
SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

GRADUATE COUNCIL
PROGRAM REVIEW

2016

2016 School of Computing Graduate Review

1. Program Overview Section ... 1
 1.1 Program Overview ... 1
 1.2 Program Planning ... 7
 1.3 Previous Review and Actions .. 14
 1.4 Department Profile ... 17

2. Faculty .. 19
 2.1 Faculty Profile .. 19
 2.2 Faculty Diversity .. 22
 2.3 Faculty Teaching .. 24
 2.4 Faculty Scholarship .. 28
 2.5 Faculty Service ... 30
 2.6 Retention, Promotion, and Tenure ... 33
 2.7 Faculty Vitae .. APPENDIX D

3A. Students: Undergraduate ... 35
 3A.1 Undergraduate Student Recruitment ... 35
 3A.2 Undergraduate Student Diversity .. 39
 3A.4 Undergraduate Student Support .. 42
 3A.5 Undergraduate Student Advising .. 44
 3A.6 Undergraduate Teaching Assistant (TA) Training .. 44

3B. Students: Graduate ... 47
 3B.1 Graduate Student Recruitment .. 47
 3B.2 Graduate Student Diversity ... 50
 3B.3 Graduate Student Admissions ... 51
 3B.4 Graduate Student Support ... 52
 3B.5 Graduate Student Advising ... 56
 3B.6 Graduate Teaching Assistant (TA) Training ... 58

4A. Undergraduate Curriculum and Program of Study .. 60
 4A.1 Undergraduate Degree and Certificate Requirements .. 60
 4A.2 Undergraduate Courses Offered ... 65
 4A.3 Undergraduate Programs of Study ... 67
 4A.4 Undergraduate Professional Development ... 67
 4A.5 Undergraduate Outreach Education ... 69

4B. Graduate Curriculum and Program of Study ... 70
 4B.1 Graduate Degree and Certificate Requirements .. 70
 4B.2 Graduate Courses Offered ... 76
 4B.3 Graduate Programs of Study ... 78
 4B.4 Graduate Professional Development ... 80
 4B.5 Graduate Outreach Education ... 82
 4B.6 Graduate Qualifying Exams .. 82
 4B.7 Graduate Theses and Dissertations.. 83

5A. Undergraduate Program Effectiveness - Outcomes Assessment.. 91
 5A.1 Undergraduate Outcomes Assessment Procedures ... 91
 5A.2 Undergraduate Outcomes Assessment Feedback .. 97
 5A.3 Undergraduate Degree Completion Data .. 99
 5A.4 Employment 100

5B. Graduate Program Effectiveness - Outcomes Assessment ... 102
 5B.1 Graduate Outcomes Assessment Procedures ... 102
 5B.2 Graduate Outcomes Assessment Feedback .. 109
 5B.3 Graduate Degree Completion Data .. 111

6. Facilities and Resources .. 112
6.1 Operating Budget ... 112
6.2 Physical Facilities ... 116
6.3 Libraries ... 117
6.4 Centers, Institutes or Bureaus Associated with the Program ... 117
6.5 Technology ... 118
6.6 Staff Support .. 123

7. Appendices ... 125
Appendix A: IAB Meeting Agenda ... 125
Appendix B: Career-line Faculty Review Operating Procedures .. 127
Appendix C: Policy Statement on RPT .. 130
Appendix D: Faculty Curriculum Vitae ... 139
Appendix E: Student Code ... 337
Appendix F: Computer Science Undergraduate Track Elective Suggestions........................... 387
Appendix G: Computer Science BS Degree Requirements ... 389
Appendix H: Computer Science BS Degree Requirements EAE .. 391
Appendix I: Sample for Computer Engineering Degree Program ... 393
Appendix J: Minor in Computer Science Program .. 395
Appendix K: Computer Science Suggested Plan... 397
Appendix L: Computer Science EAE Plan .. 399
Appendix M: Program of Study Examples for MS .. 401
Appendix N: Program of Study Examples for PhD ... 408
Appendix O: Recent Qualifying Exams .. 411
Appendix P: Sample Thesis/Dissertation Abstracts........................... 494
Appendix Q: Graduate Students Employment Information ... 506

	
	
	

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

U1. Program Overview

1.1 Program Mission and Organization

1.1.1 Mission

The School of Computing has three complementary aspects to its mission:

• Research – the development of cutting edge technology – achieved by tackling problems
of real-world complexity – with the potential for significant long-term impact on the
fields of computer science and multidisciplinary computing;

• Education – providing the State of Utah and the Nation with computer and computational
scientists having a core of knowledge that allows them to perform at the highest levels in
industry, academics, and government while adapting to rapidly changing technological,
social, and professional landscapes, and providing students across the University of Utah
with access to skills in computing, computer programming, computer science, and data
analysis (hereafter referred to as CS);

• Service – working with industry, government, educators and the community, at the State
and National level, to advance computer science education and research, and to provide
these organizations and groups with access to computer science expertise and talent.

1.1.2 Overall Vision

The overall vision of the School is multifold:

• Establish itself as the premier institution in Utah and across the Intermountain West for
computing and computer science education and research;

• Maintain and enhance the Schools national and international reputation for innovative,
world-class research and exceptional undergraduate and graduate education;

• Become the focal point and at the University and across the State for providing access to
high-quality, foundational educational opportunities in computing, computer science, and
data science for students in all disciplines and all programs; and

• Provide leadership across the State, throughout the Intermountain West for the region’s
burgeoning information economy.

1

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

1.1.2 Strategic Goals

This overall vision translates into strategic goals for the School:

• Recruit and retain exceptional faculty and staff from around the world;

• Recruit and retain highly qualified undergraduate and graduate students from diverse
backgrounds and circumstances and provide them with a world class educational
experience;

• Create an environment that fosters innovation, creativity, learning, and strong positive
commitments to the School;

• Improve the operational efficiency of the School to better utilize time of faculty and staff,
as well as capital and space;

• Improve interactions with the University Administration and other academic leaders/units
in order to advocate for and offer CS-related educational opportunities and procure
resources necessary to capitalize on the growing opportunities in CS;

• Increase and improve communications with stakeholders, including industry,
parents/citizens, legislators, and alumni in order to acquire valuable feedback on the
School and its roles, publicize the Schools capabilities, accomplishments, and potential,
and garner support for the increased role that the School (and CS, generally) will play at
the State and National levels;

• Increase international exposure for the School highlighting its accomplishments and
capabilities;

• Diversify the set of CS-related educational offerings into important, related areas, such as
digital/interactive media, learning at scale, and data science;

• Establish, with the University Administration, a trajectory for growth/evolution of the
School that reflects realistic assumptions about the future role of CS in the State and
elsewhere; and

• Procure the resources necessary to achieve this new status and carry out the proposed
diversification and increase in activities.

Challenges and Risks for the School

1. Maintaining growth relative to demand: Increasing demand for CS education from both
students and employers poses a particular set of challenges for the School. For instance,
the median freshman GPA of students admitted to the CS program in 2016 was 3.7. This
has important implications for the School and the State, such as lost opportunities (e.g. B

2

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

students who cannot become CS majors), the relationships with stakeholders (e.g.
legislators, parents), as well as serving as a disincentive for students to come the
University and plan to major in CS.

2. Diversification of programs at the University: In response to the State demand for
programing skills, other units on campus are offering IT and software related training.
For instance, the School of Business now offers an MIS degree and has proposed a
degree in data management. The School of Architecture offers programs in design, but is
moving toward digital and interface design as specialties. These programs produce
different kinds of skills, but have been known to be confused (by outsiders/employers)
with the CS degree skill set, and may draw attention and resources from the School of
Computing and its mission. The College of Science is exploring new directions/units to
address the demand for data science. Alternatively, Math is proposing a MS in Data
Science, jointly with the School of Computing.

3. Growth of other programs within the State: Other State schools, such as Utah Valley
University (UVU), are investing heavily in CS and outpacing the growth of the School of
Computing. Some schools are offering new programs in CS and CE. This trend has the
potential to dilute resources and attention at the State level, which could impact growth
potential for the School of Computing and its programs.

4. Constraints of resources and space: The School is growing, in faculty, students, and staff.
However, growth is constrained by several factors. While the trajectory of computer
science is distinctly upward relative to other STEM disciplines (even other engineering
disciplines), the allocation of resources for new faculty hiring takes place within a context
of limited College and University resources. In these circumstances, successfully making
the case for growth relative to demand faces significant challenges. Meanwhile available
space for offices and student laboratories in the School has grown very little over the last
five years, and faculty space needs are currently not consistently met by School
resources. The faculty is currently in a mode of “doing more with less” in their use of
space.

5. Retention of BS degree seekers: The School estimates that approximately 10% of each
class per year fail to continue in the program. About half of this attrition is due to
probation-related unenrollments, and the other half is for reasons that are unclear. The
School will need to work to improve retention and graduate rates.

6. Faculty recruitment and retention: While recruiting of School faculty has been very
successful over the last 10 year, the continued successful recruitment of faculty will
likely become more difficult as other programs around the Nation grow in response to
overall workforce demands. Likewise, the extremely productive faculty at the School
have not gone unnoticed, and with increasing competition faculty are being recruited to
go elsewhere. This problem is aggravated by a salary/raise model that does not keep up

3

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

with trends in the field and the limited availability of good quality research space (as
mentioned above).

7. Ethnic and gender diversity: The School has made progress on the recruitment of women
(four new female hires in the last 7 years). The percentage of undergraduate women has
improved, but is still below national averages (11% vs 16%). There is a growing
awareness at the State level that in the face of increasing demand, the under tapped talent
pool of women for computer science represents a significant loss. Unique cultural
aspects of Utah (lower percentages of two income families relative to the nation) also
aggravate this problem. Meanwhile, Hispanics are significantly underrepresented at the
University and especially within the School. The School of Computing must address
these issues in order to fully access available talent pools (and meet workforce demands)
and offset institutionalized biases associated with systematic underrepresentation.

8. Responding to the changing field: The field of computer science/computing is changing
rapidly and, sometimes, unpredictably. The subject matter, the expectations of our
students and their employers, and the methods of instruction are all moving targets, and
the School will need to demonstrate a larger degree of agility in how it defines its
curricula and how it uses modern methods and technologies for instruction.

The above challenges are not all unique to Utah, and the ability of the School to meet these
challenges will define its identity and level of success in the coming decades.

1.1.3 Overview of the School and Programs

The School of Computing at the University of Utah began as a Division within the College of
Engineering in 1965, and become a Department in 1973. In 2000, the Department of Computer
Science made a transition to become the School of Computing. The goal of the transition to a
School was motivated by the dramatic growth in the field of CS circa 2000 and was meant to
broaden the School’s mission to better serve a diverse set of intellectual and societal issues, to
foster collaboration and interdisciplinary education and research, and to provide a possible on-
ramp for the School to become a separate College. In 2004 the School offered graduate students
the additional option of a Computing degree (in addition to CS), which allows for students to
follow tracks, which are curriculum options that are managed in a flexible manner by small
faculty committees and Track Directors.

The School offers several degrees and options, some jointly with other programs:

• BS in Computer Science: Students are admitted into the program (at our discretion) at
the end of freshman year. Total enrollment is approximately 500. We currently graduate
approximately 100 students per year, and have been increasing our admissions by about
10% per year, with the latest incoming class, of approximately 200 students.

• BS in CS with EAE emphasis: Students in the BS in CS program take a set of electives

4

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

and obtain a certificate in “Entertainment Art and Engineering”. About 20 students per
year take this option. EAE is now also an independent program (offering a master’s in
EAE), which collaborates with the School on this undergraduate emphasis.

• BS/MS in Computer Science: This is a five year degree option for which highly qualified
students may apply. Approximately 20 students per year enter into this program.

• BS in Computer Engineering: This joint program with the ECE Department graduates
approximately 20 students per year.

• MS in Computer Science/Computing: Students are directly admitted into the MS program
and may choose among course only, project, and thesis options. MS degrees are
awarded per year range from approximately 45 to 85.

• PhD in Computer Science/Computing: Students choose between the conventional CS
curriculum or among the tracks in the Computing degree (about 50% currently).
Approximately 20 students per year are awarded the PhD in either CS or Computing.

Table 1-1 – Enrollment and Degrees Awarded

Above master's degree numbers do not include Computational Engineering and Science (CES) students, these are included in
Table 1-6.
Above Bachelor CS degree numbers do not include Computer Engineering (CE) students, these are included in Table 1-6.

The School maintains a strong, active research program with highly productive faculty, students,
and staff. Several quantitative measures such as paper output and research expenditures confirm
this. For instance, research expenditures in the School have doubled in the last 7 years to
approximately $20 million per year, which averages to over $500,000 per faculty member, per
year. Other measures of research productivity are consistent with this. The faculty/students
published approximately 234, 198, and 214 papers over the years 2013, 2014, and 2015,
respectively. The faculty are/have been on 25 editorial boards and 4 served as editors-in-chief of
journals in the past three years. In the last three years, faculty members have served as
conference committee chairs 107 times. The School’s faculty have served on numerous national
boards, including the CCC, the CRA, and PCAST, as well as serving on many national and
international task forces and review boards, including several under the auspices of the NSF, the

2009 – 2010 – 2011 – 2012 – 2013 – 2014 – 2015 –
2010 2011 2012 2013 2014 2015 2016

MS Enrollment 101 129 129 129 152 168 131
MS Degrees Awarded 43 51 51 57 51 88 75

PhD Enrollment 122 126 121 124 130 120 137
PhD Degrees Awards 16 12 15 19 19 21 16

Declared Pre-CS Majors 316 387 446 486 605 772 814
Declared CS Majors 352 393 406 443 450 450 551

CS BS Degrees Awarded 71 76 77 87 92 101 98

Declared CE Majors 68 71 76 92 99
CE BS Degrees Awarded 23 12 18 20 16 15

Table 1: Table 1.1

1

5

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

NIH, DoE, ACM, and IEEE. Since the past review, several faculty members have been honored
as IEEE Fellows, ACM Distinguished Scientists, and AIMBE fellows.

While the expertise of the faculty virtually spans the field of computer science, the faculty are
loosely organized into the following areas of research activity:

• Algorithms and Theory
• Computer Architecture
• Data Science and Information Management
• Programming Languages and Formal Methods
• Graphics and Animation
• Image Analysis
• Human Computer Interaction (HCI)
• Machine Learning and Natural Language Processing
• Networking, Embedded Systems, and Operating Systems
• Robotics
• Scientific Computing
• Security & Privacy
• Visualization

In addition to this informal organization, there are several more formal research entities that
bring international visibility to the School and the University:

• Scientific Computing and Imaging Institute – http:/www.sci.utah.edu
• The Utah Robotics Center – http:/robotics.coe.utah.edu
• The Flux Group – https://www.flux.utah.edu
• Center for Parallel Computing – http://www.parallel.utah.edu

Tenure line faculty salaries and most full time career-line teaching faculty and support staff are
funded by the State of Utah. The School receives additional income, mostly from productivity
based incentives. This includes 15% of the research overhead generated by the School (to
support one-time hiring costs, facility improvements/renovations, and research-related
infrastructure) , differential tuition for engineering classes, and additional teaching related
incentive funds that are based on a combination of number of declared majors and student credit
hours. A more detailed accounting is given in Section 6.1. Overall, from an immediate cash-
flow perspective, the School is financially sound. This raises questions about how to best utilize
this “soft” money, which cannot be readily applied to supporting salaries for permanent hires.

Regarding faculty salaries, the compensation compared to CS departments in the CRA-Taubee
survey show that the School is competitive with departments in other research universities (Table
1-2). (The cost of living in Salt Lake City is about at the national average, and therefore at a gross

6

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

level these numbers should be relevant).

Table 1-2: The median salaries by rank in the School of Computing compare favorably with median salaries at research
universities nation wide.

Past strategies for hiring, growth, and allocation of resources have been to build on the School’s
strengths in niche research areas. The School has historical, internationally recognized strengths
in graphics, and more recently visualization (SCI Institute), systems (Flux group), and several
specific, applied areas such as scientific computing, medical image analysis, and robotics. Very
recently the strategy has been to build a more diverse set of strengths that take advantage of the
School’s culture of collaborative and applied research. This is motivated by several factors.
First, is the general growth of the School and the availability of resources to grow the faculty and
students, allowing for substantial resource allocations (e.g. critical mass) in more diverse
specialties. A second motivation is the demand from students and employers for
training/expertise in growing or emerging specialties, such as data science, HCI, and security. A
third motivation is the evolution of the field of CS itself, where many of the opportunities for
greatest impact (and national/international recognition) lie in new areas.

In light of this, the School’s strategy includes expansion into areas that have not been traditional
strengths but synergize with existing expertise and interests of the faculty. Thus, recent hires in
HCI build on expertise in data visualization, security hires build on strengths in
systems/networking and programming languages, computer vision builds on medical image
analysis and robotics, etc. Of course, this strategy must respect our underlying principles in
hiring: hiring faculty of excellent quality whose dispositions will foster collaboration and
enhance the productivity of their colleagues.

U1.2 Program Planning

1.2.1 Educational programs

Programs are planned via the Director’s office, through the Directors of Undergraduate Studies
(Jim de St. Germain) and Graduate Studies (Feifei Li). There is an Undergraduate Curriculum
Committee, which is appointed by the Director and a Graduate Curriculum Committee, which
consists of the computing/CS Track Directors and the Director of Graduate Studies. The faculty
participate in changes to curricula and programs by discussions at faculty meetings (and email)
and by votes that formally communicate their views to the Directors. Changes and new programs
are formally reviewed by the College Curriculum Committee, and subsequent reviews at the

Rank Taulbee CS Depts Taulbee CS Public Taulbee CS Private SoC Tenure Line

Assistant $96,055 $95,199 $105,060 $95,509
Associate $109,633 $108,929 $117,563 $118,451
Professor $149,036 $145,267 $170,963 $150,067

Table 2: The median salaries by rank in the School of Computing compare favorably with the median salaries at
research universities nationwide.

2

7

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

University level take place for new programs.

Here we give some general trends in the programs and some plans underway for these programs.

1.2.1.a Evolution of the graduate computing degrees and tracks

In 2004, the Utah Board of Regents approved a new graduate Computing degree program in the
School of Computing. Under this program tracks are created locally and require only School of
Computing faculty to agree to run the track, and the approval of the Director of the School. The
intent is to have tracks in areas that complement the Computer Science graduate degree. Tracks
may be multidisciplinary or interdisciplinary, consist of track faculty from one, two or more
departments and are administered by these faculty. These tracks are a direct and anticipated
result of broadening the scope of research in the School. Currently there are six track areas, with
a seventh in the planning stages. The specific requirements of each track may be found in
Section 4B.1. The current tracks for the Computing Degree are:

• Computer Engineering – MS and PhD; Erik Brunvand is the track director; joint
• track with the Department of Electrical and Computer Engineering.
• Data Management and Analysis – MS and PhD; Jeff Phillips is the track director. (See

also the certificate program in Big Data Analytics)
• Graphics and Visualization – MS and PhD; Chuck Hansen is the track director.
• Image Analysis – MS and PhD; Tom Fletcher is the track director.
• Networked Systems -– MS and PhD; Sneha Kumar Kasera is the track director.
• Robotics – MS and PhD; John Hollerbach is the track director, joint track with

Department of Mechanical Engineering.
• Scientific Computing – MS and PhD; Hari Sundar is the track director.

The Computing Tracks have been successful in allowing our graduate students to specialize in
terms of courses and other requirements. At present approximately 40% of our MS students and
39% of our PhD students are enrolled in a Computing track rather than in the Computer Science
degree track.

While the Computing Degree concept, with tracks, has been successful at attracting students and
allowing them to complete the program while achieving very high levels of research in their
areas of expertise, the naming “Computing” combined with the offering of CS graduate degrees
has created some unnecessary complication, and there is an active discussion to retire the MS
and PhD degrees in computing, and offer very similar tracks within the computer science degree
options.

1.2.1.b Leveling of the MS Program

During the years 2009-2015, the MS program grew substantially, almost doubling in size. This

8

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

growth served several purposes.

• It helped meet the growing demand for software engineers in Utah and around the
Nation.

• It created student credit hours and majors, which generate income for the School.
• It helped buoy the enrollments in graduate classes, helping to justify the teaching of the

wide range of classes needed to support the various tracking in computing.
• It served as a recruiting tool for the PhD program.

In 2014, a decision was made to level the number of admissions to the MS program(s). This was
done because it was observed that many graduate classes are of an appropriate size (some are too
big) and, with increasing applications, a leveling of admissions may help to improve the quality
of MS students (who share many classes with PhD students). This strategy dovetails with plans
to offer alternative master's-level degrees, as described below.

1.2.1.c BS/MS Program

In fall 2005 the School instituted a combined BS/MS program to attract high-achieving
undergraduate students into the graduate program. This program allows an undergraduate to
begin to take courses for their MS degree while still an undergraduate. Because many
undergraduates have more credit hours than strictly required for the BS degree, this overlap
allows most BS/MS students to finish both their BS and MS degrees in five years (according to
plan). Students are considered undergraduates until they have two semesters remaining to finish,
at which time they are considered graduate students. At the completion of their MS, students
receive both BS and MS degrees simultaneously. This program has been very successful, and
attracts very high caliber undergraduates. Currently there are 32 students in our BS/MS program
at various stages of completion.

1.2.1.d Entertainment Arts and Engineering Program

In 2007 the School initiated a certificate program that offers an Emphasis in Entertainment Arts
and Engineering within the Computer Science BS degree program. The EAE Emphasis was
developed jointly with the Division of Film Studies (College of Fine Arts), which also offers the
emphasis. The purpose of this program is to provide an undergraduate, interdisciplinary
academic path for those students that wish to have careers in the digital entertainment industry
(video games, digital animation, computer-generated special effects, etc.). Several specialized
EAE offering count as electives in the CS program, and those classes are popular (enrollments of
about 40-50), and approximately 20 CS students per year receive the Emphasis in EAE (with
their BS degrees).

Since the last review the EAE program, headed by CS Professor Robert Kessler has broken off
from the School to become a separate instructional unit. The EAE program offers their own
master’s degree (terminal, professional) in EAE and they have recently proposed a BS in Games

9

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

(BSG). They hire their own instructional faculty. Recently there was a joint hire of a highly
qualified “games+CS” Professor, Michael Young from NC State, and there are plans for more
joint hires as opportunities arise. There are ongoing discussions about the reporting structure of
EAE (which currently reports to two Deans and the VPs office) relative to Engineering and the
School of Computing.

1.2.1.e Computer Engineering Program

The Computer Engineering program is a separate degree program offering a BS in Computer
Engineering. This program is jointly administered by a faculty committee made up of faculty
from the School of Computing and the Department of Electrical and Computer Engineering. The
directorship of this program alternates between the two departments every three years. The
current Director (as of July 2015) is Dr. Erik Brunvand from the School of Computing.

Computer Engineering, as defined by this program, includes the design, implementation, and
programming of digital computers and computer-controlled electronic systems. Computer
Engineering is a software and hardware-oriented degree whose requirements include courses
offered by the School of Computing and/or the Department of Electrical and Computer
Engineering. The Computer Engineering program is accredited by ABET, and has undergone
an ABET review in 2015. They currently have their own curriculum planning (committee as
above) and admissions criteria, and approximately 20 students per year graduate with a BS in
CE.

1.2.1.f New programs and directions

To address some of the challenges in Sections 5A.2 and 5B.2, the School is initiating several new
programs and course directions.

The first new program is the proposed Master of Software Engineering (MSE). The demand
for software engineers is considered a bottleneck for many of Utah’s technology and
nontechnology companies, and there is a growing gap in demand between student who have
computer skills and those who do not. Meanwhile there is a growing consensus that there is a
moderately large, untapped workforce of students who have the raw talent to write software, but
who have not had sufficient exposure. To address this need the School is developing a Master of
Software Engineering (MSE) degree program that will educate students with Bachelor’s Degrees
in various non-technical backgrounds in computer and software fundamentals, so that they can
be technically proficient in software engineering, and participate in this growing workforce.
Thus, by reaching out to non-CS majors, the MSE program will recruit an untapped demographic
to help meet local and national demand for software talent. Our MSE curriculum stresses
significant hands-on teaching and an immersive learning environment. It uses project-oriented
approaches to equip students with tools and perspectives for problem solving while honing their
critical thinking skills that transcend specific software languages or applications. The program
will be mostly taught by a dedicated team of instructional faculty, who will be supported from

10

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

the revenue the program generates. Tenured faculty manage the MSE program, and thereby
establish the pedagogical vision and standards, and swiftly accommodate trends in computer
science and software engineering. The duration of the MSE program is 18 months. The MSE
program will admit non-CS majors who can demonstrate problem solving skills and the ability to
reason mathematically and logically. The proposed program is modeled loosely on similar
programs at the University of Pennsylvania and the University of Chicago (and plans, as far as
we know, at other schools, such as University of Illinois Urbana-Champaign). The proposed
program has been approved by the University’s Board of Trustees and is awaiting final approval
by the State Reagents.

Another new direction for the School is the development of alternative on-ramp courses for
computer programming. This past year the Director formed an ad-hoc committee to examine
questions relating to undergraduate students’ first exposure to CS on campus and to relate this to
what has been done at other universities. This committee has made several important
observations. One observation is that our current CS1&2 offerings (CS1410 and CS2420) are
considered very difficult classes, whose grades become essential to admission into the program
(at the end of freshman year – see Undergraduate Section 3A.1.3). This creates a competitive
atmosphere, in which not all potentially qualified students feel comfortable. Second, these
classes have some very specific learning objectives (e.g. data structures and software design
paradigms) that are considered essential for acceptable progress through the subsequent parts of
the CS curriculum. Third, because these classes are used to evaluate the fitness of freshman for
the CS program, the grading policies in these classes are enforced in a way that ensures that there
is an adequate separation between mediocre and very promising students. Therefore, these
introductory classes are not particularly well suited to students who want to learn computer
programming but are not (yet) interested in a CS degree. While other universities are seeing
booming enrollments from non-majors (or people not intending to major), we have not seen this
at the University of Utah (and have not actively promoted it).

To address this issue of increasing interest in CS-skills among nonmajors, the School is planning
a set of alternative, introductory programming classes for non-majors. These classes would be
designed around projects and hands-on experience, and would not face the specific, challenging
learning objectives of our current on-ramp. The projects would focus on domain-relevant
applications such as digital media, life sciences, and data science. We call these classes,
informally, CP1&2. The goal would be to try to entice departments from all over campus to
recommend these classes to their majors. The plan is also to take a subset of our junior/senior
level electives that do not have a strict requirement of conventional/broad CS content (such as
visualization or data science) and make them available to students who have passed CP1&2.
We anticipate that students who do particularly well in CP1&2 could be offered a “back door”
into the CS program. These classes will become required in the new BS in Games proposed by
EAE. We believe this strategy will address several of the challenges above, helping to meet the
growing demand across campus for computer skills as well as making parts of our program more
accessible to a greater diversity of students. We have a tentative plan to begin offering these
classes in the Fall of 2017.

11

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

1.2.2 Outreach

The School is engaged in a variety of strategies to better connect with potential students, alumni,
academic communities, industry, and the Utah community at large.

1.2.2.a K-12 student interactions

The School is engaged in a large number of interactions with K-12 students in order to promote
CS in Utah and to publicize the presence and activities of the School.

GREAT Summer Youth Camps: The School offers technology-oriented camps for students in 4th-
12th grades. These GREAT (Graphics and Robotics Exploration with Amazing Technology)
camps provide intensive and fun instruction in computer programming, robotics, graphics and
games for 700 students a summer in weeklong camps. The GREAT camps provide targeted
scholarships to recruit these students. The camps offer such scholarships to roughly 50 students a
year. As a large outreach program, the camps have also been able to offer customized camps for
different groups. Recently, the GREAT camps have:

• a summer bridge program for African refugee students preparing to attend the University;
• a high-school mentoring program for refugee students;
• two camps for military kids in the western US; and
• a camp partnering with researchers in Biology exploring ecological simulation.

Each summer, the GREAT camps hire 20 or more instructors. In addition, the GREAT camps
have a high school intern program with around a dozen interns each summer. The summer camp
teaching role has been a valuable means of mentoring high quality students and helping them
feel a part of the School. An important aspect of the GREAT camps is that the large number of
topics for different age groups allows students to return to the University of Utah campus for
many summers and to build up skills in a variety of computer science topics and to eventually
take on leadership roles as interns. The GREAT camp attendees are well prepared for future
STEM courses and majors at the University and elsewhere.

Engineering Days: The School provides CS activities for the College of Engineering’s yearly
Engineer Day, where over 500 high school students try out different mini-courses. Last year, the
School ran three sessions where students engaged in a quick, hands-on activity programming an
interactive graphics application.

Hi-GEAR: The College of Engineering hosts a week-long camp for 25-30 high school young
women. Each day is devoted to different engineering topics. The School has provided day-long
and half-day long sessions on different topics ranging from image processing to robotics.

School Field-Trips: The School hosts school field trips during the year. Last year the School
provided tours, demonstrations, and hands-on activities covering security, visualization, and
robotics.

12

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

Besides these activities that are a number of faculty who independently participate in outreach
activities to the community as part of their professional service. These activities include, for
instance:

• judging at local science competition, such as the Salt Lake Valley Science & Engineering
Fair;

• running/judging the Utah Regional First Robotics Competition;
• workshops for Salt Lake City K-12 educators in art and technology; and
• mentoring of high-school students interested in CS-related topics.

1.2.2.b Industrial interactions

In 2008, to improve our relationship to local technology companies and to better understand how
our programs fit with their needs and expectations, we reformed a (then) dormant Industrial
Advisory Board (IAB). Dr. Matthew Might headed this effort and held the first meeting of the
new IAB in May 2009. In May of 2014 Dr. Miriah Meyer took over this role.

Currently, each annual IAB meeting is designed around a theme — in 2015 the meeting focused
on growth of CS and the resulting broadening of skills necessary in our local industry; this year
we will focus on ideas for building a closer relationship between the School research and local
companies through lab-lette style endeavors. These meetings consist of a mixture of
brainstorming and discussion around the theme, as well as yearly updates from the School
Director and other faculty about changes within the School. The agenda and brainstorming
materials from the 2015 meeting are included in Appendix A.

The current IAB consists of 15-20 members. These members are predominately executives from
local technology companies, but also include several alumni that work in other western states.
The current members are: John LaLonde (CEO, Abstrax), Rob Nelson (VP of Technology,
Disney Interactive), Galen Murdock (CEO, Veracity), Steve Townsend (VP of Engineering,
Instructure), Jon Morrey (Technical Research Manager, FamilySearch), Robert Palmer (senior
engineer, Tableau), Michelle Kolbe (consultant, Red Pill Analytics), Mark Sharrock (VP,
GoldmanSachs), Karl Sun (CEO, LucidChart), John Hatfield (Distinguished Engineer,
TaskEasy), Jeff Pinkston (Director of Software Development, Microsoft), and Chachi Kruel
(CTO, Experticity).

Since 2014, Director Whitaker has been active in the Utah Technology Council (UTC), and has
given presentations and talks at various public policy forums and closed meetings associated
with this group. The UTC is an advocacy group consisting of over 5000 member companies,
with a heavy representation of software/IT companies. The UTC is the primary lobbying
organization responsible for the College’s Engineering Initiative, which has resulted in increased
budgets for faculty hiring and sustained growth (student production) across all departments in the
College of Engineering. Plans are underway to sponsor an additional appropriation for the
Engineering Initiate during this year’s legislative session (winter 2016/2017).

13

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

1.3 Previous Review and Actions

Here we recapitulate recommendations from the 2009 review and describe actions and progress.
Recommendation 1: Strategic plan. The School should produce a strategic plan that, after
examining trends in computing and unique strengths of the School, provides ways for
improving and growing the School. In particular, the plan should delineate a strategy for a
steady but controlled growth in faculty and graduate students, especially PhDs.
The strategic plan is an ongoing discussion between the Director’s office and the faculty in the
School. These discussions have taken place at our annual retreats, which are generally set aside
for this purpose. These discussions also take place at regular faculty meetings as decisions
become timely and the faculty are giving input on specific issues, such as hiring, growth, etc.
The current set of strategic goals are described in Section 1.1.2. With respect to growth, the
School has acted, in the last five years according to a particular, agreed-upon plan, which is
steady, controlled growth in the undergraduate program (approximately 10% per year), building
a stronger MS program to strengthen the graduate class offerings (which is now in place, at 50-
70 new MS students per year), and growing the PhD program in proportion to faculty/research
needs, while maintaining quality. This is also in place, and for the last two year, incoming PhD
classes were 25 students (and an additional 5 or so admitted off schedule).

Recommendation 2: Faculty. The School should make sure that junior faculty are given
clear guidance on what standards they must meet in order to be successful in their
evaluations. The College and School should work together to create a clear policy
regarding the treatment of clinical (lecturing) faculty members and a more stable, career-
oriented track for them.
Since this review, the Dean has launched a new faculty-mentoring program at the College level
and, due to its success, it has been institutionalized. Junior faculty all have assigned mentors.
All junior faculty receive formal, annual, written feedback on their progress from a full faculty
committee. This includes a one-on-one meeting with the Director to discuss this feedback.
Prior to the tenure review, a junior faculty member can expect to have no less than five, full,
written evaluations, and dozens of meetings with their mentor and the Director focusing on their
performance. More recently, the junior faculty have initiated a Slack channel to discuss issues
that are pertinent to their jobs, including performance. All of this feedback exists in the context
of the School’s written policies for tenure and promotion, which state the criteria that will be
evaluated gives specific examples of the data that will be used in making this evaluation.
Regarding career-line and auxiliary faculty, the College has adopted formal policies and
guidelines for nonregular (that term is no longer in use) faculty hiring, review and promotion.
The School has implemented its own working version of that policy, which is given in Appendix
B. Some aspects of these policies have raised confusion (e.g. “scholarship” requirements for
teaching faculty, and teaching requirements for research faculty), and the Director/Associate
Director of the School have had meetings with these faculty to resolve this confusion and to
discuss how the policies will be implemented in the face of these apparent contradictions. The

14

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

Dean’s office has been made aware of these contradictions in the College policy (which the
School has been told are not pre-emptible). Despite these minor confusions, the current written
policy and its implementation have been clearly described to the appropriate faculty, and since
the last review, there have been several successful promotions of career-line faculty.

Recommendation 3: Students: The School should encourage first-year students to engage
in research projects as RAs, for example through appropriate incentives to faculty, and
should shift TA responsibilities to more experienced students. The School should minimize
the number of courses with mixed undergraduate and graduate content, and should
increase the number of intellectually challenging and technically deep graduate-only
courses. The School should institute programs beyond the coursework to improve student
excitement for computer science.
In 2014, after a great deal of planning, discussion, and analysis, the School implemented a new
fellowship program for (virtually all) incoming PhD students. The program provides a full paid
graduate stipend (and tuition waiver and health benefits) for the first year of PhD study. During
this time students are required to participate in 4 hours of research rotation, which includes
independent study and research seminars. Students are required to enroll in 4 hours of teaching
mentorship (TM) (unpaid, simultaneous with RA) by their third year in the program.
This program was designed to simultaneously address several issues. First, it serves as a
recruiting tool. Based on interviews with perspective students we found that fellowships are
valued more highly than promises of TAs. Second, it exposes students to a wider range of
research areas in their first year and provides opportunities for lighter weight (i.e. nonpaid)
exploration of potential research. Finally, it also provides a pool of experienced students to help
with classes. Thus, a typical class may have assigned a TA for grading (and undergrad or MS
student) and a TM to help with office hours, assignments, lecturing, etc.

We consider the plan to be an experiment, but the feedback so far is positive. PhD enrollments
have risen and students and faculty have been generally support of this plan and its outcomes so
far. There have been some objections to the TM requirement by students and faculty. Early
data suggests that the program is financially solvent (the TMs strategy almost offsets the cost of
the fellowships).
Regarding courses with mixed offerings (graduate and undergraduate), the School has been
systematically phasing these out, there are relatively few classes that have this intentionally
mixed student body. Also, now that the tracks are more established and the overall graduate
program is bigger, there are more offerings of truly advanced topics, such as Advanced Image
Processing, Topological Data Analysis, and Advanced Algorithms.

The issue of “programs beyond coursework” remains open and ongoing. At the undergraduate
level, there are a significant number of summer internship possibilities and REUs (see Graduate
Section 3B.1 and Undergraduate Section 4A.4), and there is now a student ACM chapter. There are
also undergraduate seminars that expose students to research topics and industrial experiences
(outside speakers). We have begun (this current year) appointing a dedicated advisor to the
Student Advisory Committee, and there are active discussions about how student groups could

15

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

become involved in promoting activities outside of the classroom. Finally, the School has been
actively fielding teams for programming competitions (we sent a team to the international finals
in Thailand in 2016) and has hosted several local hack-a-thons.
At the graduate level, there has begun a fairly broaden discussion about student life, with an eye
towards improving the overall experiences of graduate students and help alleviate the risk of
isolation associated with the high-pressure environment that the program creates. There is now
an advisor to the Graduate Student Advisory Committee, and the current instantiation of that
committee is organizing social activities and planning to formulate a mission statement for this
committee. We have also developed a significant Distinguished Lecture Series, sponsored by
Goldman Sachs, to bring in high-profile visitors and expose our student body (and others) to
state of the art topics in computer science.
Recommendation 4: Diversity. The School should formulate and implement efforts to
recruit minority and female faculty and students to achieve appropriate diversity among its
body. The Office of the Associate Vice President for Equity and Diversity is committed to
this goal and may provide useful ideas and strategies in this regard. The use of annual
progress reports to the Graduate School should be considered as a way to encourage the
School to work effectively towards this goal.
Diversity is a consistent topic of discussion among faculty, and the awareness and importance of
this issue has been raised significantly in the last 5-10 years. The goal is to increase the presence
of underrepresented groups in our faculty and student body. There are several measures that we
have taken to achieve this, including active recruitment and increased mentoring. Much of the
explicit activity has focused on women, because they are so severely underrepresented, and they
represent the greatest potential for improvement. The results are positive, we have significantly
better representation of women in our undergraduate and graduate populations, and we have
added three new female faculty members (and promoted one other) since our last review.
Percentages of other underrepresented groups have also improved. More details and data are
given in Section 2.

16

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

1.4 Department Profile

Table 1-3: Faculty Headcount - Source OBIA

	

Table 1-4: Enrolled Majors - Source OBIA

	

Table 1-5: Student Credit Hours and FTE - Source OBIA

	

2008 – 2009 – 2010 – 2011 – 2012 – 2013 – 2014 –
2009 2010 2011 2012 2013 2014 2015

Full Time Tenured Faculty 22 25 24 22 22 24 23
Full Time Tenure Track 10 6 5 8 11 9 10
Full Time Career Line 6 5 7 9 9 9 8

Part Time Tenure/Tenure Track 2 3 1 1 3
Total 38 36 38 42 43 43 44

Table 3: Faculty Headcount – Source OBIA

3

2008 – 2009 – 2010 – 2011 – 2012 – 2013 – 2014 –
2009 2010 2011 2012 2013 2014 2015

Undergraduate Pre-Majors 154 184 204 272 353 471 597
Undergraduate Majors 294 313 366 414 421 453 466

Enrolled in Masters Program 86 100 127 128 131 151 165
Enrolled in Doctoral Program 123 123 127 121 121 129 122

Total 657 720 824 935 1026 1204 1350

Table 4: Enrolled Majors – Source OBIA

4

2008 – 2009 – 2010 – 2011 – 2012 – 2013 –
2009 2010 2011 2012 2013 2014

SCH

Lower Division 4,053 4,608 4,743 5,259 5,436 6,458
Upper Division 5,115 5,301 5,747 6,810 7,299 8,596
Basic Graduate 2,340 2,461 2,736 3,123 3,389 4,731

Advanced Graduate 1,843 1,848 1,901 1,634 1,518 1,621

FTE

Lower Division 135 154 158 175 181 215
Upper Division 171 177 192 227 243 287
Basic Graduate 117 123 137 156 169 237

Advanced Graduate 92 92 95 82 76 81

FTE/FTE

LD FTE per Total Faculty FTE 3 4 3 3 4 5
UD FTE per Total Faculty FTE 4 4 4 4 5 6
BG FTE per Total Faculty FTE 3 3 3 3 3 5
AG FTE per Total Faculty FTE 2 2 2 2 1 2

Table 5: Student Credit Hours and FTE – Source OBIA

5

17

Denise Haynie
Typewritten Text

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 1	 Program	 Overview	

	 	 	

	

	 	

Table 1-6: Degrees Awarded - Source OBIA (BS degrees includes ½ of CE degrees granted)

	

Table 1-7: Funding Source OBIA

	

Table 1-8: Research Spending - Source Dean's Office

Table 1-9: Cost Study - Source OBIA

2008 – 2009 – 2010 – 2011 – 2012 – 2013 – 2014 –
2009 2010 2011 2012 2013 2014 2015

Undergraduate Certificate
Graduate Certificate 1

Bachelors 82 82 92 90 108 114 117
Masters 40 44 51 51 60 56 92
Doctorate 13 16 12 15 19 19 21

Table 6: Degrees Awarded – Source OBIA

6

2008 – 2009 – 2010 – 2011 – 2012 – 2013 – 2014 –
2009 2010 2011 2012 2013 2014 2015

Total Grants $5,209,953 $5,727,917 $5,917,936 $6,109,168 $7,586,835 $8,781,791 $10,745,237
State

$5,869,202 $5,405,025 $ 5,500,259 $5,699,661 $5,803,257 $6,128,556 $7,566,343Appropriated
Funds

Teaching Grants $540,565 $453,083 $550,790 $579,145 $807,239 $190,417 $319
Special

Legislative
Appropriation
Di↵erential

$596,416 $494,983 $465,897 $556,300 $660,600
Tuition
Total $11,619,720 $11,586,025 $12,565,401 $12,882,957 $14,663,228 $15,657,064 $18,972,499

Table 7: Funding – Source OBIA

7

2008 – 2009 – 2010 – 2011 – 2012 – 2013 – 2014 –
2009 2010 2011 2012 2013 2014 2015

Expenditures $11,224,010 $17,657,863 $14,174,188 $16,484,777 $17,214,144 $18,492,294 $19,251,560

Table 8: Research Spending – Source Dean’s O�ce

8

2008 – 2009 – 2010 – 2011 – 2012 – 2013 – 2014 –
2009 2010 2011 2012 2013 2014 2015

Direct Instructional
$5,816,921 $5,971,781 $5,981,659 $6,850,875 $7,585,059 $8,452,161 $9,301,806

Expenditures
Cost Per

$11,302 $10,943 $10,287 $10,703 $11,325 $10,315 $12,556
Student FTE

Table 9: Cost Study – Source OBIA

9

18

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

	
	

2. Faculty

2.1. Faculty Profile

As of Fall 2016 the School of Computing has 53 non-auxiliary faculty members (40 in 2009).
The number of tenure-line (regular) faculty has gone from 32 to 40. The number of career-line
faculty has gone from 4 to 6. Table 2-1 lists the regular faculty and their primary areas of
expertise. Table 2-2 gives the numbers of faculty (by appointment type) for the current and
previous review period. Tables 2-3 through 2-4 give data on faculty who have left the School
and who have been hired since the last review.

19

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

Table 2-1: Summary of current School faculty

Name Area

Tenure-Track Assistant Professors

Aditya Bhaskara Theoretical computer science and machine learning
Mahdi Bojnordi Computer architecture, new memory technologies
Tammy Denning Security and privacy, human-centric computing
Tucker Hermans Autonomous learning and perception in robots
Ladislav Kavan Computer graphics and animation
Alexander Lex Interactive data visualization, applied to molecular biology and pharmacology
Miriah Meyer Information visualization, human-centered visualization
Je↵ Phillips Geometric data analysis, algorithms for big data

Zvonimir Rakamaric Formal methods, software reliability, software resilience
Vivek Srikumar Machine learning and natural language processing
Ryan Stutsman Formal methods, software reliability, software resilience
Hari Sundar Parallel algorithms, scientific computing, image analysis

Bei Wang- Phillips Topological data analysis, scientific visualization, information visualization
Jason Wiese Personal data, HCI
Cem Yuksel Computer graphics

Tenured Associate Professors

Erik Brunvand Computer architecture and VLSI systems
Tom Fletcher Medical image analysis and computer vision

Feifei Li Database, Big data analytics, large-scale data management systems
Matt Might Security, parallelism and optimization via program analysis

Kobus Van der Merwe Networking systems
Suresh Venkatasubramanian High dimensional geometry, clustering, kernels, large data models

Tenured Professors

Rajeev Balasubramonian Computer architecture, cutting-edge memory systems
Martin Berzins Adaptive numerical methods, scalable parallel computing
Richard Brown VLSI, microprocessor design, biomedical electronics, sensors
Elaine Cohen Modeling, graphics, and visualization, geometric computation and analysis
Matthew Flatt Extensible programming languages

Ganesh Gopalakrishnan Rigorous correctness checking of software and hardware
Mary Hall Parallel computing, compiler optimization, performance tuning

Chuck Hansen Scientific visualization, GPU algorithms
Tom Henderson Autonomous systems, cognitive robotics, smart sensor networks
John Hollerbach Robotics, teleoperation, virtual reality, and human motor control
Chris Johnson Visualization, scientific computing, image analysis
Sneha Kasera Networks and systems
Bob Kessler Video games for health and software engineering
Mike Kirby Scientific computing and visualization

Valerio Pascucci Computer graphics, computational geometry, geometric programming
John Regehr Software testing and reliability, compilers, embedded systems, operating systems
Ellen Rilo↵ Natural language processing, information retrieval, and artificial intelligence

William Thompson Vision science, spatial organization, perception and graphics
Ross Whitaker Image and geometric processing, data and medical image analysis, visualization

Table 1: xx

1

20

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

	
	

Table 2-2: Tenure and Rank.

