OVERVIEW

Big Data is impacting many areas of science, engineering, and industry; from analyzing troves of weather data to modeling traffic patterns to processing millions of online customers, it is the enormous data which is creating new opportunities and challenges.

To tackle these challenges, one must have the training to store, manage, process and analyze data at these scales. But the challenges are beyond scale alone, the complexity of the data requires new powerful analytical techniques. Finally, it is crucial to have skills in communicating and interpreting the results of this analysis. A person trained in all of these skills is a big data scientist.

ACCESSIBILITY

The core courses associated with the program are usually scheduled in consecutive blocks and/or in the late afternoons and evenings two days a week.

The classes will be video recorded, with videos made available soon after each class. These recordings can be live-streamed based on demand. This will help professional students on a busy schedule from falling behind if they miss a class, and will allow all students to easily review the material as presented in the lecture. We still require students to occasionally directly interact in class for exams and project presentations.
CORE CLASSES

Advanced Algorithms
The formal study of the scalable design of algorithms. As datasure grows this analysis and way of thinking becomes essential to ensure the underlying processing engine can keep up. After reviewing basic concepts of divide and conquer, greedy algorithms, and dynamic programming, will also cover advanced and modern approaches including flows, linear programming, hardness reductions, randomization, and approximation.

Database Systems
How large data is stored and managed, focusing on how the back ends of classic and emerging database engines work internally. The 5000-level version prepares students in the theory of how to represent data relationally and form logical queries, how to implement these concepts in SQL, and how to build an advanced application on top of these concepts. The 6000-level version covers how the internals of a full database engine are built by actually building part of such a system in C.

Data Mining
The study of efficiently finding structures and patterns in large data sets, including similarity search, clustering, regression, dimensionality reduction, and graph analysis. With focus on converting from messy and noisy data sets to structured abstract ones, applying scalable and probabilistic analysis on abstract data sets, and the formal modeling and understanding trade-offs.

Machine Learning
Techniques for developing computer programs that can acquire new knowledge automatically or adapt their behavior over time. Topics include several algorithms for supervised and unsupervised learning, decision trees, online learning, linear classifiers, empirical risk minimization, computational learning theory, ensemble methods, Bayesian methods, clustering and dimensionality reduction.

Visualization
The principles, methods, and techniques for effective visual analysis of data, including techniques for both spatial (eg. gridded data from simulations and scanning devices) and non-spatial data (eg. graphs, text, high-dimensional tabular data). Begins with an overview of principles from perception and design, continues with a framework for discussing, critiquing, and analyzing visualizations, and then focuses on visualization techniques and methods for a broad range of data types.

Upon completion of each class, students should be able to read, understand, and implement many research papers in the area.

ELECTIVES

Algorithmics
- Computational Geometry
- Computational Topology
- Models of Computation for Massive Data

Analytics
- Advanced Scientific Computing
- Artificial Intelligence
- Image Processing
- Natural Language Processing
- Probabilistic Modeling

Management
- Advanced Computer Networks
- High Performance Parallel Computing
- Network Security
- Parallel Programming for GPUs/Many Cores/Multi-Cores

<table>
<thead>
<tr>
<th>Big Data Certificate</th>
<th>CORE CLASSES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Big Data Masters | CORE CLASSES |
| (MS in Computing) | + 5 electives (or) + 3 electives and masters project or thesis |

| Big Data PhD | CORE CLASSES |
| (PhD in Computing) | + 3 electives and PhD thesis |
WHY UTAH?

The Salt Lake Valley and surrounding area, known as the Silicon Slopes (http://siliconslopes.com) is home to a surprisingly large number of technology companies (including Adobe, Overstock.com, and Ancestry.com), is consistently ranked as a top location for entrepreneurs, and is the home of many data centers, including for Ebay, C7 Data Centers, and the new massive NSA datacenter. The University of Utah is a world-class university with a rich history in computing, and big data is an emerging strength of the School of Computing. Moreover, Utah has unparalleled outdoors activities, with the campus nestled in mountains, located 10 minutes from downtown Salt Lake, 45 minutes from some of the best skiing on earth, and within 5 hours of at least 7 national parks including Yellowstone, Arches, and Zion.

HOW TO APPLY

For MS and PhD degrees:
- Following instructions on the SoC Graduate Admissions page
 http://www.cs.utah.edu/graduate/admissions/
- Apply for the MS or PhD in Computing
 Select “Data Management and Analysis” as an emphasis

For Certificate in Big Data:
- If enrolled in another graduate degree program: register for a required classes
- Or apply as a Non-Degree Seeking Student:
 http://www.cs.utah.edu/bigdata/apply
- If one switches to MS or PhD degree, up to 9 credit hours (3 classes) can transfer