 Physics I</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>FA3600 Wrtg New Media</td>
</tr>
<tr>
<td></td>
<td></td>
<td>American Institutions course</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
</tr>
<tr>
<td>Junior (30 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS2100 Discrete</td>
<td>3</td>
<td>CS3200 Scientific Comp.</td>
</tr>
<tr>
<td>CS4400 Comp. Systems</td>
<td>4</td>
<td>CS4150 Algorithms</td>
</tr>
<tr>
<td>CS 3130 Eng. Prob. & Stats</td>
<td>3</td>
<td>CS5530 Databases</td>
</tr>
<tr>
<td>EAE Series: Animation/Game I</td>
<td>4</td>
<td>EAE Series: Animation/Game II</td>
</tr>
<tr>
<td></td>
<td>(14)</td>
<td>Gen Ed/Bachelor Degree Req.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
</tr>
<tr>
<td>Senior (29 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS4510 Senior Project I</td>
<td>3</td>
<td>CS4515 Senior Project II</td>
</tr>
<tr>
<td>CS5460 Operating Syst.</td>
<td>4</td>
<td>CS5300 A.I.</td>
</tr>
<tr>
<td>Math/science elective</td>
<td>4</td>
<td>CS elective</td>
</tr>
<tr>
<td>Gen Ed/Bachelor Degree Req.</td>
<td>3</td>
<td>General Education course</td>
</tr>
<tr>
<td></td>
<td>(14)</td>
<td>General Education course</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15)</td>
</tr>
</tbody>
</table>

1 CS 3200 is the recommended theory course, but CS 3100 (fall semester) will also be accepted.
2 CS 5460 is recommended, but CS 5470 will also be accepted. CS 5470 is offered in the spring.

See the departmental advisor for suggested changes to this sequence or an alternate five-year plan.
Prereq Core Course Requirements

Pre-Major Courses

- Intro to CS
- CS 1400

Programming
- CS 1410

Data Structures
- CS 2420

Calc. I
- Math 1210

Calc. II
- Math 1220

Math/Science Electives

- Phys 2210

Most Math Electives

- Calc. III
- Math 2210

- Prob/Stats
- CS 3130

Major Courses

Discrete Struc.
- CS 2100

Algorithms
- CS 4150

Software Prac.
- CS 3500

Soft Pract. II
- CS 3505

Computer Org.
- CS 3810

Comp. Systems
- CS 4400

Sr Capstone
- CS 4500

Theory Electives

Computation
- CS 3100

Sci. Comp.
- CS 3200

Recommended pre-reqs

Data Structures
- CS 2420

Calc. II
- Math 1220
PERFORMANCE REQUIREMENTS

All computer science, science, engineering, and writing courses taken to satisfy the major requirements must be taken for a grade and must be passed with a C- or better. Mathematics courses require a C or higher to move on to the next level of math. A student may repeat required courses for the major once only (pre-major courses may be taken as many times as necessary to gain full-major status).

PROBATION

To remain in good standing and graduate, a student must maintain a cumulative grade point average at the University of 2.5 or higher, and also maintain a grade point average (GPA) of 2.5 in computer science classes. Students whose GPA in either of these categories falls below 2.5 will be placed on probation and given conditions to return to good standing. These conditions must be satisfied during the next two semesters, excluding summers. Students failing to meet their probationary conditions are removed from the major.

PROGRAM COMPLETION

Students are expected to complete all requirements for their degree within four years of being admitted as a full major. Students not making satisfactory progress toward their degrees may be dropped from the rolls and declared inactive. The determination that a student is not making satisfactory progress is made in one of two ways. (1) The student has not completed a computer science course for a period of one year (exceptions made for students who take an official Leave of Absence with the University), or (2) There is no reasonable way in which the student can complete all degree requirements by the end of the required period of time. In order to be reinstated from inactive status or from being dropped due to low GPA, students must petition the Computer Science Undergraduate Committee. Reinstated students proceed under the latest graduation requirements. If personal circumstances prevent completion of all degree requirements within five years of acceptance as a full major, a student may request an extension and submit a revised schedule of completion.