For reference: tenure track (TT), career line (CL), tenured (T)

	

Table 2-3: Faculty no longer with the School

Title 2009 2016

Assistant Professor (TT) 5 15
Assistant Professor Lecturer (CL) 5 1

Associate Professor (T) 10 6
Associate Professor Lecturer (CL) 0 3

Distinguished Professor (T) 0 1
Professor (T) 16 19

Professor Lecturer (CL) 0 1
Research Assistant Professor (CL) 4 3

Total 40 49

Table 2: Tenure and Rank

2

Name Position Gender Race Reason Departed

Bargteil, Adam Assistant Professor Male White Not Tenured Summer 2015
Daume, Harold Assistant Professor Male White Resigned Spring 2010
Davis, Alan Professor Male White Retired Spring 2015
Gerig, Guido Professor Male White Resigned Spring 2015
Hollaar, Lee Professor Male White Retired Spring 2014

Sikorski, Christopher Professor Male White Deceased Summer 2012
Silva, Claudio Professor Male Hispanic Resigned Spring 2011

Silva, Juliana Freire Professor Female Hispanic Resigned Spring 2011
Van den Berg, Jur Assistant Professor Male White Resigned Fall 2013

Table 4: Faculty no longer with the School

4

21

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

Table 2-4: New faculty

	

Table 2-5: Faculty age statistics

	

2.2. Faculty Diversity

The largest demographic in our department’s faculty is white males at 71%. In general, for a
breakdown of our demographics, we have 81.6% whom have identified as white, 9.2% Asian,
7.9% did not identify and 1.3% Hispanic. With respect to gender, 11.8% are female, and 88.2%
are male. Tables 2-5 through 2-8 give the relevant demographic data on the faculty. For faculty
no longer with the School, or hired into the School since 2009, see Tables 2-3 and 2-4 in the 2-1
Faculty Profile Section.

Name Gender Race

Bhaskra, Aditya Male Asian
Denning, Tamara Female White
Hermans, Tucker Male White
Kavan, Ladislav Male White
Lex, Alexander Male White

Li, Feifei Male Asian
Meyer, Miriah Female White

Nazm Bojnordi, Mahdi Male White
Phillips, Je↵ Male White

Rakamaric, Zvonimir Male White
Srikumar, Vivek Male Asian
Stutsman, Ryan Male White
Sundar, Hari Male Asian

Van der Merwe, Kobus Male White
Wang, Bei Female Asian

Wiese, Jason Male White
Young, Michael Male White
Yuksel, Cem Male White

Table 5: New Faculty

5

Title Average Age Minimum Age Maximum Age SDev of Age

Assistant Professor (TT) 36 29 50 5
Assistant Professor Lecturer (CL) 53 48 57 6

Associate Professor (T) 44 35 56 9
Associate Professor Lecturer (CL) 41 32 48 8

Distinguished Professor (T) 56 56 56 0
Professor (T) 56 39 71 10

Professor Lecturer (CL) 58 58 58 0
Research Assistant Professor (CL) 38 34 48 6

Table 6: Average Age, Age Range and Standard Deviation Age for Faculty

6

22

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

	
	

During the last seven years, in net, we have added eight additional faculty as a consequence of
19 new hires. The summary breakdown of the new faculty, also shown in Table 2-4 – three
females, sixteen males, fourteen identified as white, and five as Asian.

University policy provides a well-defined structure for recruitment and hiring involving minority
advertisements and oversight of internal procedures and applicants. As part of this system, the
School regularly advertises faculty job opportunities in the following venues: Hispanic Outlook
Magazine, Diverse: Issues for Higher Education. The School has also advertised in SWE
magazine.

Table 2-6: Title/tenure by gender

	

Table 2-7: Title/tenure status by race

	

Table 2-8: Distinguishing faculty race by domestic or international

Title Female Male

Assistant Professor (TT) 2 13
Assistant Professor Lecturer (CL) 1

Associate Professor (T) 6
Associate Professor Lecturer (CL) 1 2

Distinguished Professor (T) 1
Professor (T) 3 16

Professor Lecturer (CL) 1
Research Assistant Professor (CL) 3

Total 6 43

Table 7: Title/Tenure/FTE Status by Gender (FTE Status is full time unless otherwise noted)

7

Title Asian Hispanic Not Identified White

Assistant Professor (TT) 3 0 1 11
Assistant Professor Lecturer (CL) 0 0 0 1

Associate Professor (T) 0 0 3 3
Associate Professor Lecturer (CL) 0 0 0 3

Distinguished Professor (T) 0 0 0 1
Professor (T) 3 0 2 14

Professor Lecturer (CL) 0 0 0 1
Research Assistant Professor (CL) 0 0 0 3

Total 6 0 6 37

Table 8: Title/Tenure/FTE Status by Race (FTE Status is full time unless otherwise noted)

8

Asian Not Identified White

International 7 1 6
Domestic 0 1 34

Total 7 2 40

Table 9: Table 2.9

9

23

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

The 2015 Taulbee Survey, shows the School is slightly lower then the national trend in its hiring
practices of females. Since 2009, 15.8% of our new hires have been female; the CRA report
shows an average of 20.3% for tenure track positions (2014-2015 survey). The same 2015
Taulbee Survey also shows how we follow the trends in regards to race. Of our new hires 16%
have identified as Asian and 83% as white. The Taulbee survey indicates 44.8% whites in
tenure track positions and 27.6% for Asians. In the past three years, tenure-track offers were
made to three other female candidates who did not accept our offers.

Table 2-9: 2015 Taulbee Survey: Gender of newly hired faculty

	

Table 2-10: 2015 Taulbee Survey: Ethnicity of newly hired faculty

	

2.3. Faculty Teaching

The faculty teaching record has remained strong, based on several sources of data. Table 2-12
through 2-14 shows the Schools average for student teaching evaluations in response the
questions about the course compared against the College and the University. These results
suggest that student teaching evaluations for the School compare favorably. We can also see,
from Table 2-12) that very few classes each year earn teaching evaluations that are below the 4.0
level.

Every semester the Dean’s office recognizes faculty in the College who are among the top 15%
(among all College faculty) in their student teaching evaluations (sometimes called the “Dean’s

Tenure-Track Teaching Research Postdoc Total

Male 255 79.7% 127 75.1% 39 75.0% 108 80.6% 529 78.4%
Female 65 23.0% 42 24.9% 13 25.0% 26 19.4% 146

Unknown 0 1 1 14 16

Total 320 170 53 148 691

Table 11: Gender of Newly Hired Faculty

11

Tenure-Track Teaching Research Postdoc Total

Nonresident Alien 46 15.9% 12 7.8% 14 26.9% 67 53.2% 139 22.3%
American Indian/Alaskan Native 0 0.3% 0 0.0% 0 0.0% 0 0.0% 0 0.2%

Asian 80 27.6% 23 14.9% 14 26.9% 28 22.2% 145 23.3%
Black or African American 9 3.1% 2 1.3% 0 0.0% 2 1.6% 13 2.1%

Native Hawaiian/Pacific Islander 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%
White 130 44.8% 112 72.7% 22 42.3% 25 19.8% 289 46.5%

Multiracial, not Hispanic 2 0.7% 0 0.0% 0 0.0% 1 0.8% 3 0.5%
Hispanic, any race 9 3.1% 2 0.3% 0 0.0% 1 0.8% 12 1.9%

Resident, race/ethnic unknown 13 4.5% 3 0.9% 2 3.8% 2 1.6% 20 3.2%
Total Known Residency 290 154 52 126 622
Residency Unknown 30 16 1 22 69

Total 320 170 53 148 691

Table 12: Ethnicity of Newly Hired Faculty

12

24

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

	
	

list”). The School typically has from 12-17 faculty (out of a total of 35–40, 25–30%) who earn
this distinction (Table 2-15). Likewise, the School faculty have won several College and
University level teaching awards since the last review (Table 2-17).

The School promotes effective teaching in several ways. First, peer teaching evaluations are
conducted (and reported) for all informal and formal reviews (every year for tenure track, for
every promotion, and every five years after tenure). The Student Advisory Committees
(graduate and undergraduate) evaluate and vote on every promotion, and they are invited to give
input on every proposed hire. The School also recognizes an outstanding professor/teacher
every year (Table 2-16).

The School hires graduate students, post docs, and adjunct professors to teach on occasion.
However, the policy is to try to cover all classes with tenure-line or instructional faculty.
Typically 2-3 classes per year are taught in this fashion. A significant number of credit hours
(approximately 1/3 of all classroom hours) are taught by instructional/lecturing faculty.

Table 2-11: Department average for Question Group (GRP), based by course

	

Table 2-12: Department GRP count by range for the last three years

Year Average GRP

2009 5.57
2010 5.51
2011 5.56
2012 5.50
2013 5.58
2014 5.56
2015 5.50
2016 5.55

Grand Total 5.54

Table 13: Table 2.12

13

GRP Range 2014 2015 2016

< 3.2 or (blank) 0 1 3
3.2 – 3.5 1 0 0
3.5 – 3.8 2 2 0
3.8 – 4.1 2 3 2
4.1 – 4.4 3 7 7
4.4 – 4.7 7 16 7
4.7 – 5.0 18 16 15
5.0 – 5.3 34 49 29
5.3 – 5.6 65 85 34
5.6 – 5.9 48 55 23
> 5.9 103 107 90

Grand Total 283 341 210

Table 14: Table 2.13

14

25

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

Table 2-13: GRP by instructor at different institutional levels

	

Table 2-14: GRP by course at different institutional levels

Semester Instructor CS College University

Fall 2013 4.94 5.24 5.18 5.28
Spring 2014 5.13 5.1 5.12 5.31
Summer 2014 5.32 5.34 5.21 5.22
Fall 2014 5.22 5.24 5.25 5.27

Spring 2015 5.12 5.21 5.18 5.3
Summer 2015 4.75 5.12 5.05 5.16
Fall 2015 5.44 5.15 5.2 5.3

Spring 2016 5.12 5.23 5.11 5.09
Summer 2016 5.71 5.82 5.18 5.26

Table 27: Instructor

27

Semester Course CS College University

Fall 2013 5.54 5.12 5.08 5.15
Spring 2014 4.81 5.04 5.05 5.18
Summer 2014 5.31 5.3 5.21 5.22
Fall 2014 5.38 5.2 5.09 5.12

Spring 2015 4.99 5.09 5.08 5.16
Summer 2015 4.63 5.14 5.05 5.16
Fall 2015 5.5 5.0 5.08 5.14

Spring 2016 5.04 5.1 5.11 5.09
Summer 2016 5.96 5.82 5.18 5.26

Table 28: Course

28

26

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

	
	

Table 2-15: College of Engineering recognition of teachers (“Dean’s list”) for the School

2010 2011 2012 2013 2014 2015

Rajeev Balasubramonian X X
Martin Berzins
Erik Brunvand X X X X X
Elaine Cohen

Tammy Denning
Jim de St. Germain X X X X

Matthew Flatt X X X X
Thomas Fletcher X X

Ganesh Gopalakrishnan
Mary Hall X

Chuck Hansen X X X
Tom Henderson
Tucker Hermans
John Hollerbach
Peter Jensen X X X X X X

Christopher Johnson X
David Johnson X X X X
Sneha Kasera
Bob Kessler X X X
Mike Kirby X X

Alexander Lex
Feifei Li X X

Matt Might X X X
Miriah Meyer X
Erin Parker X X X X X

Valerio Pascucci X X
Je↵ Phillips X

Zvonimir Rakamaric X X
John Regehr X X
Ellen Rilo↵ X X

Vivek Srikumar
Ryan Stutsman X
Hari Sundar

William Thompson X X X
Kobus Van der Merwe X X

Suresh Venkatasubramanian X
Ross Whitaker X X X
Cem Yuksel X X
Joe Zachary X

Table 15: School of Computing – Top 15% in the College of Engineering

15
27

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

Table 2-16: School of Computing Outstanding Teaching Awards

	

Table 2-17: Teaching awards to the School faculty

	

2.4. Faculty Scholarship

The faculty in the School are extremely productive in research and scholarship. This is evident
in the publications and research expenditures, as compared against other units in the University
and against other CS institutions around the country. Table 2-18 shows research expenditures
since the last review period, which have almost doubled (with a 25% increase in number of
faculty). It also shows numbers of publications (articles with a faculty author, co-authorships
counted once). Research activity continues to increase—the total value of new awards in (fiscal)
2016 is $29,644,364.

Visibility with the field also suggests a highly productive faculty. The faculty/students published
approximately 234, 198, and 214 papers over the years 2013, 2014, and 2015, respectively. The
faculty are/have been on 25 editorial boards and four have served as editors-in-chief of journals
in the past three years. In the last three years, faculty members have served as conference
committee chairs 107 times (see Table 2.19). SoC faculty have served on numerous national
boards, including the CCC, the CRA, and PCAST, as well as serving on many national and
international task forces and review boards, including several under the auspices of the NSF, the
NIH, ACM, and IEEE. Since the past review, several faculty have been honored as IEEE
Fellows, ACM Distinguished Scientists, and AIMBE fellows.

Year Recipient

2010 Joe Zachary
2011 Erin Parker and Peter Jensen
2012 Peter Jensen and Erik Brunvand
2013 Matthew Might
2014 John Regehr
2015 Miriah Meyer

Table 16: School of Computing Outstanding Teaching Awards

16

Recipient Award

Erin Parker 2011 College of Engineering Outstanding Teaching Award
Joe Zachary 2015 College of Engineering Outstanding Teaching Award

Valerio Pascucci 2016 University of Utah Mentoring Award

Table 17: Teaching Awards to School of Computing Faculty

17

28

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

	
	

Table 2-18: Research expenditures

Table 2-19: Fiscal year data vs. 2-17 calendar year data

Table 2-20: 2015 - 2016 Department committee assignments

Table 2-21: Editorial/advisory activities (number of instances) by year

The data shows that the research productivity of the School compares favorably against other CS
institutions nationally. Table 2-22 shows a summary from an Academic Analytics
(http://www.academicanalytics.com) evaluation of the productivity of the School. Several trends
are worth noticing. First, the School typically ranks near the 80th percentile across most
performance indices. Second, there are some general trends that confirm several qualitative

Fiscal Year Total

2010 $10,483,257
2011 $14,174,188
2012 $16,484,777
2013 $17,214,144
2014 $18,492,294
2015 $19,127,939
2016 $21,294,593

Table 18: Table 2.17

18

Fiscal Year Total

2016 $29,644,364

Table 19: Table 2.18a

19

Director of Outreach O�ce of the Director
Education Outreach Coordinator Peter Jensen

Industrial Liaison Miriah Meyer
School RPT Ellen Rilo↵

Regular Colloquia Zvonimir Rakamaric
Organick Lecture Series Ganesh Gopalakrishnan

Distinguished Lecture Series Suresh Venkatasubramanian
Space O�ce of the Director

Facilities Liaison John Regehr
Research Grants O�ce of the Director

CES Program Director Martin Berzins
Diversity Committee Director Mary Hall (chair)

David Johnson
Miriah Meyer
Bill Thompson

Faculty Awards Liaison Chris Strong
Dept. Safety O�cer Chris Strong

Table 20: 2015 – 2016 Department Committee Assignments

20

2013 2014 2015

Chairs 39 34 34
Editors/Editorial Boards 29 24 23

Boards 22 28 24

Table 21: Table 2.19

21

29

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	
observations about the School. For instance, with regard to research expenditures (grants), the
School is among the top institutions in the nation (near 90%). Publications and citations are very
strong (80–90%). The weakest category is awards, where the School ranks in the 70-80% range.
This suggests an opportunity. The productivity of the faculty is somewhat above what is
generally acknowledged by the field as a whole, and thus appropriately publicizing the status of
the School could reap noticeable benefits.

Table 2-22: Graphics from Academic Analytics show quantified scholarship performance relative to other research
institutions nationally

	

2.5. Faculty Service

The faculty are engaged in service for both the University (including the School/College) and the
field. Service is evaluated during all formal and informal faculty reviews. Within the School,
service is assigned by the Director’s office in a subjective manner to balance needs, capabilities,
and workload. Exceptional levels of service within the School are accounted for qualitatively
and recognized during promotion and through raises (as determined by the Director). Since
2013, Directors Whitaker and Kirby have compiled a comprehensive list of internal (School)
service assignments and organized service committees in a hierarchical manner (e.g. all things
relating to the graduate program report to the Director of Graduate Studies).

Department Radar - Totals
University of Utah, The | Computer Science, Department of

Page: 7Copyright © 2015, Academic Analytics, LLC

Department Radar - All Variables
University of Utah, The | Computer Science, Department of

Page: 2Copyright © 2015, Academic Analytics, LLC

30

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

	
	

Table 2-23: 2015 - 2016 Department committee assignments

Director Ross Whitaker
Associate Director Mike Kirby

Executive Committee Mary Hall
Feifei Li

Suresh Venkatasubramanian
James de St. Germain

Sneha Kasera
Mike Kirby

Ross Whitaker (Chair)
Director of Graduate Studies Feifei Li

Chair of Graduate Admissions Committee Matthew Flatt
Track Directors

Computer Engineering Erik Brunvand
Data Management Je↵ Phillips

Digital Media Erik Brunvand
Graphics & Visualization Chuck Hansen

Image Analysis Tom Fletcher
Networked Systems Sneha Kasera

Robotics John Hollerbach
Scientific Computing Hari Sundar

BS/MS Cem Yuksel
Student Awards/Fellowship Liaison Elaine Cohen

Director of Undergrad Studies James de St. Germain
Undergraduate Studies Committee Zvonimir Rakamaric (chair)

James de St. Germain
Bob Kessler

Erik Brunvand
Tammy Denning

Erin Parker
Tom Henderson
Matthew Flatt

Table 22: 2015 – 2016 Department Committee Assignments

22
31

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

Table 2-24: 2015 - 2016 Department committee assignments

	

Table 2-25: 2015 - 2016 College assignments

	

Table 2-26: 2015 - 2016 University assignments

Director of Outreach O�ce of the Director
Education Outreach Coordinator Peter Jensen

Industrial Liaison Miriah Meyer
School RPT Ellen Rilo↵

Regular Colloquia Zvonimir Rakamaric
Organick Lecture Series Ganesh Gopalakrishnan

Distinguished Lecture Series Suresh Venkatasubramanian
Space O�ce of the Director

Facilities Liaison John Regehr
Research Grants O�ce of the Director

CES Program Director Martin Berzins
Diversity Committee Director Mary Hall (chair)

David Johnson
Miriah Meyer
Bill Thompson

Faculty Awards Liaison Chris Strong
Dept. Safety O�cer Chris Strong

Table 23: 2015 – 2016 Department Committee Assignments

23

Academic Appeals and Misconduct Committee Chair Feifei Li
Women in Engineering Faculty Council Mary Hall

College Scholarship Committee Erin Parker

Table 24: 2015 – 2016 College Assignments

24

Academic Senate Rajeev Balasubramonian
Cyber Infrastructure Council Kobus Van der Merwe

Presidential Commission on the Status of Women Mary Hall
UPTAC Chuck Hansen

Grad Council Chuck Hansen
Graduate School Admissions Committee Chuck Hansen
Senate Faculty IT Ad Hoc Committee Peter Jensen

University Teaching Committee Erik Brunvand
Director, Scientific Computing and Imaging Institute Christopher Johnson

Vice President for Research Search Committee Christopher Johnson
Distinguished Professor Advisory Committee Christopher Johnson

Dean of Dentistry Search Committee Christopher Johnson
Neuroscience Initiative Executive Committee Christopher Johnson

Chair of Radiology Search Committee Christopher Johnson
Biodiversity Cluster Search Committee Christopher Johnson

Entrepreneurial Faculty Advisor Christopher Johnson

Table 25: 2015 – 2016 University Assignments

25

32

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

	
	

2.6 Retention, Promotion and Tenure (RPT)

The School follows RPT policies that are consistent with the policies of the University and the
College (organized hierarchically). The policy for the School (adopted April 2, 2008) is located
on the WWW: http://www.cs.utah.edu/docs/Faculty/RPT2008.pdf, and is included in this report
as Appendix C.

To summarize, RPT evaluations are done by the RPT committee of faculty, which consists of all
faculty of the appropriate rank (excluding those on leave, sabbatical, etc.). This committee meets
and discusses each individual case and assigns a subcommittee to draft a report of the
proceedings. This report is then discussed and finalized (usually by email in the final stages).
The School’s Director then makes a recommendation in light of that report. For formal cases,
these evaluations/recommendations then move upstream through the University Administration.

The procedures for tenure-track faculty are thorough and well documented. There is an annual
informal report, which is prepared by a subcommittee after a meeting of the full RPT committee.
The Director then writes an accompanying letter and meets with each tenure-track candidate
every year. These annual reports are generally very thorough, with explicit statements of
accomplishments relative to expectations and recommendations for improvement. There is also
a mid-term formal review (at year three), which entails a procedure that is virtually identical to
an tenure evaluation, including letters from outside experts and an formal evaluation of
individual performance criteria (teaching, scholarship, service). This tenure-track, mid-term
review includes a formal vote on retention, with the option of recommending that a faculty
member be removed from the tenure-track appointment.

Post-tenure reviews are every five years, with the option of requesting consideration for
promotion to Professor (Full Professor). These regular, post-tenure reviews are conducted by a
pair of faculty (appointed by the Director for each case), who evaluate CV, date from annual
Faculty Activity Reports, teaching evaluations (and peer evaluations), and write a report
summarizing a faculty member’s (subject) performance/productivity relative to expectations.
This pair of faculty meet with the subject to discuss this findings. The Director writes a letter
summarizing findings and evaluating those relative to the School’s expectations, and making
recommendations for improvements, etc. The Director meets with the subject about these
findings.

Table 2-27 summarizes the outcomes of various formal RPT actions since the period of the last
review.

33

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 2	 Faculty	

	 	 	
	

Table 2-27: Retention, Promotion & Tenure (RP&T) Summary

2.7 Faculty Vitae

See Appendix D.

Academic Year Name Action Outcome
2009– 2010 None

2010 – 2011
Valerio Pascucci R, P & T Tenured, Promoted to Professor

Suresh Venkatasubramanian Retention Retained
Thomas Fletcher Retention Retained

2011–2012
Mary Hall Promotion to Professor Promoted to Professor

Matthew Might Retention Retained

2012–2013
Feifei Li R, P & T Tenured, Promoted to Assoc. Professor

Suresh Venkatasubramanian R, P & T Tenured, Promoted to Assoc. Professor

2013–2014

Matthew Flatt Promotion to Professor Promoted to Professor
Ellen Rilo↵ Promotion to Professor Promoted to Professor

R. Michael Kirby Promotion to Professor Promoted to Professor
Matthew Might R, P & T Tenured, Promoted to Assoc. Professor
Thomas Fletcher R, P & T Tenure, Promoted to Assoc. Professor

Je↵ Phillips Retention Retained
Miriah Meyer Retention Retained

2014–2015

Sneha Kasera Promotion to Professor Promoted to Professor
Rajeev Balasbramonian Promotion to Professor Promoted to Professor

John Regehr Promotion to Professor Promoted to Professor
Jakobus Van Der Merwe Retention and Tenure Tenured

Cem Yuksel Retention Retained
Zvonimir Rakamaric Retention Retained

2015–2016 None

Table 26: Table 2.23

26

34

University	 of	 Utah	 Graduate	
Council	 Program	 Review	

	 School	 of	 Computing:	 3A	 Undergraduate	 Students	

	

3A . Undergraduate Students

3A.1 Undergraduate Student Recruitment

3A.1.1 Recruiting undergraduate students

The School of Computing undergraduate advisor participates in many recruiting events alongside
other advisors in the College of Engineering. These events include presentations to nearby
universities, hosting tables at campus wide major exploration events and participating in College
of Engineering Day which invites high school and transfer students from across the state to
preview the College. Last year, the School participated in the “Friday Afternoon in Engineering”
days, hosting one Friday presentation to recruit current, transfer and prospective students.

For educational outreach, the School at the University of Utah is committed to exposing K-12
students to the exciting and far-reaching field of computer science. The School offers outreach
programs that encourage students to pursue careers in computer science and engineering. Several
programs are specifically designed to interest women and other
underrepresented groups in computer science.

Current programs directly utilizing the School staff include:

• GREAT (Graphics & Robotic Explorations with Amazing Technology) summer camp for
8-10 graders.

• EAE (Entertainment Arts & Engineering) summer camp for high schoolers – Working
with YouthEd to offer over 25 courses ranging from game design, to scratch, to 3D
modeling – for a wide range of ages.

• Hi-GEAR engineering summer camp for high school females, EYH (Expanding Your
Horizons) conference workshop for girls in grades 6-9.

• Provide support to FIRST LEGO League (where teams of ages 9-14 compete)
• Girl Scouts Engineering Night for girls in grades 3-6.
• Various school visits.

College of Engineering Recruiting Activities:

The College is very active in both recruitment and K-12 outreach, and it sponsors a number of
programs to increase participation of students in STEM activities. Some programs offered
through the College include:

• Elementary engineering days, where the Academic Affairs team travels to elementary
schools to provide hands-on engineering activities for each grade.

 35

Denise Haynie
Typewritten Text

University	 of	 Utah	 Graduate	
Council	 Program	 Review	

	 School	 of	 Computing:	 3A	 Undergraduate	 Students	

	
• A lunchtime speaker series offered to high schools sending members of the Engineering

Alumni Association to discuss the career paths of practicing engineers as a method for
helping students explore career opportunities in engineering,

• Presentations offered in junior high and high school science and math classes.
• A teacher lending library that includes lesson plans, videos and hands-on engineering

activities that tie directly into the curriculum and used as a way to augment classroom
learning.

• Engineering Day in the fall.
• “Meet an Inventor Night” in the spring.
• Two summer camps: a HI-GEAR camp offered only to high school aged girls and an

Exploring Engineering Camp open to all high school students.
• A mentoring program (College of Engineering Ambassadors) made up of students

representing each department in the College and trained to go out into high schools to
bring hands on engineering activities that help to connect engineering to the high school
curriculum.

• Working with our Partner Schools, Frost Elementary, Western Hills Elementary, Valley
Jr. High, Kearns Jr. High, Kearns High School, Granger High School, teams of students
hired from the membership of College diversity clubs, Society of Women Engineers
(SWE), Science, Technology, Engineering Programs (STEP), Society of Professional
Hispanic Engineers (SHPE), and National Society of Black Engineers (NSBE), we have
established engineering clubs to engage elementary, junior high, middle school and high
school students in engineering activities. They plan and facilitate two on campus
activities for the junior high and high school students.

• The College also participates in travel to meet and recruit prospective students both
transfer and new freshmen sponsored by the University Office of Admissions. This travel
is out-of- state in the fall and six events around the state of Utah in the spring.

• The College participates with other campus partners in encouraging students to explore
engineering and science through on-campus activities. (Red, White and U Day in the
spring for admitted students and Connecting U Days in the fall and spring for high school
juniors and seniors)

• The College hosts monthly information sessions for prospective students and work with
student groups and classes to facilitate campus visits.

3A.1.2 Retaining undergraduate students

Advisors have a mandatory first year meeting with all freshman students in their first semester to
help them register for their second semester and go over all program requirements. Advisors
also meet with students for a second year mandatory meeting to check on their progress and
encourage them to return the following semester. We seek to retain students of merit by

 36

University	 of	 Utah	 Graduate	
Council	 Program	 Review	

	 School	 of	 Computing:	 3A	 Undergraduate	 Students	

	
awarding academic scholarships each year as well as placing them in undergraduate TA
positions.

The School also has a strict probation policy, where students who have low GPAs are advised on
the criteria necessary to maintain status in the program. We have raised the continuing GPA
from 2.3 to 2.5 to try and catch students more quickly and provide them the resources to
succeed. For those students who do go on probation (or who are removed from the program due
to probation violations) we work to make individualized plans to help the student improve (or if
necessary, re-attain Full Major Status (FMS) – see the section on admitting Undergraduate
Students).

From 2009-2014, the CS Bachelor’s degree has graduated 65% of its students who were
admitted to FMS. The University average graduation rate is 58%.

3A.1.3 Evaluating and admitting undergraduate students

The School admits students into the program after their first year, based on successfully
completing a sequence of “pre-major” courses (CS 1410 - OO Programming, CS 2420 – Data
Structures and Algorithms, Calc I, and Calc II). The first year courses, especially CS 2420, are
considered strong predictors of college success overall and CS success in particular. It is
unfortunately the case that many students are not prepared for the rigor of computer science
coursework. In general, 30% of CS 1410 students do not complete the course at a level allowing
progression to CS 2420, and 30% of CS 2420 students do not complete the course at a level
allowing progression into the major. This trend has been observed regardless of professor and
pedagogy; that being said, the School is aware that what it means to be a “Computer Scientist” is
changing, and we are discussing what, if any, changes might be necessary. There is a strong
sentiment that those students who earn a CS degree are very skilled and marketable; there is a
related sentiment that there are other students who might not be able to complete a CS degree,
but could be trained to be programmers perhaps through some sort of “computing” degree (i.e., a
less rigorous, more application based degree). For example, not all students need to be able to
create a new machine learning algorithm, but there is growing evidence that many industries
would like to be able to apply machine learning to their data to find trends.

Below, we discuss the formal definitions of our major statuses, as well as the requirements to
transition between them. It should be noted that we are in the midst (as of 2016) of two large
transitions: 1) first year admission (of potential students) will now go through the College, and 2)
we are looking to allow more students into the CS major based on a more holistic analysis of
their likelihood of success.

Pre-Major and Major Status: Prior to 2016, any student could become a computer science pre-
major by informing the University Registrar or the School Academic Advisor. Moving forward,
new students will be admitted to the College, and at that point declare an interest, such as
Computer Science. Regardless of “pre-major” status, students must complete the pre-majors
courses (CS 1410 and 2420, Calc 1 and 2), and then apply for full major status (FMS).

 37

University	 of	 Utah	 Graduate	
Council	 Program	 Review	

	 School	 of	 Computing:	 3A	 Undergraduate	 Students	

	
Students apply on the School website following the semester in which they complete the final
pre-major requirements. Applications are accepted in both spring and fall semesters. Note: most
upper-division classes in Computer Science are restricted to full majors (or minors).

Evaluating Applicants (policy from 2009-2016): Once grades for the prior semester have been
posted, a committee of instructional faculty review all applicants. Applicants with University
and pre-major GPAs of 3.5 or higher who have adhered to the policy on repeating courses are
assured admission to the computer science major.

Applicants with University and pre-major GPAs of 3.0 or higher who have adhered to the policy
on repeating courses and have one or both GPAs below 3.5 are carefully considered. Due to
space constraints, not all applicants in this category may be admitted. The goal of the
Admissions Committee is to select those students with the most promise for success in our
challenging degree program.

Below are some of the criteria used to evaluate an applicant’s potential for success:

• Applicants with an A or A- grade in CS 2420 are very promising; applicants with a C+ or
C grade have very little chance of success in upper-level CS courses.

• Applicants on an upward trajectory, with grades that steadily improve with each CS and
MATH course taken, show promise. Applicants on a downward trajectory have very little
chance of success in upper-level CS courses.

• Applicants who have repeated one or zero courses show great potential to complete the
degree requirements directly and efficiently. Applicants who have repeated multiple
courses show a concerning pattern that may continue.

• If other CS, math, physics, and engineering courses have been taken by the applicant,
those grades are considered. In particular, A or A- grades in Discrete Structures, Calc 3,
and Linear Algebra demonstrate the ability to perform well in upper-level courses.

Academic Statement
Applicants may optionally submit a statement to support their application. The purpose of this
statement is to guide the Admissions Committee in recognizing factors in one’s academic
performance that may not be directly evident from the University and pre-major
GPA. Applicants who have previously been denied admission are encouraged to use the
statement to point out significant improvement since the last application.

Results of Application policy: The highly competitive nature of this process, including strict
requirements and limited seats for FMS positions has resulted in high caliber potential
students (average first year GPAs being over 3.6) but may also have discouraged students from
continuing to pursue a career in CS (e.g., it may discourage students from starting the first year,
completing the first year once started, or even applying once the first year is completed). To
address this possibility, we are modifying our admissions process (see below).

Evaluating Applicants (policy post 2016): The School is looking to carefully expand the number
of new majors by tweaking the previous admission criteria. The goal of the admissions process
is, as always, to try and predict likely measures of success. In the future, we will continue to

 38

University	 of	 Utah	 Graduate	
Council	 Program	 Review	

	 School	 of	 Computing:	 3A	 Undergraduate	 Students	

	
look at the GPA of students, but will stress it less; we hope this will encourage applications from
a larger and more diverse population. We will also be stressing that students with an
“alternative” background may petition the Director of Undergraduate Studies to talk directly
about obstacles they have overcome and why they would make a good (non-traditional) admit to
the School.

Discussion of new policy consequences: Historically, once admitted to the program (FMS), 30%
of our students do not graduate. Of this group, two-thirds do not do so because of overall poor
grades or the inability to pass one or more required upper division CS courses. Thus 20% of the
School students (those who were able to successfully be considered for FMS) are unable to meet
the rigor, high expectations, and time commitments necessary to succeed in the CS Bachelor's
degree.

Because of the need of more trained computer scientists, as well as more diverse computer
scientists, we are hoping to find a way to get more students into the major while ensuring a high
probability for success. As an example, students who earn an A in CS 2420 are 65% likely to
earn an A- or above in CS 3500 (the next required course). Students who earn a B in CS 2420
are 16% likely to earn above an A- or above in CS 3500. Thus while we are sensitive to
expanding our enrollments and diversity, we need to find a way to make sure the outcomes of CS
2420 are met (at the excellent level) by a larger and more diverse population of students, giving
hope that they will succeed throughout the program.

3A.2 Undergraduate Student Diversity

The following table shows the percentage of undergraduate women, underrepresented minorities
(URM) and nonresident alien (NRA) students from enrollment data, from Fall 2009 to Spring
2016. For underrepresented minorities, only the following categories are included:
Hispanic/Latino, American Indian or Alaska Native, Black or African American, Native
Hawaiian or Other Pacific Islander, and Two or More Races. The data was obtained from the
Office of Budget and Institutional Analysis (OBIA), http://www.obia.utah.edu.

Table 3A-1: Percentage of undergraduate women, URM, and NRA

	
As can be seen from the table, the percentage of women in the undergraduate program has grown
from 5.2% to 10.8% during this time period, at the same time that the number of enrolled majors
has increased significantly, from 326 to 565. The percentage of underrepresented minorities has

2009 – 2010 2010 – 2011 2011 – 2012 2012 – 2013 2013 – 2014 2014 – 2015 2015 – 2016
% # % # % # % # % # % # %

females 17 5.2 20 5.7 33 7.8 41 9.4 45 10.3 60 10.8 61 10.8
URM 15 4.6 19 5.2 30 7.1 29 6.7 31 7.1 45 8.1 55 9.7
NRA 14 4.3 15 4.1 22 5.2 29 6.7 23 5.3 35 6.3 36 6.4

Table 1: Table 3.1

1

Denise Haynie
Typewritten Text
39

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

University	 of	 Utah	 Graduate	
Council	 Program	 Review	

	 School	 of	 Computing:	 3A	 Undergraduate	 Students	

	
similarly grown from 4.6% to 9.7%. The percentage of nonresident alien students has ranged
from 4.3% to 6.7%, but has been relatively flat for several years. By comparison, according to
the 2015 Computing Research Association (CRA) Taulbee Survey
(http://cra.org/resources/taulbee-survey/), the percentage of undergraduate CS degrees awarded
was 15.7% for females, 13.4% underrepresented minorities in the same categories, and 8.8%
nonresident alien students. Therefore, in spite of encouraging trends towards increasing the
diversity of our undergraduate student population over the past seven years, we are below the
national average across all categories. Further, unlike other universities that are continuing to
see an increase in the percentage of women, ours has plateaued for the last few years.

To calibrate this data, we provide the same numbers for the entire undergraduate student body at
University. Among the 15,038 undergraduates in 2016, 44.6% are women, 16.6% are
underrepresented minorities in the same groups, and 5.7% are nonresident aliens. Our major has
a disproportionately high percentage of nonresident alien students. A partial explanation for
lagging behind other institutions in representation of women and underrepresented minorities is
related to the demographics of the University, and increases in recruiting diverse students to the
University would likely be beneficial to diversity of our program.

To gain a better understanding of the reasons behind the lower percentage of women and
underrepresented minorities, we have gathered some additional data looking at the pipeline of
students as they progress through the required undergraduate courses. We have also participated
in the CRA’s Booming Enrollment survey in 2015, which required collecting demographic data
for classes. In the Fall 2015 offering of the introductory CS 1410 course, only 17% of the
students were women, 25% were minorities (but this number includes people who declined to
provide race and ethnicity so is not directly comparable to the previous statistics), and 13% were
nonresident alien. At each level we see a decline among these percentages with the Fall 2015
required CS 3500 having 15.5% women, 16% minority and 9% nonresident alien students; and
Fall 2015 upper level required CS 4400 having 9% women, 15% minority, and 7% nonresident
alien students. Additional analysis has shown that at every course level, the percentage of
women and minority students drops. In conclusion, it seems that our classes are not sufficiently
diverse from the first course, and then there is a retention problem throughout the program.

New this year, a process to admit entering freshman into the CS program as part of college
admissions could potentially increase the diversity of the incoming students. We looked at the
gender data for the direct admits from this year’s class; we do not have other demographic
data. Nine of the 53 students admitted, or 17%, were women. Of the 19 students that accepted
their admission offer, only one was female, or 5%. Direct admission may be a path in the future
to recruit more diverse students, but it was not effective towards this goal this year.

To better understand our students’ experiences, we participated in the 2015 CRA Data Buddies
survey of undergraduate CS students, which resulted in a collection of survey results for all
participants, and one with just the University of Utah responses. While overall the Utah
students’ responses compared favorably to those of the entire group, the one area where we were
below the norm was in environment issues and mentoring. Perhaps the most troubling statistic is
that, when asked who the students consider as a mentor, 46% of the Utah students responded

 40

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

University	 of	 Utah	 Graduate	
Council	 Program	 Review	

	 School	 of	 Computing:	 3A	 Undergraduate	 Students	

	
“No one” (compared to 36% for the entire group). To balance this, their responses were above
average when asked about getting support from other students and their families.

Regarding diversity activities in improving recruitment of women and underrepresented
minorities, the School runs a summer camp for K-12 students, with significant efforts to recruit
female and minority counselors as well as campers
(https://www.cs.utah.edu/~dejohnso/GREAT/). Our faculty participates in the College’s
HiGEAR (https://www.coe.utah.edu/2016/06/17/shifting-into-hi-gear/) summer program for high
school girls. Beginning in 2011, we have two new scholarships for women, the Ariana LaLonde
Scholarship for Excellence in Computer Science and the Undergrad Excellence Scholarship
Program.

For students already at University, we have made significant effort to recruit and retain women,
and to a lesser extent, underrepresented minorities.

• A fundamental curriculum change was the introduction of what is now called CS 1030, a
gentle onramp course introducing students to computer science who have no previous
background. This course uses a forgiving programming language and is at a slower pace
than our traditional CS 1 course.

• Starting in 2009, we worked with National Council on Women in Information
Technology (NCWIT), who surveyed our undergraduates and visited our campus to
interview students, faculty and advisors. The survey resulted in a report, and the
interviewing led to guidelines for a strategic plan.

• Every year since 2011, the School has sent a group of students and a faculty mentor to the
Grace Hopper Celebration of Women in Computing. In 2013 and 2015, we sent students
to the Tapia Celebration of Diversity in Computing. In 2014 and 2016, we have
participated in the Rocky Mountain Celebration of Women in Computing conference,
sending students and speakers, and serving on the organizing committee. The students
have found these conference trips to be very rewarding, and have provided anecdotal
evidence of attendance being valuable for retention.

• Starting in 2011, we began having regular once-a-semester faculty lunches with the
undergraduate women students to get their opinions on how to improve our program or
the learning environment, and identify ways to support the students in their careers.

• Our faculty participates in the College of Engineering Women in Engineering program as
council members, mentors, speakers, and attendees.

 41

University	 of	 Utah	 Graduate	
Council	 Program	 Review	

	 School	 of	 Computing:	 3A.Undergraduate	 Students	

	
3A.3 Not Applicable for Undergraduates

3A.4 Undergraduate Student Support

The School offers tuition waiver and merit-based scholarships to pre- and full-computer science
and computer engineering majors who are currently enrolled at the University of Utah. Awards
are available for full-time students for fall and spring semesters only. CS/CE scholarship
applicants are also eligible for scholarships awarded through the College of Engineering. Some
College scholarships require additional essays, but only one application is required for all School
and College scholarships. The scholarship application deadline is February 15 each year, for the
following Fall and Spring semesters.

To be eligible for most scholarships, students must take at least 12 credit hours per semester and
have a high cumulative and/or CS GPA.

Incoming transfer students and entering freshmen can also apply for University Scholarships or
College of Engineering Scholarships.

BS/ MS students are eligible to apply for School scholarships, but are only eligible to receive
undergraduate scholarship funding while they are in the undergraduate portion of the program.

Departmental Tuition Waiver Scholarships: These awards are available to matriculated (degree-
seeking) students majoring in computer science or computer engineering who are residents of the
state of Utah. The award covers up to $5,000 of resident tuition for fall and spring semester.

School Scholarships: These awards are available to all computer science and computer
engineering majors. They range in value from $500 to $6,000, and are made possible by
generous donations from the School faculty, alumni and companies. (See list below).

College of Engineering Scholarships: The College awards several scholarships to the top
students in the college. CS students may apply for Collage scholarships simply by filling out the
online application for a CS scholarship. The College also has scholarships available for financial
need.

The following includes the undergraduate scholarships awarded for 2016-17. Availability and
amounts may vary each year:

• Elvin D. Asay Endowed Scholarship
• Igor Best-Devereus Scholarship
• Richard & Brenda Brown Scholarship
• Computer Science Research Experience for Undergraduates
• Curl avery.io # scholarship
• Al Davis and Julian D’Amore Scholarship

 42

University	 of	 Utah	 Graduate	
Council	 Program	 Review	

	 School	 of	 Computing:	 3A	 Undergraduate	 Students	

	
• Howard J. & Joan P. de St. Germain Endowed Scholarship
• Disney Scholarship
• Wilford and Dana Druk Scholarship
• EBay Data Center Engineering Scholarship
• EMC Data Center Engineering Scholarship
• Joseph and Phyllis Everton Memorial Scholarship
• David H. Hanscom Undergraduate Scholarship
• Janette and Pierre Haren Scholarship
• Grace Murray Hopper Memorial Scholarship
• IGERT Fellowship
• InsideSales.Com, Inc Scholarship for Women in Computer Science
• Yury Izrailevsky Scholarship
• Robert R. Johnson Innovation Scholarship
• Kessler Family Scholarship
• Arianna M. LaLonde Scholarship for Women of Excellence in Computer Science
• Marvin and Tami Martin Scholarship
• Paul G. & Alison R. Mayfield Undergraduate Scholarship
• Shane V. & Robin S. Robinson Endowed Scholarship
• School Department Fellowship
• School Faculty Scholarship
• School Research Undergraduate Experience (REU)
• School Tuition Award Scholarship
• School Undergraduate Scholarship
• School Women’s Scholarship
• Abraham Stephens Scholarship
• Undergrad Excellence in Computing Scholarship
• Kiri Wagstaff AI/ML Scholarship
• Walton Family Scholarship
• James Waters Scholarship
• Women in Computer Science Scholarship
• Kim Worsencrost & Dennis McEvoy Family Undergraduate Scholarship

School Undergraduate Teaching Assistant Positions
In addition to scholarships, the School employs undergraduate students as teaching assistants
(TAs). Over the past several years this number has increased from under 20 to over 40 per
semester. Pay for top TAs has also been increased to reward continued participation. See
Section 3A.6 for further information.

 43

University	 of	 Utah	 Graduate	
Council	 Program	 Review	

	 School	 of	 Computing:	 3A	 Undergraduate	 Students	

	
3A.5 Undergraduate Student Advising

The School employees 1.5 staff advisors who handle ~800 prospective and pre-major students,
and ~600 FMS students. On average, students are able to schedule an appointment with, and see
an advisor within two weeks (mostly within a week except during mandatory advising
periods). Our advisors have a total of 12 years of experience. Staff advisors are responsible for
a variety of duties associated with FMS advising (e.g., degree path planning, “on-track” checks,
career planning, graduation clearance, emotional counseling, etc.), as well as transfer student
advising, new student recruitment, permission codes, pre-req checking, scheduling, etc. In
general our advisors feel their workload is manageable, though some thought could be put into
taking the administrative load (e.g., pre-req checking and permission codes) off of them.

The University requires mandatory undergraduate advising checkpoints during the first semester
of freshman year (or the transfer year), the end of the second year, and one semester prior to
graduation. Students are encouraged to meet with the academic or faculty advisor once every
semester and are sent email announcements throughout the year. Majors, Pre-majors, minors,
and prospective students meet with the undergraduate advisor either in-person, over the phone,
or through email communication.

Undergraduate pre-engineering and undecided students can meet with Ms. April Vrtis, the
Academic Advisor for the College. She helps students navigate the College, explore their
interests, and assists students with finding the best ways to achieve their goals.

The School is planning to assign undergraduate students directly to faculty mentors. The idea is
that each faculty member will give professional development advice to approximate 10-15
students. Specific degree bureaucracy will still be handled by staff advisors, but we hope that
students will be able to get more career advice (e.g., how to get into grad school) from the
faculty.

Appeals Process
Students who have concerns with any aspect of the program (e.g., grade disputes, conflicts with
professors, desires to waive/change degree requirements, etc.) are encouraged to bring their
concerns to the Director of Undergraduate Studies and the School Undergraduate
Committee. Students who have appeals denied are always allowed to talk to the next level of the
chain of command: Director of the School, Dean of Engineering, University Vice Presidents.