GRADUATION EXIT SURVEY

In order to better serve our students and evaluate our program, computer science graduating seniors are required to complete a Graduation Exit Survey before they are cleared for graduation. All identifying information (name, student ID number) will be removed from student responses to maintain anonymity.
AP and Math Placement

ADVANCED PLACEMENT (AP) EXAM CREDIT

Credit for Advanced Placement tests is given through the University and counts toward the total hours needed to graduate. The Admissions Office assesses all general education AP credits. Specific courses in the Computer Science major (computer science, math, physics, chemistry, and biology) are waived based on high AP exam scores, independent of these credit hours. Students should submit a “request for evaluation” to the Admissions Office to have their AP credits officially recorded toward University graduation requirements.

The scores on the following page are necessary for the School of Computing to waive a major requirement. While lower scores may result in University of Utah credit, they will not satisfy School of Computing requirements. The School of Computing will not accept AP scores of 3 in some areas. For a detailed list of AP scores that may satisfy general education courses, please visit: http://admissions.utah.edu/special-credit/advanced-placement-credit.php.

MATH PLACEMENT

Math placement depends on an Accuplacer test score, AP math score, or previous transfer work. Accuplacer and AP scores are valid for two years after the test is taken. To challenge a placement score students may take a math placement exam at the Testing Center (801-581-8733, 498 Student Services Building).

<table>
<thead>
<tr>
<th>Pre-Requisite Requirements</th>
<th>Math Course Placement</th>
</tr>
</thead>
</table>
| ACT Math score of 17 or lower
SAT Math score of 420 or lower | Math 990 - Elementary Algebra |
| ACT Math score of 18-22
SAT Math score of 430-530
Accuplacer EA score of 54 or better | Math 1010 - Intermediate Algebra |
| ACT Math score of 23-27
SAT Math score of 540-620
Accuplacer CLM score of 60 or better | *Math 1050 & Math 1060 -
College Algebra & Trigonometry |
| ACT Math score of 24-27
SAT Math score of 560-620 | *Math 1080 - Pre-Calculus |

* Math 1050/1060 OR Math 1080 required for Calc I, not both
Chart continued on the next page
Advanced Placement

MATH PLACEMENT CONTINUED

<table>
<thead>
<tr>
<th>Pre-Requisite Requirements</th>
<th>Math Course Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP AB score of 3 or higher</td>
<td>Math 1210 - Calculus I</td>
</tr>
<tr>
<td>ACT Math score of 28 or higher</td>
<td></td>
</tr>
<tr>
<td>SAT Math score of 630 or higher</td>
<td></td>
</tr>
<tr>
<td>Accuplacer CLM score of 95 or better</td>
<td></td>
</tr>
<tr>
<td>AP AB score of 4 or higher</td>
<td>Math 1220 - Calculus II</td>
</tr>
<tr>
<td>AP BC score of 3 or higher</td>
<td></td>
</tr>
<tr>
<td>AP BC score of 4 or higher</td>
<td>Math 2210 - Calculus III</td>
</tr>
</tbody>
</table>

ADVANCED PLACEMENT EXAM COURSE EQUIVALENTS FOR COMPUTER SCIENCE

<table>
<thead>
<tr>
<th>AP Exam</th>
<th>Required Score</th>
<th>U. Course Waived</th>
<th>Course Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>4 or 5</td>
<td>Biol 1210</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>4 or 5</td>
<td>Chem 1210</td>
<td></td>
</tr>
<tr>
<td>Physics C: Mech</td>
<td>4 or 5</td>
<td>Phys 2210</td>
<td>Phys 2220</td>
</tr>
<tr>
<td>Physics C: E&M</td>
<td>4 or 5</td>
<td>Phys 2220</td>
<td>Phys 2210</td>
</tr>
<tr>
<td>Computer Science A Test</td>
<td>5</td>
<td>CS 1400/ 1410</td>
<td>CS 2420</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>CS 1400</td>
<td>CS 1410</td>
</tr>
</tbody>
</table>
Computer Science Minor

COMPUTER SCIENCE MINOR

The School of Computing offers a minor for students who desire to gain sufficient background to use and program computers in another field.