3A.6 Undergraduate Teaching Assistant (TA) Training

The School selects and tracks TA performance via a new online system (created by
undergraduates in our Web Software Course, and maintained by faculty). This system allows
faculty/instructors to evaluate each TA at both the midpoint, and at the end of the course. For the
most part, only TAs who achieve very good or above ratings are retained for the coming year.

 44

University	 of	 Utah	 Graduate	
Council	 Program	 Review	

	 School	 of	 Computing:	 3A	 Undergraduate	 Students	

	
Further, the School has moved to a new model where TAs are classified into groups:
undergraduate TAs, master's level TAs, and PhD teaching mentorship students. In general,
courses taught at the undergraduate level are staffed by undergraduates. Graduate courses are
staffed by PhD students being trained via the teaching mentorship (TM) program. When there
are not qualified undergraduates or when there is not an appropriate “TM”, other graduate
students (usually Masters) are hired to cover courses.

TAs are paid at a level corresponding to their experience. First year undergraduates are paid $12
an hour (for usually between 10 and 20 hours a week) and receive a raise each semester up till
their fourth, where they jump to $16 an hour. We find this payscale to be below what students
make while working (or via internships) but not so far below as to greatly reduce our candidate
pool. Furthermore, TAs receive non-tangible benefits, such as recommendations and research
offers.

3A.6.1 Teaching introductory Computer Science

The School has been teaching a course to instruct new TAs on proper teaching methods (as well
as to train them on various special situations, such as FERPA and appropriate student
interactions). Prior to Fall 2015, this course was offered to both graduate and undergraduate
students, and took place throughout the early part of the semester.

In Fall 2015, the CS 5040 course was updated to better train and support our undergraduate TAs
(with our graduate TAs receiving training from their PhD advisors). The most significant change
was to give new TAs the majority of their training before the semester begins. Class meetings
moved from once a week throughout the semester to a 9-hour workshop (across three days) the
week before classes begin and two 2-hour follow-up meetings after the first and second thirds of
the semester.

Another notable alteration to CS 5040 was to restrict enrollment to undergraduate student TAs
and focus instruction on handling large introductory-level courses. The concerns of teaching
such courses are different from those of teaching small-to-medium advanced undergraduate and
graduate level courses, which are the typical assignments of graduate student TAs.

The material covered in CS 5040 was brought up-to-date and expanded somewhat. Topics
include: classroom demeanor, communication and presentation skills, time management, helping
students on a variety of platforms (in lab sections, in TA help hours, in email, via forum posts),
being the TA of near peers, effective grading, observing other TAs, and staying motivated.

Related to the improvements in CS 5040, the School has increased support for a community
among the undergraduate student TAs in the following ways:

• Each semester, the School sponsors a party to show appreciation for the undergraduate
TAs.

 45

University	 of	 Utah	 Graduate	
Council	 Program	 Review	

	 School	 of	 Computing:	 3A	 Undergraduate	 Students	

	
• Each year, undergraduate TAs receive special apparel (t-shirts, jackets, etc.) from the

School, which fosters unity among the TAs and also advertises the opportunity for TA
experience to other students.

• Each year that a student continues as a TA, he/she receives a $1/hour raise.
• Beginning Fall 2016, a lab in MEB will be designated for use by the undergraduate TAs

to further encourage collaboration among TAs.

This effort has been especially important as the number of undergraduate student TAs continues
to grow (we currently employ over 40 undergraduate students as teaching assistants).

 46

University of Utah Graduate Council
Program Review

 School of Computing: 3B Graduate Students

 пт

3B. Graduate Students

3B.1 Graduate Student Recruitment

The School recruits graduate students both domestically and internationally. The department's
domestic recruiting efforts comprise of the following practices:

• Recruitment from the department's own undergraduate population:

The department has an active and growing REU (Research Experience for
Undergraduates) programs. Many faculty members actively engage senior undergraduate
students in their research. At their senior years, undergraduate students have the option of
doing an undergraduate thesis, which helps them develop interest in research and also
motivates them to apply for graduate schools (either here at Utah or elsewhere).

The School helps undergraduate students apply for various fellowships and grants to
support their graduate studies. In particular, a seminar has been developed specifically for
guiding students to apply for NSF's Graduate Fellowship Program, and it has proven
quite effective; for example, two undergraduate students were awarded the highly
competitive NSF Graduate Fellowship in the 2015-2016 season.

• Recruitment from (geographically) nearby schools.

The School has developed ties and relationships with colleges and universities from the
Intermountain-West region, which allows the School to attract more applicants to its
graduate program from these student populations. For example, the School has
participated in the annual UCUR conference (Utah Conference on Undergraduate
Research). The UCUR conference is an annual event organized by different universities
from the State of Utah, that is open to all undergraduate students from the State to report
their research activities. It attracts hundreds of student participants each year, and is a
great venue to promote the School's graduate program. The School has extended its
outreach to nearby states such as Idaho, Nevada, Colorado, etc. by sending flyers and
giving talks at schools from those states.

• Recruitment from domestic students nationally.

The School also engages in various recruitment efforts from the pool of domestic
undergraduate student population nation-wide. This is often carried out by asking faculty
members to show a brief overview of the School when they visit and give talks at

University of Utah Graduate Council
Program Review

 School of Computing: 3B Graduate Students

пу

different universities. Individual faculty's reputation and the impact made by his/her
research program also play a key role in attracting more applications from domestic
students nation-wide. Having said that, this is an area the School needs the invest
continuous effort and improvement in order to increase the domestic graduate student
population in its graduate program, at both the MS and the PhD levels.

• Recruitment from domestic students internationally.

A large portion of the School's graduate students is international students. This is the case
for both the MS and PhD programs. Many of the School's faculty members come from an
international background and they often still maintain a strong connection with their
home countries' top institutions, which helps the School recruit talented students from
those countries. Faculty members are asked to promote the School's graduate program
whenever they visit a foreign institution. This is often carried out by asking faculty
members to show a brief overview of the School when they visit and give talks at
different universities. Individual faculty's reputation and impacts made by his/her
research program also play a key role in attracting more applications from domestic
students nation-wide. Having said that, this is an area the School needs continuous efforts
and improvement in order to increase the domestic graduate student population in its
graduate program, at both the MS and the PhD levels

For admitted PhD students, the department organizes a grad visit day – typically in late Febuary
or early March – that brings these students to Salt Lake City and enables them to interact with
faculty members and visit the department in person before making their final decisions. This is a
very effective tool in convincing top quality students to come to Utah when they are faced with
multiple offers.

Figure 3B-1 shows the number of applications to the School's graduate program at the MS level
in the last five years, and a clear upward trend is observed for the master's program. The number
of applications to the School's graduate program at the PhD level in the last five years, as shown
in Figure 3B-2, however, shows little variation.

University of Utah Graduate Council
Program Review

 School of Computing: 3B Graduate Students

 пф

Figure 3B-1: Application and admission numbers for the MS program

Figure 3B-2: Application and admission numbers for the PhD program

0

200

400

600

800

2012 2013 2014 2015 2016

Master Application Stats

Master Applied Master Admit

0

50

100

150

200

250

2012 2013 2014 2015 2016

PhD Application Stats

PhD Applied

Phd Admit

University of Utah Graduate Council
Program Review

 School of Computing: 3B Graduate Students

рл

3B.2 Graduate Student Diversity

The table below shows the demographic composition of our graduate students, separated into MS
and PhD, using the same categories as used for the undergraduates. From 2009 to present, the
percentage of women in the MS program has increased from 8.6% to 28.3%, while the numbers
of master’s students have ranged from 93 in 2010 to a peak of 147 in 2015. In the PhD program,
the percentage of women has grown from 13.5% to 22.4%, while the number of PhD students
has grown from 111 to 125. Nationwide, according to the 2015 Taulbee report, the percentage of
MS and PhD degrees awarded to women was 25% and 18%, respectively. Therefore, our
enrollment of women has grown significantly and exceeds the national percentage of degrees
awarded to women. Regarding underrepresented minorities, we have seen some growth in our
master’s program but almost no growth in the PhD program, and are usually below the national
average of 4% for both degrees. Our nonresident alien national students comprise 74.3% and
55.2% of our MS and PhD programs, as compared to 68% and 60.7%, respectively, for the
national average. Therefore, the main diversity issue in our graduate student pipeline is the lack
of underrepresented minorities. For the university as a whole: 10.5% of master’s and 8.3% of
PhD students are underrepresented minorities in the same groups.

 2009-2010

2010-2011 2011-2012 2012-2013 2013-2014 2014-15 2015-16

 # % # % # % # % # % # % # %
Females MS 8 8.6 9 8.1 14 11.9 19 16.5 28 19.7 32 21.8 32 28.3
Females PhD 15 13.5 17 14.0 18 14.8 17 14.8 27 22.7 26 22.4 28 22.4

URM MS 2 2.2 1 0.9 3 2.5 6 5.2 8 5.6 4 2.7 2 1.8
URM PhD 0 0.0 0 0.0 0 0.0 1 0.9 0 0.0 0 0.0 1 0.8
NRA MS 49 52.7 67 60.4 62 52.5 68 59.1 101 71.1 116 78.9 84 74.3
NRA PhD 70 63.1 68 56.2 70 57.4 68 59.1 66 55.5 65 56.0 69 55.2

Table 3B-1: % and count of females, URM and NRA by program

• There is an annual dinner for all female graduate students early in the Fall semester.
Over the past two years, we have had additional dinners with just PhD students once or
twice a year. The students find these dinners beneficial as they help establish a
community among the students, and also provide an opportunity to confer with female
faculty and raise issues of concern.

• The School and individual faculty send a few graduate students to the Grace Hopper
Conference, along with the undergraduate group.

• CRA-W Grad Cohort has provided an opportunity for a few of our PhD students to meet
other PhD students across the country and focused mentoring.

University of Utah Graduate Council
Program Review

 School of Computing: 3B Graduate Students

5м

3B.3 Graduate Student Admissions

The quality of the School’s graduate students has witnessed a steady increase in recent years.
This is clearly reflected by Table 3B-2 which shows that the acceptance rate to the master 's
program has been reduced from 23.6% in Year 2012 to 18.1% in Year 2016. A larger pool of
applications also means that the School enjoys more flexibility to be more selective (even if the
acceptance rate were to stay the same). This observation is reinforced by the numbers shown in
Table 3B-2, which indicate that the average GPA of students being admitted has seen a clear
increase in recent years.

With regard to the PhD, even though there is no significant change to the acceptance rate (and
some earlier years even exhibit a lower acceptance rate), the quality of those students who had
applied and eventually got accepted into the School's PhD program has increased. On contrary
to the analysis used for MS students, it is difficult to quantify the quality of PhD students
(through simple measures such as GPA value), however, across the boards, faculty members
have reported that more and more PhD students are from high quality undergraduate programs
(e.g., top universities in their home countries for international students as well as more domestic
out-of-state students) and many new PhD students come with extensive undergraduate research
experiences as well.

An indication of this is that the School's research expenditure is on a steady upward trajectory
(see the analysis in Section 3B.4), showing a significant increase of more research outputs and
higher research activities, which of course is due to many factors, such as the increase of faculty
body; but better graduate student quality, especially at the PhD level, is definitely a contributing
factor.

Table 3B-2: Graduate admissions data

University of Utah Graduate Council
Program Review

 School of Computing: 3B Graduate Students

рн

Lastly, the department has developed an admission system that allows interactive reviewing and
commenting for each application. The system is very user-friendly and has increased the
productivity of the School’s admission process significantly.

3B.4 Graduate Student Support

The School is committed to providing financial support to its graduate students. Almost all of the
School's PhD students are supported through graduate fellowships, research assistantships, and
teaching assistantships. A small portion of the School's MS students also receive funding support
in the form of research assistantships and teaching assistantships. As long as a student is
supported at 0.5 FTE rate (20 hours per week), he/she enjoys full tuition benefit, and the student
only needs to pay what is called differential tuition which is only $700-800 per semester for nine
credit hours. The student also receives significant subsidy to purchase a health insurance
coverage (up to 80% is covered).

Graduate research assistantship and fellowship provide a monthly stipend of $2,300, whereas a
graduate teaching assistantship provides a monthly stipend of $1,900. As research productivity
and research activities continue to rise, the annual research expenditure for the School has seen a
steady increase in the last few years, as shown in Figure 3B-3. This means that the School is able
to support more graduate students on research assistantships.

University of Utah Graduate Council
Program Review

 School of Computing: 3B Graduate Students

ро

Figure 3B-3: Annual research expenditure

Furthermore, the increasing enrollment of the computer science undergraduate program also
brings more SCH (student credit hour) and return overhead dollars to the department. This
allows the department to recruit and support more students under teaching assistantships.

The department also implemented a new funding model for first year PhD student since 2014.
Most of new PhD students are supported by the department through graduate fellowships, which
allows them to explore different research directions and research programs within the
department, without the obligation to work with any one particular faculty in their first year (in
contrast to a student who is supported by a research assistantship), or to work as a TA. In return,
a fellowship student is required to serve as a “teaching mentor” (see details below in Section 3B.6)
in his/her second or third year, when he/she is supported by a faculty member using the faculty's
research dollars. This enables the fellowship funding model to be self-sustained.

As shown in Figure 3B-4, most of new incoming PhD students are now supported by the
department's fellowships. Almost all fellowship students are converted to a RA by the start of the
second year of their PhD program.

$14,174,188

$16,484,777
$17,214,144

$18,492,294
$19,251,560 $20,000,000

$0

$5,000,000

$10,000,000

$15,000,000

$20,000,000

$25,000,000

2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016

SoC Research Expenditures

University of Utah Graduate Council
Program Review

 School of Computing: 3B Graduate Students

рп

Figure 3B-4: Types of support for 1st year PhD students since the implementation of the department fellowship model
(NS stand for No Support)

In contrast, the School offers few funding supports for new incoming MS students as seen in
Figure 3B-5. However, a good portion of them are able to secure funding supports in their
second or third semesters in the program, through research assistantships (many are from other
departments and schools from the University) and teaching assistantships.

8 6
0

43

4 2 0

54

7 5
0

54

0

10

20

30

40

50

60

RA NS TA Fellow

Support Distribution over Years for 1st Year PhD

2014 2015 2016

University of Utah Graduate Council
Program Review

 School of Computing: 3B Graduate Students

рр

Figure 3B-5: Types of support for 1st year master's students since the implementation of the department fellowship model

PhD students also apply for and receive support through University fellowship programs. On
average 1-2 students will receive a University fellowship from a given year, which offers full
support that is roughly equivalent to a research assistantship for a year.

The School also strongly encourages PhD students to apply for various graduate student
fellowships from external sources, such as the NSF graduate fellowship, and fellowship awards
from industry that are offered by various companies; see the list below that summarizes the
recipients in recent years.

Table 3B-3: PhD students who have received external support

0 0
14

169

0 1
10

123

0 0 4

132

0

20

40

60

80

100

120

140

160

180

RA Fellow TA NS

Support Distribution over Years for 1st Year
Master

2014 2015 2016

University of Utah Graduate Council
Program Review

 School of Computing: 3B Graduate Students

рс

Table 3B-4: Students who have moved into academia after graduation

Lastly, at the undergraduate level, the department offers funding support through REU grants
and teaching assistantships. Undergraduate students can also apply for various scholarships that
are made available through the College of Engineering. There are many different types of
scholarships that come with different application and selection criteria, as well as different level
of funding support. Please refer to the following website https://www.coe.utah.edu/scholarships
for a complete list of available scholarships from the College of Engineering to the
undergraduate students in the department.

3B.5 Graduate Student Advising

The department has two graduate student advisors who are responsible for answering questions
from prospective graduate students. They are well trained with various policies and requirements

https://www.coe.utah.edu/scholarships

University of Utah Graduate Council
Program Review

 School of Computing: 3B Graduate Students

рт

in the department’s graduate program. They are both experienced with advising graduate
students, and by working closely with the director of graduate studies (DGS) and various faculty
members, they are able to provide timely and accurate response to address any questions that
prospective graduate students may have.

The graduate student advisors are also responsible for advising graduate students that are
currently enrolled in the program. They have access to individual student’s record and process
various forms that students need to complete throughout the program. They also remind students
about upcoming milestone deadlines that students need to meet. The graduate student advisors
work closely with the DGS to constantly review student profiles and suggest ways to improve
the operations of the graduate program.

The School maintains a comprehensive handbook called the Graduate Handbook that details the
degree requirements and timelines for different degree options, for both MS and PhD studies.
The grad handbook is reviewed and updated annually (during the summer), and the latest version
is released at the beginning of each Fall semester. Students can always refer to the latest
Handbook online at http://www.cs.utah.edu/docs/Graduate/gradhandbook_2016-17.pdf

Note that a student is not subject to new changes and requirements that are introduced to the
graduate handbook after he/she has entered into the program. In other words, a student is only
binding to the version of the graduate handbook in the Fall semester when he/she enters into the
program. The department does keep all previous versions of graduate handbook in an archive, so
that students may refer to the correct version that applies to him or her degree requirements.

All MS students need to complete a program of study form which list the courses a student has
taken and the grades received for each course, as well as the summary for the project or thesis
the student is working on if he/she is in the MS project-option or MS thesis-option. The program
of study form lists the committee members for an MS student (the department requires at least
three CS faculty members for an MS committee; this is required even for master's students who
are in the master's by course-only option). Students need to present the program of study form to
their committee members and obtain approvals from each member, which offer an opportunity
for committee members to review the progress of an individual student and provide feedback and
comments to the student. The DGS acts as the last gatekeeper and does the final sign-off for a
student’s program of study form.

All PhD students are subject to a more stringent advising process. In particular, every Fall
semester each PhD student needs to fill out a due progress form which has laid out specific
milestones that a PhD student needs to go through in the program, and the expected timeframe of
completion for each milestone. These due progress forms are then reviewed by the student’s
advisor, the graduate student advisors, and finally the DGS to identify excellent, acceptable, and
questionable cases (based on the progress made by the student with respect to the target

http://www.cs.utah.edu/docs/Graduate/gradhandbook_2016-17.pdf

University of Utah Graduate Council
Program Review

 School of Computing: 3B Graduate Students

ру

timeframe for each milestone). A faculty meeting is schedule at the end of the Fall semester in
which the DGS will report the review results of all due progress forms and discuss with the
faculty to form plans for different students, especially those whose progress is questionable.

For handling student appeals we rely on the University’s Policy 6-400: Student Code
(http://regulations.utah.edu/academics/6-400.php). This may be found in Appendix E.

Lastly, the graduate handbook details the policy regarding leave, change of degree, and other
related matters that may expect in the course of a student’s graduate study.

3B.6 Graduate teaching assistant (TA) training

The School has developed its own TA application and evaluation system, which is available
online at https://ta.cs.utah.edu; see a screenshot of the system in Figure 3B-6. This system
enables faculty to easily keep track of TA applications and provide TA evaluations and feedback
during and after a semester. These data provide useful insights in designing and developing plans
to train the graduate students to be more effective TAs and become a more effective teacher.

Figure 3B-6: Teaching assistant application page

https://ta.cs.utah.edu/

University of Utah Graduate Council
Program Review

 School of Computing: 3B Graduate Students

рф

The department organizes a TA orientation at the beginning of each semester. Professor James
de St. Germain leads this effort. In addition, the College provides a TA training session to which
the department always sends the TAs.

Lastly, since 2014, all PhD students are required to fulfill a teaching mentorship (TM) as a part
of their degree requirement. A TM serves similar role to that a TA plays, but often involves more
in-depth teaching assignments, such as leading a lecture, designing part of the course, rather than
just holding office hours and grading. The funding for TM is provided by a student’s advisor,
and typically a TM will work with his/her advisor as a teaching assistant for the advisor’s course.
This means that a TM is assigned with course that falls in the area of his/her research expertise,
thus, a TM will be effective in engaging in those more in-depth teaching assignments, and gain
valuable teaching skills in the process.

Lastly, all international TAs are required to take a communication skill test organized by the
University. If an international TA didn’t get a passing grade in that test, he/she must register for
a language and communication skill course offered by the English department and the
Communication School, in order to serve as a TA.

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4A	 Undergraduate	 Program	 Curriculum	 and	
Program	 of	 Study	

	

4A . Undergraduate Curriculum and Programs of Study

4A .1 Undergraduate Degree and Certificate Requirements

The School offers a Bachelor of Science degree in Computer Science, a joint BS degree (with the
ECE Department) in Computer Engineering, and an undergraduate minor in CS. In addition to
the standard BS in CS degree, students may earn an emphasis in Entertainment Arts &
Engineering; Regent’s approval, August 27, 2010.

4A .1.1 BS Degree requirements

The Bachelor of Science in CS track is a software-oriented degree that includes 19 CS courses,
including required core, theory, and elective courses. A student must be admitted as a CS major
by the School in order to take upper-division courses and pursue the CS degree. CS pre-majors
take five beginning math and CS courses before applying to the major (i.e., CS 1030, CS 1410,
CS 2420, Calc I, Calc II).

4A .1.1.a BS in Computer Science

This program begins with a set of three courses that give students a significant, in-depth
exposure to computing topics while exposing them to the breadth of issues that arise in CS,
followed by a background in object-oriented programming, and then an introduction to
algorithms and data structures. Students then take seven core courses in discrete mathematics,
software engineering, computer organization, more advanced algorithms and data structures,
software systems, and theory. They build on this background by choosing seven electives from
the breadth of the School’s course offerings (which includes advanced courses in theoretical CS,
scientific computing, artificial intelligence, databases, operating systems, computer networks,
programming languages, graphics, computer architecture, and digital design). Each student’s
undergraduate program is capped with a senior capstone project. Along with an in-depth study
of computing, the curriculum encompasses a general education in mathematics, science, and the
humanities.

If desired, students may take courses options from within a set of tracks, to complete the seven
required electives (see Appendix F). Students may apply to receive a certificate of completion
upon graduation. Track areas include: (1) Software Development, (2) Web & Mobile
Development, (3) Computer Systems, (4) Programming Languages, (5) Robotics, (6) Artificial
Intelligence, (7) Information, (8) Theory, (9) Visual Computing, (10) Computer Organization,
(11) Embedded Systems, and (12) CAD for Digital Systems.

See Appendix G: BS requirements sheet:
http://www.cs.utah.edu/docs/Undergraduate/CSMajor_2016-17.pdf

 60

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4A	 Undergraduate	 Program	 Curriculum	 and	
Program	 of	 Study	

	
4A .1.1.b BS in CS, EAE Emphasis

The EAE Emphasis includes the same pre-major, major, math and theory requirements as the
standard CS degree. Instead of choosing seven electives as students do with the standard degree,
the EAE students are given five required electives, and choose two on their own. The senior
project also differs on the EAE track. It is offered as a distinct class listing; with a larger multi-
disciplinary teams (both engineers and artists) working to produce a video game.

This EAE Emphasis has a companion emphasis offered through the College of Fine Arts (for
Film Majors). A key characteristic of the EAE emphasis is its interdisciplinary nature. As the
digital entertainment industry continues to grow, employers are focusing more on students who
understand both sides of the industry, whether it is CS students with additional fine arts skills or
fine arts students with computing skills. The EAE specialization offers cutting edge courses
designed for undergraduate students interested in pursuing careers in the digital entertainment
industry, and expressing themselves using digital media, including courses covering video game
design and development, 3D animation, and computer-generated special effects.

The undergraduate EAE program has been recognized by the Princeton Review as the #1
program for video game development in 2016 and 2013, and #2 in 2015 and 2014.

See Appendix H: BS-EAE requirements sheet:
http://www.cs.utah.edu/docs/Undergraduate/EAE_2016-17.pdf

61

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4A	 Undergraduate	 Program	 Curriculum	 and	
Program	 of	 Study	

	

Table 4A-1: Bachelors of Science CS graduation numbers. Female, EAE and Honors numbers are not included in the
Total Graduates column.

Semester Total Graduates Female EAE Honors

(Fall 08) 15 0 N/A N/A

(Spring 09) 36 3 N/A N/A

(Sum 09) 10 0 N/A N/A

2008-09 61 3 - -

Semester Total Graduates Female EAE Honors

(Fall 09) 19 1 N/A N/A

(Spring 10) 42 3 N/A N/A

(Sum 10) 10 1 N/A N/A

2009-10 71 5 - -

Semester Total Graduates Female EAE Honors

(Fall 10) 20 0 0 0

(Spring 11) 43 2 4 0

(Sum 11) 13 0 2 1

2010-11 76 2 6 1

Semester Total Graduates Female EAE Honors

(Fall 11) 24 1 5 1

(Spring 12) 41 1 6 0

(Sum 12) 12 1 2 0

2011-12 77 3 13 1

Semester Total Graduates Female EAE Honors

(Fall 12) 26 2 1 0

(Spring 13) 52 2 7 0

(Sum 13) 9 0 1 0

2012-13 87 4 9 0

Semester Total Graduates Female EAE Honors

(Fall 13) 15 1 0 0

(Spring 14) 70 10 14 1

(Sum 14) 7 0 1 0

2013-14 92 1 1 15 1

Semester Total Graduates Female EAE Honors

(Fall 14) 15 1 4 0

(Spring 15) 79 8 21 0

(Sum 15) 7 1 3 0

2014-15 101 10 28 0

Semester Total Graduates Female EAE Honors

(Fall 15) 10 1 4 0

(Spring 16) 81 10 14 4

(Sum 16) 5 2 0 1

2015-16 96 13 18 5

Table 1: Bachelors of Science CS graduation numbers. Female, EAE and Honors numbers are not included in the
Total Graduates column

1

62

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4A	 Undergraduate	 Program	 Curriculum	 and	
Program	 of	 Study	

	
4A .1.2 BS in Computer Engineering

Computer Engineering includes the design, implementation, and programming of digital
computers and computer-controlled electronic systems. The School and the Department of
Electrical jointly offer a Bachelor of Science degree in CE. The CE curriculum provides students
with a sufficient background in mathematics, CS, and engineering sciences to analyze and design
complex software and hardware systems. The CE program is managed by a committee of 2-3
faculty from each of the departments (the School and ECE).

See Appendix I: BS CE requirements sheet
http://www.ce.utah.edu/files/2015/09/CE-4-yr-Sample-Degree-15-16.pdf

Table 4A-2: BS in CE graduation

4A .1.3 BS minor in CS

The School offers a minor for students who desire to gain sufficient background to use and
program computers in another field. In order to be admitted as a CS minor, a student must have a
declared major in another department and be making progress in that major.

Semester CE grads

2010-11 21

2011-12 14

2012-13 16

Semester CE grads

(Fall 13) 5

(Spring 14) 15

(Sum 14) 2

2013-14 22

Semester CE grads

(Fall 14) 6

(Spring 15) 8

(Sum 15) 3

2014-15 17

Semester CE grads

(Fall 15) 8

(Spring 16) 15

(Sum 16) 0

2015-16 23

Table 2: BS in CE graduation

2

63

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4	 Undergraduate	 Program	 Curriculum	 and	
Program	 of	 Study	

	

Table 4A-3: BS in CS Minor graduation data

See Appendix J: Minor requirements sheet:
http://www.cs.utah.edu/docs/Undergraduate/CSMinor_2016-17.pdf

 64

Semester Minors

(Fall 09) 2

(Spring 10) 3

(Sum 10) 2

2009-10 7

Semester Minors

(Fall 10) 4

(Spring 11) 7

(Sum 11) 3

2010-11 14

Semester Minors

(Fall 11) 5

(Spring 12) 3

(Sum 12) 1

2011-12 9

Semester Minors

(Fall 12) 2

(Spring 13) 7

(Sum 13) 1

2012-13 10

Semester Minors

(Fall 13) 0

(Spring 14) 12

(Sum 14) 0

2013-14 12

Semester Minors

(Fall 14) 4

(Spring 15) 12

(Sum 15) 0

2014-15 16

Semester Minors

(Fall 15) 4

(Spring 16) 13

(Sum 16) 2

2015-16 19

Table 3: BS in CS Minor graduation data

3

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4A	 Undergraduate	 Program	 Curriculum	 and	
Program	 of	 Study	

	
4A .1.4 BS/MS program

The combined Bachelor of Science/Master of Science degree in CS allows students to earn a BS
and MS in approximately five academic years. The BS/MS can combine a BS in either CS or CE
with an MS in either CS or computing. Undergraduates begin taking graduate-level courses
during the senior year in order to complete the master’s degree in just one additional year.

Table 4A-4: BS/MS program graduation data

4A .1.5 Online degree/certificate offerings

The School does not offer any online degree or certificate options.

4A .2 Undergraduate CS Courses Offered

List all the courses offered in the program, including online courses.
Standard Undergraduate Offerings (See: http://catalog.utah.edu, search courses → CS)

• CS 1000 - Engineering Computing
• CS 1001 - Engineering Computing using MATLAB
• CS 1030 - Foundations of CS
• CS 1040 - Creating Interactive Web Content
• CS 1060 - Explorations in CS
• CS 1410 - Introduction to Object-Oriented Programming

Semester BS/MS

(Fall 12) 0

(Spring 13) 7

(Sum 13) 0

2012-13 7

Semester BS/MS

(Fall 13) 2

(Spring 14) 6

(Sum 14) 1

2013-14 9

Semester BS/MS

(Fall 14) 2

(Spring 15) 3

(Sum 15) 0

2014-15 5

Semester BS/MS

(Fall 15) 2

(Spring 16) 5

(Sum 16) 0

2015-16 7

Table 4: BS/MS program graduation data

4

65

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4A	 Undergraduate	 Program	 Curriculum	 and	
Program	 of	 Study	

	
• CS 1960 - Special Topics
• CS 2050 - Making Noise: Sound Art and Digital Media
• CS 2100 - Discrete Structures
• CS 2420 - Introduction to Algorithms & Data Structures
• CS 2950 - Independent Study
• CS 2960 - Apple Certification
• CS 2963 - Linux Professional Institute Level 1
• CS 2965 - Special Topics
• CS 2966 - Special Topics
• CS 3011 - Industry Forum
• CS 3020 - Research Forum
• CS 3100 - Models of Computation
• CS 3130 - Engineering Probability and Statistics
• CS 3200 - Introduction to Scientific Computing
• CS 3470 - Scripting Language Design and Implementation
• CS 3500 - Software Practice
• CS 3505 - Software Practice II
• CS 3700 - Fundamentals of Digital System Design
• CS 3710 - Computer Design Laboratory
• CS 3810 - Computer Organization
• CS 3960 - Special Topics
• CS 3991 - CE Junior Seminar
• CS 3992 - CE Pre-Thesis/Pre-Clinic/Pre-Project
• CS 4000 - Senior Capstone Project - Design Phase
• CS 4010 - CS Internship
• CS 4150 - Algorithms
• CS 4190 - Programming Challenges
• CS 4230 - Parallel Programming
• CS 4300 - Artificial Intelligence
• CS 4400 - Computer Systems
• CS 4480 - Computer Networks
• CS 4500 - Senior Capstone Project
• CS 4530 - Mobile Application Programming
• CS 4540 - Web Software Architecture
• CS 4600 - Introduction to Computer Graphics
• CS 5100 - Theory of Computation
• CS 5130 - Computational Statistics
• CS 5150 - Advanced Algorithms
• CS 5310 - Robotics
• CS 5320 - Computer Vision
• CS 5340 - Natural Language Processing
• CS 5350 - Machine Learning
• CS 5460 - Operating Systems
• CS 5470 - Compiler Principles and Techniques
• CS 5510 - Programming Language Concepts

66

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4A	 Undergraduate	 Program	 Curriculum	 and	
Program	 of	 Study	

	
• CS 5530 - Database Systems
• CS 5540 - Human/Computer Interaction
• CS 5610 - Interactive Computer Graphics
• CS 5630 - Visualization
• CS 5650 - Visual Perception from a Computer Graphics and Visualization Perspective
• CS 5710 - Digital VLSI Design
• CS 5720 - Fundamentals of Analog Integrated Circuit Design
• CS 5740 - Computer-Aided Design of Digital Circuits
• CS 5745 - Testing and Verification of Digital Circuits
• CS 5750 - Synthesis and Verification of Asynchronous VLSI Systems
• CS 5780 - Embedded System Design
• CS 5785 - Advanced Embedded Software
• CS 5789 - Embedded Systems and Kinetic Art
• CS 5830 - VLSI Architecture

Special Topic Courses

Any faculty member from the School, with permission from the director, can teach a special
topics course on the subject of their own choosing. Once such a course is taught more than
twice, it generally goes before the School Curriculum/Undergraduate (or Graduate) committee to
be assigned a permanent number. The Undergraduate Committee maintains quality control by
looking at proposed syllabi, enrollment numbers and course evaluations, as well as how the
course fits in the overall picture of the CS degree and other offerings.

4A .3 Undergraduate Programs of Study

Both CS and CS-EAE Bachelor of Science degrees can be completed in four years. Students are
encouraged to meet with the academic advisor early for course planning. Summer semesters are
suggested, but not required, to ease the fall and spring semester schedule.

Four-year plans are provided to students in the New Student Orientation packet, advising office
and online. The University also provides our suggested plans in the Graduation Planning System
(GPS) and University general catalog pages.

See Appendix K: CS four-year plan
See Appendix L: CS-EAE four-year plan

4A .4 Undergraduate Professional Development

4A .4.1 Standardized professional development across entire curriculum

Most CS bachelor’s degree awardees move forward to a career in the private sector. These
students receive professional skills and ethics training through a variety of methods. First, most

67

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4A	 Undergraduate	 Program	 Curriculum	 and	
Program	 of	 Study	

	
of these students will work as programmers/software developers, and thus have a large set of
courses devoted to basic/proper programming techniques:

• CS 1410 - Object Oriented Programming (Primarily Java)
• CS 2420 - Data Structures and Algorithms (Primarily Java)
• CS 3500 - Software Practice I (Primarily C#)
• CS 3505 - Software Practice II (Primarily C++)

Students also receive a strong software engineering background including exposure to Agile
methodologies, versioning, testing, team development, etc., in the Software Practice Sequence
(CS 3500, CS 3505). These courses also highlight ethical and professional values aspired to by
software designers (e.g., The Pledge of the Computing Professional).

As students progress through the program, they have various optional courses that directly
translate into professional opportunities, including: CS 4010 - Internship, CS 4530 - Mobile
Development, CS 4540 - Web Software Architecture, and CS 5530 - Database Systems.

In their senior year, students work on software teams to build a Capstone Project. During this
project, the students practice (as far as we are able to simulate in academia) the entire design,
implement, test, deliver sequence found in industry. The project teams are usually four members
in size and work across two semesters to produce a fully functional software system. These
courses also stress written and oral communication skills, with presentations and a final public
demonstration of the project. Further, the teams create multiple written documents as well as a
final poster for use during the public demonstration day.

4A .4.2 Additional professional development opportunities

A significant minority of our students are also trained as teaching or research assistants. In
positions as TAs or RAs, the students are trained by their faculty mentors in the proper way to
interact with other students, complete research oriented tasks, write and or publish technical
material, etc.

4A .4.3 Information systems development opportunities

The School offers certification programs in cooperation with Continuing
Education. Certification benefits both individual workers and their employers because of the
close relationship between CCNA program goals and the fundamental job skills necessary for IT
workers in today's job market. Technology Education at the University of Utah now offers the
IT Skills Certificate to keep students up-to-date. The certificate program provides the hands-on
training needed to better manage and maintain ever-changing IT responsibilities. The courses
linked to this program through Continuing Education are as follows: Java, Linux, Apple and
CISCO Certification.

These courses are very cost-effective. They are offered to students at a fraction of the cost that
would be incurred to obtain certification elsewhere. It should be noted that these courses do not

68

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4A	 Undergraduate	 Program	 Curriculum	 and	
Program	 of	 Study	

	
fulfill upper division CS elective requirements, but can be used toward the generic 122 hours of
credit necessary to graduate from the University.

4A .5 Undergraduate Outreach Education

The School undergraduate program does not offer education programs at remote sites. The
School, positioned as a top department in a flagship research university, believes its overall
instructional mission is to train students via direct interactions with faculty and with small
recitation sections run by teaching assistants. While our typical student is not as traditional as
found in a small non-commuter liberal arts college, we maintain that students need to attend
lectures and classes on campus on a daily/weekly basis. Further we strongly believe in the
power of pair work, as well as group work.

Students from other Utah schools are able to directly transfer first year courses (we have
common course numbering across the state). Courses beyond the first year, and courses from out
of state institutions are evaluated on an individual basis to establish compatibility (courses are
evaluated based on syllabi by faculty teaching in the same area). As a rule, at least 10 three-
credit CS courses must be taken from the School in order to graduate.

69

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

4B . Graduate Curriculum and Programs of Study

4B .1. Graduate Degree and Certificate Requirements

The School of Computing offers two degree types in its graduate program; both degrees are
available in both master's and PhD levels. More specifically, they are:

• MS in Computer Science
• PhD in Computer Science
• MS in Computing
• PhD In Computing

At the master's level, both the Computer Science and the Computing degrees offer three routes
towards completion:

• Option 1: MS by Course Only
• Option 2: MS by Project
• Option 3: MS by Thesis

The course-only option requires a student to clear 30 graduate level credits. A typical graduate
level course is 3 credits; hence this translates to taking and passing 10 graduate level courses. The
minimum passing grade for a course is B- for a graduate student and the average grade (of all
courses) also needs to be at least B.

The computing degree implements a track structure, where tracks can be created/removed by
small groups of faculty (4-5), with approval of the Director of the School. These Track
Committees, headed by a Track Director, manage the curriculum for each track. The School
offers specializations in the following tracks (all track options are available for both master's and
PhD students):

• Computer Engineering — Erik Brunvand is the track director; joint track with the
Department of Electrical and Computer Engineering.

• Data Management and Analysis — Jeff Phillips is the track director.
• Graphics and Visualization — Chuck Hansen is the track director.
• Image Analysis — Tom Fletcher is the track director.
• Networked Systems — Sneha Kumar Kasera is the track director.
• Robotics — John Hollerbach is the track director, joint track with
• Department of Mechanical Engineering.
• Scientific Computing — Hari Sundar is the track director.

70

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

The CS degree and different tracks in the computing degree differ by the set of required courses
they require. For example, in the CS degree, students are required to take the following three
required course:

• CS6150: Advanced Algorithms
• CS6460: Operating Systems
• CS6810: Computer Architecture

Whereas each track in the computing degree has its own set of required courses. For example,
the Data Management and Analysis track has the following set of required courses:

• CS6140: Data Mining, OR CS6350 Machine Learning
• CS6150: Advanced Algorithms
• CS6350: Database Systems
• CS6630: Visualization

The MS Supervisory Committee (SVC) consists of three members. The following two policies
are in place for SVCs:

1. The chair of an SVC must be a regular faculty member (tenured/tenure track) from the
School.

2. 2. The majority of the SVC must be regular faculty members (tenured/tenure track)
within the School.

Research or adjunct faculty may chair or may be members of supervisory committees if accorded
that privilege by the School faculty and the Graduate School. However, exception to only one of
the two policies listed above but not both simultaneously will be allowed.

For the project and thesis options of this degree, the MS comprehensive exam will be
administered by the student’s supervisory committee and can be coupled with (i.e., satisfied by)
a project or thesis proposal defense, and/or meeting a specified level of performance on a set of
classes. For students not opting for a project or thesis, the comprehensive exam will typically be
passed by meeting the grade requirements in the courses required for completing their
degree/track, but this can be modified at the discretion of the student’s committee.

The master's project is done through an independent study (often formally as an independent study
course) with a professor in the School. The parameters for the scope of the project is set forth at
the onset of the independent study, and the defense of the project will be done before the
student’s entire committee plus the professor in charge of the independent study (normally with
the chairperson of the committee being the professor with whom the independent study is done).
The student is responsible for arranging a time and place for the defense together with the
committee.

71

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

For the master's thesis option, the supervisory committee must give preliminary approval of the
thesis prior to the defense. The defense can be scheduled after this approval. The student must
provide one copy of the thesis to the chair of the supervisory committee at least three weeks
before the defense, and one copy to each of the other committee members at least two weeks
prior to the defense. A complete draft of the thesis must be emailed as a PDF to the Graduate
Advisor two weeks prior to the announced time of defense. This copy will be made available for
department access. After successfully defending the thesis, the student must obtain approval that
the thesis is satisfactory by obtaining signatures from their committee members and the chair of
the department by using the Final Reading Approval form, and the Supervisory Committee
Approval form. These forms will be submitted along with the final draft of the thesis manuscript
to the thesis office. The majority of the signatures of the committee members are required for the
thesis editors to start the format approval and the editing process.

At the PhD level, the degrees have similar requirements except for the core course requirements
as listed above. The average grade of graduate-level courses for a PhD student needs a grade of
B or better, and the GPA for all required course must be at least 3.5. In addition, all PhD students
will be required to complete 4 credit hours of Teaching Mentorship with a “Pass” grade.
Teaching mentorship will involve working with one or more faculty members (Teaching
mentors) on tasks including but not limited to the following:

• Holding student contract hours
• Developing teaching resources (e.g., web pages)
• Lecturing
• Developing and grading assignments

The teaching mentorship must be spread across two semesters (2 credit hours each semester).
The required tasks will be laid out by the teaching mentors before the start of the mentorship
each semester. A Pass/Fail grade will be assigned for each semester by the teaching mentors
based on how well the mentee performs the required tasks. The teaching mentorship must be
completed before the written qualifying examination.

A student who has been accepted by the Graduate School is formally admitted to candidacy for
the PhD by the University at the recommendation of the student’s supervisory committee.
Admission to candidacy occurs after the student:

• forms a supervisory committee,
• files an approved Program of Study form
• completes the course requirements
• passes the written portion of the qualifying examination
• passes the oral portion of the qualifying examination (i.e. proposal defense).

72

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

An application for candidacy must be submitted to the Graduate School no later than two months
prior to the semester of graduation. For the degree to be conferred, the approved Program of
Study form must be completed and the dissertation completed and publicly defended.

A PhD Supervisory Committee (SVC) conducts the student’s written qualifying examination,
oral qualifying examination, and dissertation defense. This committee consists of five faculty
members, at least one member must be from outside the School. The following two policies are
in place for SVCs:

1. The chair of an SVC must be a regular faculty member (tenured/tenure track) from the
School.

2. 2. The majority of the SVC must be regular faculty members (tenured/tenure track)
within the School.

Research or adjunct faculty may chair or may be members of supervisory committees if accorded
that privilege by the School faculty and the Graduate School. However, exception to only one of
the two policies listed above but not both simultaneously will be allowed. For Computing
degrees, further restrictions on committee makeup may apply. All official decisions of the
committee are decided by majority vote.

All PhD students must pass a qualifying examination, as specified by the Graduate School. The
details of which will be described in Section 4B.5.

The supervisory committee must give preliminary approval of the dissertation prior to the
defense. The defense can be scheduled after this approval. The student must provide one copy of
the dissertation to the chair of the supervisory committee at least three weeks before the defense,
and one copy to each of the other committee members at least two weeks prior to the defense. A
complete draft of the dissertation must be sent by email as a PDF to the graduate advisor two
weeks prior to the announced time of defense. This copy will be made available for department
access.

After successfully defending the dissertation, the student must obtain approval that the thesis is
satisfactory by obtaining signatures from their committee members and the chair of the
department by using the Final Reading Approval form, and the Supervisory Committee Approval
form. These forms will be submitted with the final draft of the thesis manuscript to the thesis
office. The majority of the signatures of the committee members are required for the thesis
editors to start the format approval and the editing process. The Dean of the Graduate School
signs the Final Reading Approval form after all editing is completed and before the thesis
release.

73

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

Figure 4B-1 summarizes the number of PhD and master's degrees that School has awarded in the
recent years; and Table 4B-1 summarizes the pool of applications to the School’s graduate
program. Lastly, Table 4B-2 summarizes the diversity of School’s graduate student body.

Figure 4B-1: Number of degrees awarded

	

Table 4B-1: Graduate admissions data

51	 60	 56	
92	 76	

15	
19	 20	

21	
19	

0	

50	

100	

150	

2011-‐2012	 2012-‐2013	 2013-‐2014	 2014-‐2015	 2015-‐2016	

Degree	 Awarded	
Doctorate	 Degrees	

Master	 Degrees	

Academic
Year

Number of Students
who Applied to

Graduate Programs

Average
Overall
GPA

Average Overall GRE
Score

Number of Graduate
Students Admitted

2015-16 828 3.68 625/157 194
2014-15 735 3.55 672/157 240
2013-14 558 3.52 655/157 101
2012-13 566 3.60 627/156 72
2011-12 578 3.76 633 58
2010-11 554 3.44 623 92
2009-10 517 3.40 622 84

Table 1: Graduate Admissions Data

1

74

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

Table 4B-2: Gender and race/ethnicity of graduate students (Spring census data)

The School also offers a Big Data Certificate program. Big Data is impacting many areas of
science, engineering, and industry; from analyzing troves of weather data to modeling traffic
patterns to processing millions of online customers, it is the enormous data which is creating new
opportunities and challenges. To tackle these challenges, one must have the training to store,
manage, process and analyze data at these scales. But the challenges are beyond scale alone, the
complexity of the data requires new powerful analytical techniques. Finally, it is crucial to have
skills in communicating and interpreting the results of this analysis. In the big data program in
the School, students will take classes from tenure-track professors actively developing the new
techniques for these emerging challenges of big data. And students will learn by doing. They will
work on real data, building on the techniques they learn in class under the guidance of the
professors. The classes are hands on, and project-focused allowing them to interact with modern
software tools and data processing techniques.

Students must complete 5 classes (15 credit hours) with a B or better. At least 4 classes must be
among the CORE classes (it is suggested to take all 5). The 5th classes can be any other graduate
level classes approved by the Data Management and Analysis Track director. The ELECTIVE
classes are pre-approved to fulfill this requirement, but many other (often more sporadically
offered) classes are available. The core classes for the big data certificate program are listed
below; the list of elective courses is available from the graduate handbook.

Year/
Spring

Hispanic/
Latino

Black or
African-
American

American Indian
or Alaska Native

Asian
Native Hawaiian
or Other Pacific

Islander
F M F M F M F M F M

2016 0 1 0 0 0 0 4 10 0 0
2015 1 1 1 0 0 0 3 8 0 0
2014 1 3 1 0 0 0 2 6 0 0
2013 0 2 1 1 0 0 2 7 0 0
2012 0 0 0 1 0 1 6 9 0 0
2011 0 0 0 0 0 1 2 4 0 0
2010 0 0 0 1 0 1 2 1 0 0

Year/
Spring

Two or
More Races

White
Non-Resident

Alien

Race and
Ethnicity
Unknown

Total

F M F M F M F M F M
2016 1 1 11 55 43 109 1 1 60 177
2015 1 0 12 51 40 141 0 2 58 203
2014 1 2 9 64 42 126 0 5 56 206
2013 1 3 3 63 29 108 0 8 36 192
2012 0 1 3 71 22 111 1 11 32 205
2011 0 0 6 71 17 119 1 12 26 207
2010 0 0 3 66 17 102 1 10 23 181

Table 2: Gender and Race/Ethnicity of graduate Students(Spring Census Data)

2

75

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

• CS6140 Data Mining
• CS6150 Advanced Algorithms
• CS6350 Machine Learning
• CS6530 Database Systems OR CS5530 Database Systems
• CS6630 Visualization

4B .2. Graduate Courses Offered

The list below shows the courses offered by the School in its graduate program.

• CS 6020 Early-Career Research
• CS 6100 Foundations of Computer Science
• CS 6110 Rigorous System Design
• CS 6140 Data Mining
• CS 6150 Advanced Algorithms
• CS 6160 Computational Geometry
• CS 6170 Computational Topology
• CS 6180 Clustering
• CS 6190 Probabilistic Modeling
• CS 6210 Advanced Scientific Computing I
• CS 6220 Advanced Scientific Computing II
• CS 6230 Parallel Computing HPC
• CS 6235 Parallel Program Many-Core
• CS 6300 Artificial Intelligence
• CS 6310 Robotics
• CS 6320 3D Computer Vision
• CS 6330 Intro to Robot Control
• CS 6340 Natural Language
• CS 6350 Machine Learning
• CS 6360 Virtual Reality
• CS 6370 Motion Planning
• CS 6390 Information Extraction
• CS 6460 Operating Systems
• CS 6475 Advanced Compilers
• CS 6480 Advanced Computer Networks
• CS 6490 Network Security

76

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

• CS 6510 Functional Programming
• CS 6530 Database Systems
• CS 6550 Foundations of Algorithms in Computer Graphic
• CS 6600 Mathematics of Computer Graphics
• CS 6610 Interactive Comp Graph
• CS 6620 Ray Tracing for Graphics
• CS 6630 Visualization
• CS 6640 Image Processing
• CS 6650 Perception for Graphics
• CS 6660 Physics-based Animation
• CS 6665 Character Animation
• CS 6670 Computer-Aided Geometry
• CS 6680 Computer-Aided Geometric Design II
• CS 6710 Digital VLSI Design
• CS 6712 Digital IC Testing
• CS 6720 Analog IC Design
• CS 6740 CAD of Digital Circuits
• CS 6745 Testing and Verification of Digital Circuits
• CS 6750 Synthesis and Verification of Asynchronous VLSI System
• CS 6770 Advanced Digital VLSI Systems Design
• CS 6780 Embed Sys Design
• CS 6785 Advanced Embedded Software
• CS 6810 Computer Architecture
• CS 6830 VLSI Architecture
• CS 6950 Independent Study
• CS 6956 Wireless and Mobile Networks
• CS 6957 Software Defined Network Architecture
• CS 6960 RT Asynchronous Design
• CS 6961 VSLI Memory Design
• CS 6962 Programming for Engineers
• CS 6963 Distributed Systems
• CS 6964 Caching Networks
• CS 6965 Functional Programming Studio
• CS 6967 Numerical Simulation
• CS 6968 Algorithms & Approximation

77

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

• CS 7120 Information-Based Complexity
• CS 7210 Advanced Topics in Scientific Computing
• CS 7310 Robot Mobility and Manipulation
• CS 7320 Sys Identification. Robotics
• CS 7450 Simulation Methods
• CS 7640 Advanced Image Processing
• CS 7650 Realistic Image Synthesis
• CS 7810 Advanced Architecture
• CS 7820 Parallel Architecture
• CS 7930 Colloquium
• CS 7931 Machine Learning Seminar
• CS 7932 Image Motion Estimation and Interpretation
• CS 7933 Graphics Seminar
• CS 7934 Computer Systems Seminar
• CS 7935 Distributed Linear Algebra
• CS 7936 Security Seminar
• CS 7937 Arch/VLSI
• CS 7938 Image Analysis Seminar
• CS 7939 Robotics
• CS 7940 Performance Optimization
• CS 7941 Advanced Seminar
• CS 7942 Visualization Seminar
• CS 7943 Networking Seminar
• CS 7944 Parallel Algorithms Seminar
• CS 7950 Independent Study
• CS 7960 Neuromorphic Architectures
• CS 7970 PhD Dissertation Research

4B .3. Graduate Programs of Study

The followings are copies for the program of study for a master's student. In particular, we have
provided a copy for a master's program of study by course only, by project, and by thesis in the CS
degree and the Computing degree (for the data management track), respectively. Please refer to
Appendix M.

78

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

Lastly, we also provide a copy of program of study for a PhD student in the CS degree, and a
PhD student in the computing degree from the Image Analysis track. Please refer to Appendix N.

Figure 4B-2: Due Progress form for PhD Students

In order to maintain acceptable progress through the graduate program, the School implements a
due progress system for all PhD students. PhD students are required to fill in the due progress
form every fall. A copy of the due progress form is shown in Figure 4B-2. In the past year, the
School has moved to an online-based graduate student tracking system that allows all students to
fill in the due progress online and the system will automatically decide if a student is making
good progress or not. See Figure 4B-3. The Graduate Studies Committee (Director of Graduate
Studies and Track Directors) review these forms every fall, and they identify student who are not
making good progress (and do not have a clear explanation). The cases of poorly progressing
students (typically about 20) are discussed in a faculty meeting, where the faculty make
recommendations (for improving/monitoring progress or removal from the program) and the
Director of Graduate Studies communicates these findings to the student and/or PhD advisor.

79

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

Figure 4B-3: Online Due Process form for PhD students

	

4B .4. Graduate Professional Development

The School has devoted an increasing amount of efforts towards training professional
development and professional ethics and standards. The School offers training sessions for all
TAs and TMs, as well as a boot camp for all first year fellowship PhD students.

The school offers various seminars and talks on a wide selection of topics during any given
semester, covering different research areas as well as professional development topics. Through
a close collaboration with Goldman Sachs, the School has developed the Goldman Sachs
distinguished lecture series where distinguished speakers are invited from both academia and

80

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

industry to present interesting research talks and their work and life experiences with our
graduate students (and undergraduate students). These lecture series also offer a venue for the
graduate students to engage with working professionals from Goldman Sachs, as well as other
local industry partners.

The School also encourages graduate students to find and participate in industrial internships
during summer semesters. A rigorous procedure is developed to approve an internship position
and to evaluate the outcome of an internship program. For example, all international students
need to apply for CPT in order to participate in an internship program. The school has used the
following Pre-CPT and Post-CPT form to keep track of students' internship activities, and to
provide feedback to the graduate students as how to improve their internship experience.

Figure 4B-4: Curricular Practical Training (CPT) example, Pre-CPT and Post-CPT form

81

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

4B .5. Graduate Outreach Education

The School doesn’t offer education programs at remote sites.

4B .6. Qualifying Exams

The School does not require a qualifying exam for master's students who are in the master's thesis
option.

For PhD students, the qualifying exam consists of two parts, a written examination covering the
candidate’s chosen area of specialization and an oral examination involving a defense of the
candidate’s written thesis proposal. The written portion of the qualifying examination will cover
the candidate’s general area of specialization in sufficient depth to demonstrate his/her
preparation for conducting PhD level research. Each member of the student’s supervisory
committee will contribute one or more questions to this exam. The supervisory committee will
provide a written evaluation of this portion of the exam, including an indication of whether or
not the student will be allowed to proceed to the oral portion of the qualifying examination.
Specific details of the written qualifying exam procedures are available from the graduate
student handbook that’s available online from the department’s website.

The oral portion of the qualifying exam involves a defense of the candidate’s dissertation
proposal. At the supervisory committee’s option, it may also include follow up questions relating
to the written portion of the exam. All members of the candidate’s committee should certify that
the proposal is ready to be defended prior to conducting the oral portion of the qualifying exam.

The entire exam should be completed in no more than seven days from initial question
assignment to completed answers. Grading should be completed within seven days after the
student delivers his/her answers. Each committee member contributing a question will grade that
question and provide a specific, written evaluation of the quality and correctness of the answer.
Allowable grades on individual questions are:

• HP - high pass
• P - pass
• F – fail

A grade of P signifies the minimal acceptable performance expected from a PhD student. An F
grade indicates an answer that is partially correct, but not up to the standards we expect from our
PhD students. The members contributing questions will each cast a Pass / Fail vote on the
examination as a whole. An overall passing grade should be given to candidates who, through

82

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

their answers, demonstrate that they are well prepared to conduct PhD level research in their
specialty area of CS. The overall exam Pass / Fail grade will be determined by majority vote of
those contributing questions. In the event of equal numbers of Pass and Fail votes, the deciding
vote will be cast by the Director of Graduate Studies.

A student who fails his/her first attempt may retake the exam once. No conditional pass grades
will be given. However, the supervisory committee can at their discretion include fewer
questions on repeated exams.

Appendix O provides copies of the most recent five qualifying exams.

In all five cases, students received an overall passing grade.

4B .7. Theses and Dissertations

Table 4B-3 below summarizes the PhD dissertations completed by PhD students graduated
between 2009-2016 in the School. Appendix P includes sample thesis/dissertation abstracts.

Student Name Year Dissertation Title Advisor
Margarita Bratkova 2009 Artistic Rendering Of Natural

Environments
William Thompson Peter

Shirley

Mark Van Langeveld 2009
Educational Impact Of Digital Visualization

Tools On A Digital Character Production
Course

Robert Kessler

Vincent Pegoraro 2009 Efficient Physically-Based Simulation Of
Light Transport In Participating Media Steven Parker

Brian Rague 2010 A CSI Pedagogical Approach To Parallel
Thinking Joe Zachary

Emanuele Santos 2010
Simplifying The Creating And Deployment

Of Collaborative Data Analysis And
Visualization Tools

Claudio T. Silva
Juliana Freire

Guodong Li 2010 Formal Verification Of Programs And Their
Transformations Ganesh Gopalakrishnan

Joel Daniels 2010 Feature-Aligned, Semi-Regular,
Quadrilateral-Only Mesh Generation Elaine Cohen

Joshua Cates 2010 Shape Modeling And Analysis With
Entropy-Based Particle Systems Ross Whitaker

Junxing Zhang 2010 Wireless Link Signature: Measurements,
Methodologies, And Applications

Sneha Kasera
 Neal Patwari

Kristi Potter 2010 The Visualization Of Uncertainty Richard Riesenfeld
Luciano Barbosa 2010 Uncovering The Hidden-Web Juliana Freire

Robert Ricci 2010 Enhancing Realism And Scalability In
Network Testbeds Sneha Kasera

Sarvani Vakkalanka 2010 Efficient Dynamic Verification Algorithms
For MPI Applications

Ganesh Gopalakrishnan
Robert Michael Kirby II

83

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

Siddharth Patwardhan 2010
Widening The Field Of View Of

Information Extraction Through Sentential
Event Recognition

Ellen Riloff

Tina Ziemek 2010
Evaluating The Effectiveness Of

Orientation Indicators With An Awareness
Of Individual Differences

William Thompson
Sarah Creem Regehr

Abraham Stephens 2011 Control Of Spatial And Temporal Fidelity
With Adaptive Sampling Steven Parker

Andrew Kensler 2011 Software Algorithms For Hardware Ray
Tracing Steven Parker

Anh Vo 2011
Scalable Formal Dynamic Verification Of

MPI Programs Through Distributed
Causality Tracking

Ganesh Gopalakrishnan

Daniel Gebhardt 2011 Energy-Efficient Design Of An
Asynchronous Network-On-Chip Kenneth Stevens

Elizabeth Jurrus 2011 Segmentation Of Neurons From Electron
Microscopy Images Tolga Tasdizen

Erik Anderson 2011

The Analysis And Visualization Of EEG
Data Using A Provenance-Enabled

Environment And Its Applications For
Visualization

Claudio T. Silva

Hoa Thanh Nguyen 2011 Automatic Catalog Construction For
Product Search Engines Juliana Freire

Huy T. Vo 2011
Designing A Parallel Dataflow Architecture

For Streaming Large-Scale Visualization
On Heterogeneous Platforms

Claudio T. Silva

Justin Luitjens 2011 The Scalability Of Parallel Adaptive Mesh
Refinement Within Uintah Martin Berzins

Kevin Atkinson 2011 ABI Compatibility Through A
Customizable Language

Matthew Flatt
Gary Lindstrom

Linh Khanh Ha 2011

High Performance Multiscale Image
Processing Framework On Multi-Gpus

(Graphics Processing Units) With
Applications To Unbiased Diffeomorphic

Atlas Construction

Claudio T. Silva

Mathias Schott 2011
Using Incremental Filtering For Enhancing
The Depth Perception Of Interactive Direct

Volume Rendering
Chuck Hansen

Robert Thacker 2011 A New Verification Method For Cyber-
Physical Systems Chris Meyers

Sachin Goyal 2011 A Collective Approach To Harness Idle
Resources Of End Nodes John B. Carter

Suraj Musuvathy 2011 Medial Axis Of Regions Bounded By B-
Spline Curves And Surfaces Elaine Cohen

A.N.M.
Imroz Choudhury 2012 Visualizing Program Memory Behavior

Using Memory Reference Traces
Paul Rosen

Steven G. Parker

Aniruddha Udipi 2012 Designing Efficient Memory For Future
Computing Systems Rajeev Balasubramonian

Avishek Saha 2012 Some Models And Measures For Learning
On A Budget Suresh Venkatasubramanian

Blake Nelson 2012 Accurate And Interactive Visualization Of
High-Order Finite Element Fields Robert Michael Kirby II

Carson Brownlee 2012 Parallel Ray Tracing In Scientific Chuck Hansen

84

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

Visualization

Dafang Wang 2012 Finite Element Solutions To Inverse
Electrocardiography

Christopher R. Johnson
 Robert Michael Kirby II

David Koop 2012 Managing Provenance For Knowledge
Discovery And Re-Use

Juliana Freire
 Claudio Silva

Eric Eide 2012 Software Variability Mechanisms For
Improving Run-Time Performance Matthew Flatt

Karthik Ramani 2012 Cogene: An Automated Design Framework
For Domain-Specific Architectures Alan Davis

Lethuy Tran 2012 Numerical Study And Improvement Of The
Methods In Uintah Martin Berzins

Lu Zhao 2012 A Program Logic And Its Application In
Fully Verified Software Fault Isolation John Regehr

Matthew Jared Probst 2012 Distributed Friend-To-Friend Framework
And Services Using Schoolial Networks Sneha Kasera

Saha Avishek 2012 Some Models And Measures For Learning
On A Budget Suresh Venkatasubramanian

Samuel Gerber 2012 Nonparametric Models For High-
Dimensional Data Analysis Ross Whitaker

Tobias Martin 2012
Analysis-Aware Higher Order Smooth
Three-Dimensional Representations:

Creation, Simulation And Visualization
Elaine Cohen

Anton Burtsev 2013 Deterministic Systems Analysis John Regehr
Brian Summa 2013 Interactive Digital Photography At Scale Valerio Pascucci

Curtis Madsen 2013 Stochastic Analysis Of Synthetic Genetic
Circuits Chris Meyers

Hanieh Mirzaee
Teshnizy 2013

Smoothness-Increasing Accuracy-
Conserving Filters (SIAC) For

Discontinuous Galerkin Solutions
Robert Michael Kirby II

Jeffrey Jestes 2013 Efficient Summarization Techniques For
Massive Data Feifei Li

Jianjun Duan 2013 Formal Verification Of Device Drivers In
Embedded Systems John Regehr

Jonathan Rafkind 2013 Syntactic Extension For Languages With
Implicitly Delimited And Infix Syntax Matthew Flatt

Kevin Tew 2013 Places: Parallelism For Racket Matthew Flatt

Kshitij Sudan 2013 Data Placement For Efficient Main Memory
Access Rajeev Balasubramonian

Matthew Berger 2013 Shape Analysis Of Defect-Laden Data Claudio T. Silva
Michael Allen Parker 2013 Efficient User-Level Event Notification Alan Davis

Nikhil Singh 2013

Multivariate Regression Of Shapes Via
Deformation Momenta: Application To

Quantifying Brain Atrophy In Aging And
Dementia

P. Thomas Fletcher

Niladrish Chatterjee 2013 Designing Efficient Memory Schedulers
For Future Systems Rajeev Balasubramonian

Parasaran Raman 2013 Exploring The Landscape Of Clusterings Suresh Venkatasubramanian

Piyush Rai 2013
Learning Latent Structures Via Bayesian

Nonparametrics: New Models And Efficient
Inference

Hal Daume III

Sriram Nandha 2013 Exploiting Cross Layer Opportunities For Sneha Kasera

85

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

Premnath Secrecy And Efficiency In Wireless
Networks

Subodh Sharma 2013 Predictive Analysis Of Message Passing
Applications Ganesh Gopalakrishnan

Tiago Queiroz 2013 Towards The Theory And Practice Of
Verifying Visualizations Claudio T. Silva

Wangchao Le 2013 Supporting Scalable Data Analytics On
Large Linked Data Feifei Li

Yong Wan 2013
Fluorender, An Interactive Tool For

Confocal Microscopy Data Visualization
And Analysis

Chuck Hansen

Zhisong Fu 2013
Parallel-Streaming Algorithms For Solving

Partial Differential Equations On
Unstructured Meshes

Ross Whitaker
 Robert Michael Kirby II

Andrew M. Wilder 2014 Computer-Assisted Approaches To
Intrafascicular Multielectrode Stimulation

Gregory A. Clark
Harold C. Daume III

Arthur W. Mahoney Jr. 2014
Advanced Methods For Controlling
Untethered Magnetic Devices Using

Rotating Magnetic Fields
Jake Abbot

Carlos Scheidegger 2014
Provenance Of Exploratory Taska In

Scientific Visualization: Management And
Applications

Claudio T. Silva

Christopher Earl 2014 Introspective Pushdown Analysis And Nebo Matthew Might

Daniel Gerszewski 2014
Physics-Based Animation Of Large-Scale
Splashing Liquids, Elastoplastics Solids,
And Enhanced Reduced Fluid Simulation

Adam Bargteil

David Nellans 2014 Improving Operating System And
Hardware Interactions Through Co-Design Erik Brunvand

Haimashree
Bhattacharya 2014

Tools For Physics-Based Computer
Animation For Generating Surfaces, On

Surfaces And From Surfaces
Adam Bargteil

Liang Zhou 2014 Multivariate Transfer Function Design Chuck Hansen

Manu Awasthi 2014
Managing Data Locality In Future Memory

Hierarchies Using A Hardware Software
Codesign Approach

Rajeev Balasubramonian

Qingyu Meng 2014 Large-Scale Distributed Runtime System
For DAG-Based Computational Framework Martin Berzins

Ruihong Huang 2014
Improving Information Extraction By

Discourse-Guided And Multifaceted Event
Recognition

Ellen Riloff

Shuying Liang 2014 Static Analysis Of Android Applications Matthew Might

Varun Shankar 2014
Radial Basis Function-Based Numerical
Methods For The Simulation Of Platelet

Aggregation
Robert Michael Kirby II

Wei Liu 2014
Resting State Functional Magnetic

Resonance Imaging Analysis By Graphical
Model

P. Thomas Fletcher

Weibin Sun 2014 Harnessing GPU Computing In System-
Level Software Robert Ricci

Xiang Hao 2014
Improved Segmentation And Analysis Of
White Matter Tracts Based On Adaptive

Geodesic Tracking
P. Thomas Fletcher

86

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

Yang Chen 2014 Improving The Utility Of Compiler Fuzzers John Regehr
Benjamin Jones 2015 Artist-Guided Physics-Based Animation Adam Bargteil

Bo Wang 2015
Modeling Pathological Changes By

Leveraging Normative Models, Alternate
Domain Database, And User Interactions

Guido Gerig

Brad Loos 2015 Modular Radiance Transfer Peter-Pike Sloan
Chuck Hansen

Harsh Bhatia 2015
Consistent Feature Extraction From Vector
Fields: Combinatorial Representations And

Analysis Under Local Reference Frames
Valerio Pascucci

James Fishbaugh 2015 Spatiotemporal Modeling Of Anatomical
Shape Complexes Guido Gerig

Jonathan Bronson 2015 New Approaches To Quality Tetrahedral
Mesh Generation Ross Whitaker

Josef Bo Spjut 2015 Efficient Ray Tracing Architectures Erik Brunvand

Joshua DeBever 2015

Adaptive Model-Predictive Control And 3D
Acoustic Radiation Force Imaging For The

Improvement Of Magnetic Resonance-
Guided Focus

John Hollerbach

Mingwang Tang 2015 New Problems In Exploring Distributed
Data Feifei Li

Peng Li 2015 Practical Symbolic Execution Analysis And
Methodology For GPU Programs Ganesh Gopalakrishnan

Seth Hintze Pugsley 2015 Opportunities For Near Data Computing In
Mapreduce Workloads Rajeev Balasubramonian

Steven Lyde 2015 Improving Control-Flow Analysis Of
Higher-Order Languages Matthew Might

Xing Lin 2015
Using Similarity In Content And Access

Patterns To Improve Space Efficiency And
Performance In Storage Systems

Robert Ricci

Xuejun Yang 2015 Random Testing Of Open Source C
Compilers John Regehr

Amirali Abdullah 2016 Bounds For Nearest Neighbor Algorithms
And Embeddingsbounds Suresh Venkatasubramanian

Anand Venkat 2016 An Integrated Compiler And Runtime
Framework For Sparse Matrix Codes Mary Hall

Anshul Joshi 2016 WPCA: The Wreath Product Cognitive
Architecture Thomas Henderson

Arijit Banerjee 2016
Designing Novel, Efficient Future

Communication Systems Leveraging
Network And Application Collaboration

Sneha Kasera
Jacobus van Der Merwe

Ashequl Qadir 2016 Acquiring Knowledge For Affective State
Recognition In Schoolial Media Ellen Riloff

Ashley Guinan 2016 Skin Stretch Feedback To Guide Hand
Motions William Provancher

Daniel Kopta 2016 Ray Tracing From A Data Movement
Perspective Erik Brunvand

James King 2016
Reducing Irregularities In Control Flow

And Memory Access On GPU
Architectures

Robert Michael Kirby II

John Moeller 2016 Kernals And Geometry Of Machine
Learning Suresh Venkatasubramanian

87

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

Linda DuHadway 2016 Course Transformation: Content, Structure
And Effectiveness Analysis Thomas Henderson

Manjunath Shevgoor 2016 Enabling Big Memory With Emerging
Technologies Rajeev Balasubramonian

Mark Kim 2016 GPU-Enabled Surface Visualization Chuck Hansen

Pascal Grosset 2016

Investigating Depth Of Field In Volume
Rendering, And Distributed Volume

Rendering On High Performance
Computing Systems

Chuck Hansen

Protonu Basu 2016 Compiler Optimizations And Autotuning
For Stencils And Geometric Multigrid Mary Hall

Saurav Muralidharan 2016 Abstractions And Autotuning Techniques
For Adaptive Programming Mary Hall

Sidharth Kumar 2016 A Scalable And Turnable Adaptive
Resolution Parallel I/O Framework Valerio Pascucci

Sriram Aanthakrishnan 2016 A Composable Framework For Program
Analysis Ganesh Gopalakrishnan

Ting Liu 2016 Image Segmentation With Hierarchical
Models Tolga Tasdizen

Veni Gopalakrishna 2016 Surface- Based Image Segmentation Using
Application-Specific Priors Ross Whitaker

Wei-Fan Chiang 2016 Efficient Floating-Point Error Testing And
Rigorous Mixed Precision Tuning Ganesh Gopalakrishnan

Table 4B-3: PhD Dissertations from 2009--2016.

Table 4B-4 below summarizes the master's theses completed by master's students
graduated between 2009-2016 in the School.

Student Name Year Thesis Title Advisor

Clark Michael 2010 Enhancing Covert Communications With
Colluding Receivers Sneha Kasera

Jeong Mina 2010 Proof Producing Satisfiability Modulo
Theory Konrad Slind

Meakin Benjamin 2010 Multicore System Design With Xum: The
Extensible Utah Multicore Project Ganesh Gopalakrishnan

Rudy Gabriel 2010
Cuda-Chill: A Programming Language
Interface For Gpgpu Optimizations And

Code Generation
Mary Hall

Umadevi Venkataraju
Kannan 2010

Automatic Markup Of Neural Cell
Membranes Using Boosted Decision

Stamps
Tolga Tasdizen

Chiang Wei-Fan 2011
Heuristics For Efficient Dynamic

Verification Of Message Passing Interface
And Thread Programs

Ganesh Gopalakrishnan

Maheshwari Manas 2011 Enhancing Reliability In Device-Free
Localization Sneha Kasera

Pagariya Rohit 2011 Direct Equivalence Testing Of Embedded
Software John Regehr

88

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

Pokkunuri Rama
Krishna Sandeep 2011 Exploiting Example Structure In Multiple

Instance Learning Hal Daume III

Seth Manav 2011 Emergency Service In Wi-Fi Networks
Without Access Point AsSchooliation Sneha Kasera

Tuttle Claurissa 2011 Pedvis: A Structured, Space-Efficient
Technique For Pedigree Visualization Claudio T. Silva

Jadhav Shreeraj 2012 Consistent Representation Of Two-
Dimensional Flow Valerio Pascucci

Lakshmane Gowda
Prarthana 2012

Exploring Bluetooth For Received Signal
Strength Indicator-Based Secret Key

Extraction
Sneha Kasera

Pastor Acosta Isaac 2012
Upper Limb Rehabilitation Of Stroke
Patients Using Kinect And Computer

Games
Stacy J. M. Bamberg

Ramalingam Shreyas 2012

Improving High-Performance Sparse
Libraries Using Compiler Assisted
Specialization: A Petsc (Portable,
Extensible Toolkit For Scientific

Computation) Case Study

Mary Hall

Ward Stephen 2012 Deformation Embedding For Point-Based
Elastoplastic Simulation Adam W. Bargteil

Gupta Shobhit 2013
Detecting And Tracking Human Motion In

Variance-Based Radio Tomography
Imaging

Suresh Venkatasubramanian

Machanavajhala
Swetha 2013 Accent Classification: Learning A Distance

Metric Over Phonetic Strings Suresh Venkatasubramanian

Raj Mukund 2013 Effect Of Animated Self-Avatar In Virtual
Environments William B. Thompson

Saquib Nazmus 2013
Visualizing Intrinsic Isosurface Variation
Due To Uncertainty Through Heat Kernel

Signatures
Robert Michael Kirby II

Strum Matt 2013 Flowops: Open Access Network
Management And Operation

Robert Ricci
 Jacobus Van der Merwe

Stuart David
Alexander 2013 Coarse Tetrahedral Meshing For Interactive

Simulation Adam W. Bargteil

Tirpankar Nishith 2013
Using Sparse Parametrization Of
Deformation Fields As Means To

Classification
Guido Gerig

Dasa Subramanyam
Naveen 2014

Efficient Switching Between Wifi And
Cellular Networks For Robust Internet

Connectivity
Sneha Kasera

Desai Amey 2014 Streaming Algorithms For Matrix
Approximation Jeffrey Phillips

Gritton Christopher E. 2014 Ringing Instabilities In Particle Methods Martin Berzins
 Robert Michael Kirby II

Koslover Rebecca 2014 Influence Of Direction Cueing Modality On
Situation Awareness In Mobile Navigation William Provancher

89

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 4.	 Graduate	 Program	 Curriculum	 and	 Program	 of	
Study	

	 	 	
	

	
	

Lewis Thomas 2014

A Gpu-Based Maximal Independent Set
Aggregation Strategy: Algorithms,

Comparisons, And Applications Within
Algebraic Multigrid

Robert Michael Kirby II

Lewis Thomas 2014
Hybrid Scheduling For Graph-Based
Algorithm Decomposition In High-

Performance Computing Environments
Robert Michael Kirby II

Nayak Prashanth 2014 Detecting And Mitigating Malware In
Virtual Appliances Eric Eide

Pullakandam
Raghuveer 2014

Emustore: Large Scale Disk Image Storage
And Deployment In The Emulab Network

Testbed
Robert Ricci

Rivera Axel Y. 2014
Using Autotuning For Accelerating Tensor
Contraction On Graphics Processing Units

(Gpus)
Mary Hall

Robison Braden 2014
Hybrid Scheduling For Graph-Based
Algorithm Decomposition In High-

Performance Computing Environments
James Sutherland

Sorensen Tyler Rey 2014 Testing And Exposing Weak Graphics
Processing Unit Memory Models Ganesh Gopalakrishnan

Syed Aisha 2014 Realistic Traffic Shaping In Dummynet
Link Emulator Robert Ricci

Michelle Hromatka 2015 Multisite Learning In Medical Image
Analysis P. Thomas Fletcher

Joseph Jithu 2015 Cenet— Capability Enabled Networking:
Towards Least-Privileged Networking Jacobus Van der Merwe

Kano Makito 2015 Seacat: An Sdn End-To-End Containment
Architecture Jacobus van der Merwe

Rungta Atul 2015 Manyvis: Multiple Applications In An
Integrated Visualization Environment Valerio Pascucci

Simonic Klemen 2015 Concept Aware Co-Occurrence And Its
Applications Feifei Li

Singh Raghvendra 2015 Scalable Spatial Scan Statistics Jeffrey Phillips

Yadav Nitin 2015
Community-Affinity: Measuring Strength

Of Memberships Of Nodes In Network
Communities

Suresh Venkatasubramanian

Shanmugam Praveen
Kumar 2016 Deidtect - Distributed Elastic Intrusion

Detection Architecture Jacobus Van Der Merwe

Shen Yang 2016 Soft Shadow Mip-Maps Cem Yuksel

Table 4B-4: Master's Theses from 2009--2016.

90

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5!	 Undergraduate	 PǊƻƎǊŀƳ 9Ŧfectiveness	 – 	
Outcomes	 Assessment	

	 	 	
	

5A . Undergraduate Program Effectiveness - Outcomes Assessment

The School of Computing has established a comprehensive set of learning outcomes specific to
the Bachelors Degree in Computer Science. We have numerous avenues for evaluating of these
outcomes based on the success of our students in courses and in industry (or graduate school).

Bachelors of Computer Science Learning Outcomes:

• Demonstrate a knowledge of general computer science principles:
o Demonstrate the ability to develop and work with abstractions
o Demonstrate a knowledge of classical algorithms and data structures
o Be able to analyze the efficiency of algorithms
o Be able to design and implement efficient algorithms to solve computational

problems
o Demonstrate deep knowledge of a specific area of computer science

• Show proficiency as a software engineer:
o Demonstrate programming skills and the ability to learn new languages and tools
o Demonstrate the ability to work with a large code base
o Demonstrate an understanding of the interaction between application software,

systems software, and hardware
• Demonstrate general engineering and communication skills:

o Be able to work in a team setting
o Demonstrate clarity in technical communication
o Demonstrate the ability to apply current ethical standards as related to computer

science / software engineering

The following sections detail the procedures put in place to monitor success and some of the
results/changes we have made.

5A .1 Undergraduate Outcomes Assessment Procedures

5A .1.1 BS CS assessment pathways

The following chart demonstrates the various pathways for assessment used in evaluation of our
degree. A discussion of each assessment strategy is listed below.

91

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5!	 Undergraduate	 tǊƻƎǊŀƳ 9ŦŦŜŎǘƛǾŜƴŜǎǎ	 – 	
Outcomes	 Assessment	

	 	 	
	

5A .1.2 Undergraduate student exit surveys

Undergraduate students who have applied for graduation are sent an electronic exit survey at the end
of their final semester. Responses are voluntary but strongly encouraged. Questions include three
main areas: (1) Data about the student's completion of the program. For example: Why did the
student choose the University of Utah? How long did they take to graduate? Did they attend full or
part-time? (2) Students future endeavors. For example: Are they going to grad school or into
industry? Where did they apply for jobs? Where will they be going, and what till the pay range be?
and (3) Assessments of our program. For example: Which professors and/or courses did they like
the best/least? What feedback do they have regarding our program, staff or facilities?

In the past, an ad hoc system was in place for summarizing and evaluating these surveys. This has
been identified as needing improvement, and a new more formal process is being introduced. Going
forward, at the end of each graduation semester, the undergraduate exit surveys will be provided to
the School Undergraduate Committee. This committee will review the data and then bring any
trends and/or recommendations to the attention of the Director of Undergraduate Studies and to the
Director of the School.

5A .1.3 Faculty/Instructor course evaluations

Students in all courses at the University are asked to complete a post-course instructor
evaluation. These evaluations have traditionally been read by the Director/Associate Director of the
School and the RPT (Retention, Promotion, Tenure) Committee to help evaluate and evaluate and
mentor instructors. Further, this information is used by the Dean of the College to recognize
outstanding faculty. Public recognition of the importance of teaching excellence is part of the
University culture.

92

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5!	 Undergraduate	 tǊƻƎǊŀƳ 9ŦŦŜŎǘƛǾŜƴŜǎǎ	 – 	
Outcomes	 Assessment	

	 	 	
	

Going forward the School is developing a plan to have the undergraduate course evaluations
reviewed by the Undergraduate Committee, which will then summarize any trends and/or
recommendations and bring them to the School Director (via the Director of Undergraduate Studies).

Feedback from course evaluations has generally impacted the curriculum through ad-hoc processes.
For instance in the past, the course evaluations were mostly used during the RPT process, and
impressions from this exercise would feed back up to the Director’s office. One example of this was
the reviews for the instructor of our discrete math course (CS 2100). While the reviews were below
average, further evaluation found that all professors were receiving below-average feedback. This
observation led to a restructuring of the course with better learning outcomes.

5A .1.4 Alumni survey

In 2016, the School completed its first, long-range, alumni survey, asking questions about their
overall success as graduates from the CS or CE programs. Results were collected from over 150
alumni, approximately 85 who have graduated with a Bachelors of Computer Science from
2009-2016 (~15% response rate). The alumni were asked questions relating to their industrial
career, including how well they were prepared technically and in their soft-skills, how soon they
were employed, what salaries they earned, etc.

Several very interesting conclusions can be made from their responses.

5A.1.4.a Preparedness

Below is a rating scale for each graduating class from 2009 to 2010 on a 1-5 with 1 being “Very
Unprepared” and 5 being “Very Prepared”. “Overall” refers to their perception of how well
they have done over their entire career based on their Utah education. “When Hired” refers to
how well they thought they were prepared for their first post-graduation employment compared
with other first year employees. We further asked about their perception on how well they were
prepared in their hard vs. soft skills. We believe that our alumni are overall very pleased with
their lifelong skill preparation.

Table	 5A-‐1:	 Results	 from alumni	 surveys

Total
Responses

Overall
Post-
Degree

When
Hired

Tech
Preparation

Soft Skills
Preparation

2009 10 4.3 4.2 4.0 3.8
2010 12 3.9 4.0 3.7 3.3
2011 5 4.4 4.0 3.8 3.8
2012 13 4.1 4.1 3.8 3.8
2013 5 5.0 4.6 4.2 4.4
2014 15 3.9 4.1 4.2 4.2
2015 17 4.2 4.3 4.1 3.7
2016 8 4.4 3.9 4.1 4.1

Table 1: caption to be added

software engineering 24
web 21

database 15
testing 13
research 11
mobile 8
game 7
visual 7

graphics 3
security 1

Table 2: caption to be added

1

93

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5!	 Undergraduate	 tǊƻƎǊŀƳ 9ŦŦŜŎǘƛǾŜƴŜǎǎ π
Outcomes	 Assessment	

	 	 	
	
5A.1.4.b. Industry Work Areas

In order to assess if we are teaching courses in the proper areas, we asked our alumni to identify key
areas/topics of work that they have been involved with in their career.

Table	 5A-‐2:	 Key	 topics/areas	 that	 alum ni	 work	 with	 in	 their	 careers

It should be noted that we currently teach all of these topics, either in specific courses or as units in
more general courses. See section 5A.2.2 Additional Topic Offerings for more discussion.

5A.1.4.c. Salary

As part of the survey we asked for alumni salary levels (starting and current, years 2009-2016). It is
clear that our students, on average are making very competitive salaries (e.g., the median current
salary is close to $100,000). In all but one case our student’s salaries have increased over time, and
the average increase has been over $5000 a year. It should be noted, that when we wrote the survey,
we considered $160,000+ a reasonable “cap” for top salaries, but we have subsequently learned a
non-trivial number of our students are making substantially more than that.

Total
Responses

Overall
Post-
Degree

When
Hired

Tech
Preparation

Soft Skills
Preparation

2009 10 4.3 4.2 4.0 3.8
2010 12 3.9 4.0 3.7 3.3
2011 5 4.4 4.0 3.8 3.8
2012 13 4.1 4.1 3.8 3.8
2013 5 5.0 4.6 4.2 4.4
2014 15 3.9 4.1 4.2 4.2
2015 17 4.2 4.3 4.1 3.7
2016 8 4.4 3.9 4.1 4.1

Table 1: caption to be added

software engineering 24
web 21

database 15
testing 13
research 11
mobile 8
game 7
visual 7

graphics 3
security 1

Table 2: caption to be added

1

94

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5!	 Undergraduate	 tǊƻƎǊŀƳ 9ŦŦŜŎǘƛǾŜƴŜǎǎ π 	
Outcomes	 Assessment	

	 	 	
	

 Figure	 5A-‐1:	 Alumni	 salary	 distribution from survey

 Our alumni survey has been very illuminating. While our alumni seem quite positive with their
 overall education and preparedness, they did list areas they thought could use improvement. These
 include more focus on software engineering skills on large preexisting code bases; suggestions for
 making Internships either required or strongly encouraged; more courses teaching up-to-date
 technologies (e.g., Node and Angular, or Ruby/Rails); more emphasis on machine learning, data
 science, and visualization; etc. Some suggested a distinguishing between different tracks, such as
 software engineer (more coding and tools) and computer scientist (more math and theory). It should
 be noted, that in some cases, efforts have already been put in place to address some of these
 concerns. Going forward, the School’s Undergraduate Committee will be considering all of these
 suggestions and propagate these findings to the School faculty. We plan to follow this up with more
 alumni surveys in the future, as well as some specific highlighted alumni reports where we will ask
 our alumni to better describe their career.

 5A .1.5 Industry Advisory Board and Utah Technology Council

 Please see section 1.2.2.b for an overview of the Industry Advisory Board (IAB) and the Utah
 Technology Council (UTC). The IAB has made several suggestions throughout the past 7 years,
 but has consistently argued for a rigorous training of students across a broad range of “core” CS
 topics. For example, the IAB suggested that we incorporate tracks, and especially a “systems” or

95

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5!	 Undergraduate	 tǊƻƎǊŀƳ 9ŦŦŜŎǘƛǾŜƴŜǎǎ π
Outcome	 Assessment	

	 	 	
	
“honors” track, that would help guide our students toward a program of study that would help
them a) stand apart, and b) be valuable employees. The School instituted a track system
(recommended selections of electives and an associated certificate) in 2013 and has identified
twelve separate tracks through the program (e.g., Software Development, Artificial Intelligence,
Visual Computing, Theory, etc.).

5A .1.6 Undergraduate student internship feedback

The School offers a technical elective course for students who participate in full-time internships
(usually over the summer). On average, about 10-20 students take the course each year. It
should be noted that many other students work part/full-time jobs and/or do internships without
taking the formal course.

The for-credit, internship course requires the students to write weekly reports detailing the things
they are learning while at the internship, as well as describing what they are learning about
themselves. The program further requires a midterm and final evaluation by student’s employer,
and a visit from a supervising faculty member.

The final evaluation asks the employer to comment on what the student has done, but also asks
questions such as: “If you had a position available, would you hire this student?” and “How well
has the student’s education prepared them?” Universally, these answers come back with positive
responses such as: “yes we would offer a position” or “yes we have offered a position” and “yes,
the University curriculum has done a good job of preparing the student”. We feel the
overwhelmingly positive feedback that our students receive is a strong indicator of the success of
our program.

It should be noted that this ubiquitous positive feedback has been a hallmark of the internship
program since its inception. Further, the supervising faculty has received very positive feedback
from employers during meetings as well as a strong indication that industry is looking for tighter
bonds with the School, and a greater pipeline of interns. This feedback is also generally
consistent with feedback from direct interactions with industry in the Salt Lake Valley/Wasatch
Front as well as other large markets (e.g. California), where employers claim that the preparation
of our students compares favorably with those from the best schools in the nation.

5A .1.7 Senior capstone project judges

For each graduating class of seniors (those completing their senior capstone project) the School
holds a Public Demonstration Day, which requires student teams to demonstrate their software
projects in a public setting. The teams consist of approximately 4 students working over two
semesters to create a substantial software solution. Members of academia and industry are asked
to attend as judges and to rate the teams on a scale from 1 (very poor) to 10 (outstanding) based
on their own corporate (or academic) background. Over the past five years, the top teams have
consistently averaged 8 to 9.5 points. Informal feedback from the judges as been uniformly
positive, and many of the students have been recruited at that event. Last year, the winning team

96

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5!	 Undergraduate	 tǊƻƎǊŀƳ 9ŦŦŜŎǘƛǾŜƴŜǎǎ π
Outcomes	 Assessment	

	 	 	
	
built an application for air-quality monitoring in Salt Lake Valley and was featured on the local
TV News.

5A .1.8 Computer Engineering ABET Certification

The joint School/ECE Computer Engineering Degree is ABET certified. Many of the required
and/or elective CE courses are taught directly via Computer Science, and thus are subject to the
ABET review process. Sample courses reviewed are CS 1410, CS 2420, CS 2100, CS 3500, CS
3505, CS 3810, etc. The strong formalisms in the ABET review require faculty to assert course
objectives, collect and analyze student “exemplars”, and to show success (or failure) of the students,
followed by improvement plans. The School feels that many of the goals of ABET (consistent and
rigorous review and improvement) are similar to the goals we have for our own program.

5A .2 Undergraduate Outcomes Assessment Feedback

Below we discuss specific examples of how the curriculum/School has changed in response to
assessment measures:

5A .2.1 Senior capstone expansion

The School, College, and University all firmly believe in a capstone experience. The School has
offered a software engineering lab, as a class, for over 15 years, but in the last 7 years feedback from
students and instructors indicated that this course needed to be explicitly denoted and run as a Senior
Capstone, and that a single semester was not enough time to fully realize the benefits of such an
experience (including work on writing, presenting, and programming). In 2011, the School
developed a two-semester Capstone Design sequence (which is now required). Students taking this
course spent an extra semester to define teams, decide on a project, create a design specification, and
prototype an initial system. The second semester (Capstone Project) was then available to complete
three full “sprints” (or iterations) on the idea. Feedback from teams who have completed substantial
projects over the two semesters indicate that they are very much in favor of the year long version of
the course.

It should be noted that a few students, mainly those who are working in a software development
capacity in industry, have suggested that we make the Senior Capstone optional. While it is unlikely
that we would remove the course, we are in discussions about if an alternative could be put in place,
perhaps having students take one more elective and the internship course in place of the capstone.
Currently, students who chose to do a BS Thesis (and take the associated supervisory credits for
that) are not required to take the Capstone Design course (approximately 10-20 students each year
choose the thesis option).

97

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5!	 Undergraduate tǊƻƎǊŀƳ 9ŦŦŜŎǘƛǾŜƴŜǎǎ π
Outcomes	 Assessment	

	 	 	
	
5A .2.2 Multiple yearly course offerings

Based on student feedback, TA feedback, course surveys, and published education best practices,
it became clear that the continued increased sizes of our required CS courses was doing a
disservice to our students.

In 2010, the School noted that CS 2100 (Discrete Structures), was consistently receiving poor
feedback in course evaluations. The faculty instructors primarily responsible for rotating
through the course met with the Director of the School to propose some major changes. Of
these, one was the decision to offer the course every semester, and thus halving the course
size. While this has not reduced the percentage of students who do not successfully complete the
course, it has offered smaller sections, and an immediate option for repeating the course.
In 2015, based on the perceived success of CS 2100 (and the consistently increasing
enrollments), the School responded to the increased demand for CS courses, as well as the
requests from students for more flexibility (resulting in a higher rate of retention) by doubling its
offerings of the required sophomore software practice sequence, CS3500-CS3505 (now offered
both Fall-Spring and Spring-Fall). There have been several advantages to this scheme,
including:

1. Students who were unsuccessful in CS 3500, were previously required to wait a year
before continuing the major. We believe that the increased offerings of CS 3500 has
resulted in an increased retention rate.

2. Multiple faculty now teach the course, giving struggling students a chance to find an
instructor that (perhaps) better meets their personal learning style.

3. The class size of the (traditional) fall session of CS 3500 has been able to be reduced in
size by 20% while still increasing the overall quantity of new majors.