MINOR REQUIREMENTS
The minor consists of a minimum of 21 semester hours of required computer science classes (plus Calculus I). The following classes must be taken (at least three of the following CS courses must be taken at the University of Utah):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1400</td>
<td>Intro to Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>CS 1410</td>
<td>Intro to Object-Oriented Programming</td>
<td>4</td>
</tr>
<tr>
<td>CS 2420</td>
<td>Intro to Algorithms & Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1210</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>CS 2100</td>
<td>Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>CS 3500*</td>
<td>Software Practice I</td>
<td>4</td>
</tr>
<tr>
<td>CS Elective*: Students must take at least one additional CS class (3-4 credits) at or above the 3000 level. CS 3505 is recommended.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In order to be admitted as a computer science minor, a student must have a declared major in another department and be making progress in that major. A CS minor will not be awarded to computer engineering majors (CE), however CE majors should talk to the CS advisor about double majoring in CS and CE.

One may not pre-register for any upper division classes in computer science without first being admitted as a minor. CS minors must contact the CS advisor in order to register for 3000-level CS courses once admitted. Applications for admission are reviewed at the end of spring and summer semesters. Applications are accepted by the CS advisor in MEB 3190.

Students are admitted to the minor if their average grade in Math 1210, CS 1410, and CS 2420 is 3.0 or higher. They must also achieve a letter grade of C- or better in these courses.

* Students who are unprepared for 1410 will have to take the pre-requisite, CS 1400.
B.S./ M.S. Program

COMPUTER SCIENCE B.S./ M.S. DEGREE

The B.S./ M.S. degree program allows students to complete both a bachelor’s and master’s degree in computer science in five years. Degree requirements are the same as those for earning a B.S. and M.S. separately (122 undergraduate hours + 30 graduate hours), but there are several advantages:

- B.S./ M.S. students are not required to take the Graduation Record Examination (GRE) as part of their graduate school admittance.
- You will know early that you have been accepted into Grad School, and can plan accordingly.
- The synchronization barrier between the degrees is broken. Hence, students may take graduate classes during their senior year, and undergraduate classes during their fifth year.
- B.S./ M.S. students may take up to 12 graduate-level credits for the undergraduate fee.

School of Computing M.S. Degree Programs:

*Master of Computer Science
*Master of Computing with a computer engineering specialization
*Master of Computing with a graphics and visualization specialization
*Master of Computing with a information technology specialization
*Master of Computing with a robotics specialization

Each of the degrees has two options: course-based and thesis-based. Students wishing to pursue the thesis option for their M.S. degree must also choose the thesis option for their B.S. degree. The bachelor’s thesis will normally constitute a portion of the master’s thesis.

Students must be a junior in the CS or CE department in order to apply. International students on a visa are not eligible for B.S./ M.S. programs. Applications for the B.S./ M.S. program are due mid-May to the graduate advisor and must include a copy of the student’s University of Utah transcript and the B.S./ M.S. application form. For more information about the B.S./ M.S. program, graduate tracks, and how to apply, please visit: www.cs.utah.edu/bsms.
Scholarships

UNDERGRADUATE SCHOLARSHIPS

The School of Computing awards several scholarships each year. Recipients are selected based upon academic performance, rather than financial need. Most are awarded to computer science and computer engineering full majors, or to those students who will become full majors during the following academic year. Applications for these scholarships are available on the Web at www.cs.utah.edu. They must be submitted to the School’s office by February 15th of the preceding year.

Tuition Waiver Scholarships: These awards are available to students majoring in computer science or computer engineering who are residents of the state of Utah. They cover up to 18 credit hours of resident tuition for two semesters. To be eligible, students must take at least 12 credit hours per semester, be U.S. citizens and have a cumulative GPA of 3.5 or higher.

School of Computing Scholarships: These are awards available to all computer science and computer engineering majors. They range in value from $500 to $4,000, and are made possible by generous donations from the School of Computing faculty, the Eccles Foundation, Kiri Wagstaff, Dave Hanscom, Joan de St. Germain, and others. To be eligible, students must take at least nine credit hours per semester. Scholarships specifically for female students are available.