Based on the success of offering CS 2100 and CS 3500 twice a year, the School now offers all
required courses twice a year.

5A .2.3 Additional topic offerings

Feedback from our Industry Advisors has indicated that various expertise are in very high
demand in industry, including: security, human computer interaction, data science, visualization,
etc. The School has expanded course offerings over the past 7 years in all of these areas,
including new courses titled Human Centered Security, Network Security, HCI, Math for Data,
Intro to Data Science, Data Mining, Big Data Computer Systems, Visualization, etc. Further, the
School has targeted new faculty hires in these fields, hiring in data analysis, human computer
interaction (Jason Wiese joined in 2016), and security.

98

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5!	 Undergraduate tǊƻƎǊŀƳ 9ŦŦŜŎǘƛǾŜƴŜǎǎ π
Outcomes	 Assessment	

	 	 	
	
5A .3 Undergraduate Degree Completion Data

The School graduated BS candidates in Computer Science in the years 2007–2011 at the
following rates: 62%, 64%, 59%, 60%, 55%. (Note: these percentages show graduation rates 4
years after admittance to Full Major Status (typically after the first year). The 6 year graduation
rates are about 4-5% higher, but the vast majority of students who graduate do so in 4 years
(after full major status). On average, the University graduates students at a 60-65% rate. Thus,
for most years the School has exceeded the University average.

It is important to note that CS has been in a “boom, bust, boom” cycle from 2000–2006 –
2016. The graduation rates for students admitted at various phases of this cycle (e.g., admit
2002–2007, graduate 2007–2011) correlate somewhat to the number and quality of students
admitted. In 2006 we had our lowest ebb in the number of applicants to the major, and
consequently, the criteria for admission were at their lowest (e.g. GPA). This may explain why
the graduation rates from 2007 to 2011 have ticked downward (e.g. 68%, 69%, 63%, 64%,
57%). We expect for the percentages to increase as the quality of students have increased from
2006 to 2016. Even as we consider these trends, however, we have noticed that as the demand
for CS students grows, there is a counter pressure pulling students in their 3rd or 4th year to take
a full time (high paying) job and neglect finishing their degree.

Of the 30%-40% of students who do not graduate, approximately half of them are simply unable
to complete the rigorous upper division course work (i.e., they fail required courses, ranging
from software practice, to discrete math, to computer architecture, to calculus III, etc.). Note,
this may be aggravated by demographic issues specific to Utah, where there is a high rate of
working full time, having families, etc. Of the remaining non-graduates, some go directly to
industry, some have encountered overwhelming medical conditions, a few switched degrees (a
number to the Film side of our EAE program), and a few promising students just
disappeared. We are in the process of identifying a representative group of these missing
students and contacting them; preliminary results seem to indicate that in various ways, “life got
in the way” (e.g., military duties, full time work to support a family, followed spouse to different
city).

At this point it is not entirely clear what the School should/could do to increase graduation
rates. Possibilities include lowering expectations (e.g., probation GPA requirement, course work
requirements) to allow students with lower academic performance into a job market, which
probably can absorb them. This is likely to cut against the prevailing culture and overall mission
of the School, and therefore we are unlikely to pursue this approach. Another way to address
retention might be to increase the ratio of teaching assistants/faculty to students (currently at 40
to 1, and 100–200+ to 1 respectively). There are efforts in the School to pursue this option. Our
first approach will be to increase TA ratios in several of our challenging, required classes and try
to discern what impact this has on outcomes. A third option is to provide more advising
(currently 1.5 advisors handle 1000+ students). The School has recently hired a second graduate
student advisor (to address the size and complexity of the graduate program) and will be looking
into the possibility of another undergraduate student advisor.

99

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5!	 Undergraduate	 tǊƻƎǊŀƳ 9ŦŦŜŎǘƛǾŜƴŜǎǎ π
Outcomes	 Assessment	

	 	 	
	
5A.4 Employment

Economic and employment projections from the Bureau of Labor Statistics, released December
2015, show that Computer Science/Information Technology continues to be a high growth and
high paying field. They predict a 23% overall growth between 2014 – 2024 in computer systems
design and related services, a 26% overall growth between 2014 – 2024 in management,
scientific, and technical consulting services. The overall size of growth in fields relating to
computing generally outpaces other STEM disciplines (and, for example, all other engineering
fields combined).

Computing Research Administration’s Taulbee Survey shows a steady employment growth for
new Ph.D’s in industry since 2010, but a decline in academia during the same period. The below
figure is from their 2014 survey. This is consistent with what we see in respect to what our
graduates are doing. This data has impacted our thinking concerning curriculum. i.e. Seeing that
there is a large demand in computation science and how that should impact our educational
mission.

Figure 5A-2: CRA Taulbee Survey 2014

For Utah employment, Utah Technology Council’s 2015 Hot STEM Occupations rankings put
several computer science jobs in their top 15. With Several other computer science careers
making their top 50.

• # 3: Software Developers, Applications with a growth projection of 4.1%

• #4: Network and Computer Systems Administrators at 3.9%

• #5: Computer Systems Analysts at 2.5%

• #11: Computer Programmers at 2.1%

100

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5!	 Undergraduate	 tǊƻƎǊŀƳ 9ŦŦŜŎǘƛǾŜƴŜǎǎ π
Outcomes	 Assessment	

	 	 	
	

• #15: Software Developers, System at 3.6%
The Career Services, at the University of Utah, has some limited data on their website. They
offer salary wages for graduates they have contacted. Below is the data from their site.

Table 5A-3: Career outlook - Information on the University’s Career Service site

Lastly, Appendix Q provides a (partial) list of the School of Computing’s graduate students who
graduated in last 7 years (from 2009 to 2016) and their employment information (first and
current employment if known).

Degree U of U U of U # Rep National National
Grad Mean Grad Median Mean Median

Computer Science Bachelor’s $69,000 $72,339 14 $66,801 $ 65,637

Table 1: Career Outlook – Information on Career Service Site

1

101

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5B	 Graduate	 Program.Effectiveness.-
Outcomes.Assessment	

	

	

5B . Graduate Program Effectiveness – Outcomes Assessment

5B .1 Graduate Outcomes Assessment Procedures

The learning objectives and outcomes for the different types of graduate degrees from the School
of Computing are summarized as follows.

A. Master of Science in Computer Science
Learning Objective: The purpose of the MS degree in computer science is to expose
students to cutting edge research in all areas of computer science, including topics in the
foundations of computer science, hardware and software design, and computer and
network systems.
Learning Outcomes:

• To demonstrate some mastery of a breadth of topics in computer science, and
mastery of at least one topic if choosing the thesis/project option.

• For students choosing the thesis/project option: to be able to conduct independent
investigations and advance the state-of-the-art in at least one area of computer
science, in academic, industrial or government settings.

• To be experienced in leading and participating in research projects in computer
science.

• To be able to adapt to and assimilate new developments in the state-of-the-art.

• For students choosing the thesis option: to be able to communicate advanced
research concepts to both specialized as well as general audiences, in both written
and oral form.

B. Master of Science in Computing
Learning Objective: The program in computing reflects an increasing interest in the
tools of computer science as applied to a variety of application areas, and reflects the
diverse strengths of the School across many disciplines that use computing. The purpose
of the MS degree in computing is to expose students to cutting edge research in a specific
(often multidisciplinary) area of computing, with this breadth reflected in their
coursework and/or thesis/project work.
Learning Outcomes:

• To demonstrate some mastery of a specific focus area in computing, and
additionally mastery of at least one subtopic in this area if choosing the
project/thesis option.

• For students having chosen the thesis/project option: to be able to conduct
independent investigations and advance the state-of-the-art in this focus area.

102

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5B	 Graduate	 Program 	 Effectiveness	 –	 .	
Outcomes.Assessment	

	

	

• To be experienced in leading and participating in research projects in this focus
area.

• For students having chosen the thesis/project option: to be able to adapt to and
assimilate new developments in the state-of-the-art, across the different
disciplines that come together to form this area.

• For students having chosen the thesis option: to be able to communicate
advanced research concepts to both specialized as well as general audiences, in
both written and oral form, to audiences across the different disciplines that form
this area.

C. PhD in Computer Science
Learning Objective: The purpose of the PhD degree in Computer Science is to train
students to conduct original research in a specialized area of computer science, advancing
the state of the art in a way that is novel, useful and substantial, and makes a lasting
impact on the field of study.
Learning Outcomes:

• To demonstrate complete mastery of a chosen subfield of computer science with
broad expertise across the areas of foundations, hardware and software design,
and computer systems.

• To have conducted original published peer-reviewed research in their chosen area.

• To be able to articulate proposed work: both its motivation and a work plan.

• To have authored and defended a dissertation in their chosen area.

• To be able to communicate state-of-the-art research concepts to both specialized
and broader audiences.

• To teach or assist in teaching computer science material to
graduate/undergraduate students.

• To be prepared to conduct and lead independent research efforts in academia,
industry or governmental organizations

D. PhD in Computing
Learning Objective: The program in computing reflects an increasing interest in the
tools of computer science as applied to a variety of application areas, and reflects the
diverse strengths of the School across many disciplines that use computing. The purpose
of the PhD degree in Computing is to train students to conduct original research in a
selected focus area straddling multiple disciplines within and outside computer science.
This research will strengthen the links between the areas, forge new connections between
them and advance the state of the art in a way that is novel, useful and substantial.

103

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5B	 Graduate	 Program 	 Effectiveness	 –	 .	
Outcomes.Assessment	

	

	

Learning Outcomes:

• To demonstrate complete mastery of a specific focus area in computing, with
broad expertise across the different topics spanning multiple disciplines within
and outside computer science.

• To have conducted original published peer-reviewed research in their chosen area.

• To be able to articulate proposed work: both its motivation and a work plan.

• To have authored and defended a dissertation in their chosen area.

• To be able to communicate state-of-the-art research concepts to both specialized
and broader audiences across the different disciplines comprising their focus area.

• To teach or assist in teaching computer science material to
graduate/undergraduate students.

• To be prepared to conduct and lead independent research efforts in academia,
industry or governmental organizations.

The School implements a number of procedures to evaluate the effectiveness of its education and
research programs for the graduate student population. Note that Graduate Sections 3B and 4B in
this self study have already presented the details on the student graduation, degree awarded, and
admission data. These procedures include but are not limited to the following processes:

(a) Mid-program assessments through due-progress forms and grad tracking. All PhD
students are required to complete a PhD due-progress form annually, which summaries
the progress made by a student in the past academic year. The due-progress forms are
evaluated by the DGS and the graduate student advisors to identify students who are
struggling in their research and PhD study. A copy of the due-progress form is shown
in Figure 4B-2 in Section 4B.3.

A faculty meeting is held every year at the end of the fall semester to review all cases
that have been identified as having unsatisfactory performance, and a concrete plan and
recommendation will be developed for each such case. Both the student and his/her
advisor are informed about the plan and the recommendation made by the faculty, so
that they can respond accordingly.
For master's students, the School keeps track of the courses they have taken and their
academic performance through various tracks. Track directors are required to sign off
each program of study form for all graduate students in their track, which provides an
opportunity for track directors (as well as faculty members who serve on a student’s
committee) to review the progress made by a student and provide feedback.

Recently, the School has developed a grad tracking system that enables faculty,
students, and graduate student advisors to enter such data online and interact through a
web-based system. Figure 5B-1 and Figure 5B-2 show the faculty interface to review a
student’s progress form. In addition to the due progress form, the system also keeps
track of funding support, internship program, and courses taken for a student.

104

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5B	 Graduate	 .Program 	 Effectiveness	 –	 .
Outcomes.Assessment	

	

	

The same system also offers rich analytics support, such as analyzing the average GPA
per track, number of students supervised by each faculty, etc. An example is shown in
Figure 5B-3. Lastly, the system is able to automatically identify students who have
made excellent, acceptable, and unsatisfactory progresses respectively, through a
combination of rule-based and mining-based approach.

 Figure 5B-1: Grad Tracking DGS Home View

 Figure 5B-2: Grad Tracking Faculty/DGS Review Interface

105

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5B	 Graduate	 Program 	 Effectiveness	 –	 .
Outcomes.Assessment	

	

	

 Figure 5B-3: Grad Tracking Faculty/DGS Analytics Interface

(b) Internship Evaluation. The School requires all students who participate in a summer
internship program to complete an internship application and evaluation form. The
form asks for a brief and concise learning objective for the internship program before
students go for an internship, and requires a representative from the company to
complete the form with actual learning objectives achieved after the completion of an
internship program. A sample of this form is shown in Figure 4B-4 (for an international
student).

(c) Students and Peer Teaching Evaluation. The School conducts a student evaluation
(survey) for all its courses at the end of each semester. Overall, the School’s teaching
evaluation is consistently above the University and College average. On a typical
course evaluation form, 6 questions are asked about the course effectiveness:

• Objectives clearly stated

• Objectives met

• Content well-organized

• Course materials helpful

• Assignments & exams covered the course

• Learned great deal
and another 6 questions are asked about the instructor effectiveness:

• Instructor was organized

• Instructor presented effectively

106

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5B	 Graduate.	 Program.Effectiveness.-.	
Outcomes.Assessment	

	

	

• Instructor created respectful environment

• Demonstrated thorough knowledge

• Instructor encouraged questions/ opinions

• Instructor available for student consultation
The response to each question is one of the followings: strongly disagree, disagree, mild
disagree, mild agree, agree, and strongly agree. These responses are mapped to a
weighted sum of numerical score in the range of 1 to 6 (1 being the worst and 6 being the
best possible scores respectively).

The following table shows the average score of all School courses with respect to these
12 questions in last 7 years, and Table 5B-2 shows a more detailed breakdown for the
score distribution.
In addition to student course evaluations, the school also conducts peer teaching
evaluations annually. An example of the peer teaching evaluation for academic year
2016-2017 is shown the following figure.

Table 5B-1: Average student evaluation scores for the School’s courses (on a scale of 1-6). College and
University averages for graduate level classes are not available from the administration at this time.

Table 5B-2: Student Evaluation Score Distribution for the School’s Courses (on a scale of 1-6)

Year Avg Score

2009 5.72

2010 5.65

2011 5.72

2012 5.66

2013 5.74

2014 5.71

2015 5.71

2016 5.76

Grand Total 5.71

Table 1: Average Student Evaluation Scores for SoC Courses (on a scale of 1-6)

Score Range 2009 2010 2011 2012 2013 2014 2015 2016

Grand

Total

<3.2 or (blank) 3 7 2 1 2 15 1%

3.2-3.5 1 1 2 0%

3.5-3.8 1 1 1 3 0%

3.8-4.1 2 1 1 2 1 7 0%

4.1-4.4 1 2 1 6 2 2 14 1%

4.4-4.7 1 2 1 1 1 2 3 11 1%

4.7-5 2 2 3 1 2 3 1 7 21 2%

5-5.3 10 17 14 19 12 12 18 7 109 9%

5.3-5.6 18 20 23 31 28 26 29 12 187 16%

5.6-5.9 16 20 27 19 29 20 36 13 180 15%

>5.9 67 54 70 86 89 88 91 73 618 53%

Grand Total 117 118 143 172 165 155 181 116 1167

Table 2: Student Evaluation Score Distribution for SoC Courses (on a scale of 1-6)

1

Year Avg Score

2009 5.72

2010 5.65

2011 5.72

2012 5.66

2013 5.74

2014 5.71

2015 5.71

2016 5.76

Grand Total 5.71

Table 1: Average Student Evaluation Scores for SoC Courses (on a scale of 1-6)

Score Range 2009 2010 2011 2012 2013 2014 2015 2016

Grand

Total

<3.2 or (blank) 3 7 2 1 2 15 1%

3.2-3.5 1 1 2 0%

3.5-3.8 1 1 1 3 0%

3.8-4.1 2 1 1 2 1 7 0%

4.1-4.4 1 2 1 6 2 2 14 1%

4.4-4.7 1 2 1 1 1 2 3 11 1%

4.7-5 2 2 3 1 2 3 1 7 21 2%

5-5.3 10 17 14 19 12 12 18 7 109 9%

5.3-5.6 18 20 23 31 28 26 29 12 187 16%

5.6-5.9 16 20 27 19 29 20 36 13 180 15%

>5.9 67 54 70 86 89 88 91 73 618 53%

Grand Total 117 118 143 172 165 155 181 116 1167

Table 2: Student Evaluation Score Distribution for SoC Courses (on a scale of 1-6)

1

107

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5B	 Graduate	 Program 	 Effectiveness	 –	 .	
Outcomes.Assessment	

	

	

	

	
 Figure 5B-4: Peer-teaching evaluation assignment

(d) Industrial Advisory Board. The School organizes an industrial advisory board meeting
every year with the members on its industrial advisory board, which consists of leaders
and directors from local IT and CS industry. They will review the School’s education
and research program and offer detailed feedback and suggestion as how to improve
and better serve the local industry needs.

(e) Exit Survey. The school admins an exit survey procedure for graduating graduate
students, but it is not yet required of students. Thus, the data is very sparse and is not
very yet able to provide quantitative insights into the program. However, the School
has the plan to integrate the exit survey into the grad tracking system so that this data
collection step becomes much more effective.

(f) Alumni Interactions. Similarly, the School maintains a website for connecting to
alumni, but the response rate is not high enough to serve as an effective tool to connect
with the school’s large alumni population. The School also has a Facebook page that
does attract a large number of alumni and current and future students. The School has
conducted alumni survey to understand its alumni population better and reconnect with
them. The survey was done through emailing the School’s alumni with a link to a
google form.

108

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5B	 Graduate	 Program.Effectiveness	 –.
Outcomes.Assessment	

	

	

5B .2 Graduate Outcomes Assessment Feedback

The School is constantly looking for ways to solicit outcomes assessment feedback and taking
these inputs seriously into the design and improvement of the School’s education and research
activities. Given the extremely fast-paced computer science discipline, and the complex,
dynamic, and extremely wide-range of applications found in computer science (or computing),
rather than sticking with the same set of mechanisms in collecting outcome assessment feedback,
the School has adopted a very flexible and broadly-defined approach. More specifically, the
School has mainly relied on the following channels for collecting outcomes assessment feedback
and program improvement suggestions:

• Industrial Advisory Board (IAB):
The annual IAB meeting provides a great opportunity for the school to learn the needs
and demands from local industry leaders, as well as receiving feedback from them on
how to improve our programs. Many school of computing’s graduate students join the
local industry force after they have graduated from our program. As a result, engaging the
representatives from local industry is a great resource for collecting valuable feedbacks.

• Students’ feedback:
The school of computing runs a GradSAC committee (there is also an UGSAC
committee for the undergraduate population). Members of the GradSAC committee are
selected from the school’s current graduate student population. They represent a bridge
between the student body and the school, and constantly provide useful feedbacks they
have received and collected from our students. For example, the school asks for the votes
from the GradSAC on important issues such as faculty hiring, and RPT cases. Feedback
from students also comes to the faculty directly through MS/PhD advisors and
supervisory committees.

• Graduate School from the College and the University:
Both the College of Engineering and the University of Utah’s Graduate School hold
regular DGS (Director of Graduate Studies) meetings for all units within the college and
the university respectively. The DGS from the School of Computing attends these
meetings monthly and reports issues and plans from the school, and exchange ideas with
other DGS from other departments. These meetings also offer a direct channel between
the college and the university’s graduate school offices and the school to discuss ways to
improve the various research and education programs in the school.

There are many instances where outcomes assessment feedback collected through one or a
combination of these channels have inspired changes and improvements to the school’s existing
programs, or led to the creation of new programs. This section will describe three such examples
from the school’s graduate program in the interest of space.

1) The reform of the “Data Management and Analysis Track”:
In 2011, given the feedback from both IAB and our students that knowledge and skills in
machine learning, data mining, and information visualization are increasingly important

109

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5B	 Graduate	 Program 	 Effectiveness	 –	 .	
Outcomes.Assessment	

	

	

for various data analysis tasks, faculty members from the then Information Management
Track embarked on a major reform of the track, which had resulted in a new track called
Data Management and Analysis, which requires the following courses:

• Data Mining or Machine Learning
• Advanced Database Systems
• Advanced Algorithms
• Information Visualization

This reform is proven to be a huge success, and the number of students enrolled in the new data
track continue to rise.

2) The creation of the Big Data Certificate Program:
With the increasing interest and demands in big data applications, companies and various
agencies and institutes in the state of Utah have a constant and growing demand for a
well-trained workforce with the experience and skills to help in the management and
analysis of big data. In light of this, and with the feedback the School has received
through its IAB meetings, alumni networks, meetings with various industry partners, and
surveys, the school realized that there is a huge demand for a formalized program (and
credential) that is accessible to a wide range of student as well as working professionals.

The observation is that many working professionals are extremely interested in the
school’s data management and analysis track, but unfortunately they are not able to
complete the track requirements due to their working schedules. Hence, based on the core
curriculum of the data track, the school developed the Big Data Certificate Program that
essentially requires only the four core courses from the data track. The details of this
certificate program is available from http://www.cs.utah.edu/bigdata/.

Furthermore, after many round of active discussions and exchange of ideas with local
companies such as Adobe, Domo, and others, to better facilitate working professionals to
enroll into the big data certificate program, the certificate program has established a
YouTube Channel called UofU Data, available at
https://www.youtube.com/channel/UCDUS80bdunpmvWVPyFRPqFQ,
that offers both live streaming videos of all courses from the program and archive
channels with videos for all past lectures for courses offered by the program.

3) The creation of the Certificate in Data Center Engineering:
In a similar fashion to the process described above, when NSA and other companies set
up their data centers in Utah, the school proactively approached them and solicited
feedback and demands from their leaders and work force, which led to the creation of the
Certificate in Data Center Engineering.

110

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 5B	 Graduate	 .Program.Effectiveness.-.
Outcomes.Assessment	

	

	

5B .3 Graduate Degree Completion Data

Please refer to Table 4B-1 and Figure 4B-1 for admission and degree completion data for the last
7 years respectively.

It is difficult to obtain an exact estimate of the attrition data per year; even though an MS
typically completes his/her program of study in two years (four semesters), and a PhD student
normally takes five years to complete his/her program of study, students may take different
number of semesters to complete his/her program, making it hard to estimate the attribution rate
based on the admission data and the degree awarded data from the following 2-years and 5-years
for the master's and the PhD programs respectively.

That said, Table 4B-1 and Figure 4B-1 indicate that a large majority of our graduate students
have successfully graduated from their respective programs.

5B .4 Employment

This information can be found in Undergraduate Section 5A.4.

111

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 6	 Facilities	 and	 Resources	

	

6. Facilities and Resources

6.1. Operating Budget

The School of Computing serves two missions: academic and research. To fulfill our two missions, we
maintain a dual accounting structure: a zero-sum fund consisting of base funds that come to us from the
State towards maintaining our academic mission, which is augmented by the results of our teaching
productivity (SCH and engineering differential funds) and degree production, and returned F&A
(overhead) funds, which we are allowed to accumulate and whose increase represents a percentage of
our yearly research income. Expenditures related to our academic mission, such as faculty salaries,
academic staff (advisors, etc.) and TA funding, are charged against the first of these funds.
Expenditures related to our research mission, such as our research computing facility, funding research
start-up funds of new faculty, and staff allocations associated with our research mission, are charged
against the second of these funds.

6.1.1. Budget to meet our academic mission

The academic departmental budget for the new fiscal year typically consists of the base budget from the
previous year plus any price levels increases approved by the Utah State Legislature. In addition,
departments have received supplemental funding that is based on changes in SCH productivity (student
credit hours taught by each unit), labeled productivity funding. This funding can increase or decrease
depending on the population of students within the courses. When the productivity funding has been
consistent from year to year, departments may be allowed, with appropriate permission, to “harden”
some of these dollars into the base budget lines, which can be used to pay for long-term commitments
(such as faculty salaries). The overall contribution for the current year is $435K along with $24K for
degree production. The College also generates differential tuition for engineering degrees. This is a
supplemental charge (instituted in 2009-2010 following a severe budget cut of 19%) consists of a $52
per credit hour for 3000-5999 level classes and $74 per credit hour for 6000 level and above credit
classes. The overall contribution to the budget is approximately $769 K for 2016-2017. See Figure 6-1,
which represents our State Appropriated Funds. In 2012, the administration added degree production as
a form of incentive funding.

112

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 6	 Facilities	 and	 Resources	

	

Figure 6-1: State appropriated budgets

In addition to the standard inputs of productivity and differential to our yearly academic operating
budget, the College and in particular the School has also been supported through a number of statewide
Engineering Initiatives (a program initiated a number of years ago with the strong support of local
industries, with the goal of increasing the number of engineering graduates in Utah). This program has
provided both on-going and one-time funding in support of the engineering programs in the State of
Utah. As part of the requirements for receiving these special funds, the recipient institution is required
to provide institutional matching funds to the on-going funds provided by the legislature, making this a
true partnership. In recent years, the legislature has established the Technology Industrial Advisory
Board (TIAB), made up of key players in the local economy, who oversee the allocation of the
Engineering Initiative Funds. Competitive proposals are submitted to the TIAB, and funds received by
the institution from the TIAB, along with the institutional matching funds, are then allocated by the
Dean to the departments based on the number of students in each program, relative growth, and other
potential needs identified by the department director and Dean. The School has received from these
Engineering Initiatives. In 2012 we received $250,000 to assist with our recruitment of new faculty and
in 2015 we received $770,00 to assist in funding our increase in growth. These funds were used to fund
new faculty recruits at both the tenure-line and career-line level, to enable us to hire an additional
graduate advisor, and supplemented our TA funding.

In 2005 the Universities across the State of Utah have benefited from the Utah Science and Technology
Research (USTAR) Initiative program. This program was created to stimulate economic development
activities by enhancing our ability to “recruit world-class researchers to Utah.” The School has benefited
from this program with the addition of four faculty positions over the past seven years. If and when
faculty give up these positions (e.g. leaving the University), the funds go back to the USTAR Authority,
and thus these faculty “lines” are with the School as long as the faculty remain in their positions. For
example, one USTAR faculty member, Guido Gerig, has left the University.

Some of the faculty in the School (approximately nine) are not paid from the School budget, but are
counted as regular faculty, for the purposes of appointments, promotion, service, teaching loads,
research expenditures, head counts, etc. These are faculty associated with the Scientific Computing and
Imaging Institute. These faculty are hired in a process that is separate from the School (but with School
members involvement, and final approval/appointed by the School faculty), and are chosen to suite the

$0	
$1,000,000	
$2,000,000	
$3,000,000	
$4,000,000	
$5,000,000	
$6,000,000	
$7,000,000	

Base	 budget	

Bene6it	 transfer	

Supplemental	 funding	

113

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 6	 Facilities	 and	 Resources	

	
strategic goals of the SCI Institute. Their offices and research programs are also housed in space that is
allocated by the Director of the SCI Institute (Chris Johnson).

6.1.2. Budget to meet our research mission

 The second component of the departmental budget, related to our research mission, is our F&A based
research funding. These funds are allowed to accumulate over short periods of time to permit strategic
investments that are in the best interest of the School, such as the recent bootstrapping of our Fellowship
Program. Returned Overhead funds provided by research funding are used for new faculty start-up
packages, facilities renovation, our departmental fellowship program, and to support other research
development activities. With the addition of new faculty there has been a steady growth in research
funding over the past seven years, which has provided a steady increase in our Returned Overhead
production.

Figure 6-2: Returned Overhead

Gifts and donations are a relatively small part of the overall budget, and are used primarily for
scholarships, outreach and facility additions, and other program improvements.

Figure 6-3: Gift funds received each year

$474,040	 $547,329	 $561,006	
$673,140	 $688,860	 $739,680	

$0	
$100,000	
$200,000	
$300,000	
$400,000	
$500,000	
$600,000	
$700,000	
$800,000	

Retruned	
OH	

2009-‐2010	 2010-‐2011	 2011-‐2012	 2012-‐2013	 2013-‐2014	 2014-‐2015	 2015-‐2016	

$273,182	

$292,075	 $295,911	

$266,806	 $265,123	 $263,878	
$273,182	

$240,000	

$250,000	

$260,000	

$270,000	

$280,000	

$290,000	

$300,000	

Gift	 account	 2009-‐2010	 2010-‐2011	 2011-‐2012	 2012-‐2013	 2013-‐2014	 2014-‐2015	 2015-‐2016	

114

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 6	 Facilities	 and	 Resources	

	
6.1.3. Adequacy of budget

The School has seen an increase in our student population over the past seven years.

Figure 6-4: Growth in student population

To accommodate this increase in growth we have seen an increase in faculty positions through recent
Engineering Initiatives, and USTAR (a total of approximately seven positions). The addition of
differential tuition and the ability to use productivity dollars has helped to bridge some of the gap in the
student /faculty ratio. The increase in the faculty has provided an increase in the number of grants
obtained and an overall increase in research expenditures, funding graduate students.

Figure 6-5: Research expenditures per year

To accommodate the need for specialized equipment the University has provided BEEF (Base
Engineering Equipment Fund), and until 2014 support was provided by SCAC (Student Computing
Advisory Committee) to help fund student computer laboratories. Over the past seven years we have
received a total of $684,636 additional funds from these programs. Such funding has provided assistance
with upgrading of labs and instructional equipment.

0	

200	

400	

600	

800	

1000	

1200	

2008-‐09	 2009-‐10	 2010-‐11	 2011-‐12	 2012-‐13	 2013-‐14	 2014-‐15	

Undergrads	

Graduate	 students	

0	

5,000,000	

10,000,000	

15,000,000	

20,000,000	

25,000,000	

Reserach	
Spending	

2009-‐10	 2010-‐11	 2011-‐12	 2012-‐13	 2013-‐14	 2014-‐15	 2015-‐16	

115

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 6	 Facilities	 and	 Resources	

	
6.2. Physical Facilities

The physical facilities available to the School consist primarily of research and communications
infrastructure (discussed in subsequent sections) and physical space. Here we discuss physical space.
Space available to the School consists of two parts, one part is the space used by faculty who are
associated with the SCI Institute, which is primarily in the top three floors of the Warnock Engineering
Building (WEB). This space is allocated by the University President (David Pershing) and administered
by the Director of the SCI Institute (Chris Johnson) to accommodate the mission of that Institute, and
affects the School’s needs only to the extent that faculty housed in WEB are (generally) not needing
space resources from the College. The remaining 30+ faculty (and their associated research programs)
as well as administration of the School and specialized, dedicated CS classrooms are housed in the
Merrill Engineering Building (MEB), using space that is allocated by the Dean of Engineering (Richard
Brown) and administered by the Director’s Office. That space is broken down by its type (room size
and location) and current use with the School (MEB) in Table 6-1.

Current space allocations represent a limiting factor in the productivity and growth of the School. This
is particularly true for faculty/staff offices and graduate research laboratories. For instance, offices are
approximately 180-200 square feet each, and the current allocation is approximately 40 offices, which is
not enough to house all of our current tenure-track and full-time, career-line faculty (not to mention
visitors, etc). This problem is made worse by plans to grow in the near future (three open positions
advertised for fall 2017). Currently, the School deals with this issue by borrowing space from other
units (e.g. SCI has generously lent, on a temporary basis, to the School space over in MEB) and
borrowing offices from faculty who are on sabbatical. Normally, we allocate smaller, interior offices to
post doctoral fellows and technical staff, but there are not enough of these available to consistently make
space for hires associated with new projects (of which there are many). Because of this, the allocation of
offices is a week-to-week affair, in which new people are sometimes waiting for offices to open up.

A similar situation exists for research space, which is primarily used to house graduate students. There
are approximately 125 paid graduate students (RAs) and another 25 fellowships students, all of whom
would typically need dedicated desks at which to do their work. The current allocation of 14,000 square
feet provides 90 square feet per student. At first glance this seems adequate, but, in practice it is
restrictive. There are several reasons for this. First is that much of this space is not appropriately
formatted. That is, while most of it is in the form of rooms bigger than 1000 square feet, in which 90
per person will generally work, much of it is smaller rooms (less than 500 square feet), where walls,
doors, and other constraints limit full utilization. Another problem is that some of this space is either
substandard or inadequate for a variety of reasons. For instance, some rooms suffer from excessive
noise due to building infrastructure (e.g. vents from other floors) or from poor climate control. Other
rooms suffer from esthetics (old, appearance/smell) that make them difficulty to utilize effectively.
These two reasons contribute to a third reason, which is that while the School (with generous help from
the College) renovates older, underutilized spaces in MEB, it needs a buffer of space to make temporary
moves. These issues together have created a situation which threatens the well being of the School.

For instance, during recruitment, some new faculty expect dedicated space for their research groups (e.g.
because their advisors had it or they were offered such by competing universities). This is very difficult
(and in some cases, impossible) to accommodate. Likewise, too little space or poor quality space is a

116

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 6	 Facilities	 and	 Resources	

	
quality of life issue for graduate students (several new faculty have complained), which undermines our
recruitment of top students. Thus, while departments at other universities (and even within our own
College) have invested in new facilities and are able to offer reasonable amounts of high-quality space to
students and faculty, the School of Computing is currently unable to do so. This puts the School at a
competitive disadvantage relative to its peers.

In the short term, the School is borrowing space from other units. There are agreements with the SCI
Institute (for space in WEB) and the Department of Mechanical Engineering (for space in MEB) for
them to lend the School space on a temporary basis.

Table 6-1: Space allocated (used) by the School in the Merrill Engineering building by type/usage.

	
6.3. Libraries

We have a small departmental library for textbooks. For technical information, we have on-line access
to journals and conferences which is available through the IEEE and ACM interfaces offered by the
Marriott Library.

6.4. Centers, Institutes or Bureaus Associated with the Program

There are several institutions on campus that directly interact with the operations of the School of
Computing. First is the Scientific Computing and Imaging (SCI) Institute. The SCI Institute (formed in
approximately 2000, out of a research group from within the School) is one of eight designated
Research Institutes at the University of Utah and home to over 200 faculty, students, and staff. The 15
tenure-line faculty are drawn primarily from the School of Computing (9), Department of
Bioengineering, Department of Mathematics, and Department of Electrical and Computer Engineering,
and man of those faculty have adjunct appointments in other, largely medical, departments. Over the
past decade and a half, the SCI Institute has established itself as an internationally recognized leader in
visualization, scientific computing, and image analysis applied to a broad range of application domains.
The overarching research objective is to conduct application-driven research in the creation of new
scientific computing techniques, tools, and systems. An important application focus of the Institute
continues to be biomedicine, however, SCI Institute researchers also address challenging computational
problems in a variety of application domains such as manufacturing, defense, and energy. SCI Institute

Space/Type Approx. Sq. Ft.

Classrooms (CS specialty) 7,500

Research labs 14,000

Faculty o�ces 8,000

Conference rooms 4,000

Individual sta↵/research o�ces 3000

General administration 3500

Mechanical <500

Storage 2000

3

117

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 6	 Facilities	 and	 Resources	

	
research interests generally fall into the areas of: scientific visualization, scientific computing and
numerics, image processing and analysis, and scientific software environments. SCI Institute researchers
also apply many of the above computational techniques within their own particular scientific and
engineering sub-specialties, such as fluid dynamics, biomechanics, electrophysiology, bioelectric fields,
parallel computing, inverse problems, and neuroimaging.

The SCI Institute is housed in a set aside space in the Warnock Engineering Building, which is
managed/allocated by the Director of the SCI Institute, who reports to the president of the University.
Nine School of Computing faculty share that space (approximately 27,000 square feet) with 5 other
faculty. The SCI Institute houses and manages a set of computational resource (see Section 6.5 below)
that are available to SCI faculty, as well as other School faculty (upon request and as determined to be
appropriate). The SCI Institute has a base budget, with allocations for tenure-line faculty, that comes
from the President’s office and other, more specialized resources (such as USTAR and the Clusters for
Transformative Excellence—out of the Vice President’s office). The SCI Institute plans those hire in
accordance with its strategic goals and mission, conducts those hiring processes (with input from School
faculty, where appropriate), and then seeks appointments from the School. SCI faculty with School
appointments have offices and conduct research in the allocated SCI space, but participate toward (and
count toward) School faculty in virtually every other way.

The School also interacts with the Entertainment Arts and Engineering (EAE) Program, which is a
designated Instructional Program at the University, which grew out of activities within the School.
The EAE Program, lead by Prof. Bob Kessler (an School faculty member, until recently, now full time
with EAE), teaches undergraduate classes in technical areas relating to computer gaming, and these
classes form the basis for undergraduate emphasis areas in EAE, which are available to students seeking
BS degrees in CS and BA degrees in Film. Thus, these undergraduates are exposed to an
interdisciplinary experience in video games, that complements their primary degree, and for which they
get a certificate. The EAE program also offers a professional master’s degree in EAE (which grew out
of the MS in Computing within the School). The EAE program has also recently proposed a stand-
alone BS in Games (BSG). The School interacts with EAE on the undergraduate EAE certificate as well
as joint tenure-track hires that have appointments in the School. Most recently, EAE and School were
successful in the joint hire of Michael Young from NC State. An MOU between EAE and School
describes the parameters and procedures for such joint hires.

The School also interacts with the Center For High Performance Computing (as described below). The
CHPC is an independently run unit on campus that provides access to high performance computing
infrastructure. Several of our faculty have access to this infrastructure and use these resources to
conduct experiments or teach classes. Recently, the School agreed to subsidize a joint faculty purchase
of a set of dedicated nodes within this CHPC infrastructure.

6.5. Technology

Computing support for the School’s educational mission is provided by the College of Engineering. The
College has a large support staff and maintains seven student labs: two with Linux machines, four with
Windows, and one with OS X. These labs can be accessed remotely and are physically available to

118

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 6	 Facilities	 and	 Resources	

	
students 24/7/365. Printers are available.

Computing support for the School’s research mission and front office is provided by four facility staff.
Some faculty members, graduate students, and research staff opt to be their own system administrators,
but most rely on facility-supported machines. Computers used by faculty, staff, and graduate students
have access to a shared file server, email server, and printers. Additionally, the SCI Institute has three
facility staff and three media developers.

Several School faculty members maintain small clusters that are administered by the facility staff. The
SCI Institute has several clusters totaling more than 800 cores. Additionally, in September 2016 a small
cluster (168 cores) was brought online at the Center for High Performance Computing, which provides
dedicated HPC support to the University. This cluster is available to all School faculty and students.

The Flux Research Group in the School has developed and continues to operate multiple network
testbeds that support research and education activities in computer science and computing. These
facilities include Emulab (2,592 cores), Apt (2,048 cores), CloudLab (geodistributed at three sites, with
4,680 cores in Utah cluster), the InstaGENI-DDC rack (528 cores), and PhantomNet (88 cores,
including those in actual mobile phones and basestations). These facilities are Internet-accessible,
federated, used 24/7 by people at Utah and around the world, and support literally thousands of
experiments per year.

The Flux Research Group expects to enhance and operate these testbed facilities throughout the next
five years, based on current and anticipated funding, with enhancements focused on CloudLab (for
cloud-infrastructure activities), PhantomNet (for mobile 4G/5G networks), and new city-scale
infrastructure to be determined and supported by the NSF's recently announced PAWR program.

In general, School faculty, staff, and students have access to high-quality facilities and administrative
support; we plan to continue making these available.

6.5.1. School of Computing’s Facilities

The School provides a state-of-the-art computing facility for both educational and research use.
Facilities to meet both our educational and research missions shares a common network infrastructure
that is based on 10+Gbps (gigabit per second) core that provides desktop connections with 1 Gbps
ethernet. The School's network attaches via redundant 10 Gbps connections to the campus backbone
routed via OSPF.

The campus backbone runs at 40+Gbps with a 100 Gbps research DMZ. The campus attaches via
multiple 10 Gbps links to the Utah Education Network (UEN) which provides both commodity Internet
and research connectivity. UEN maintains multiple gigabits of commodity from various carriers at
strategic points throughout the state. For research connectivity, UEN connects at 100 Gbps to the
Internet2, and approximately 30 Gbps aggregate to the commodity Internet.

In addition to the shared network infrastructure, the core School facility supplies many centralized
services, including shared disk space (200 Terabytes), time, web/cgi/php, s/ftp, firewall, backups,
printing resources, authentication (AD/LDAP/NIS), vpn, ssh/interactive servers, doorlock access, and

119

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 6	 Facilities	 and	 Resources	

	
email. The core of the server infrastructure runs on VMware’s Enterprise vSphere virtualization product.
Most services run on VM-Linux-based hosts, with some additional services being served from Windows
and Solaris machines.

The instructional computing facility includes over 300 Unix, Linux, and Windows-based machines.
Most of these machines are organized into three laboratories with the remainder being situated in
graduate student offices. The Undergraduate Lab in EMCB 130 includes approximately 90 3200+
gigahertz Athlon-based PCs with 1G of RAM, running Windows XP, and the lab in EMCB 124 has 24
3500+ AMD64 systems with 2G of RAM. The electronic classroom in MEB 3225 contains 30 Pentium-
based PCs arranged into a classroom configuration. The CES/Grad Lab in MEB 3161 contains 15 PCs
based on Athlon 3200+ processors video. Complementing these labs are several specialized resources
dedicated to academic instruction, including a suite of machines made available for student
administration, several specialized hardware and software labs, and a 32-node Linux cluster.

The research computing facility is a heterogeneous mix of over 250 machines, including PC's and Sun-
based hardware. The research computing facility includes major laboratories devoted to computer-aided
design and graphics, computer systems, asynchronous digital systems and VLSI, robotics and vision,
scientific computing and imaging, and information retrieval and natural language processing. These
research laboratories contain a wide array of specialized equipment, including:

• a 600-node network testbed and emulation facility;
• a multi-source nonlinear video editing environment;
• Several Linux clusters, including a 32-node dual-Xeon 2.8G cluster
• a real-time signal processing lab;
• an image analysis lab;
• equipment for various types of custom hardware design;
• a Sarcos Dextrous Arm, Utah/MIT Dextrous Hand, and PUMA 560 robots;
• a Sarcos Treadport locomotion interface, several SensAble Phantom haptic interfaces, Fakespace

Responsive Workbench, nVision Datavisor HiRes, and a variety of position trackers; and
• various 3D-printing facilities.

The College operates a research-scale integrated circuit (IC) fabrication facility that is used extensively
by the School. Equipment for testing and debugging both internally and externally fabricated circuits is
housed in an integrated circuit testing facility that contains state-of-the-art HP, Tektronix and
Micromanipulator automated IC testing equipment.

6.5.2. Scientific Computing and Imaging Institute (SCI) Facilities

The SCI Institute computing facility, which has dedicated machine room space in the Warnock
Engineering Building, includes: Shared memory multi-processor computers, clusters and dedicated
graphics systems.

1. 264 core, 2.8TB shared memory SGI UV 1000 system with Intel X7542 2.67GHz Processors

120

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 6	 Facilities	 and	 Resources	

	
2. 64 node GP-GPU cluster. Each node has 8 cores, 24GB of RAM, with Intel X5550 2.66GHz

processors each node is connected to (32) NVIDIA s1070 Tesla GPU systems nodes are linked
with a 4x DDR Infiniband backbone with dual 10G network connections to SCI core switches.

3. 32 node GP-GPU cluster. Each node has 16 cores, 64GB of RAM with Intel E5-2660 2.20GHz
processors. Each node has 2x Nvidia k20 GPUs with 2 full speed FDR Infiniband connections.
ystem has a total of 128 56Gb/s Infiniband connections.

4. 32 core, 192GB shared memory IBM Linux system with Intel Xeon X7350 3.0GHz processors
This system can also be reconfigured into two separate 16 core systems with 96GB of RAM

5. 64 core, 512GB shared memory HP DL980 G7 with Intel Xeon X7560 2.27GHz processors
6. 4x 80 core, 842GB shared memory HP DL980 G7 with Intel E7- 4870 2.40GHz processors
7. (3) 8 processor (24 cores, 2.5GHz, AMD Opteron with Nvidia Quadro FX 5600 graphics card)

with a dual Gigabit Ethernet backbone and 96GB RAM
8. 8 core, 2.0GHz, AMD Opteron, with Nvidia Quadro (2FX graphics card) with a dual Gigabit

Ethernet backbone and 16GB RAM
9. 6 core Intel Xeon x5650 2.67GHz with 196GB of RAM and 2x c2070 GPUs
10. 8 core Intel Xeon x5570 2.93GHz (16 with HT enable) with 126GB of RAM and c2050 / c2070

GPUs
11. 12 core Intel Xeon E5-2640 2.50GHz with 32GB of RAM and 3x K20c GPUs

In addition, the SCI Institute computing facility contains:

1. An Isilon storage cluster with 13 36NL 36TB storage nodes for a total of 422TB usable space
with 6x dual 10 Gigabit Ethernet links and significant expansion capacity (up to 1PB single
namespace)

2. Dedicated IBM backup server to manage SAN backup system and SL500 robots.
3. IBM 10TB LTO-4 tape library providing backup for infrastructure systems such as email, web,

DNS, and administrative systems
4. 500TB LTO-4 StorageTek SL500 tape library primary backup system
5. 2 fully redundant Foundry BigIron MLX-16 switching cores that provides a Gigabit network

backbone for all HPC computers, servers, and individual workstations connected via Foundry
floor switches

6. Connections to the campus backbone via redundant 10 Gigabit Ethernet links - the first such
attachments on campus

7. A variety of Intel and AMD based desktop workstations running Linux with the latest ATI or
Nvidia graphics cards

8. Numerous Windows 7 desktop workstation
9. Numerous MacPro workstations running OSX 10.8 with 30\textquotedbl{} displays
10. Six Sun quad-core AMD Opteron high availability Linux servers providing core SCI IT services

- website (www.sci.utah.edu), ftp, mail, and software distribution
11. Dedicated version control server with 6TB of local disk space for all SCI code and software

projects
12. UPS power, including 100 minutes of battery backup for critical SCI servers

Power Display Wall: The interactive Power display wall provides users with the ability to explore
2D/3D visualizations on 36 (4 x 9) 27-inch tiled screens at a 133-megapixel resolution with 72GB of

121

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 6	 Facilities	 and	 Resources	

	
graphics memory. The display can be controlled by a computer and/or tablet device either on-site or by
remote collaborators. Its infrastructure was designed to handle massive, terascale data sets from local or
remote sources. Each node of the display wall operates 4 screens and can be configured by the controller
to stream process the data as it is displayed to aid analysis. This is an ideal resource for local and remote
collaborations where users need to examine fine details of large datasets while maintaining the global
context.

Office Space: The SCI Institute houses its faculty and staff in individual offices. Students have
individual desk space equipped with a workstation and located in large, open common areas that
facilitate student collaboration and communication. All workstations are connected to the SCI local area
network via full-duplex Gigabit Ethernet.

University Network: The University is a member of the Internet2 advanced networking consortium. It is
connected to the Internet2 Network via 100 Gigabit Ethernet (100 Gbit per second) initially. The
University, in partnership with the Utah Education Network, has the ability to extend dedicated
wavelengths or dedicated circuits from Internet2 collocated in a Level 3 Communications facility west
of downtown Salt Lake City.

Science DMZ: The University of Utah Science DMZ supports 100Gb/s connectivity through to
Internet2. The Science DMZ is available at both the University Downtown Data Center and on the
campus. The University of Utah is able to bring end users to the DMZ via 10Gb, 40Gb and MPLS
connections. The Science DMZ supports specific segments of departments/institutes requiring high end
performance to end hosts or instruments. By the end of summer 2014, the hardware supporting the
Science DMZ will also allow for emerging Software Defined Network (SDN) technologies at those
performance speeds. A collaboration at the University, including the Center for High Performance
Computing, the Network Operations Center and the School of Computing Flux group, are working to
instrument the hardware with application software developed at the University. This software will allow
for isolated sandboxes and workflow substrates for experiments and different domain sciences
workflows.

6.5.3. Computer Aided Design and Engineering (CADE) Facilities

The College maintains several general purpose computing facilities that are available for use by students
in all of the engineering departments. The Engman lab consists of 97 Windows computers and includes
software such as MATLAB, SolidWorks, Ansys, and a Windows Studio. The Engman teaching lab
contains the same software but is located in a smaller classroom adjacent to the main lab and is used for
instruction. The CADE lab contains 70 Linux workstations which provide access to the CAD tools such
as Cadence, Synopsys, and Mentor Graphics. The CADE lab also has 90 Windows computers that are
available for students to use. One floor down from the CADE lab we provide we maintain 24 Apple Mac
computers that are available for students. Within the last year we have developed a virtual Windows lab
that has up to 40 available computers and is accessible over the Internet.

The College also provides file storage for students, which will persist throughout their time at the
University. We offer many services such as GIT and SVN software repositories, virtual servers for
students that need access to databases or other software that is not normally provided in the labs.

122

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 6	 Facilities	 and	 Resources	

	
6.6. Staff Support

Taking into account the growth within the Computer Science Program, the support provided by the staff
has continued to be of high quality with committed and capable teams in each area. There has been a
mild increase in the number of the supporting staff.

6.6.1. Ethnicity and diversity

Table 6-2: Composition of the front office staff as of Fall 2016

6.6.2. Staff participation and morale

The department has supported members of the team by providing in service events as well as providing
access to conferences for advisors, accountants and grants and contract officers. This provides the
department with well-versed and highly trained group of individuals. We are planning a staff retreat to
allow for more input from staff concerning workload and the efficiency of the department.

Front O�ce Sta↵ Facility Sta↵ Post Docs

Male 2 4 7

Female 11 0 2

Caucasian 11 4 5

Asian 2 0 4

Table 1:

1

123

University	 of	 Utah	 Graduate	 Council	
Program	 Review	

	 School	 of	 Computing:	 6	 Facilities	 and	 Resources	

	
!!!Departmental!Oganizational!Chart!

!!
!

Facility!Organizational!Chart!
!

!

Ross!Whitaker!!9!
Director!

Karen!Feinauer!9!
Admin!Manager!

Chris!Coleman!9!
Communication!

Manager!

Mandi!Peterson!9!
Administrative!
Assistant!

Carter!Johnson!9!
OfCice!Assistant!

Tanis!Garcia!
Grants!and!

Contract!OfCicer!

Chethika!
Wijayawardhana!9!
Senior!Accountant!

Maya!Frost!9!
Accountant!

Shana!Scheibe!9!
Associate!
Accountant!

Sara!Mathis!
Budget!Anaylist!

Kelly!Olson!9!
Advising!

Coordinator!

Vicki!Jackson!
Undergrad!
Advisor!

Leslie!LeFevre!9!
Graduate!Advisor!

Robert!Barber!9!
Graduate!Advisor!

Mike!Kirby!9!
Associate!Director!

Ross!Whitaker!9!
Director!

Mike!Kirby!9!
Associate!
Director!

John!Regehr!9!
Liaison!to!
Facility!

Todd!Green!9!
Systems!

Administrator!!

Chris!Strong!9!
Systems!

Administrator!

Phillip!Shaw!9!
Computer!
Technician!

Scott!Ostrander!
9!Systems!

Administrator!

124

Appendix A: School’s IAB Meeting Agenda

125

SoC Industrial Advisory Board Meeting
January 22, 2016

Agenda

9:00am Breakfast

9:20am Welcome and introductions

9:30am SoC overview Ross Whitaker

9:45am What does a computer scientist look like? Miriah Meyer

10:00am Development of personas

10:45am Break

11:00am Discussion about personas

11:45pm Space needs for SoC growth John LaLonde

12:15pm Lunch (incl. Dean Brown) Dean Rich Brown

1:00pm Retraining program Sneha Kasera

1:30pm Legislature update Galen Murdock

2:00pm Odds and ends

2:15pm CS+X Erik Brunvand

2:45pm Wrapup

3:00pm Depart

126

Appendix B: School’s Career-line Faculty Review Operating
Procedures

127

SoC	 Career-‐line	 Faculty	 Review	 Operating	 Procedures	

(Updated	 Fall	 2014)	

	

On	 an	 annual	 basis,	 all	 Career-‐line	 faculty	 (as	 defined	 under	 UofU	 PPM	 6-‐300)	 will	 be	 evaluated	 before	
reappointment.	 	 The	 evaluation	 will	 follow	 the	 College	 of	 Engineering	 policy,	 placing	 appropriate	 weight	
on	 teaching,	 research	 &	 scholarship,	 and	 service,	 depending	 on	 the	 type	 of	 Career-‐line	 appointment.	 	
The	 evaluation	 documents	 will	 be	 handled	 internally	 within	 the	 School	 of	 Computing.	 	 	

It	 is	 expected	 that	 all	 multi-‐year	 Career-‐line	 faculty	 use	 the	 University	 FAR	 system	 to	 report	 their	
activities	 on	 an	 annual	 basis.	

For	 promotion	 from	 Assistant	 Professor	 to	 Associate	 Professor	 or	 from	 Associate	 Professor	 to	 Full	
Professor,	 the	 College	 of	 Engineering	 RPT	 system	 will	 be	 used.	 	 	

Career-‐line	 Teaching	 Faculty	

On	 an	 annual	 basis,	 Career-‐line	 teaching	 faculty	 members	 should	 provide	 for	 evaluation	 and	
appointment:	

1. A	 letter	 to	 the	 Director	 requesting	 reappointment.	
2. A	 complete	 Curriculum	 Vita	 indicating	 research	 contributions	 (publications),	 courses	 taught,	 and	

service	 to	 the	 School	 of	 Computing,	 College	 of	 Engineering,	 University	 of	 Utah	 and	 external	
service.	

3. A	 list	 of	 courses	 taught,	 enrollments,	 and	 the	 C7/I7	 scores	 (course	 and	 instructor	 efficacy	 scores)	
for	 those	 courses.	
	

The	 evaluation	 will	 be	 administered	 by	 the	 Director	 of	 the	 School	 of	 Computing,	 who	 may	 also	 request	
peer-‐teaching	 evaluations	 of	 each	 faculty,	 and	 a	 recommendation	 for	 reappointment	 will	 be	 made	 prior	
to	 the	 appointments	 faculty	 meeting.	
	
For	 promotion,	 Career-‐line	 teaching	 faculty	 should	 provide	 the	 complete	 College	 of	 Engineering	 RPT	 file,	
which	 includes:	

1. A	 complete	 Curriculum	 Vita	 indicating	 research	 contributions	 (publications),	 courses	 taught,	 and	
service	 to	 the	 School	 of	 Computing,	 College	 of	 Engineering,	 University	 of	 Utah	 and	 external	
service.	

2. A	 teaching	 statement	 which	 describes	 teaching	 philosophy,	 courses	 taught,	 course	 evaluation,	
curriculum	 development	 (new	 courses	 and	 substantial	 changes	 to	 existing	 courses),	 and	 future	
plans	 for	 teaching.	

3. A	 service	 statement	 which	 describes	 service	 philosophy	 (internal	 and	 external),	 service	 roles	
served	 and	 future	 plans	 for	 service.	

4. A	 peer	 teaching	 review	 will	 be	 performed	 by	 Tenure-‐line	 faculty	 as	 described	 in	 the	 RPT	 policy.	 	
These	 reviews	 will	 serve	 as	 reference	 letters	 for	 the	 purposes	 of	 evaluation.	

128

The	 evaluation	 will	 follow	 the	 School	 of	 Computing	 and	 College	 of	 Engineering	 RPT	 process	 and	 be	
conducted	 during	 an	 RPT	 meeting	 in	 the	 Fall.	 	 Exceptions	 to	 the	 timing	 may	 be	 allowed	 by	 the	 Director.	

	

Career-‐line	 Research	 Faculty	 	

On	 an	 annual	 basis,	 Career-‐line	 research	 faculty	 members	 should	 provide	 for	 evaluation	 and	
appointment:	

1. A	 letter	 to	 the	 Director	 requesting	 reappointment.	
2. A	 complete	 Curriculum	 Vita	 indicating	 research	 contributions	 (publications),	 current	 grants,	

grants	 submitted	 and	 not	 funded,	 courses	 taught	 (if	 appropriate),	 and	 service	 to	 the	 School	 of	
Computing,	 College	 of	 Engineering,	 University	 of	 Utah	 and	 external	 service.	

	
The	 evaluation	 will	 be	 administered	 by	 the	 Director	 of	 the	 School	 of	 Computing,	 who	 may	 also	 request	
peer-‐teaching	 evaluations	 of	 each	 faculty	 if	 appropriate,	 and	 a	 recommendation	 for	 reappointment	 will	
be	 made	 prior	 to	 the	 appointments	 faculty	 meeting.	
	
For	 promotion,	 Career-‐line	 research	 faculty	 should	 provide	 the	 complete	 College	 of	 Engineering	 RPT	 file,	
which	 includes:	

1. A	 complete	 Curriculum	 Vita	 indicating	 research	 contributions	 (publications),	 funding,	 courses	
taught,	 and	 service	 to	 the	 School	 of	 Computing,	 College	 of	 Engineering,	 University	 of	 Utah	 and	
external	 service.	

2. A	 research	 statement	 which	 describes	 research	 philosophy,	 research	 accomplishments	 and	
research	 goals.	

3. A	 service	 statement	 which	 describes	 service	 philosophy	 (internal	 and	 external),	 service	 roles	
served	 and	 future	 plans	 for	 service.	

4. A	 proposal	 of	 external	 examiners	 who	 can	 provide	 letters	 of	 recommendation.	 	 The	 Director	 will	
use	 the	 names	 provided	 along	 with	 other	 input	 to	 decide	 the	 final	 set	 of	 recommendations	 to	
request.	

The	 evaluation	 will	 follow	 the	 School	 of	 Computing	 and	 College	 of	 Engineering	 RPT	 process	 and	 be	
conducted	 during	 an	 RPT	 meeting	 in	 the	 Fall.	 Exceptions	 to	 the	 timing	 may	 be	 allowed	 by	 the	 Director.	

	

	

129

Appendix C: School’s Policy Statement on RPT

130

Policy Statement on Retention, Promotion and Tenure

School of Computing
University of Utah

April 2, 2008

1 Background

This document describes the policies and procedures used by the School of Computing relating
to retention, promotion, and tenure of tenure track faculty during their probationary period at the
University of Utah. It also covers policies and procedures relating to promotion of tenured faculty.
University policy as defined in the Policies and Procedures Manual (P&PM) and the College of
Engineering policy also apply.

2 Criteria for Retention, Promotion and Tenure

2.1 Areas

Faculty being considered for retention, promotion and/or tenure will be evaluated in the areas of
research and scholarship, teaching, and service. A candidate’s performance in each area will be
assessed based upon the quality and impact, as well as the number, of accomplishments.

2.1.1 Research and Scholarship

Tenure or advancement in rank requires that the candidate contribute significantly and distinctly to
the development and dissemination of new knowledge through research and publication of research
results. The following will be considered in evaluating a candidate’s research and scholarship
according to accepted publishing patterns in the candidate’s own research area:

• publication of original research papers in refereed technical journals and conference pro-
ceedings;

• the prestige of the journals and conferences and the quality, as well as number of publications
will be considered;

1

131

• publication of research monographs, book chapters, and book reviews;

• presentations at conferences, workshops, colloquia or seminars. Keynote, plenary and in-
vited talks will be noted;

• the ability to attract external funding sufficient to support an effective research program on a
continuing basis; and

• patents issued and software licensed or otherwise distributed.

For tenure and promotion, external letters of evaluation from recognized authorities in the
candidate’s area will play a major role in helping assess the quality and impact of the candidate’s
research and scholarship, and his/her overall professional reputation.

2.1.2 Teaching

All regular faculty members are expected to be accomplished teachers at both the undergradu-
ate and graduate levels. Quality teaching requires depth of pertinent knowledge, ability to inspire
student interest in the subject, logical organization and presentation of the material, and fair and ap-
propriate assessment of student performance. High quality student thesis and dissertation advising
is essential.

Classroom teaching effectiveness is documented through:

• peer and student evaluations;

• development of new courses, improvement of existing courses, and introduction of innova-
tive teaching techniques;

• the variety and nature of courses taught;

• advising of undergraduate student projects;

• publication of textbooks or other teaching materials; and

• teaching awards.

Research-related teaching contributions are evaluated based upon:

• the quality and impact of research undertaken by the candidate’s students;

• the number of graduate students advised;

• the quality and number of publications authored jointly by the candidate and student ad-
visees; and

• evidence of student mentoring outside of formal thesis and dissertation advising roles.

Other evidence of teaching contributions to be considered include external funding for curricu-
lum development, and general impact of the faculty member’s work on educational issues.

2

132

2.1.3 Professional Service

Candidates for tenure or advancement in rank are expected to have contributed significantly to de-
partmental, college and/or university affairs through involvement in faculty governance, commit-
tee service, and other assignments. Participation is also expected in professional service beyond
the university, such as involvement in professional society activities, editorial boards, conference
committees, advisory committees, and reviewing of proposals and publications. Community and
government service activities will also be considered. In addition to the list of service assignments,
the candidate’s effectiveness, leadership and reliability in these roles is expected.

2.2 Evaluation Criteria

The School of Computing is committed to excellence in each of the areas of evaluation. Reviews
should consider the sum of all contributions a candidate has made in teaching, research and service.
To be recommended for promotion or tenure, a candidate should be an outstanding scholar, with
substantial contributions in each of these areas.

Retention is recommended for a tenure-eligible faculty member when there is a reasonable prob-
ability that tenure will be granted at the end of the probationary period. A faculty member
will be retained when s/he is performing well, is making substantial progress, or despite con-
cerns, has a reasonable possibility of meeting the requirements for promotion and tenure. In
order to be tenured or promoted, the candidate will need to address the concerns, deficiencies
and suggestions for improvement noted in the informal and formal reviews. The candidate
should discuss progress on these points with the School Director and the RPT Chair each
year during the probationary period.

Promotion to Associate Professor requires an individual to have: demonstrated substantial achieve-
ment and impact in research and scholarship; demonstrated teaching effectiveness; and per-
formed an appropriate amount of quality service both within the University and in the indi-
vidual’s professional community.

Promotion to Professor requires candidates to have made major creative contributions to their
areas of research and to have had significant impact on their discipline as verified through
their national and international reputations. Promotion to Professor should include evidence
of a demonstrated ability to sustain contributions to the field and to the School of Comput-
ing. High quality teaching and service within the School of Computing and professional
community are required.

Tenure is awarded only to individuals who have demonstrated substantial achievement and future
promise. To be tenured, a candidate must have established a vigorous research program;
be seen by external reviewers as a leading scholar among his/her peers; be an outstanding
teacher; be a responsible faculty member whose conduct has a positive influence on stu-
dents and colleagues, and demonstrate a high likelihood of sustaining contributions. While
it is desirable for faculty members being tenured to have graduated a Ph.D. student, evalu-
ation should focus on a demonstrated competence to mentor and supervise Ph.D. students

3

133

sufficient to indicate the candidate’s ability to consistently produce Ph.D. graduates. The
award of tenure carries an obligation of continued superior performance on the part of the
candidate, for which the University in turn offers a stable environment in which to pursue
excellence in teaching, research and service.

3 RPT Procedures

RPT reviews can be either formal or informal. At the level of the School of Computing, an informal
review contains every aspect of a formal review except that external letters and SAC reports are not
requested. The report of an informal review is placed in the permanent RPT file of the candidate
and sent to the Dean of the College of Engineering.

Unless modified by officially designated credit for prior service elsewhere, the probationary
period for those appointed at the rank of assistant professor is six years and is five years for those
appointed at the ranks of associate professor or professor. All probationary faculty must receive a
formal tenure review by the final year of their probationary period. In addition, all probationary
faculty must receive a formal mid-probationary retention review in their third year of probationary
service.

Additional formal retention reviews will be performed following a majority vote of the RPT
Committee. Subject to the restrictions imposed by PPM, a candidate may request in writing an
early formal promotion and tenure review based on extraordinary progress. An early formal pro-
motion and tenure review must be supported by both the Director of the School and RPT Chair
and a majority vote of the RPT Committee to proceed. The request or vote must occur prior to
the deadline for formal review requests set by the College of Engineering (this date is customar-
ily sometime in the spring semester preceding the academic year in which the formal review is
to be conducted). If the request for promotion and tenure is more than one year earlier than the
normal probationary period, it must also be approved by the dean and the senior vice president for
academic affairs.

Formal promotion reviews for tenured Associate Professors will be done following a written
request of the candidate, assuming that request is submitted prior to the deadline for formal review
requests set by the College of Engineering.

All probationary faculty will be reviewed informally in each year they are not reviewed for-
mally.

3.1 RPT File

It is the responsibility of each faculty member subject to either formal or informal review to ensure
that his or her file contains the necessary, current, and complete documentation required for the
review. As a minimum for both formal and informal reviews, this includes the material listed in
the College of Engineering Instructions for RPT Submissions.

4

134

• The following materials should be compiled and furnished by the candidate for the RPT file
(see the College instructions for details on content).

Curriculum Vita (updated and complete)

Research/Scholarship Data Formal cases will include a signed copy of the OSP fund-
ing report. A research statement describing the candidate’s research vision and goals
should be included.

Service Data This should include information on participation and contributions to con-
ference committees, school of computing, college and university committees, review
panels, editorial duties, and other service roles accomplished.

Publications Faculty undergoing formal review should include copies of selected pub-
lications representing their most important work.

• The following materials will be compiled and put into the RPT file by the School of Com-
puting under the direction of the SoC Director:

Teaching Data: This should include information from the past three years for retention
cases, and information for the entire probationary period for tenure cases. For pro-
motion to Professor, teaching data since the previous promotion (or appointment
if hired as Associate Professor) should be included. If that promotion or appoint-
ment was more than five years earlier, teaching data should be included for at
least the most recent five years.

Peer Teaching Reviews: The RPT subcommittee assigned to the candidate will prepare
peer teaching reviews for the file.

SAC Reviews: For formal RPT files the SoC Director will inform the SACs (UGSAC (Un-
dergraduate Student Advisory Committee) and GradSAC (Graduate Student Advisory
Committee)) of their responsibility to produce a report for the review, the guidelines
for that report, and the timetable for that report’s completion. The SoC Director will
ensure that the SAC reports, if produced according to the timetable, are included in the
file.

External Letters: External letters of evaluation will be included in formal reviews. The
candidate will be asked to provide the names of four suggested reviewers. Letters will
be requested by the Director of the School from all four of the candidate’s suggestions.
The RPT committee will provide names of four or five additional persons from whom
letters will also be requested. The Director may request letters from additional external
reviewers as well. The file will include a sheet that identifies who suggested each of
the names of the external reviewers: the candidate, the RPT committee, or the Director.
It should also contain brief biographical information on each letter writer, sufficient to
provide an indication of the prominence of the letter writer. The names of the additional
reviewers and the biographical information are not given to the candidate. The file
for formal reviews must include a minimum of six substantive letters from evaluators

5

135

outside the University. At least three of these letters must come from individuals not
suggested by the candidate.

In those cases where the candidate has waived his or her rights to access to these letters,
reasonable efforts should be taken by the School of Computing to protect the identity
of those solicited for letters as well as the contents of any response. See the University
Policy and Procedures Manual, PPM 9-5.1 section D.9 for specifics on the form to
waive or not waive the candidate’s right to see the external letters of evaluation. A
signed copy of this form is a required element of the RPT file.

Unsolicited Letters from Interested Parties: Parties interested in the RPT case (former
students, colleagues, coworkers, etc.) may send unsolicited letters to be included in
the candidate’s RPT file. These letters are included in the open portion of the candi-
date’s file.

All RPT Reports from Prior Years: Copies of each of the candidate’s informal and for-
mal RPT committee reports from prior years, along with candidate responses to those
reports, if any. For promotion to Professor, the file shall include the candidate’s
vita at the time of the previous promotion (or at appointment if hired as Associate
Professor), and all reports and recommendations from tenured faculty reviews.

Summary report of RPT Advisory Committee: The summary report lists members present
at the review and is signed by all those committee members. The report summarizes
the substance of the discussion at the RPT meeting and describes the findings and rec-
ommendations of the RPT Advisory Committee. For mid-probationary and informal
reviews, the report should summarize comments from members of the RPT Advisory
Committee concerning areas requiring improvement. If necessary, majority and minor-
ity summaries may appear in the report; however, the language of the report should not
contain any references to other specific and identifiable RPT cases. If disagreements
regarding the report cannot be resolved, dissenting members of the School RPT Advi-
sory Committee will be allowed to add their own statements to the file. The original
document is placed in the file and a copy is sent to the candidate.

School Director’s Response: The response from the Director of the School must state ob-
jective reasons for the decision and should also be a stand-alone document that can be
understood without reference to the candidate’s file. Again, the candidate should be in-
formed clearly of areas where performance needs improvement. The original document
is placed in the file and a copy is sent to the candidate.

3.2 RPT Logistics

RPT actions proceed according to the following logistics:

• The School RPT Committee consists of all regular faculty in the School eligible to vote on
RPT issues as specified in PPM.

6

136

• A school RPT chair is selected from the members of the School’s RPT Committee by vote of
the regular faculty. In accordance with Policies and Procedures, all regular faculty mem-
bers at the rank of professor, associate professor, assistant professor, and instructor shall be
entitled to vote. The RPT chair must be tenured and cannot be the Director of the School.
The selection of the School’s RPT Chair will be done early enough in the Spring semester
prior to formal RPT actions in the following academic year so that subcommittees for formal
reviews may be formed in time to perform Spring Semester peer teaching evaluations.

• The School RPT Chair forms a subcommittee for each candidate being reviewed. Sub-
committees will consist of at least two faculty members for informal reviews and at least
three faculty members for formal reviews. Subcommittee members must be members of the
School’s RPT Committee and eligible to vote on the case, as specified in this document and
PPM 9-5.1 section A.3.a.

For formal reviews, the responsibilities of the subcommittee are:

– Nominate external evaluators for consideration by the full RPT Committee.

– Conduct and report on peer teaching evaluations in both Spring and Fall semesters. All
relevant peer teaching reports must be entered into the candidate’s file at least one week
in advance of the first meeting of the RPT Committee to consider the case, and should
be made available to the candidate for potential written comment by the candidate.

– Prepare a summary of the candidate’s publications and other research and scholarship
accomplishments, along with a qualitative assessment of the journals and conference
proceedings in which the publications appeared. This summary should be produced in
consultation with the candidate, entered into the candidate’s file at least one week in
advance of the first meeting of the RPT Committee to consider the case, and should be
made available to the candidate for potential comment by the candidate.

For informal reviews, the responsibilities of the subcommittee are the same as for formal
reviews, except that no external letters of evaluation are involved.

• Voting in RPT meetings shall always be by open ballot. Absentee voting is permitted ac-
cording to the University Policy and Procedures Manual PPM 9-5.1 section E.4.

• Remote attendance at RPT meetings will be allowed by phone, video conference, or other
remote conferencing technology if there is a majority agreement from the RPT committee
members physically present at the RPT meeting.

• A secretary of each meeting shall be designated by the chairperson of the department RPT
advisory committee and shall take notes of the discussion to provide the basis for developing
a summary. Within one week after completion of deliberations on a candidate, the secretary
shall prepare a draft of the RPT Committee Report, which summarizes the substance of
the discussion and provides the findings and recommendations of the department advisory
committee. This report should be made available to the members of the RPT committee,
after which there will be a five day review period in which the committee members can
review the report and suggest changes.

7

137

• For formal reviews the RPT process proceeds according to the College of Engineering RPT
calendar. Each year the College prepares a calendar listing deadline dates for formal RPT
actions. The School RPT chair will schedule School RPT actions, including the School’s fall
RPT meeting during the time frame specified in the College calendar.

• For informal reviews, the School RPT chair should specify in advance a schedule that is
patterned after the College of Engineering calendar for formal RPT actions, except that the
latest date for final completion of the process should be the last day of classes in the Fall
semester.

8

138

Appendix D: Faculty Curriculum Vitae

139

CURRICULUM VITAE

Rajeev Balasubramonian

rajeev@cs.utah.edu, http://www.cs.utah.edu/˜rajeev

Education:

Ph.D., Computer Science, University of Rochester, August 2003

Dissertation: Dynamic Management of Microarchitecture Resources in Future Microprocessors

Advisor: Prof. Sandhya Dwarkadas (University of Rochester)

Co-advisor: Prof. David Albonesi (Cornell University)

M.S., Computer Science, University of Rochester, May 2000

B.Tech., Computer Science and Engineering, Indian Institute of Technology, Bombay, 1998

Recent Employment:

July 2015 – present. Professor, School of Computing, University of Utah.

July 2009 – June 2015. Associate Professor, School of Computing, University of Utah.

May 2014 – May 2015. Visiting Scholar, HP Labs, Palo Alto.

August 2003 – June 2009. Assistant Professor, School of Computing, University of Utah.

Research Interests:

Computer Architecture: Innovations to improve performance, energy efficiency, reliability, security,

and cost of memory systems and neuromorphic architectures.

Honors and Awards:

Member of the ISCA, MICRO, and HPCA Hall of Fame:

http://pages.cs.wisc.edu/˜arch/www/iscabibhall.html.

http://newsletter.sigmicro.org/micro-hof.txt/view.

http://www.ieeetcca.org/newsletter/hpca-hall-of-fame/.

ISPASS’16 paper on DRAM refresh nominated for a Best Paper award.

HPCA’14 paper on the Sandbox prefetcher selected as a Top Picks Honorable Mention by IEEE

Micro.

IBM Faculty Partnership Award, 2012, 2013.

HP Innovation Research Program Award, 2010, 2011, 2012.

HPCA’10 paper on DRAM caching selected to appear in the Top Picks special issue by IEEE Micro1.

PACT’10 paper on multiple memory controllers selected for a Best Paper award.

1IEEE Micro’s annual Top Picks special issue recognizes a dozen papers as “the year’s most significant research publications in

computer architecture based on novelty and industry relevance”.

1

140

HiPC’09 paper on low-power interconnects selected for a Best Paper award.

MICRO’07 paper on large cache interconnects selected to appear in the Top Picks special issue by

IEEE Micro.

NSF Faculty Early Career Development Award (CAREER), 2006.

Outstanding Teaching Award 2005, School of Computing, University of Utah.

Dean’s teaching commendation letters for CS 7968 Parallel Computer Architecture (Spring 2005)

and CS/ECE 6810 Computer Architecture (Fall 2005, Fall 2008, Fall 2012, Spring 2015) for student

teaching evaluation ratings among the top 15% in the College of Engineering.

Funding:

Total funding: $3,481,227. Total funding as PI: $3,193,936.

Active large grants:

“CSR: Small: Adaptive Brink-of-Failure Memory Architectures for Future Technologies and Work-

loads”, R. Balasubramonian (PI), NSF Award No. CNS-1423583, $499,096, August 2014 - July

2017.

“CSR: Medium: Energy-Efficient Architectures for Emerging Big-Data Workloads”, R. Balasubra-

monian (PI), A. Davis, M. Hall, F. Li, NSF Award No. CNS-1302663, $873,286, July 2013 - June

2017.

Publications:

Only top-tier publications from the last three years are listed.

1. A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams, V.

Srikumar, “ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in

Crossbars,” 43rd International Symposium on Computer Architecture (ISCA-43), Seoul, June 2016.

Acceptance rate: 58/291 (20%). G#

2. M. Shevgoor, S. Koladiya, R. Balasubramonian, S. Pugsley, C. Wilkerson, Z. Chishti, “Efficiently

Prefetching Complex Address Patterns,” 48th International Symposium on Microarchitecture (MICRO-

48), Hawaii, December 2015. Acceptance rate: 61/283 (22%). G#

3. A. Shafiee, A. Gundu, M. Shevgoor, R. Balasubramonian, M. Tiwari, “Avoiding Information Leakage

in the Memory Controller with Fixed Service Policies,” 48th International Symposium on Microar-

chitecture (MICRO-48), Hawaii, December 2015. Acceptance rate: 61/283 (22%). G#

4. C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, Y. Xie, “Overcoming the

Challenges of Crossbar Resistive Memory Architectures,” 21st International Symposium on High-

Performance Computer Architecture (HPCA-21), San Francisco, February 2015. Acceptance rate:

51/226 (23%). #

5. N. Chatterjee, M. O’Connor, G.H. Loh, N. Jayasena, R. Balasubramonian, “Managing DRAM La-

tency Divergence in Irregular GPGPU Applications,” SC’14 – The International Conference for High

Performance Computing, Networking, Storage, and Analysis, November 2014. Acceptance rate:

82/394 (21%). G#

2

141

6. S. Pugsley, J. Jestes, R. Balasubramonian, V. Srinivasan, A. Buyuktosunoglu, A. Davis, F. Li, “Com-

paring Different Implementations of Near Data Computing with In-Memory MapReduce Workloads,”

IEEE Micro Special Issue on Big Data, July/August 2014. G#

7. R. Balasubramonian, J. Chang, T. Manning, J. Moreno, R. Murphy, R. Nair, S. Swanson, “Near-

Data Processing: Insight from a Workshop at MICRO-46,” IEEE Micro Special Issue on Big Data,

July/August 2014. #

8. A. Shafiee, M. Taassori, R. Balasubramonian, A. Davis, “MemZip: Exploiting Unconventional Ben-

efits from Memory Compression,” 20th International Symposium on High-Performance Computer

Architecture (HPCA-20), February 2014. Acceptance rate: 55/215 (26%). G#

9. S. Pugsley, Z. Chishti, C. Wilkerson, T. Chuang, R. Scott, A. Jaleel, S.-L. Lu, K. Chow, R. Bala-

subramonian, “Sandbox Prefetching: Safe, Run-Time Evaluation of Aggressive Prefetchers,” 20th

International Symposium on High-Performance Computer Architecture (HPCA-20), February 2014.

Acceptance rate: 55/215 (26%). #

10. M. Shevgoor, J.-S. Kim, N. Chatterjee, R. Balasubramonian, A. Davis, A. Udipi, “Quantifying the Re-

lationship between the Power Delivery Network and Architectural Policies in a 3D-Stacked Memory

Device,” 46th International Symposium on Microarchitecture (MICRO-46), December 2013. Accep-

tance rate: 39/239 (16%). G#

External Service (top-tier venues only):

• ASPLOS: co-General Chair (2014), Steering Committee (2015, 2016), Program Committee member

(2015, 2016), External Review Committee (2012).

• ISCA: Program Committee member (2012, 2015, 2016), Student Travel Grant Chair (2013), Finance

Chair (2011, 2016), External Review Committee (2010, 2014).

• MICRO: Program Committee member (2008, 2011, 2012, 2015), External Review Committee (2014,

2016).

• HPCA: Program Committee member (2008, 2011, 2014, 2016), Finance Chair (2013), Registration

Chair (2008, 2010), External Review Committee (2015).

University Service:

• Faculty Search Committee: Architecture (Spring 2015, 2016), HCI (Spring 2013, 2015).

• CoE/SoC scholarship committee, Spring 2015, 2016.

• Graduate admissions chair, School of Computing, 2010-2012.

Advising:

Ph.D. Graduates: 8

M.S. Graduates: 9

3

142

Teaching:

CS/ECE 3810 Computer Organization. A required under-graduate course, based on Patterson and

Hennessy’s “Computer Organization and Design”. URL: http://www.cs.utah.edu/˜rajeev/

cs3810/

Years Taught Enrollment Effective Course Rating Effective Instructor Rating

Fall 2006 104 4.98/6.0 (CS), 4.47/6.0 (ECE) 5.18/6.0 (CS), 5.15/6.0 (ECE)

Fall 2015 181 5.03/6.0 5.33/6.0

CS/ECE 6810 Computer Architecture. A required graduate course, based on Hennessy and Patter-

son’s “Computer Architecture: A Quantitative Approach”. The course has used a modified flipped

classroom model in Fall 2012 and Fall 2013. Received Dean’s Teaching Commendation Letter

for student teaching evaluation ratings among the top 15% in the College of Engineering (Fall’05,

Fall’08, Fall’12, Spring’15). URL: http://www.eng.utah.edu/˜cs6810/

Years Taught Enrollment Effective Course Rating Effective Instructor Rating

Fall 2004 36 5.59/6.0 5.66/6.0

Fall 2005 48 5.61/6.0 5.72/6.0

Fall 2007 53 5.40/6.0 5.66/6.0

Fall 2008 50 5.76/6.0 5.82/6.0

Fall 2010 80 5.48/6.0 5.62/6.0

Spring 2012 50 5.37/6.0 5.48/6.0

Fall 2012 30 5.64/6.0 5.75/6.0

Fall 2013 73 5.53/6.0 5.69/6.0

Spring 2015 103 5.60/6.0 5.70/6.0

CS/ECE 7810 Advanced Computer Architecture. An advanced graduate course, based on recent

papers and simulation-based projects. Student class projects have appeared at five ISCA workshops.

URL: http://www.eng.utah.edu/˜cs7810/

Years Taught Enrollment Effective Course Rating Effective Instructor Rating

Spring 2004 4 6.0/6.0 6.0/6.0

Spring 2006 15 6.0/6.0 6.0/6.0

Spring 2009 10 6.0/6.0 6.0/6.0

Spring 2011 15 5.5/6.0 5.67/6.0

Spring 2013 8 5.33/6.0 5.75/6.0

Spring 2014 15 5.4/6.0 5.75/6.0

CS 7940/7937 Architecture Reading Seminar. Organized every semester. URL: http://www.

cs.utah.edu/arch-rd-web/

168 screencasts of my graduate and undergraduate computer architecture classes on YouTube have

collectively received over 735,000 views and 3,100 subscribers worldwide.

4

143

Curriculum Vitae for Professor Martin Berzins
Professional Career

2006- Visiting Professor School of Computing,University of Leeds
2005-10 Director School of Computing,University of Utah
2003-05 Associate Director School of Computing,University of Utah
2003- Professor,School of Computing,University of Utah
2003- Professor,SCI Institute,University of Utah
2001-03 Dean for Research, Faculty of Engineering, University of Leeds
1999-03 Professor of Scientific Computation, School of Computer Studies, University of Leeds
1997 Sabbatical as Visiting Associate Professor, Computer Science

at University of Utah, Salt Lake City, Utah, U.S.A.
1996-99 Reader in Computational PDEs, School of Computer Studies, University of Leeds
1992-96 Senior Lecturer, School of Computer Studies, University of Leeds
1988 Sabbatical as Visiting Associate Professor at R.P.I. Troy, New York, USA
1984-91 Lecturer in Numerical Analysis, School of Computer Studies, University of Leeds
1982-84 Research Fellow, School of Computer Studies, University of Leeds

Topic: Software for Time Dependent P.D.E. Problems
1981-82 Research Fellow, Department of Computer Studies, University of Leeds

Topic: Parallel Processing
1978-81 Ph.D. Chebyshev Polynomial Methods for Parabolic Equations.

Department of Computer Studies, University of Leeds
1975-78 B.Sc. Hons. Maths (II.i), University of Leeds (Year 1-Manchester(II.i))

Research Center Leadership Roles
1996-2003 Co-Founder and Director Computational PDEs Unit University of Leeds.
2012-2022 P.I. and Manager ARL Co-operative Alliance in Multi-scale Material Modeling, $2M per year.
2013-2018 PSAAP2 Center, University of Utah $3.2M per year, Computer Science Lead $1.3M per year.

Address: Scientific Computing and Imaging Institute, 72 S.Central campus Dr. Rm 3750, Salt Lake City Utah 84112.
Phone 801 585 1545, email mb@sci.utah.edu

Professional Bodies.
Fellow of the United Kingdom Institute of Mathematics and Its Applications (IMA) and Chartered Mathematician
(C.Math.)
Member of the SIAM, ACM and IEEE.
Member of NAG Ltd (software company) and member of NAG Inc Board until 2014.

A Motivating Quote.
” For a university should be before all else, and I borrow a favorite remark from Edward Boyle, one-time Secretary of
State for Education and then until his early death Vice-Chancellor of the University of Leeds: A university should be
a place in which teaching is conducted in an atmosphere of research. He would not have objected if the sentence had
been turned on its head. It has a rock-like simplicity...” Richard Hoggart.

1

144

Publications I. Papers in Refereed Journals 2009-2016
[1] Tran L.T. Kim J. and Berzins M. Solving Time-Dependent PDEs using the Material Point Method, A Case Study

from Gas Dynamics. International Journal for Numerical Methods in Fluids 2009 Vol. 62, No. 7, pp. 709–732.
2009.

[2] M. Steffen, R. M. Kirby, M. Berzins, Decoupling and Balancing of Space and Time Errors in the Material Point
Method (MPM), International Journal for Numerical Methods in Engineering, Vol. 82 (10), pp. 1207-1243, 2010.
Published online December 9th 2009

[3] D.Hart, M.Berzins C.E. Goodyer and P.K. Jimack. Using Adjoint Error Estimation Techniques for Elastohydrody-
namic Lubrication Line Contact Problems. International Journal for Numerical Methods in Fluids, Vol. 67. pp1559-
1570, 2011.

[4] M.Berzins Nonlinear data-bounded polynomial approximations and their applications in ENO methods Numerical
Algorithms Volume 55, Issue 2 (2010) , Page 171ff.

[5] J. Luitjens and M.Berzins Parallel regridding algorithms for block-structured adaptive mesh refinement Concur-
rency and Computation, 23, 1522-1537, 2011.

[6] L.T. Tran, M. Berzins. IMPICE Method for Compressible Flow Problems in Uintah, International Journal For
Numerical Methods In Fluids, Vol 69, Issue 5, 926-965, 2012.

[7] H.Lu, M.Berzins, C.E. Goodyer and P.K. Jimack Adaptive High-Order Discontinuous Galerkin Solution of Elasto-
hydrodynamic Lubrication Point Contact Problems Advances in Engineering Software Vol. 45, No. 1, pp. 313–324.
2012. .

[8] M.Berzins Data and range-bounded polynomials in ENO methods Journal of Computational Science. Vol. 4, No.
1-2, pp. 62–70. 2013.

[9] Q. Meng, M. Berzins. Scalable Large-scale Fluid-structure Interaction Solvers in the Uintah Framework via Hy-
brid Task-based Parallelism Algorithms, Concurrency and Computation (accepted 2013).

[10] J. Beckvermit, J. Peterson, T. Harman, S. Bardenhagen, C. Wight, Q. Meng, and M. Berzins. ”Multiscale Mod-
eling of Accidental Explosions and Detonations”, Computing in Science and Engineering, pp76-86, July/August
2013.

[11] A. Dubey and A. Almgren and John Bell and M. Berzins and S. Brandt and G. Bryan and P. Colella and D.
Graves and M. Lijewski and F. Löffler and B. OShea and E. Schnetter and B. Van Straalen and K. Weide”, ”A
survey of high level frameworks in block-structured adaptive mesh refinement packages”, Journal of Parallel and
Distributed Computing, 2014,

[12] A. Humphrey and Q. Meng and M. Berzins and D. Caminha B.de Oliveira and Z. Rakamaric and G. Gopalakr-
ishnan”, Systematic Debugging Methods for Large-Scale HPC Computational Frameworks, Computing in Science
Engineering,16,3,48–56,2014,May.

[13] Q. Meng and M. Berzins, Scalable large-scale fluid-structure interaction solvers in the Uintah framework via
hybrid task-based parallelism algorithms, Concurrency and Computation: Practice and Experience,26,7,1388–
1407,2014,

[14] M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian, A. Humphrey, Q. Meng, J. Schmidt,, C. Wight. Extending
the Uintah Framework through the Petascale Modeling of Detonation in Arrays of High Explosive Devices, In
SIAM Journal on Scientific Computing (Accepted), 2016.

2

145

Publications II. Refereed Confererence Papers and and Parts of Books 2009-2016
[15] J. Luitjens, M. Berzins. Improving the Performance of Uintah: A Large-Scale Adaptive Meshing Computa-

tional Framework, In Proceedings of the 24th IEEE International Parallel and Distributed Processing Symposium
(IPDPS10), Atlanta, GA, pp 1-10. 24 May 2010, ISBN: 978-1-4244-6442-5.

[16] J. Schmidt, M. Berzins. Development of the Uintah Gateway for Fluid-Structure-Interaction Problems, In Pro-
ceedings of the Teragrid 2010 Conference TG’10 , ACM ISBN: 978-1-60558-818-6, 2010.

[17] M. Berzins, J. Luitjens, Q. Meng, T. Harman, C.A. Wight, J.R. Peterson. Uintah - A Scalable Framework for
Hazard Analysis, In Proceedings of the Teragrid 2010 Conference, No. 3, Note: Awarded Best Paper in the Science
Track., ACM, ISBN: 978-1-60558-818-6. 2010.

[18] Q. Meng, J. Luitjens, M. Berzins. Dynamic Task Scheduling for the Uintah Framework, In Proceedings of the
3rd IEEE Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS10), 2010, co-located with
IEEE/ACM Supercomputing 2010.

[19] M. Berzins, Q.Meng, J.Schmidt, J. Sutherland. DAG-Based Software Frameworks for PDEs In Proceedings
of HPSS 2011, M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part I, LNCS 7155, pp. 324333, 2012.
Springer-Verlag Berlin Heidelberg 2012.

[20] Q. Meng, M. Berzins, J. Schmidt. Using hybrid parallelism to improve memory use in Uintah, In Proceedings of
the Teragrid 2011 Conference, Salt Lake City, Utah, ACM, July, 2011.

[21] J. R. Peterson, J. C. Beckvermit, T. Harman, M. Berzins, C.A. Wight Multiscale Modeling of High Explosives
for Transportation Accidents Proceedings of XSEDE12 July 16-20, 2012, Chicago, IL, USA.

[22] Humphrey, A., Meng, Q., Berzins, M., Harman, T. ”Radiation Modeling Using the Uintah Heterogeneous
CPU/GPU Runtime System” Proceedings of XSEDE12 July 16-20, 2012, Chicago, IL, USA. (ACM)

[23] Qingyu Meng, Alan Humphrey and Martin Berzins The Uintah Framework: A Unified Heterogeneous Task
Scheduling and Runtime System Proceedings of The Second International Workshop on Domain Specific Languages
and High-level Frameworks for High Performance Computing (WOLFHPC) 2012, Salt Lake City, November 2012,
ACM.

[24] M. Berzins, J. Schmidt, Q. Meng, A. Humphrey. Past, Present, and Future Scalability of the Uintah Software,
Proceedings of the Extreme Scaling Workshop. University of Illinois at Urbana-Champaign, Champaign, IL, USA.
(Chicago, IL, USA July 15 - 16, 2012) ACM 2013.

[25] D.C.B. de Oliveira, Z. Rakamaric, G. Gopalakrishnan, A. Humphrey, Q. Meng, M. Berzins. Crash Early, Crash
Often, Explain Well: Practical Formal Correctness Checking of Million-core Problem Solving Environments for
HPC, In Proceedings of the 35th International Conference on Software Engineering (ICSE 2013), pp. (accepted).
2013.

[26] Q. Meng, A. Humphrey, J. Schmidt, M. Berzins. Preliminary Experiences with the Uintah Framework on Intel
Xeon Phi and Stampede, In Proceedings of the 2nd Conference of the Extreme Science and Engineering Discovery
Environment (XSEDE 2013). 2013.

[27] M. Hall, J. Beckvermit, C. Wight, T. Harman, and M. Berzins. The Influence of an Applied Heat Flux on the
Violence of Reaction of an Explosive Device, Proc. 2013 XSEDE Conf. 2013.

[28] Q. Meng, A. Humphrey, J. Schmidt and M. Berzins. Investigating Applications Portability with the Uintah DAG-
based Runtime System on PetaScale Supercomputers, Proc. 2013 the International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis (SC’13), pp. (accepted), 2013.