College of Engineering Scholarships: The College of Engineering awards several scholarships to the top students in the college. CS students may apply for COE scholarships simply by filling out the online application for a CS scholarship. Applications will be reviewed not only by the School of Computing, but will also be reviewed by the College of Engineering Scholarship Committee. Some College scholarships do require an additional essay during the application process. The College also has scholarships available for financial need.

Incoming transfer students and entering freshmen are not eligible to apply for the School of Computing Scholarships or Tuition Waivers until they have been admitted to the University of Utah and declared as a full or pre-major in computer science or computer engineering. These students should consider applying for U o f U or College of Engineering Scholarships.

B.S./ M.S. students are eligible to apply for School of Computing Scholarships, but are only eligible to receive undergraduate scholarship funding while they are finishing their undergraduate career.
STUDENT PARTICIPATION IN THE SCHOOL OF COMPUTING

The School of Computing, the College of Engineering, and the University of Utah all offer clubs, courses, and academic support to students which can enhance their undergraduate degree. The following offers a list of many, but not all, opportunities which computer science students are encouraged to explore. For a thorough list of clubs, groups, and activities at the University of Utah, please visit the Associated Students of the University of Utah student group (ASUU) at www.asuu.utah.edu.

Industry Forum

Students are encouraged to take CS 3011: Industry Forum in their junior or senior year. This course meets once weekly for one credit hour. Students will engage in presentations from local and national business leaders discussing issues in computing from industry perspectives, trends in computer science, professionalism, ethics, career readiness, lifelong learning, and contemporary issues. CS 3011 may be repeated up to three times for credit.

Research Forum

Research forum is encouraged for students who are planning to take the thesis senior project course or plan to go on to graduate school. Students attend weekly presentations from speakers discussing different research opportunities within the School of Computing, as well as problems that remain unsolved in computer science. CS 3020 is a one-credit course, and may be taken along with industry forum, programming challenges, and/ or TA training to take place of one three-credit CS elective. Research forum is encouraged for sophomore or junior year.

Internships

Qualified students may count an internship experience as a CS elective course during the summer between junior and senior year. The benefits of such experience include exposure to ideas which could help with career decisions, making contacts which may be useful sometime in the future, and valuable work experience. Local internship opportunities are posted to the CS jobs board via the Undergraduate link on the CS home page. All internships must be approved by the Director of Undergraduate Studies prior to each semester.

Teaching Assistants

Paid, undergraduate teaching assistant positions are available to outstanding computer science majors. Teaching assistants enroll in CS 5040: Teaching Introductory Computer Science and work 10-20 hours/week.
Student Involvement

STUDENT PARTICIPATION IN THE SCHOOL OF COMPUTING

Independent Study

Students may enroll in one independent study course (three credits) as one of the seven required CS electives. Independent study must be approved by the supporting faculty member and must be taken for a grade. Students who are interested in conducting undergraduate research may consider working with a School of Computing faculty member in an independent study course.

Research

There are a number of ways to become involved in research as an undergraduate student. Students are encouraged to discuss research options and opportunities with College of Engineering faculty. There are two formal research avenues undergraduate students can investigate: The Merrill Engineering Scholars Fellowship and The Undergraduate Research Opportunities Program. Visit www.coe.utah.edu/current-undergrad/research for more information.

iPhone Association

The University of Utah iPhone Programmer’s Association (iPA) is an opportunity for you to meet with others who are developing for this exciting new platform. Membership is FREE, and non-students are welcome! Visit www.uofuiphone.com for more information or to join.

SoC UgSAC

The Undergraduate Student Advisory Committee (UgSAC) plays an active role in the School by coordinating the following: (1) Course and faculty teaching evaluations; (2) Representation (one student) at faculty meetings; (3) Announcements to all declared pre-majors and majors; (4) Representation on the College Student Advisory Committee; (5) Representation on the end-of-year awards committee; (6) Organization of university and high school programming contests; (7) Feedback on issues affecting students, such as scheduling, curriculum changes, and graduation requirements.

Anyone interested in joining this organization should visit csugsac.eng.utah.edu.