[29] J.R. Peterson, C.A. Wight, M. Berzins. Applying high-performance computing to petascale explosive simu-
lations, In Procedia Computer Science, 2013. (Publication from the International Conference on Computational
Science June 2013, Barcelona,).

[30] J. Schmidt and M. Berzins and J. Thornock and T. Saad and J. Sutherland., ”Large Scale Parallel Solution
of Incompressible Flow Problems using Uintah and hypre”, ”2013 13th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid)”, 458–465,2013.

[31] Z. Fu, H.K. Dasari, M. Berzins, B. Thompson. Parallel Breadth First Search on GPU Clusters, In Proceedings of
the IEEE BigData 2014 Conference, Washington DC, October, 2014.

3

146

[32] S. Kumar, C. Christensen, P.-T. Bremer, E. Brugger, V. Pascucci, J. Schmidt, M. Berzins, H. Kolla, J. Chen, V.
Vishwanath, P. Carns, R. Grout. Fast Multi-Resolution Reads of Massive Simulation Datasets, In Proceedings of
the International Supercomputing Conference ISC’14, Leipzig, Germany, June, 2014.

[33] D.C.B. de Oliveira, A. Humphrey, Q. Meng, Z. Rakamaric, M. Berzins, G. Gopalakrishnan. Systematic De-
bugging of Concurrent Systems Using Coalesced Stack Trace Graphs, In Proceedings of the 27th International
Workshop on Languages and Compilers for Parallel Computing (LCPC), September, 2014.

[34] C. Gritton, M. Berzins, R. M. Kirby. Improving Accuracy In Particle Methods Using Null Spaces and Filters,
In Proceedings of the IV International Conference on Particle-Based Methods - Fundamentals and Applications,
Barcelona, Spain, Edited by E. Onate, M. Bischoff, D.R.J. Owen, P. Wriggers, and T. Zohdi, CIMNE, pp. 202-213.
September, 2015. ISBN: 978-84-944244-7-2

[35] J. K. Holmen, A. Humphrey, M. Berzins. Exploring Use of the Reserved Core, In High Performance Parallelism
Pearls: Multicore and Many-core Programming Approaches, Vol. 2, Edited by J. Reinders and J. Jeffers, Elsevier,
2015.

[36] A. Humphrey, T. Harman, M. Berzins, P. Smith. A Scalable Algorithm for Radiative Heat Transfer Using Reverse
Monte Carlo Ray Tracing, In High Performance Computing, Lecture Notes in Computer Science, Vol. 9137, Edited
by Kunkel, Julian M. and Ludwig, Thomas, Springer International Publishing, pp. 212-230. 2015.

[37] A. Humphrey, D. Sunderland, T. Harman, M. Berzins. Radiative Heat Transfer Calculation on 16384 GPUs
Using a Reverse Monte Carlo Ray Tracing Approach with Adaptive Mesh Refinement, In Accepted - The 17th
IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC 2016),
2016.

[38] Brad Peterson, Harish Kumar Dasari, Alan Humphrey, James C. Sutherland, Tony Saad, Martin Berzins: Re-
ducing overhead in the Uintah framework to support short-lived tasks on GPU-heterogeneous architectures. 5th
International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Com-
puting (WOLFHPC’15), 4:1-4:8 ACM SIGHPC

[39] Brad Peterson, Nan Xiao, John Holmen, Sahithi Chaganti, Aditya Pakki, John Schmidt, Dan Sunderland, Alan
Humphrey, Martin Berzins. Developing Uintahs Runtime System For Forthcoming Architectures Refereered and
selected in competition for the RESPA15 Workshop at SuperComputing15 Conference. Available from the web at
http://respa15.rice.edu/files/2015/11/9-2csbfkt.pdf
Publications III. Reports, Books and Other Contributions, 2009-2016.

[40] D. Reed, M. Berzins, R. Lucas, S. Matsuoka, R. Pennington, V. Sarkar, V. Taylor. OE Advanced Scientific
Computing Advisory Committee (ASCAC) Report: Exascale Computing Initiative Review, 2015. DOI: DOI
10.2172/1222712

[41] Robert M. Kirby, Martin Berzins and Jan S. Hesthaven (Editors), Spectral and High Order Methods for Partial
Differential Equations: Selected Papers from the ICOSAHOM’14 Conference, June 23-27, 2014, Salt Lake City,
UT, USA., Lecture Notes in Computational Science and Engineering, Springer, 2015.

[42] Berzins, M. ”Status of Release of the Uintah Computational Framework”, Technical Report, No. UUSCI-2012-
001, SCI Institute, University of Utah, 2012.

Almost all the publications listed below may be downloaded from
http://www.sci.utah.edu/scipubs.html?groupFilter=SCI

RESEARCH FUNDING 2009 onwards PIs in bold
2009-2013 NSF ≈ $1,000,000 PetaApps MB
2010-2013 DOE ≈ $750,000 Uintah NETL C.R. Johnson
2012-2017 ARL ≈ $16M MSME CRA M.B.
2013-2016 NSF ≈ $700,000 XPS MB
2014-2019 DOE NNSA ≈ $16M PSAAP2 Center P.Smith M.B. CS lead
2016-2017 Naval Res. Lab. Engility ≈ $400K Code Opt. M.B. Mike Kirby
2018-2023 ARL ≈ $16M MSME CRA M.B.

This research from 2010 to 2016 is made possible by about 1 Billion cpu hours of DOE and NSF computer time
awaded under peer review

4

147

http://www.sci.utah.edu/scipubs.html?groupFilter=SCI

School	 of	 Computing,	 University	 of	 Utah	
Salt	 Lake	 City,	 UT-‐84112	

http://www.cs.utah.edu/~bhaskara/	
Email.	 bhaskara@cs.utah.edu	

ADITYA	 BHASKARA	

RESEARCH	
INTERESTS	

Algorithms	 and	 Theoretical	 Computer	 Science	
Machine	 Learning	 and	 Statistics,	 Distributed	 Algorithms	

	

EDUCATION	 PRINCETON	 UNIVERSITY,	 PRINCETON,	 NJ	
Ph.D.	 in	 Computer	 Science	
Thesis:	 Finding	 Dense	 Sub-‐structures	 in	 Graphs	 and	 Matrices	
Advisor:	 Prof.	 Moses	 Charikar	
	
INDIAN	 INSTITUTE	 OF	 TECHNOLOGY,	 BOMBAY,	 INDIA	
Bachelor	 of	 Technology	 in	 Computer	 Science	 and	 Engineering	

Sep	 2007-‐	 Aug	 2012	
	
	
	
	
	
Jul	 2003-‐	 May	 2007	

EMPLOYMENT	 UNIVERSITY	 OF	 UTAH	
Assistant	 Professor,	 School	 of	 Computing	 	
	
GOOGLE	 RESEARCH	 NYC	
Researcher	
Team:	 Large-‐scale	 Graph	 Mining	
	
ECOLE	 POLYTECHNIQUE	 FEDERALE	 DE	 LAUSANNE	 (EPFL)	
Researcher	
	

Jan	 2016-‐present	
	
	
Oct	 2013-‐	 Oct	 2015	
	
	
	
Sep	 2012-‐Aug	 2013	

RESEARCH	
PUBLICATIONS	

Detecting	 High	 Log-‐densities:	 An	 O(n1/4)-‐	 approximation	 for	 Densest	 k-‐subgraph	
(with	 Moses	 Charikar,	 Eden	 Chlamtac,	 Uriel	 Feige	 and	 Aravindan	 Vijayaraghavan)	
ACM	 Symposium	 on	 Theory	 of	 Computing	 (STOC),	 2010.	
	
Approximating	 Matrix	 p-‐norms	
(with	 Aravindan	 Vijayaraghavan)	
ACM-‐SIAM	 Symposium	 on	 Discrete	 Algorithms	 (SODA),	 2011.	
	
Polynomial	 Integrality	 gaps	 for	 strong	 relaxations	 of	 Densest	 k-‐subgraph	
(with	 Moses	 Charikar,	 Venkat	 Guruswami,	 Aravindan	 Vijayaraghavan,	 and	 Yuan	 Zhou)	
ACM-‐SIAM	 Symposium	 on	 Discrete	 Algorithms	 (SODA),	 2012.	
	
Unconditional	 Differentially	 Private	 Mechanisms	 for	 Linear	 Queries	
	 (with	 Daniel	 Dadush,	 Ravishankar	 Krishnaswamy	 and	 Kunal	 Talwar)	 	
ACM	 Symposium	 on	 Theory	 of	 Computing	 (STOC),	 2012.	 	
	
On	 Quadratic	 Programming	 with	 a	 Ratio	 Objective	
(with	 Moses	 Charikar,	 Rajsekar	 Manokaran	 and	 Aravindan	 Vijayaraghavan)	
International	 Colloquium	 on	 Automata,	 Languages	 and	 Programming	 (ICALP),	 2012.	
	
Minimum	 Makespan	 Scheduling	 with	 Low-‐rank	 Processing	 Times	
(with	 Ravishankar	 Krishnaswamy,	 Kunal	 Talwar	 and	 Udi	 Wieder)	
ACM-‐SIAM	 Symposium	 on	 Discrete	 Algorithms	 (SODA),	 2013.	 	
	
Optimal	 Hitting	 Sets	 for	 Combinatorial	 Shapes	
(with	 Devendra	 Desai	 and	 Srikanth	 Srinivasan)	

148

Page	 2	

International	 Workshop	 on	 Randomization	 and	 Computation	 (RANDOM),	 2012.	 	
Invited	 to	 Theory	 of	 Computing,	 2013.	 	
	
Smoothed	 Analysis	 of	 Tensor	 Decompositions	
(with	 Moses	 Charikar,	 Ankur	 Moitra	 and	 Aravindan	 Vijayaraghavan)	 	
ACM	 Symposium	 on	 Theory	 of	 Computing	 (STOC),	 2014.	 	
	
Provable	 Bounds	 for	 Learning	 Some	 Deep	 Representations	
(with	 Sanjeev	 Arora,	 Rong	 Ge	 and	 Tengyu	 Ma)	
International	 Conference	 on	 Machine	 Learning	 (ICML),	 2014.	
	
Uniqueness	 of	 Tensor	 Decompositions	 and	 Identifiability	 in	 Latent	 Variable	 Models	 	
(with	 Moses	 Charikar	 and	 Aravindan	 Vijayaraghavan)	 	
Conference	 on	 Learning	 Theory	 (COLT),	 2014.	 	
	
Centrality	 of	 Trees	 for	 Capacitated	 k-‐Center	
(with	 Hyung-‐Chan	 An,	 Chandra	 Chekuri,	 Shalmoli	 Gupta,	 Vivek	 Madan	 and	 Ola	 Svensson)	 	
Integer	 Programming	 and	 Combinatorial	 Optimization	 (IPCO),	 2014.	 	
Invited	 to	 Mathematical	 Programming.	
	
More	 Algorithms	 for	 Provable	 Dictionary	 Learning	
(with	 Sanjeev	 Arora,	 Rong	 Ge	 and	 Tengyu	 Ma)	 	
Manuscript,	 2014.	 	
	
Distributed	 Balanced	 Clustering	 via	 Mapping	 Coresets	 	
(with	 MohammadHossein	 Bateni,	 Silvio	 Lattanzi	 and	 Vahab	 Mirrokni)	 	
Neural	 Information	 Processing	 Systems	 (NIPS),	 2014.	
	
Optimizing	 Display	 Advertising	 in	 Online	 Social	 Networks	
(with	 Zeinab	 Abbassi	 and	 Vishal	 Misra)	
International	 World	 Wide	 Web	 Conference	 (WWW),	 2015.	 	
	
Sparse	 Solutions	 to	 Nonnegative	 Linear	 Systems	 and	 Applications	
(with	 Ananda	 Theertha	 Suresh	 and	 Morteza	 Zadimoghaddam)	
International	 Conference	 on	 Artificial	 Intelligence	 and	 Statistics	 (AISTATS),	 2015.	 	
	
Expanders	 via	 Local	 Edge	 Flips	
(with	 Zeyuan	 Allen-‐Zhu,	 Silvio	 Lattanzi,	 Vahab	 Mirrokni	 and	 Lorenzo	 Orecchia)	 	
ACM-‐SIAM	 Symposium	 on	 Discrete	 Algorithms	 (SODA),	 2016.	
	
Greedy	 Column	 Subset	 Selection:	 New	 Bounds	 and	 Distributed	 Algorithms	
(with	 Jason	 Altschuler,	 Thomas	 Fu,	 Vahab	 Mirrokni,	 Afshin	 Rostamizadeh	 and	 Morteza	
Zadimoghaddam)	
International	 Conference	 on	 Machine	 Learning	 (ICML),	 2016.	
	
Linear	 Relaxations	 for	 Finding	 Diverse	 Elements	 in	 Metric	 Spaces	
(with	 Mehrdad	 Ghadiri,	 Vahab	 Mirrokni	 and	 Ola	 Svensson)	
Neural	 Information	 Processing	 Systems	 (NIPS),	 2016.	

	

RECENT	 TALKS	
(2014	 –	
PRESENT)	

Provable	 Dictionary	 Learning	 via	 Column	 Signatures	 	
o Theory	 Seminar,	 Carnegie	 Mellon	 University	

	 	 	
Smoothed	 Analysis	 of	 Tensor	 Decompositions	 	

o Theory	 Seminar,	 Rutgers	 university	
o ACM	 Symposium	 on	 Theory	 of	 Computing	 	

	
Jan	 2014	
	
	
Mar	 2014	 	
Jun	 2014	

149

Page	 3	

	
New	 Algorithms	 for	 Unsupervised	 Learning	

o Colloquium,	 University	 of	 California,	 Davis	
	 	 	

Tensor	 Decomposition	 for	 Latent	 Variable	 Models	
o Machine	 Learning	 Seminar,	 Google	 Research,	 Mountain	 View	

	 	
Provable	 Bounds	 for	 Learning	 Some	 Deep	 Representations	

o Machine	 Learning	 Seminar,	 Google	 Research,	 NYC	 	
	

Robust	 Uniqueness	 of	 Tensor	 Decomposition	 and	 Polynomial	
Identifiability	

o Simons	 Institute	 for	 the	 Theory	 of	 Computing,	 UC	 Berkeley	 	
	

Distributed	 Balanced	 Clustering	 via	 Mapping	 Coresets	
o Conference	 on	 Neural	 Information	 Processing	 Systems	 (NIPS)	 	

	
Algorithms	 for	 Parameter	 Estimation	 in	 Mixture	 Models	

o Brown	 University	
o Boston	 University	
o University	 of	 California,	 Irvine	
o University	 of	 Pennsylvania	
o Information	 Theory	 and	 Applications	 (ITA),	 UC	 San	 Diego	 	

	
New	 Algorithmic	 Techniques	 in	 Machine	 Learning	

o University	 of	 Utah	
o University	 of	 California,	 Santa	 Barbara	
o University	 of	 Illinois	 at	 Urbana	 Champaign	
o Georgetown	 University	
o Purdue	 University	
o Simon	 Fraser	 University,	 Canada	

	
Expanders	 via	 Local	 Edge	 Flips	

o Microsoft	 Research	 India	 	
o Workshop	 on	 Social	 Impact	 through	 Network	 Science	

	
Learning	 Gaussian	 Mixtures	 –	 A	 Survey	

o Workshop	 on	 Clustering,	 Indian	 Institute	 of	 Science	 (IISc),	 India	

	
	
Apr	 2014	
	
	
Jun	 2014	
	
	
Aug	 2014	
	
	
	
Oct	 2014	
	
	
Dec	 2014	
	
	
Oct	 2014	
Dec	 2014	
Jan	 2015	
Jan	 2015	
Feb	 2015	
	
	
Feb	 2015	
Feb	 2015	
Feb	 2015	
Mar	 2015	
Mar	 2015	
Mar	 2015	
	
	
Dec	 2015	
Jun	 2016	
	
Dec	 2015	

PROFESSIONAL	
SERVICE	

Recent	 program	 committees:	 	
o International	 Conference	 on	 Machine	 Learning	 (ICML)	 2016	 	
o Conference	 on	 Neural	 Information	 Processing	 Systems	 (NIPS)	 2016	

Recent	 conference	 reviewing	 (2014	 -‐	 present):	
o ACM-‐SIAM	 Symposium	 on	 Discrete	 Algorithms	 (SODA)	 2016	 	
o ACM	 Symposium	 on	 Theory	 of	 Computing	 (STOC)	 2015	
o Conference	 on	 Learning	 Theory	 (COLT)	 2015	
o International	 World	 Wide	 Web	 Conference	 (WWW)	 2015	
o European	 Symposium	 on	 Algorithms	 (ESA)	 2015	
o International	 Workshop	 on	 Randomization	 and	 Computation	 (RANDOM)	 2015	
o International	 Workshop	 on	 Approximation	 Algorithms	 (APPROX)	 2015	
o IEEE	 Symposium	 on	 Foundations	 of	 Computer	 Science	 (FOCS)	 2014	
o ACM-‐SIAM	 Symposium	 on	 Discrete	 Algorithms	 (SODA)	 2014	

150

Page	 4	

Recent	 journal	 reviewing	 (2014	 -‐	 present):	
o Journal	 of	 Machine	 Learning	 Research	 (JMLR)	 2015	 	
o Mathematics	 of	 Operations	 Research	 (MOR),	 2016	 	
o IEEE	 Transactions	 in	 Signal	 Processing,	 2015	 	
o Combinatorica,	 2015	 	
o ACM	 Transactions	 on	 Algorithms	 (TALG),	 2015	 	
o ACM	 Transactions	 on	 Database	 Systems	 (TODS),	 2015	 	

TEACHING	 University	 of	 Utah	
o CS	 6968:	 Techniques	 in	 Algorithms	 and	 Approximation	
o CS	 6150:	 Advanced	 Algorithms	
o CS	 7931:	 Seminar:	 Large	 Scale	 Machine	 Learning	

Princeton	 University	
o COS	 487:	 Theory	 of	 Computation	
o COS	 126:	 General	 Computer	 Science	

	
Spring	 2016	

Fall	 2016	

Fall	 2016	

	
Fall	 2008	

Spring	 2009	

	 	 	

	 	 	

	

151

Mahdi Nazm Bojnordi
Assistant Professor, School of Computing, University of Utah
Address: 50 S. Central Campus Drive, Rm. 3418, Salt Lake City, UT 84112
E-Mail: bojnordi@cs.utah.edu – URL: http://www.cs.utah.edu/~bojnordi/

Research Interests

Computer architecture, novel memory technologies, and energy-efficient computing.

Education

Ph.D. in Electrical and Computer Engineering
Dissertation: Memory System Optimizations for Energy and Bandwidth Efficient
Data Movement

University of Rochester
2010 - 2016

M.Sc. in Electrical and Computer Engineering
Thesis: Design and Implementation of Efficient Algorithms for Video Coding

University of Tehran
2003 - 2006

B.Sc. in Computer Science and Engineering
Project: Designing Synchronous Communication Schemes using VHDL

Shiraz University
1999 - 2003

Honors and Awards

• HPCA 2016 Distinguished Paper Award 2016

• IEEE Micro Top Picks in Computer Architecture 2013

• Samsung Best Paper Award 2012

• Grant Award for Master Thesis from Iran Telecommunication Research Center 2005

• First rank among all graduating CSE students, Shiraz University 2003

Professional Experience

School of Computing, University of Utah
Assistant Professor

Salt Lake City, USA
2016 - present

Samsung Information Systems America
Summer Intern

San Jose, USA
2012 - 2012

SINA Microelectronics
System Design Engineer

Tehran, Iran
2009 - 2010

NAJI Research and Development
Hardware Design Engineer

Tehran, Iran
2007 - 2009

SINA Microelectronics
Design and Verification Engineer

Tehran, Iran
2004 - 2007

Teaching Experience

University of Utah
CS/ECE 6810: Computer Architecture

Salt Lake City, USA
Fall 2016

CE Department, Qazvin Islamic Azad University
Fundamentals of Computers, Advanced Programming, Computer Architecture

Qazvin, Iran
2009 - 2010

CE Department, School of Virtual University, Shiraz University
Data Structures, Assembly and Machine Languages, Scientific and Technical Presen-
tation

Shiraz, Iran
2009 - 2010

CE Department, Elmi-Karbordi University
Computer Architecture, Microprocessors

Tehran, Iran
Fall 2008

Mahdi Nazm Bojnordi — Curriculum Vitae — August 17, 2016 Page 1 of 3152

http://www.cs.utah.edu/~bojnordi/

CE Department, Shiraz University (International Branch)
Data Structures, Data Communications, Design of Compilers, Theory of Machines
and Languages, Object Oriented Programming (JAVA), Design and Implementation
of Programming Languages, Advanced Programming (C)

Shiraz, Iran
2007 - 2008

Publications

— Ph.D. Research at the University of Rochester —

1. M.N. Bojnordi, E. Ipek, Memristive Boltzmann Machine: A Hardware Accelerator for Combinatorial Opti-
mization and Deep Learning, International Symposium on High Performance Computer Architecture (HPCA),
2016. Distinguished Paper Award.

2. M.N. Bojnordi, E. Ipek, DESC: Energy-Efficient Data Exchange using Synchronized Counters, International
Symposium on Microarchitecture (MICRO), 2013.

3. M.N. Bojnordi, E. Ipek, A Programmable Memory Controller for the DDRx Interfacing Standards, ACM
Transactions on Computer Systems (ACM TOCS), 2013. Invited paper.

4. M.N. Bojnordi, E. Ipek, Programmable DDRx Controllers, IEEE Micro Special Issue: Top Picks from 2012
Computer Architecture Conferences (IEEE MICRO TOP PICKS), 2013.

5. M.N. Bojnordi, E. Ipek, PARDIS: A Programmable Memory Controller for the DDRx Interfacing Standards,
International Symposium on Computer Architecture (ISCA), 2012. Selected by IEEE Micro as one of the 11
most significant research papers of 2012 based on novelty and potential for long term impact.

6. Y. Bai, Y. Song, M.N. Bojnordi, A. Shapiro, E.G. Friedman, E. Ipek, Back To the Future: Current-Mode
Processor in the Era of Deeply Scaled CMOS, Transactions on Very Large Scale Integration Systems (TVLSI),
2015.

7. S. Wang, Y. Song, M.N. Bojnordi, E. Ipek, Enabling Energy Efficient Hybrid Memory Cube Systems with
Erasure Codes, International Symposium on Low Power Electronics and Design (ISLPED), 2015.

8. Y. Song, M.N. Bojnordi, E. Ipek, Energy-Efficient Data Movement with Sparse Transition Encoding, Inter-
national Conference on Computer Design (ICCD), 2015.

9. Y. Bai, Y. Song, M.N. Bojnordi, A. Shapiro, E. Ipek, E.G. Friedman, Architecting a MOS Current Mode
Logic (MCML) Processor for Fast, Low Noise and Energy-Efficient Computing in the Near-Threshold Regime,
International Conference on Computer Design (ICCD), 2015.

— M.Sc. Research at the University of Tehran —

10. M.N. Bojnordi, O. Fatemi, M.R. Hashemi, An Efficient Deblocking Filter with Self-transposing Memory Ar-
chitecture For H.264/AVC, International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2006.

11. M.N. Bojnordi, M.R. Hashemi, O. Fatemi, A Fast Two Dimensional Deblocking Filter for H.264/AVC Video
Coding, Canadian Conference on Electrical and Computer Engineering (CCECE), 2006.

12. M. Hosseinabady, A. Banaiyan, M.N. Bojnordi, Z. Navabi, A concurrent testing method for NoC switches,
Design, Automation, and Test in Europe Conference (DATE), 2006.

13. N. Sedaghati, M.N. Bojnordi, S.M. Fakhraie, MDST: Multiprocessor DSP Simulation Toolkit for Voice
Processing Applications, International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2007.

14. M. Hosseinabady, M.N. Bojnordi, A. Banayian, Z. Navabi, An Efficient Online BIST Architecture for NoCs
, European Test Symposium (ETS), 2006.

15. M.N. Bojnordi, O. Fatemi, M.R. Hashemi, Dual Mode Architecture for Deblocking Filtering in H.264/AVC
Video Coding, Asia Pacific Conference on Circuits and Systems (APCCAS), 2006.

16. M.N. Bojnordi, O. Fatemi, M. Semsarzadeh, M.R. Hashemi, Efficient Hardware Implementation for
H.264/AVC Motion Estimation, Asia Pacific Conference on Circuits and Systems (APCCAS), 2006.

17. M.N. Bojnordi, N. Sedaghati, O. Fatemi, M.R. Hashemi, An Efficient Self-Transposing Memory Structure
for 32-bit Video Processors, Asia Pacific Conference on Circuits and Systems (APCCAS), 2006.

18. M.N. Bojnordi, N. Moezzi-Madani, M. Semsarzadeh, A. Afzali-Kusha, An Efficient Clocking Scheme for
On-Chip Communications, Asia Pacific Conference on Circuits and Systems (APCCAS), 2006.

19. M.N. Bojnordi, N. Sedaghati, S.M. Fakhraie, A Self-testing Fully Pipelined Implementation for the Advanced
Encryption Standard, International Conference on Microelectronics (ICM), 2005.

20. N. Sedaghati, M.N. Bojnordi, A. Hormati, S.M. Fakhraie, Efficient modeling of VLIW DSP processors,
Communications in Computer and Information Science (CCIS), 2008.

Mahdi Nazm Bojnordi — Curriculum Vitae — August 17, 2016 Page 2 of 3153

21. N. Sedaghati, M.N. Bojnordi, A. Farmahini-Farahani, M. Mousavinejad, S.M. Fakhraie, Simulation of Voice
Processing Applications through VLIW DSP Architectures, International Conference on Electronics, Circuits
and Systems (ICECS), 2007.

22. M.N. Bojnordi, O. Fatemi, M.R. Hashemi, Implementing an Efficient Encryption Block for MPEG Video
Streams, International Symposium on Electronics in Marine (ELMAR), 2005.

Patent Applications

1. A.S. Jagatheesan, Z. Li, M.N. Bojnordi, J. Lee, Application defined computing component configuration, US
Patent Number 2014/0108773, 2014.

2. M.N. Bojnordi, E. Ipek, A.S. Jagatheesan, Programmable Memory Controller, US Patent Number
2013/0282972, 2013.

Presentations

Memory System Optimizations for Energy and Bandwidth Efficient Data Movement

• Electrical and Computer Engineering Department, University of Central Florida, Or-
lando, FL

3/24/2016

• Electrical and Computer Engineering Department, University of Wisconsin, Madison,
WI

3/14/2016

• School of Computing, University of Utah, Salt Lake City, UT 3/7/2016

• Laboratory for Laser Energetics, University of Rochester, Rochester, NY 3/4/2016

• Computer Systems Lab, Cornell University, Ithaca, NY 3/3/2016

Memory System Architecture for RSFQ Processors
• BBN Workshop on Cryogenic Memory Systems, Hayannis, MA 6/29/2015

DESC: Energy-Efficient Data Exchange using Synchronized Counters
• International Symposium on Microarchitecture, Davis, CA 12/10/2013

PARDIS: A Programmable Memory Controller for the DDRx Interfacing Standards
• International Symposium on Computer Architecture, Portland, OR 6/9/2012

Service

Reviewer for TC11, TVLSI12, Micro12, Micro16, CAL12, TACO13, TACO14, ASPLOS11, DAC15, HotPar15,
HPCA12, HPCA13, HPCA15, HPCA16, ICCD11, ICCD13, ICS’16, ISCA12, ISCA13, ISCA14, ISCA15, ISCA16,
ISPASS12, MICRO11, MICRO12, MICRO13, MICRO14, MICRO15

Mahdi Nazm Bojnordi — Curriculum Vitae — August 17, 2016 Page 3 of 3154

Erik Brunvand
Biographical Sketch

School of Computing
50 S. Central Campus Dr., Rm MEB 3190 801-581-4345
University of Utah www.cs.utah.edu\˜elb
Salt Lake City, UT 84112 elb@cs.utah.edu

I am an Associate Professor of Computer Science at the University of Utah, Salt Lake City, where my research
and teaching interests include the design of application-specific computers, graphics processors, asynchronous
systems, and VLSI integrated circuit design. I have also spent time as a visiting scholar in the Digital Arts and
Experimental Media (DXARTS) program at the University of Washington (2012), and developed collaborative
arts/tech classes at the University of Utah.

Professional Preparation

University of Utah Computer Science, and Mathematics BS(2), 1982
University of Utah Computer Science M.S., 1984
Carnegie Mellon University Computer Science Ph.D, 1991

Professional Appointments

University of Utah University Professor 2014-2016
University of Utah Director, Computer Engineering Program 2003-2006, 2009-2012, 2015-present
University of Utah Associate Professor, School of Computing 1996 - present
University of Utah Adjunct Associate Professor, ECE Department 1996 - present
University of Utah Assistant Professor, School of Computing 1990-1996
University of Washington Visiting Professor, DXARTS Program 2012
Columbia University Visiting Professor, Computer Science 2006

Selected Recent Publications
Complete list includes 1 book, 12 journal articles, and 77 refereed conference publications

E. Brunvand, “CS+X: Cross Campus Collaborations,” SIGGRAPH 2016 (panel), Jul, 2016.

D. Kopta, K. Shkurko, J. Spjut, E. Brunvand, A. Davis. “Memory Considerations for Low-Energy Ray
Tracing,” Computer Graphics Forum, Vol34, No. 1, Feb 2015

E. Brunvand, “Kinetic Sculptures: Creating Programmable Art,” SIGGRAPH 2015, Aug. 2015.

E. Brunvand, “A Noise-Based Curriculum for Technological Fluency,” SIGGRAPH 2015, Aug. 2015.

E. Brunvand, “Technological Fluency through Circuit Bending,” International Conference on Microelec-
tronic Systems Education, Pittsburgh, PA, May 2015.

E. Brunvand, “Speculatorum Oculi,” Leonardo, Vol 47, No. 4, Aug 2014

E. Brunvand, N. Chatterjee, D. Kopta, “Why Graphics Programmers Need to Know about DRAM,” SIG-
GRAPH 2014 (course), Vancouver, B.C., Canada.

E. Brunvand, S. Brunvand, “Drawing Machines: An Arts and Engineering Collaboration,” NAEA confer-
ence, San Diego, CA, Mar 2014

E. Brunvand, “Lights Speed Action: Fundamentals of physical computing for programmers,” SIGGRAPH
2013, Aug. 2013.

D. Kopta, K. Shkurko, J. Spjut, E. Brunvand, A. Davis, “An Energy and Bandwidth Efficient Ray Tracing
Architecture,” in High-Performance Computer Graphics (HPG 2013), July 2013.

Konstantin Shkurko, Thiago Ize, Christiaan Gribble, Erik Brunvand, and Lee Butler, “Simulating Radio
Frequency Propagation via Ray Tracing,” GPU Technology Conference, March 2013.

D. Kopta, T. Ize, J. Spjut, E. Brunvand, A. Davis, A. Kensler, “Fast, Effective BVH Updates for Animated
Scenes,” Symposium on Interactive 3D Graphics and Games (I3D), Mar, 2012.

1155

Joseph Spjut, Daniel Kopta, Erik Brunvand, Al Davis, “A Mobile Accelerator Architecture for Ray Tracing,”
Workshop on SoCs, Heterogeneous Arch. and Workloads (SHAW-3), Feb 2012.

E. Brunvand, “Games as Motivation in Computer Design Courses: I/O is the Key,” SIGCSE, Dallas, March
2011.

E. Brunvand, P. Stout, “Kinetic Art and Embedded Systems: A Natural Collaboration,” SIGCSE, Dallas,
March 2011.

Erik Brunvand, Digital VLSI Chip Design with Cadence and Synopsys CAD Tools, Addison-Wesley, 2010.

D. Kopta, J. Spjut, E. Brunvand, A. Davis, “Efficient MIMD Architectures for High-Performance Ray
Tracing,” International Conference on Computer Design (ICCD), Oct 2010.

D. Nellans, K. Sudan, E. Brunvand, R. Balasubramonian, “Improving Server Performance on Multi-Cores
via Selective Off-loading of OS Functionality, LNCS 2010

D Nellans, K. Sudan, E. Brunvand, R. Balasubramonian, “Hardware Prediction of OS Run-Length for
Fine-Grained Resource Customization,: ISPASS, March 2010.

D. Kopta, J. Spjut, and E. Brunvand, “Grid-based Ray Tracing with CUDA,” ACM/Eurographics High
Performance Graphics, New Orleans, August 2009.

J. Spjut, A. Kensler, and E. Brunvand, “Hardware-Accelerated Gradient Noise for Graphics,” ACM Great
Lakes Conference on VLSI (GLSVLSI09), May 2009.

J. Spjut, A.Kensler, D. Kopta, and E. Brunvand, “TRaX:, A Multicore Hardware Architecture for Real-Time
Ray Tracing,” IEEE Transacations on CAD, Vol 28, n12, Dec 2009.

David Nellans, Rajeev Balasubramonian, and Erik Brunvand, “OS Execution on Multi-Cores: Is Out-
Sourcing Worthwhile?” ACM Operating Systems Review, Vol 43, No. 2, April 2009.

Academic Activities

Selected Recent Conference Organization/Keynotes:

VLSI Design conference: Keynote speaker, 2016 (Kolkata, India)
GLSVLSI: Keynote speaker, 2015 (Pittsburgh, PA)
IFIP/IEEE Intl. Conference on VLSI: Keynote speaker 2012 (Santa Cruz, CA)
IEEE Symposium on Asynchronous Circuits and Systems: Program Chair 1994 (Salt Lake City),
General Chair 2001 (Salt Lake City), General Chair 2011 (Cornell, NY), Chair of Steering Committee
1994—2008, Member of Steering Committee 2008 — present.
Great Lakes Symposium on VLSI (GLSVLSI): Program Chair: 2010 (Providence, RI), General Chair
2012 (Salt Lake City), Member of Steering Committee 2010 — present.
Conference on Advanced Research on VLSI: General Chair 2001 (Salt Lake City).
Member of program committee for many conferences including: IEEE Symposium on Interactive
Ray Tracing, ACM High Performance Graphics, IEEE Symposium on Asynchronous Circuits, SIG-
GRAPH, Eurographics, GLSVLSI, ACM I3D.

Teaching - Regular courses taught include the following:

CS2050: Making Noise - Sound Art and Digital Media
CS3700 / 3710: Digital Hardware Fundamentals, Computer Design Lab
CS3992 / 4710: Computer Engineering Project Planning, and Senior Project
CS5789: Embedded Systems and Kinetic Art (cross listed with Art 4455)
CS6710 / 6712: Digital VLSI Integrated Circuit Design, Digital VLSI Testing

Selected Teaching Honors and Awards

Two-year University Professorship, University of Utah, 2014-2016.
School of Computing Outstanding Teaching Award, 2012.
Dee Fellowship for interdisciplinary course in arts and technology, Fall 2011 - Spring 2012
University of Utah John R. Park Fellowship, 2006
Nominated for Utah Engineers Council, Utah Engineering Educator of the Year award, 2003.
University of Utah Distinguished Teaching Award, 2002

2156

College of Engineering Outstanding Teaching Award, 1997

Recent Course Develpopment Activities

Developed general education course on technological fluency: Making Noise: Sound Art and Digital
Media (CS/UGS 2050)
Co-developed a collaborative course with a colleague (Paul Stout) in the Art Department at the Uni-
versity of Utah - Embedded Systems and Kinetic Art (CS5789)
Received $25,000 equipment grant for installation of laser cutter in the Computer Engineering Senior
Hardware Lab.
Received $8,000 equipment grant for installation of surface mount soldering equipment for the Com-
puter Engineering Senior Hardware Lab.

Selected Recent Funded Research

Architectures for Energy Efficient Ray Tracing, National Science Foundation, Oct 2014 - Sep 2018
($899,992) Co-PI: Cem Yuksel
University Professorship, Undergraduate College, University of Utah, Aug 2014 - Jul 1016 ($35,000)
University Teaching Assistantship (supporting Nina McCurdy), University of Utah, Aug 2015 - Jul
2016 ($15,000)
Recent Past Projects
Radio Frequency Ray Tracing, Army Research Labs (ARL), Sep 2012 - Sep 2013 ($85,000)
The Big Draw: Art and Engineering Collaboration, Council of Dee Fellows, Aug 2011 - Jul 2012
($8,400) PI: Paul Stout
Flexible Architectures for Future Graphics Processing Systems, National Science Foundation, Aug
2010 - Jul 2014 ($499,709) Co-PI: Al Davis
University Teaching Assistantship (supporting Josef Spjut), University of Utah, Aug 2010 - July 2011
($15,000)
Radio Frequency Ray Tracing Evaluation, Army Research Labs (ARL), Feb 2011 - May 2011 ($37,384)
Hardware Support for Real Time Ray Tracing, National Science Foundation, June 2006 - June 2010
($505,382) Co-PIs: Al Davis, Peter Shirley, Steve Parker
Ray Trace Applications to Radio Frequency (RF) Propagation, Army Research Labs (ARL), Sep 2007
- Dec 2008 ($140,087)
High-Performance Asynchronous Computer Architecture, National Science Foundation, Sep 2002 -
Jul 2006 ($325,000)

Students

Current Ph.D. Students - Konstantin Shkurko, Tim Grant.
Graduated Ph.D. students - Daniel Kopta, David Nellans, Josef Spjut, John Hurdle, Luli Josephson
(M.Phil.), Ajay Khoche, William Richardson, Jung-Lin Yang

Selected Recent University Service

University Teaching Committee (Chair 2015–present, 2001–2005, Member 2013–2014)
Graduate School Review Committee for the Department of Film and Media Studies, 2014.
Creative Campus Steering Committee 2012–2014
University Research Committee, 2006–2009
College of Engineering Curriculum Committee, 2011 - present
Director, Computer Engineering Program (an ABET-accredited BS degree granting program in the
College of Engineering), 2002–2005, 2009–2012, 2015–present.
School of Computing - Director, Computing Track in Computer Engineering, 2007–present
School of Computing - Director, Computing Track in Digital Media, 2011–2014
School of Computing Curriculum Committe, 2011–present
School of Computing Scholarship Committee, 2014–present
School of Computing Director of Graduate Studies, 2006–2008
School of Computing Graduate Admissions Committee, 2008–present

3157

Curriculum Vitae
ELAINE COHEN

June 2016

EDUCATION
Ph.D., Mathematics, Syracuse University, 1974
M.S., Mathematics, Syracuse University, 1970
B.A., Mathematics, Vassar College, 1968

EMPLOYMENT
Spring 2014 Visiting Professor, Institute for Computational Engineering and Science, Univ. of
 Texas, Austin
Fall 2013 Visiting Professor, Department of Aeronautics and Astronautics, MIT
1/07 to 3/07 Visiting Professor, Center of Mathematics for Applications, University of Oslo, Oslo,
11/06 Visiting Professor, Department of Mechanical & Aerospace Engineering, Arizona

State University State University
9/06 – 6/07 Visiting Professor, Computer Science, University of North Carolina – Chapel Hill
7/04-6/07 Adjunct Professor, Mechanical Engineering, University of Utah
Winter 00: Visiting Professor, Department of Informatikk, University of Oslo, Norway
Fall 99: Visiting Professor, Department of Computer Science, Technion, Israel.
Since 1991 : Professor of Computer Science, University of Utah
7/85 to 6/91: Associate Professor of Computer Science, University of Utah
7/85 to 6/91: Adjunct Associate Professor of Mathematics, University of Utah
Winter 86: Visiting Professor, Department of Informatikk, University of Oslo, Norway
7/85 to 6/86: Visiting Associate Professor of Civil Eng and Computer Science,Princeton University
7/82 to 6/85: Research Associate Professor of Computer Science, University of Utah
7/82 to 6/85: Adjunct Associate Professor of Mathematics, University of Utah
1/79 to 7/79: Visiting Research Scientist, Central Inst. for Industrial Research, Oslo, Norway
9/78 to 12/78: Visiting Assistant Professor of Computer Science, Carnegie-Mellon University
7/74 to 6/82: Research Assistant Professor of Computer Science, University of Utah
7/74 to 6/82: Adjunct Assistant Professor of Mathematics, University of Utah

SKETCH
Cohen has co-headed The Geometric Design and Computation (GDC) Research Group for
approximately 30 years. She has focused her research in geometric computation methods and
algorithms, computer graphics, geometric modeling, and manufacturing, and isogeometric analysis
with emphasis on complex sculptured models represented using NURBS (Non-Uniform Rational B-
splines) and NURBS-features. Results in manufacturing research focused on automating process
planning, automatic toolpath generation for models having many surfaces, optimizing both within and
across manufacturing stages and fixture automation. Research in haptics focused on realistic force
feedback in distributed haptic systems for complex mechanical models. Algorithms for proximity
include developing new approaches to solving geometric computations such as fast and accurate
contact and tracking algorithms for sculptured models and determining accessibility of one object by
another. Isogeometric analysis related research has been aimed at parameterizing, fitting, modeling,
and querying 3D (volumetric) models, and investigating the appropriateness of specific technical
design approaches for various simulations.

PROFESSIONAL ACTIVITIES
Editorial Board member: Graphical Models, 2010 -

158

Selected Research Organization Committees
Conference co-Chair, Geometric Modeling and Processing (GMP), 2015.
Chair, SIAM Special Interest Group on Geometric Modeling, 1/2013-2/2015.
Conference Chair, SIAM/SMA Solid and Physical Modeling 2013.
Organizer and Chair of Steering Committee, “Workshop on Research Challenges in Computer

Graphics”, sponsored by the National Research Council, Computer Science and Telecollaboration
Board, Dec. 2003.

Selected Program Committee Membership
Solid and Physical Modeling, 2016; Geometric Modeling and Processing, 2016; SIAM/SMA Solid
and Physical Modeling, 2015; Solid and Physical Modeling, 2014; Solid and Physical Modeling
Conference, 2012; Geometric Modeling and Processling (GMP) Conference, 2012; SIAM/ACM Joint
Conference on Geometric and Physical Modeling, 2011; ACM Siggraph Symposium on Interactive
Graphics & Games, 2012, 2011, 2010,2009,2007, 2005

Advisory Committees
Member, Scientific Committee, Mathematical Methods for Curves and Surfaces 2016, Tonsberg,

Norway, 2015-2016.
Chair, Army Research Office Board of Visitors: Review of all Computer Science Programs, 2014.
Invited Participant, ISAT/DARPA Workshop-Rethinking CAD, October 2013.
Chair, Society for Industrial and Applied Mathematics (SIAM) Activity Group on Geometric Design,

2013-2014.
Executive Committee, Solid Modeling Association, 2008-2012
Army Research Office Board of Visitors: Review of all Computer Science Programs, 2012.
Member, Program Review Committee for the Department of Computer Science, University of North

Carolina-Chapel Hill, 2009.
Member, National Research Council, Computer Science and Telecommunications Board, 1999-2004.
Member, Board of Directors, Engineering Geometry Systems, 1995-2005.

Member
Association for Computing Machinery, Society for Industrial and Applied Mathematics

HONORS
2016 Pioneer Award, Solid Modeling Association
2014 John Gregory Memorial Award Schloss Dagstuhl, "in appreciation for Outstanding

Contributions in Geometric Modeling"
Keynote speaker, Advances in Computational Mechanics, A Conference Celebrating the 70th Birthday

of Thomas J. R. Hughes, Invited Symposium on Geometric Modeling and Mesh Generation for
FEM and Isogeometric Analysis, Feb. 24-27, 2013.

Best paper finalist: 2011 SIAM Conference of Geometric and Physical Modeling.
2009 Bezier Award for Solid, Geometric and Physical Modeling and Applications, from the Solid

Modeling Association;
Best paper award: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling
Best paper award: 2008 ACM Solid and Physical Modeling Symposium;
University of Utah Distinguished Research Award, May 2001.
Selected as one of 50 Computer Graphics Pioneers by ACM Siggraph Society on its 25th anniversary

(picture in the Computer Museum)
Selected one of 15 speakers for the First Grace Hopper Celebration of Women in Computing, 1994.

159

ADVISOR
I have been advisor to 19 graduated PhD students (4 since 2009) and additionally am

currently advisor to 1 PhD student and co-advisor to 1 additional student. In additioon I
serve as an active committee member of 1 PhD student at University of Texas, Austin,
who will graduate summer 2016.

I have been advisor to 21 MS students whose research have been published in journals, and
advisor to 3 BA Honors students

GRANTS AND CONTRACTS
I have served as Principal Investigator on more than $ 10,205,431 in research grants and

contracts, $ 901,459 has been within the most recent time period.
I have served as co-Principal investigator on more than $ 15,396,473 in research grants and

contracts, $ 991,200 within the most recent time period.
Finally, I have served as Senior Investigator on more than $ 10,428,492 in research grants

and contracts.

SELECTED PUBLICATIONS
Books
Geometric Modeling with Splines: An Introduction, E. Cohen, R. F. Riesenfeld, and G. Elber, A. K.

Peters Press, 2001.
Book Chapters – Refereed: 3 in the covered time period
Journal Articles – Refereed
More than 20 refereed journal publications in the covered time period appearing in top journals in

computer aided design, computer graphics, and geometric modeling. The articles below include
several of them plus several seminal papers from other time periods.

S. Zeng and E. Cohen, “Hybrid volume completion with higher-order Bézier Elements, ” Computer
Aided Geometric Design, v. 35-36, pp. 180-191, 2015.

R. Riesenfeld, R. Haimes, and E. Cohen, “Initiating a CAD Renaissance: Multidisciplinary Analysis
Driven Design Framework for a New Generation of Advanced Computational Design,
Engineering, and Manufacturing Environments, ” Computer Methods in Applied Mechanics and
Engineering, v 284, pp. 1054-1072, 2015.

X. Gao, T. Martin, S. Deng, E. Cohen, Z. Deng, and G. Chen, “Structured Volume Decomposition Via
Generalized Sweeping, ” IEEE TVCG August, 2015, (epub ahead of print).