Computer Science Club

The Utah Undergraduate Computer Science Club (UUCSC) provides undergraduate CS students the opportunity to network with peers, professionals, faculty and staff, and assists these students in developing their skills, understanding of, and passion for the field of computer science. For additional information, including meeting days and times, contact the School of Computing advisor.
Student Involvement

STUDENT PARTICIPATION IN THE COLLEGE OF ENGINEERING

Women Engineers

The Society of Women Engineers (SWE), founded in 1950, is a not-for-profit educational and service organization. SWE is the driving force that establishes engineering as a highly desirable career aspiration for women. SWE empowers women to succeed and advance in those aspirations and be recognized for their life-changing contributions and achievements as engineers and leaders. For more information, visit: web.utah.edu/swe.

Honors Programs

The College of Engineering offers an honors bachelor’s degree. For information on this program, see the college web page: www.coe.utah.edu/current_undergrad/hie. Students may also participate in the University’s honor program through Honors College. For more information, please visit: www.honors.utah.edu.

E-LEAP

Incoming engineering students should consider the Engineering LEAP (E-LEAP) program organized by the Office of Undergraduate Studies. It is a year-long cohort program set up to allow students to take several classes together during their first year on campus. Two of these classes are seminar courses that satisfy University General Education and Diversity requirements. The program also includes sections of writing, calculus, and physics. For more information on E-LEAP, contact the College of Engineering advisor at 801-585-7769.

Student Outreach

Engineering ambassadors represent their department on a college level and help with student recruitment and information sessions. Responsibilities may include presenting during Friday Afternoons in Engineering events, being ushers for College of Engineering Day, or visiting local high schools and junior highs. NSF representatives assist with similar outreach opportunities at college recruiting events and speaking engagements. Contact Cynthia Furse at cfurse@ece.utah.edu for more information about NSF opportunities.

Engineering Floor

The College of Engineering Living & Learning Community offers residents the opportunity to live with other students in the College of Engineering who share their academic and career goals.
UNDERGRADUATE ADVISING

The School of Computing undergraduate academic advisor is available to answer questions regarding schedule plans, registration for computer science classes, degree requirements, or any problems the student may be experiencing in their academic progress. Students should visit the academic advisor at least once a year to verify that they are on track for graduation. Appointments are required. The School of Computing receptionist (MEB 3190, 801-581-8224) will be happy to set up an appointment for you to meet with the undergraduate academic advisor.

The School has a faculty advisor who can also answer questions about any of the above, as well as more technical issues, such as career decisions and equivalence of transfer classes.

University College advisors are available on campus to assist students with additional majors or minors, and answer questions about general education and bachelor degree requirements. They are located in the Student Services Building, room 450. Appointments to see a University College advisor may be made by calling 801-581-8146 to set up a general advising appointment.

School of Computing Advisors

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Office</th>
<th>Email</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty Advisor</td>
<td>H. James de St. Germain</td>
<td>MEB 3190</td>
<td>germain@cs.utah.edu</td>
<td>801-585-3352</td>
</tr>
<tr>
<td>Undergraduate Advisor</td>
<td>Kelly Olson</td>
<td>MEB 3190</td>
<td>ugrad-help@cs.utah.edu</td>
<td>801-581-8225</td>
</tr>
<tr>
<td>Master’s Advisor</td>
<td>Anne Carlstrom</td>
<td>MEB 3190</td>
<td>annc@cs.utah.edu</td>
<td></td>
</tr>
<tr>
<td>Ph.D. Advisor</td>
<td>Karen Feinauer</td>
<td>MEB 3190</td>
<td>karenf@cs.utah.edu</td>
<td>801-585-3551</td>
</tr>
</tbody>
</table>

Mandatory Advising Checkpoints at the University of Utah

All new and transfer students are required to meet with an advisor before registering for classes. Additionally, students will need to make mandatory advising appointments once during their freshmen year, their second year, and again in order to apply for graduation. Any student who is still undeclared into a major by the completion of 60 credits will be required to meet with an advisor to declare a major or pre-major.
The Degree Audit Report System (DARS)

The Degree Audit Report System (DARS) is a tool that you can access any time from your CIS page to view your academic progress. Be sure to view your DARS often and speak to your advisor if you have any questions about its content. The DARS is used to clear students for graduation, so it is imperative that it is up-to-date and accurate.

You do not need to bring a printed DARS for an advising appointment; however, you may want to preview it before your appointment and prior to registration. If you are a pre-computer science major, choose the Generate Degree Audit Report link and select Computer Science (or CS-EAE).

If you are a declared full computer science major click on Generate Degree Audit Report for My Major(s). Your catalog year will be the year that you enter full major status. If you have difficulty understanding the DARS, view How to Read a DARS Report on your CIS page.

The Graduation Planning System (GPS)

The Graduation Planning System (GPS) is a tool, available to all students, that allows you to plan what classes you want and need to take for your computer science degree at the University of Utah.

The School of Computing has provided a suggested four-year plan called a Road Map. Use this Road Map as created, or modify it to your liking, to create your own graduation plan from start to finish. You can access this tool and each department’s Road Map from your CIS page.
EMployment opportunities

The School of Computing employs a number of junior and senior students as teaching assistants. This job involves no more than 20 hours of work per week at an appropriate hourly wage. Appointments are made each semester based on student applications, which should be submitted prior to the start of each term. These applications are available on the CS website.

General inquiries are received regularly from local industry and from University research groups for students for full or part-time employment. These opportunities are posted to the CS jobs board via the Undergraduate link on the CS home page. Project-based opportunities, such as Website development and/or tutoring are also posted.

Students seeking employment upon graduation should contact the University Office of Career Services in order to be included on a list supplied to employers. Students not planning to work toward an advanced degree should register with Career Services during their junior year, since most companies begin interviewing during the fall semester. Each year, Career Services hosts a general career fair each semester, as well as a separate Science and Engineering Fair in the fall. Computer Science students are encouraged to attend both fairs to begin networking and interviewing with potential employers.

Engineering tutoring center

First and second year engineering students frequently take a heavy class load of chemistry, physics, and calculus. Even the best students need a little help with these subjects from time to time. The College of Engineering Tutoring Center is staffed with junior and senior engineering students that offer academic help as well as experience.

Open tutoring labs are available throughout the week in WEB 1622. Schedules are posted weekly on the whiteboard in this room. More information on tutoring hours and availability can be found at www.eng.utah.edu/tutoring.

Student affairs

Student Affairs at the University of Utah offers student support resources ranging from health and wellness to counseling services and child care. For more information, please visit www.sa.utah.edu.
The number and title of each course is followed by the number of semester hours it carries, the semester(s) during which it is taught (F=Fall, S=Spring, U=Summer), its prerequisites and co-requisites. Where a course has both a 5000-and 6000-level number, the 5000-level version is intended for undergraduates, and the 6000-level version is for honors and graduate students. The two versions of the class will meet together, but extra work will be expected of honors and graduate students. Additional credit toward the bachelor's degree will not be given for taking a 6000-level course after taking the 5000-level version. Courses that have only 6000-level numbers may be taken by graduate and advanced undergraduate students.

Some elective classes are not offered every year. Check the online schedule or talk to the computer science academic advisor for more information. For a complete list of courses and course descriptions, visit the University of Utah online catalog at www.ugs.utah.edu/catalog.

1000 Engineering Computing 3 F/S *MATH
1210 1001 Engineering Computing using MATLAB 1.5 F/S *MATH
1210 1020 Introduction to Programming in C++ 3
1040 Creating Interactive Web Content 3 F/S
1050 Computers in Society 3
1060 Explorations in Computer Science 3 F/S
CS 1400 Introduction to Computer Science 3 F/S/U
CS 1410 Intro. to Object-Oriented Programming 4 F/S CS 1400,
*MATH 1210
CS 1960 Freshmen Symposium 1 S
2000 Introduction to Programming in C 4 F *MATH
1210, CS 1010
2100 Discrete Structures 3 F CS 1410
2420 Intro. to Algorithms & Data Structures 4 S/U CS 1410
3010/3011 Industry Forum 1 S Major
status