A. Barteil and E. Cohen, “Animation of Deformable Bodies with Quadratic Bezier Finite Elements,”
ACM ToGs, May 2014, v.33, n.3, pp. 27:1-27:10.

E. Cohen, T. Lyche, and R. F. Riesenfeld, “A B-spline-like Basis for the Powell-Sabin 12-Split Based
on Simplex Splines,”, American Mathematical Society Mathematics of Computation, v. 82, #283,
(07/2013), pp. 1667-1707.

T. Martin, G. Chen, S. Musuvathy, E. Cohen and C. Hansen, “Generalized Swept Mid-surface for
Polygonal Models,” Computer Graphics Forum , v. 31, pp. 805-814, and also Eurographics 2012.

T. Martin, E. Cohen, and R. M. Kirby, “Direct Isosurface Visualization of Hex-Based High-Order
Geometry and Attribute Representations,” IEEE Transactions on Visualization and Computer
Graphics, v. 18,n.5, pp. 753-766, May, 2012.

S. Musuvathy, E. Cohen, and J. N. Damon, “Computing medial axes of generic 3D regions bounded
by B-spline surfaces, Computer Aided Design (CAD), v.43,(11) Nov. 2011, Also, best paper
finalist, SIAM Conference on Geometric and Physical Modeling 2011.

160

T. Martin and E. Cohen, “Volumetric Parameterization of Complex Objects by Respecting Multiple
Materials,” Computers & Graphics, vol. 34, No. 3, pp. 187-197, 2010.

E. Cohen, T. Martin, M. Kirby, T. Lyche, and R. Riesenfeld, “Analysis-aware Modeling:
Understanding Quality Considerations in Modeling for Isogeometric Analysis,” Computer
Methods in Applied Mechanics and Engineering, v. 199, issues 5-8, p. 334-356, Jan. 2010.

J. Daniels, C. Silva, and E. Cohen, “Semi-regular, Quad-only Remeshing from Simplified Base
Domains,” Computer Graphics Forum, v. 28, n.9,,pp. 1427-1435, 2009.

Cohen, and R. M. Kirby, “Volumetric Parameterization and Trivariate B-spline Fitting using
Harmonic Functions,” Computer Aided Geometric Design, vol. 26, pp. 648-664, 2009.

X. Chen, R. F. Riesenfeld, and E. Cohen, “An Algorithm for Direct B-spline Multiplication,”IEEE
Transactions on Automation Science and Engineering, pp. 433-442, v. 6, n. 3 (Jul. 2009).

J. Daniels, C. Silva, J. Shepherd, and E. Cohen, “Quadrilateral Mesh Simplification”, J, ACM
Transactions on Graphics (Proceedings of SIGGRAPH Asia 2008), vol. 27, n. 5, 2008..

E. Cohen, T. Lyche, and R. F. Riesenfeld, “Cones and Recurrence Relations for Simplex Splines,”
Journal of Constructive Approximation, v. 3, n. 1, pp. 131-141, 1987.

E. Cohen, T. Lyche, and L. Schumaker, “Degree Raising for Splines,” Journal of Approximation
Theory, Vol 46, Feb 1986, 170-181.

E. Cohen, T. Lyche, and R. F. Riesenfeld, “Discrete Box Splines and Refinement Algorithms,”
Computer Aided Geometric Design, with E. Cohen and T. Lyche, 1(2), pp. 131-148, 1984.

E. Cohen, T. Lyche, and R. F. Riesenfeld, “Discrete B-Splines and Subdivision Techniques in
Computer Aided Geometric Design and Computer Graphics,” Computer Graphics and Image
Processing, Vol. 14, No.2, October 1980.

Refereed Proceedings: 3 in the covered time period
Patents: Co-inventor, Construction of Spline Surfaces to Provide Inter-Surface
Continuity, Provisional submission, February 2016.
Invited Presentations
22 Invited, Keynote, and Invited Plenary Conference Presentations were given during this
most recent time period. In addition, Professor Cohen was an invited speaker at The First
Grace Murray Hopper Conference on Women in Computing, Washington, DC, 1994
Classes Taught
All classes were developed by Professor Cohen.
CS4963, spring 2016, Computational Additive Fabrication (New class at Utah); CS6600, fall 2015,

fall 2014, spring 2013, spring 2012, Mathematics of Computer Graphics; CS6670, spring 2015,
Computer Aided Geometric Design; CS6680, spring 2012, Advanced Computer Aided Geometric
Design; CS6961/5, spring 2011, Fundamentals of Visual Computing.

Service
 Departmental Committees:
Member, Faculty Recruiting Committee, 2014-2015, 2015-2016; Graduate Fellowship website, fall

2014; Volunteer UG scholarship reader for departmental scholarships for fy2013-2014 (spring
2013); Member, Faculty Recruiting Committee, 2007-2008, 2008-2009.

University Committees
Member, Conflict of Interest Committee, 2005- 2014
External
Invited speaker and panelist: Community College Regional Leadership Forum, "Advancing

Women's Leadership." 24-26 Septermber 2008, Snowbird Utah; Invited speaker and panelist,
"Jewish Women Scientists," National Council of Jewish Women Annual Fall Membership
Brunch, 21 September 2008.

161

TAMARA DENNING

School of Computing tdenning@cs.utah.edu
University of Utah http://www.cs.utah.edu/˜tdenning/
50 S. Central Campus Drive, Room 3190 Fax: 801-581-5843
Salt Lake City, UT 84112 Phone: 206-605-3160

RESEARCH INTERESTS

My interests are at the intersection of computer security and human-computer interaction.

PROFESSIONAL PREPARATION

• B.S. in Computer Science, University of California at San Diego, 2007.

• M.S. in Computer Science & Engineering, University of Washington, 2009.

• Ph.D. in Computer Science & Engineering, University of Washington, 2014.
Advisor: Tadayoshi Kohno

APPOINTMENTS

• Assistant Professor, School of Computing, University of Utah (2014—)

SELECTED AWARDS AND HONORS

• Intel PhD Fellow, 2011.

• Honorable Mention: Computers, Privacy and Data Protection (CPDP) Multidisciplinary Privacy Award
(“Patients, Pacemakers, and Implantable Defibrillators: Human Values and Security for Wireless Im-
plantable Medical Devices”), 2011.

• Microsoft Research Women’s Scholarship, 2009.

• Marilyn Fries Endowed Regental Fellowship, 2007.

• Achievement Rewards for College Scientists (ARCS) Fellowship, 2007.

PUBLICATIONS

Under submission
[1] Aniqua Z. Baset and Tamara Denning. Going Meta: Reflecting on 36 years of Security and Privacy Re-

search. Submitted to IEEE Symposium on Security and Privacy, 2017.

[2] Aniqua Z. Baset and Tamara Denning. IDE Plugins for Secure Coding: Status and Challenges. Submitted
to ACM CHI, 2017.

Peer-reviewed conference papers
[1] Tamara Denning, Batya Friedman, Brian Gill, Daniel B. Kramer, Matthew R. Reynolds, and Tadayoshi

Kohno. CPS: Beyond Usability: Applying Value Sensitive Design Based Methods to Investigate Domain
Characteristics for Security for Implantable Cardiac Devices. In Proceedings of Annual Computer Security
Applications Conference (ACSAC), 2014.

[2] Tamara Denning, Zakariya Dehlawi, and Tadayoshi Kohno. In Situ with Bystanders of Augmented Reality
Glasses: Perspectives on Recording and Privacy-Mediating Technologies. In Proceedings of the Interna-
tional Conference on Human Factors in Computing Systems (CHI ’14), 2014.

162

[3] Tamara Denning, Alan Borning, Batya Friedman, Brian Gill, Tadayoshi Kohno, and William H. Maisel.
Patients, Pacemakers, and Implantable Debrillators: Human Values and Security for Wireless Implantable
Medical Devices. In Proceedings of the International Conference on Human Factors in Computing Systems
(CHI ’10), 2010.

[4] Tamara Denning, Adam Lerner, Adam Shostack, and Tadayoshi Kohno. Control-Alt-Hack: The Design
and Evaluation of a Card Game for Computer Security Awareness and Education. In Proceedings of ACM
Conference on Computer and Communications Security (CCS ’13), 2013.

[5] Tamara Denning, Kevin Bowers, Marten van Dijk, and Ari Juels. Exploring Implicit Memory for Painless
Password Recovery. In Proceedings of the International Conference on Human Factors in Computing
Systems (CHI ’11), 2011.

[6] Tamara Denning, Cynthia Matuszek, Karl Koscher, Joshua R. Smith, and Tadayoshi Kohno. A Spotlight
on Security and Privacy Risks with Future Household Robots: Attacks and Lessons. In Proceedings of the
International Conference on Ubiquitous Computing (UbiComp ’09), 2009.

[7] David Lindquist, Tamara Denning, Michael Kelly, Roshni Malani, William G. Griswold, and Beth Simon.
Exploring the Potential of Mobile Phones for Active Learning in the Classroom. In Proceedings of the
Special Interest Group on Computer Science Education Technical Symposium (SIGCSE ’07), 2007.

[8] Tamara Denning, Michael Kelly, David Lindquist, Roshni Malani, William G. Griswold, and Beth Simon.
Lightweight Preliminary Peer Review: Does In-Class Peer Review Make Sense? In Proceedings of the
Special Interest Group on Computer Science Education Technical Symposium (SIGCSE ’07), 2007.

[9] Tamara Denning, William Griswold, Beth Simon, and Michelle Wilkerson. Multimodal Communication
in the Classroom: What Does It Mean For Us? In Proceedings of the Special Interest Group on Computer
Science Education Technical Symposium (SIGCSE ’06), 2006.

Peer-reviewed journal articles
[1] Tamara Denning, Yoky Matsuoka, and Tadayoshi Kohno. Neurosecurity: Security and Privacy for Neural

Devices. Neurosurgical Focus, 27(1), July 2009.

Peer-reviewed technical magazine articles
[1] Tamara Denning, Tadayoshi Kohno, Henry M. Levy. Computer Security and the Modern Home. Commu-

nications of the ACM, 56 (1), January 2013, 94–103.

Technical Magazine Articles/Columns
[1] Jane Cleland-Huang, Tamara Denning, Tadayoshi Kohno, Forrest Shull, and Samuel Weber. Keeping

Ahead of Our Adversaries. IEEE Software 33(3), 2016.

[2] Jelena Mirkovic, Melissa Dark, Wenliang Du, Giovanni Vigna, and Tamara Denning. Evaluating Cyberse-
curity Education Interventions: Three Case Studies. IEEE Security & Privacy 13(3), 2015.

[3] Mark Gondree, Zachary N.J. Peterson, and Tamara Denning. Security Through Play. IEEE Security &
Privacy, 11(3), 2013.

Technology & policy primers
[1] Ryan Calo, Tamara Denning, Batya Friedman, Tadayoshi Kohno, Lassana Magassa, Emily McReynolds,

Bryce Newell, Franziska Roesner, and Jesse Woo. Augmented Reality: A Technology and Policy Primer.
Tech Policy Lab, University of Washington, 2015.

2163

Workshop papers
[1] Franziska Roesner, Tamara Denning, Bryce C. Newell, Tadayoshi Kohno, and Ryan Calo. Augmented

Reality: Hard Problems of Law and Policy. In Proceedings of the Workshop on Usable Privacy & Security
for wearable and domestic ubIquitous DEvices (UPSIDE ’14), 2014.

[2] Tamara Denning, Adam Shostack, Tadayoshi Kohno. Practical Lessons From Creating the Control-Alt-
Hack Card Game and Research Challenges for Games In Education and Research. In Proceedings of the
USENIX Summit on Gaming, Games and Gamification in Security Education (3GSE ’14), 2014.

[3] Tamara Denning, Adrienne Andrew, Rohit Chaudhri, Carl Hartung, Jonathan Lester, Gaetano Borriello,
and Glen Duncan. BALANCE: Towards a Usable Pervasive Wellness Application with Accurate Activity
Inference. In Proceedings of the International Workshop on Mobile Computing Systems and Applications
(HotMobile ’09), 2009.

[4] Tamara Denning, Kevin Fu, and Tadayoshi Kohno. Absence Makes the Heart Grow Fonder: New Direc-
tions for Implantable Medical Device Security. In Proceedings of the USENIX Workshop on Hot Topics in
Security (HotSec ’08), 2008.

Technical reports
[1] Tamara Denning, Tadayoshi Kohno, and Adam Shostack. Control-Alt-HackTM: A Card Game for Com-

puter Security Outreach, Education, and Fun. Technical Report UW-CSE-12-07-01, University of Wash-
ington Computer Science & Engineering, July 2012.

Dissertation
[1] Tamara Denning. Human-Centric Security and Privacy for Emerging Technologies. Computer Science &

Engineering, University of Washington, 2014.

INTERNSHIPS

• Research Intern. RSA Labs (Cambridge, MA), 2010.

• Intern. Naval Research Laboratory (Monterey, CA), 2004.

PROFESSIONAL ACTIVITIES

Program committees

• 24th USENIX Security Symposium (USENIX), 2016

• 24th USENIX Security Symposium (USENIX), 2015

• 2nd USENIX Summit on Games, Gaming, and Gamification in Security Education (3GSE), 2015

• 9th World Conference on Information Security Education (WISE), 2015

• 24th International World Wide Web Conference (WWW), 2015

• NDSS Workshop on Usable Security (USEC), 2015

• Workshop on Home Usable Privacy and Security (HUPS), 2013

Funding Panels

• Secure and Trustworthy Cyberspace (SaTC), National Science Foundation, 2015.

3164

FUNDING

Awarded

• Line-Funding with the Software Engineering Institute (SEI) at Carnegie Mellon University (CMU)
Title: Evaluation of Threat Modeling Methodologies
SEI Team Members: Sam Weber (CERT/PI), Forrest Shull (SSD/PI), Nancy Mead (CERT). Other
Collaborators: Jane Cleland-Huang (DePaul University), Tadayoshi Kohno (University of Washington,
Tamara Denning (University of Utah)
Submission Date: 2/25/2015
Funding Duration: 1 year
Total Proposal Amount: $750,000
My Amount: $50,000
Status: Pending

• Principal Investigator on Special Interest Group on Computer Science Education (SIGCSE) Special Projects
Grant, 2012.

PRESENTATIONS

Invited panels

1. NSF Secure and Trustworthy Computing (SaTC) PI Meeting: The Future of Privacy, 2015.

2. ACM Symposium on Access Control Models and Technologies (SACMAT), 2014.

Invited talks

1. Security Cards: A Threat Brainstorming Toolkit. Innovations in Cybersecurity Education (ICEW), UMBC,
2016.

2. Human-Centered Computer Security and Privacy. NAS Kavli Frontiers of Science U.S. Symposium, 2015.

3. Security Cards: A Threat Brainstorming Toolkit. GREPSEC, 2015.

4. Human-Centered Computer Security and Privacy. Team for Research in Ubiquitous Secure Technology
(TRUST), UC Berkeley, 2015.

5. Control-Alt-HackTM: White Hat Hacking for Fun and Profit (A Computer Security Card Game). ZonCon,
2013. Presented with Tadayoshi Kohno and Adam Shostack.

6. Control-Alt-HackTM: White Hat Hacking for Fun and Profit (A Computer Security Card Game). NSF
Scholarship for Service Cybersecurity Job Fair, 2013.

7. Human-Centered Design Of Security Systems for Implantable Medical Devices. International Federation
for Information Processing Working Group (IFIP WG) 10.4 Meeting, 2012.

TEACHING AND EDUCATION

Instructor

• CS 4964. Introduction to Computer Security. Spring 2016.

• CS 6964. Computer Security Research. Fall 2015.

• CS 4964. Computer Security. Spring 2015.

• CS 6964. Human-Centered Research: Security, Privacy, and Society. Fall 2014.

4165

Eric N. Eide
University of Utah eeide@cs.utah.edu
School of Computing http://www.cs.utah.edu/∼eeide/
50 South Central Campus Drive, Room 3190 Office: +1 801 585 5512

Salt Lake City, UT 84112–9205 Fax: +1 801 585 3743

Education
Ph.D., Computer Science, University of Utah. Advisor: Prof. Matthew Flatt. Dissertation title:
“Software Variability Mechanisms for Improving Run-Time Performance.” December 2012.

M.S., Computer Science, University of Utah. Advisor: Prof. Robert R. Kessler. Thesis title:
“Valet: An Intelligent UNIX Shell Interface.” August 1995.

B.S., Computer Science, University of Utah. Summa cum laude. June 1989.

Seelcted Professional Experience
Research Assistant Professor, School of Computing, University of Utah, July 2013 – present.

Co-Director of the Flux Research Group, School of Computing, University of Utah,
September 2008 – present.

Research Associate, Research Staff Member, Project Engineering Manager, and IT Project
Manager, School of Computing, University of Utah, June 1996 – June 2013.

Selected Teaching Experience
Instructor, CS 7934, Computer Systems Seminar, School of Computing, University of Utah,
16 semesters. (Fall 2008, Fall 2009, Spring 2010, Fall 2010, Spring 2011, Fall 2011, Spring 2012,
Fall 2012, Spring 2013, Fall 2013, Spring 2014, Fall 2014, Spring 2015, Fall 2015, Spring 2016,
Fall 2016.) Received Dean’s letter for teaching excellence, Fall 2010.

Instructor, CS 6950, Independent Study, School of Computing, University of Utah, 2 semesters.
(Summer 2015, Fall 2016.)

Selected Grants and Contracts
National Science Foundation Computing and Communication Foundations: Core Programs.
SHF: Small: Xsmith, A Configurable Generator of Highly Effective Fuzz Testers. Eric Eide (PI) and
John Regehr (co-PI). Award CCF–1527638. September 2015 – August 2018. Award
amount: $499,998.

National Science Foundation CISE Research Infrastructure Program. CI–EN: Revitalizing
Emulab for Modern Networking and Systems Research. Eric Eide (PI) and Robert Ricci (co-PI).
Award CNS–1513121. July 2015 – June 2018. Award amount: $2,199,450.

National Science Foundation CISE Research Infrastructure Program. CloudLab: Flexible Scientific
Infrastructure to Support Fundamental Advances in Cloud Architectures and Applications. Robert
Ricci (PI), Srinivasa A. Akella (co-PI), Brig “Chip” Elliott (co-PI), Kuang-Ching Wang (co-PI),
Michael H. Zink (co-PI), Eric Eide (key personnel), Mike Hibler (key personnel), Linh Ngo (key
personnel), James Pepin (key personnel), James von Oehsen (key personnel), and David E.
Irwin (key personnel). Award CNS–1419199. October 2014 – September 2017. Award
amount: $10,999,999.

October 19, 2016

166

Eric N. Eide 2

National Science Foundation Major Research Instrumentation Program. MRI: Development of
Apt, a Testbed Instrument With Adaptable Profiles for Network and Computational Science. Robert
Ricci (PI), Steve Corbató (co-PI), Eric Eide (co-PI), Julio Facelli (co-PI), and Jacobus Van der
Merwe (co-PI). Award CNS–1338155. October 2013 – September 2017. Award amount:
$3,400,000 including University of Utah cost-share amount.

National Science Foundation Secure and Trustworthy Cyberspace Program. TWC: Medium:
TCloud: A Self-Defending, Self-Evolving and Self-Accounting Trustworthy Cloud Platform. Award
CNS–1314945. Jacobus Van der Merwe (PI), Eric Eide (co-PI), Feifei Li (co-PI), and Robert
Ricci (co-PI). September 2013 – August 2017. Award amount: $999,991.

Selected Refereed Publications
Anton Burtsev, David Johnson, Mike Hibler, Eric Eide, and John Regehr. Abstractions for
practical virtual machine replay. In Proceedings of the 12th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), pages 93–106, Atlanta, GA, April 2016.

Richard Li, Dallin Abendroth, Xing Lin, Yuankai Guo, Hyun-wook Baek, Eric Eide, Robert
Ricci, and Jacobus Van der Merwe. Potassium: Penetration testing as a service. In Proceedings
of the 6th ACM Symposium on Cloud Computing (SoCC), pages 30–42, Kohala Coast, HI, August
2015.

Xing Lin, Mike Hibler, Eric Eide, and Robert Ricci. Using deduplicating storage for efficient
disk image deployment. In Proceedings of the 10th International Conference on Testbeds and
Research Infrastructures for the Development of Networks and Communities (TRIDENTCOM),
Vancouver, BC, June 2015.

David Johnson, Mike Hibler, and Eric Eide. Composable multi-level debugging with Stackdb.
In Proceedings of the 10th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE), pages 213–225, Salt Lake City, UT, March 2014.

Alex Groce, Chaoqiang Zhang, Mohammad Amin Alipour, Eric Eide, Yang Chen, and John
Regehr. Help, help, I’m being suppressed! The significance of suppressors in software testing.
In Proceedings of the 24th IEEE International Symposium on Software Reliability Engineering
(ISSRE), pages 390–399, Pasadena, CA, November 2013.

Anton Burtsev, Nikhil Mishrikoti, Eric Eide, and Robert Ricci. Weir: A streaming language for
performance analysis. In Proceedings of the 7th Workshop on Programming Languages and
Operating Systems (PLOS), Farmington, PA, November 2013.

Aaron Paulos, Partha Pal, Richard Schantz, Brett Benyo, David Johnson, Mike Hibler, and Eric
Eide. Isolation of malicious external inputs in a security focused adaptive execution
environment. In Proceedings of the 8th International Conference on Availability, Reliability and
Security (ARES), pages 82–91, Regensburg, Germany, September 2013.

Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric Eide, and John
Regehr. Taming compiler fuzzers. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 197–208, Seattle, WA, June 2013.

Partha Pal, Richard Schantz, Aaron Paulos, Brett Benyo, David Johnson, Mike Hibler, and Eric
Eide. A3: An environment for self-adaptive diagnosis and immunization of novel attacks. In
Proceedings of the 6th IEEE International Conference on Self-Adaptive and Self-Organizing Systems
Workshops (SASOW), pages 15–22, Lyon, France, September 2012.

October 19, 2016

167

Eric N. Eide 3

Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. Swarm testing. In
Proceedings of the 2012 International Symposium on Software Testing and Analysis (ISSTA), pages
78–88, Minneapolis, MN, July 2012.

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. Test-case
reduction for C compiler bugs. In Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 335–346, Beijing, China, June
2012.

Selected Awards and Scholarships
Funded Research Honoree, Celebrate U: A Showcase of Extraordinary Faculty Achievements,
2015.

Dean’s letter for teaching excellence, 2010.

Selected Talks
“Finding and Understanding Bugs in C Compilers.” Invited talk at the Department of
Computer Science and Engineering, New Mexico Institute of Mining and Technology,
October 2016.

Invited panelist for discussion of research reproducibility, PHIL 7570 (Research Ethics) at the
University of Utah, September 2016.

“Network Testbeds and Repeatable Research.” Invited talk at Dagstuhl Seminar 16111

(Rethinking Experimental Methods in Computing), Wadern, Germany, March 2016.

“A Look at Utah’s Network Testbeds and Their Support for Repeatable Research.” Invited talk
at LORIA (Lorraine Laboratory of Research in Computer Science and its Applications),
January 2016.

“Random Testing of C Compilers.” Guest lecture for CS 5959 (Writing Solid Code) at the
University of Utah, November 2015.

Invited guest, KPCW’s “Cool Science Radio” program, December 2014.

“Cybersecurity Experimentation of the Future.” Invited panelist, 7th Workshop on Cyber
Security Experimentation and Test (CSET), August 2014.

Selected Professional Activities
Organizing Committee Member

Finance Chair, 23rd Annual International Conference on Mobile Computing and Networking
(MobiCom), 2017.

Program Co-Chair, 4th International Workshop on Computer and Networking Experimental
Research Using Testbeds (CNERT), 2017.

Program Co-Chair, 9th Workshop on Cyber Security Experimentation and Test (CSET), 2016.

Artifact Evaluation Committee Co-Chair, 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2015.

Artifact Evaluation Committee Co-Chair, 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2014.

October 19, 2016

168

Eric N. Eide 4

Steering Committee Member, 7th Workshop on Programming Languages and Operating
Systems (PLOS), 2013.

Program Committee Member
36th IEEE International Conference on Distributed Computing Systems (ICDCS), track on
Cloud Computing and Data Center Systems, 2016.

3rd International Workshop on Computer and Networking Experimental Research Using
Testbeds (CNERT), 2016.

8th Workshop on Programming Languages and Operating Systems (PLOS), 2015.

2nd International Workshop on Computer and Networking Experimental Research Using
Testbeds (CNERT), 2015.

7th Workshop on Cyber Security Experimentation and Test (CSET), 2014.

1st International Workshop on Reproducible Research Methodologies and New Publication
Models in Computer Engineering (TRUST), 2014.

1st Conference on Timely Results in Operating Systems (TRIOS), 2013.

32nd IEEE International Conference on Distributed Computing Systems (ICDCS), track on
Distributed Operating Systems and Middleware, 2012.

6th Workshop on Programming Languages and Operating Systems (PLOS), 2011.

Editor
Guest editor, Operating Systems Review, 49(1), January 2015. Special issue on repeatability and
sharing of experimental artifacts.

External Journal Reviewer
Software: Practice and Experience, 2011, 2012, 2013, 2014.

External Conference Reviewer
ACM International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017.

ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), 2017.

International Conference on Computer Aided Verification (CAV), 2015.

Departmental Service
Member of graduate admissions committee for systems area, University of Utah School of
Computing, 2010, 2012, 2013, 2014, 2015, 2016.

Member of faculty recruiting committee for operating systems and distributed systems area,
University of Utah School of Computing, 2013–2014.

Other Service
Member of ACM Special Interest Group Governing Board Replication Taskforce, 2015–.

Proposal review panelist, NSF Secure and Trustworthy Cyberspace (SaTC) Program, 2015, 2016.

USENIX Campus Representative to the University of Utah, 2012–.

October 19, 2016

169

Matthew Flatt

Education
99 Ph.D. Computer Science Rice University

Dissertation: Programming Languages for Reusable Software Components
Advisor: Matthias Felleisen

98 M.S. Computer Science Rice University
93 B.S. Math and Computer Science, B.S. Physics Carnegie Mellon University

Professional Experience

14- Professor University of Utah
06-14 Associate Professor University of Utah
00-06 Assistant Professor University of Utah
99-00 Research Assistant Professor University of Utah

14 Visiting Researcher Microsoft Research, Cambridge, UK
06-07 Visiting Researcher Institute of Software, Chinese Academy of Sciences

Recent Publications

Books

[1] 10 SPERBER, M., R.K. DYBVIG, M. FLATT, AND A. VAN STRAATEN, EDITORS. Revised6

Report on the Algorithmic Language Scheme. Cambridge University Press, 301 pages.

[2] 09 FELLEISEN, M., R.B. FINDLER, AND M. FLATT. Semantics Engineering with PLT Redex,
MIT Press, 528 pages.

Journal Publications and Book Chapters

[3] 13 KLEIN, C., M. FLATT, AND R.B. FINDLER. The Racket Virtual Machine and Randomized
Testing. Higher Order and Symbolic Programming.

[4] 12 FLATT, M., R. CULPEPPER, D. DARAIS, AND R.B. FINDLER. Macros that Work Together:
Compile-Time Bindings, Partial Expansion, and Definition Contexts. Journal of Functional
Programming, 22(2), pages 181–216.

Conference Publications

[5] 16 M.FLATT. Binding as Sets of Scopes. In Proc. ACM Symposium on Principles of Program-
ming Languages (POPL).

[6] 15 FLORENCE, S., B. FETSCHER, M. FLATT, W.H. TEMPS, T. KIGURADZE, D.P. WEST,
C. NIZNIK, P.R. YARNOLD, R.B. FINDLER, AND S.M. BELKNAP. POP-PL: A Patient-
Oriented Prescription Programming Language. In Proc. Conference on Generative Program-
ming: Concepts and Experiences (GPCE).

[7] 15 TAKIKAWA, A., D. FELTEY, E. DEAN, R.B. FINDLER, M. FLATT, S. TOBIN-HOCHSTADT,
AND M. FELLEISEN. Towards Practical Gradual Typing. In Proc. European Conference on
Object-Oriented Programming (ECOOP).

[8] 15 FELLEISEN, M., R.B. FINDLER, M. FLATT, S. KRISHNAMURTHI, J. MCCARTHY,
S. TOBIN-HOCHSTADT. The Racket Manifesto. In Proc. Summit on Advances in Program-
ming Languages (SNAPL).

[9] 13 TEW, K., J. SWAINE, M. FLATT, R.B. FINDLER, AND P. DINDA. Distributed Places. In
Proc. Trends in Functional Programming (TFP).

170

Matthew Flatt 2

[10] 13 FLATT, M. Submodules in Racket: You Want it When, Again? In Proc. Conference on Gener-
ative Programming: Concepts and Experiences (GPCE).

[11] 12 STRICKLAND, T.S., S. TOBIN-HOCHSTADT, R.B. FINDLER, AND M. FLATT. Chaperones
and Impersonators: Run-time Support for Reasonable Interposition. In Proc. ACM Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA).

[12] 12 RAFKIND, J. AND M. FLATT. Honu: Syntactic Extension for Algebraic Notation through
Enforestation. In Proc. Conference on Generative Programming and Component Engineering
(GPCE).

[13] 12 ST-AMOUR, V., S. TOBIN-HOCHSTADT, M. FLATT, AND M. FELLEISEN. Typing the Nu-
meric Tower. In Proc. Practical Aspects of Declarative Languages (PADL).

[14] 12 KLEIN, C., J. CLEMENTS, C. DIMOULAS, C. EASTLUND, M. FELLEISEN, M. FLATT,
J. MCCARTHY, J. RAFKIND, S. TOBIN-HOCHSTADT, AND R.B. FINDLER. Run Your Re-
search: On the Effectiveness of Lightweight Mechanization. In Proc. ACM Symposium on
Principles of Programming Languages (POPL).

[15] 11 TEW, K., J. SWAINE, M. FLATT, R.B. FINDLER, AND P. DINDA. Places: Adding Message-
Passing Parallelism to Racket. In Proc. Dynamic Languages Symposium (DLS).

[16] 11 TOBIN-HOCHSTADT, S., V. ST-AMOUR, R. CULPEPPER, M. FLATT, AND M. FELLEISEN.
Languages as Libraries. In Proc. ACM Conference on Programming Language Design and
Implementation (PLDI).

[17] 10 ATKINSON, K., M. FLATT, AND G. LINDSTROM. Using Macros to Address ABI Compatibil-
ity. In Proc. Conference on Generative Programming and Component Engineering (GPCE).

[18] 10 SWAINE, J., K. TEW, P. DINDA, R.B. FINDLER, AND M. FLATT. Back to the Futures: In-
cremental Parallelization of Existing Sequential Runtime Systems. In Proc. ACM Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA).

[19] 10 KLEIN, C., M. FLATT, AND R.B. FINDLER. Random Testing for Higher-Order, Stateful
Programs. In Proc. ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA).

[20] 09 FLATT, M., E. BARZILAY, AND R.B. FINDLER. Scribble: Closing the Book on Ad Hoc
Documentation Tools. In Proc. ACM International Conference on Functional Programming
(ICFP), pages 109–120.

[21] 09 FELLEISEN, M., R.B. FINDLER, M. FLATT, AND S. KRISHNAMURTHI. A Functional I/O
System (or Fun for Freshman Kids). In Proc. ACM International Conference on Functional
Programming (ICFP), pages 47–58.

[22] 09 RAFKIND, J., A. WICK, J. REGEHR, AND M. FLATT. Precise Garbage Collection for C. In
Proc. ACM International Symposium on Memory Management (ISMM), pages 39–48.

[23] 07 FLATT, M., G. YU, R.B. FINDLER, AND M. FELLEISEN. Adding Delimited and Composable
Control to a Production Programming Environment. In Proc. ACM International Conference
on Functional Programming (ICFP).

Workshop Papers

[24] 15 FLORENCE, S., R. CULPEPPER, M. FLATT, AND R.B. FINDLER Check Syntax: An Out-of-
the-Box Tool for Macro-Based DSLs. In Domain Specific Language Design and Implementa-
tion.

[25] 12 SWAINE, J., B. FETSCHER, R.B. FINDLER, AND M. FLATT Seeing the Futures: Profiling
Shared-Memory Parallel Racket. In Workshop on Functional High-Performance Computing.

[26] 11 ATKINSON, K. AND M. FLATT. Adapting Scheme-Like Macros to a C-Like Language. In
Proc. Scheme Workshop.

[27] 11 BARZILAY, E., R. CULPEPPER, AND FLATT, M. Keeping it Clean with
syntax-parameterize. In Proc. Scheme Workshop.

171

Matthew Flatt 3

[28] 10 BARLAND, I., R.B. FINDLER, AND M. FLATT. The Design of a Functional Image Library.
In Proc. Scheme Workshop.

[29] 09 FLATT, M. AND E. BARZILAY Keyword and Optional Arguments in PLT Scheme. In Proc.
Scheme Workshop.

[30] 07 CULPEPPER, R., S. TOBIN-HOCHSTADT, AND M. FLATT. Advanced Macrology and the
Implementation of Typed Scheme. In Proc. Scheme Workshop.

Recent Research Support

15-18 ROBERT BRUCE FINDLER (LEAD PI), STEVEN M. BELKNAP, MATTHEW FLATT (LOCAL PI),
DENNIS P. WEST. NSF CCF SHF program, $120,000 (total for all sites: $400,000).

14-17 ROBERT BRUCE FINDLER (LEAD PI), MATTHIAS FELLEISEN, MATTHEW FLATT (LOCAL PI).
NSF CI program, $200,000 (total for all sites: $900,000).

12-14 ROBERT BRUCE FINDLER (LEAD PI), STEVEN M BELKNAP, MATTHEW FLATT (LOCAL PI).
SHF: Small: Collaborative Research: Designing a Patient-Oriented Prescription Language: An Ex-
ecutable Medical Algorithm for Gestational Diabetes Mellitus. NSF CCF SHF program, $24,903
(total for all sites: $498,699).

10-14 OLIN SHIVERS (LEAD PI), MATTHIAS FELLEISEN, PETE MANOLIOS, MITCH WAND,
MATTHEW MIGHT (LOCAL PI), MATTHEW FLATT. GnoSys: Raising the Level of Discourse
in Systems Programming. DARPA CRASH program, $1,500,000 (total for all sites: around
$5,000,000).

09-13 MATTHEW FLATT (PI). An Extensible Gradual Type System via Compile-Time Meta-
Programming. NSF CCF SHF program, $419,000.

09-11 MATTHIAS FELLEISEN (PI), ROBERT BRUCE FINDLER, MATTHEW FLATT (LOCAL PI), SHRI-
RAM KRISHNAMURTHI. Infrastructure for the Production of Languages. NSF CI-ANNDO-EN,
$134,415 (total for all sites: $660,000).

06-10 STEPHEN BLOCH (PI), JOHN B. CLEMENTS, KATHI FISLER, MATTHEW FLATT (LOCAL PI),
VIERA K. PROULX. Redesigning Introductory Computing: The Design Discipline. NSF DUE
program, $20,000 (total for all sites: $499,688, mostly to support workshop participants across all
sites).

Software
Racket with PLT http://www.racket-lang.org/
95-present

Recent Invited Talks and Instruction
16 Keynote Workshop on Partial Evaluation and Program Manip-

ulation (PEPM)
St. Petersburgh, FL

15 Summer School DSL Design and Implementation Lausanne, Switzerland
14 Colloquium University of Kent Canterbury, UK
14 Seminar University of Cambridge Cambridge, UK
14 Invited Talk Mozilla San Francisco, CA
13 Invited Talk Control Operators and their Semantics (COS) Eindhoven, Netherlands
13 Invited Talk Workshop on Trends in Functional Programming in

Education (TFPIE)
Provo, UT

13 Keynote Clojure/West Portland, OR
13 Colloquium Vrije Universiteit Brussel Brussels, Belgium
13 Invited Tutorial TutorialFest at POPL Rome, Italy
13 Colloquium Northwestern University Evanston, IL
12 Talk Strange Loop Conference St. Louis, MO
12 Colloquium Chinese Academy of Sciences, Institute of Software Beijing, China
12 Colloquium Sun-Yat Sen University Guangzhou, China

172

Matthew Flatt 4

11 Invited Tutorial ECOOP Summer School Lancaster, England
09 Colloquium Brigham Young University Provo, UT

Recent Teaching

S16 Instructor for CS 5965/6965, Functional Programming Studio University of Utah
S08, S10, S12, Instructor for CS 6510, Functional Programming University of Utah
S14, S16

F07-11,13,15 Instructor for CS 5510, Programming Languages University of Utah
F12 Instructor for CS 4400, Computer Systems University of Utah
S11-12 Instructor for CS 2420-20, Computer Science II (systems) University of Utah
F10-11 Instructor for CS 1410-20, Computer Science I (systems) University of Utah
F09 Instructor for CS 5460/6460, Operating Systems University of Utah
S09, S11, S13 Instructor for CS 6520/7520, Programming Languages and Semantics University of Utah
F08 Instructor for CS 4960-01, Parallel Programming University of Utah
S08 Instructor for CS 5967, How to Design Programs University of Utah

Post-Doc Advising

12-13 Danny Yoo
11-12 Ryan Culpepper

Thesis Committee Charing

15- Chris Brooks PhD thesis committee Chair/Advisor
15- William Hatch PhD thesis committee Chair/Advisor
12- Xiangqi Li PhD thesis committee Chair/Advisor
07-13 Jon Rafkind PhD thesis committee Chair/Advisor
07-12 Kevin Tew PhD thesis committee Chair/Advisor
06-09 Eric Eide PhD thesis committee Chair/Advisor
05-11 Kevin Atkinson PhD thesis committee Co-chair/Co-advisor
00-06 Kathy Gray PhD thesis committee Chair/Advisor
00-06 Scott Owens PhD thesis committee Co-chair/Co-advisor
00-06 Adam Wick PhD thesis committee Chair/Advisor

Program and Artifact Evaluation Committee Chairing

18 ACM Intl. Conf. on Functional Programming (ICFP) Chair
16 SPLASH Doctoral Symposium Chair
15-16 European Conf. on Object-Oriented Programming (ECOOP) Co-Chair
14 ACM Conf. on Generative Programming: Concepts & Experiences (GPCE) Chair
14 Sym. on Practical Aspects of Declarative Languages (PADL) Co-Chair

Awards
14 Distinguished Scientist ACM
09 Outstanding Teaching Award School of Computing, University of Utah
05 Early Career Teaching Award University of Utah

173

H. James de St. Germain
germain@cs.utah.edu

February, 2016

OFFICE
University of Utah
School of Computing
50 South Central Campus Drive
3190b Merrill Engineering Building
Salt Lake City, UT 84112
(801) 585-3352

HOME
1465 South, 1600 East
Salt Lake City, UT 84105
(801) 979-1283

Professional
Experience

2012-present

2005-present

2005-2012
2005

Associate Professor, Lecturing
School of Computing, Utah

Director of Undergraduate Studies, SoC, Utah

Assistant Professor, Clinical, SoC, Utah
Consulting – Visual Influence

Professional
Service

2006-present

2006-2012

College of Engineering Curriculum Committee (Chair 2008-)
College of Engineering Articulation Committee
UofU Curriculum Policy Review Board Committee
UofU Curriculum Fees Committee
School of Computing Curriculum Committee
Web Learning System Administrator and Promoter
School of Computing Scholarship Committee

Education 2002 Ph.D., Computer Science, University of Utah, School of Computing

 1991 Bachelors of Science, Computer Science, New Mexico State
University

Honors 2005-present
2007-2008
2005-2006

Numerous Top 15% in Course Evaluations
Outstanding Teaching Award, University of Utah, SoC
Honorable Mention, Outstanding Teaching Award, SoC

Presentations 2010
2008

Ghost Interruptions - A Digital Dance Animation Performance
Taught a week long workshop on ActionScript programming for the
Utah State Office of Education.

Teaching 2005-present Sample Courses Taught
CS 1000 – Engineering Computing
CS 1410 – Intro to Comp Sci (Entertainment Arts Emphasis)
CS 1960 – Freshmen Symposium
CS 2420 – Algorithms and Data Structures
CS 3500 – Software Practice I
CS 3505 – Software Practice II
CS 4540 – Web Software Architecture
CS 4000, 4500 – Senior Capstone Design/Project
ME EN 1010 - Intro to Robotic System Design (Co-Taught)

 2003-2005 Instructor Exercise and Sports Fitness – Ultimate Frisbee

174

mailto:germain@cs.utah.edu

Research 2000-2005 Research Scientist, University of Utah
Geometric Design and Computation Group

1994-1999 Research Assistant, University of Utah
Computer Vision Group

Community
Service

2010-present
1992-2004

Coach – Soccer, U6 U9
Coach – Boys Competitive Soccer, U7U18

Publications Suraj R. Musuvathy, David E. Johnson, H.J. de St. Germain, Elaine Cohen,
Chimiao Xu, Richard F. Riesenfeld, and Thomas C. Henderson, "Integrating
Multiple Engineering Resources in a Virtual Environment for Reverse
Engineering of Mechanical Parts", ASME IDETC 2005.

 Rajesh Subramanian, H.J. de St.Germain, and Samuel Drake, "Integrating a
Vision System with a Coordinate Measuring Machine to Automate the Datum
Alignment Process", ASME IDETC/DAC 2005.

 H. J. de St. Germain, D. E. Johnson, and Elaine Cohen, "Integrating Freeform
and Feature-Based Fitting Methods", Design Engineering Technical Conference
2004

 W.B. Thompson, J.C. Owen, H.J. de St. Germain, Stevan R. Stark, and T.C.
Henderson, "Feature-Based Reverse Engineering of Mechanical Parts," IEEE
Transactions on Robotics and Automation, 15(1), February 1999.

 H.J. de St. Germain, S.R. Stark, W.B. Thompson and T.C. Henderson,
"Constraint Optimization and Feature-Based Model Reconstruction for Reverse
Engineering," Proceedings of the DARPA Image Understanding Workshop, May
1997.

 W.B. Thompson, H.J. de St. Germain, T.C. Henderson, and J. C. Owen,
"Constructing High-Precision Geometric Models from Sensed Position Data,"
Proceedings of the ARPA Image Understanding Workshop, February 1996

 J.C. Owen, H.J. de St. Germain, S. Stark, T.C. Henderson and W.B. Thompson,
"Calibrated Imagery for Quantitative Evaluation of IU Pose-Estimation and
Stereo Algorithms," Proceedings of the ARPA Image Understanding Workshop,
February 1996.

 Calderwood et Al, "First Progress Report of Keypush Timing Group", NMSU-
TR-91.CS-06, 1991

 H. J. de St. Germain, and H. D. McCoy, "User Identification Through the Use of
Classification Statistics and a Hamming-like Distance Measure", Internal
Technical Report, 1991

175

Vita for GANESH GOPALAKRISHNAN
School of Computing, University of Utah, Salt Lake City, UT 84112-9205

(801) 581-3568 (Fax 5843) – ganesh@cs.utah.edu – http://www.cs.utah.edu/~ganesh

EDUCATION

• Ph.D. in Computer Science, State University of New York at Stony Brook, NY, Dec. 1986.
Dissertation title: “From Algebraic Specifications to Correct VLSI Systems.” Advisors:
Profs. D. R. Smith and M. K. Srivas.

• M.Tech. in Electrical Engineering, Indian Institute of Technology, Kanpur, India, Aug. 1980.
• B.Sc. in Electrical Engineering, Regional Engineering College, Calicut, India, Jan. 1978.

EMPLOYMENT

• July 2009 to June 2010: Collaborative Sabbatical Research (with RiSE group), Concurrency
Curriculum Development, Microsoft Research, Redmond, WA.

• July 2000 to present: Professor, School of Computing, University of Utah, Salt Lake City, UT.
• August 2002 to June 2003: Sabbatical visitor (Post-Silicon Verification), Intel Corporation,

Santa Clara, CA.
• July 1993 to June 2000: Associate Professor, Computer Science, University of Utah, Salt

Lake City, UT.
• September 1995 to May 1996: Sabbatical visitor (Dill group), Stanford University.
• August 1988 to July 1989: Visiting Asst. Prof. (Birtwistle group), Computer Science, Uni-

versity of Calgary
• September 1986 to June 1993: Asst. Prof., Computer Science, University of Utah
• August 1980 to July 1981: Research Associate (Rajaraman group), Department of Computer

Science, Indian Institute of Technology, Kanpur, India.

LEADERSHIP ROLES

Director, Center for Parallel Computing at Utah (CPU, http://www.parallel.utah.edu).

AREAS OF CURRENT RESEARCH AND FUNDING

• S12-SSE: Scalable Multifaceted GPU Program Debugging, NSF ACI 1535032, $417,482, Septem-
ber 1, 2015-August 3, 2017.

• Utah PI (PI is Sriram Krishnamoorthy), Whole-Program Adaptive Error Detection and Mit-
igation, DOE (DE-FOA-0001059 Announcement on Resilience for Extreme Scale Supercom-
puting Systems), $465,108 (3 years; received one year’s funding), July 15, 2015.

• Sole PI: CCF: SHF: Medium: Collaborative: A Static and Dynamic Verification Framework
for Parallel Programming. (CCF 1302449, 4-15-13 to 4-14-17, $400,000). Collaborators:
Vivek Sarkar and Eric Mercer.

• PI: SI2-SSE: Correctness Verification Tools for Extreme Scale Hybrid Computing. (ACI-
1148127, 6-1-12 to 5-31-15, $444,279). Collaborators: Mary Hall and Rajeev Thakur.

• Faculty Associate: Institute for Sustained Performance, Energy and Resilience. (SUPER,
8-1-11 to 7-31-16, 0.5 months and one student per year). PI: Mary Hall.

• PI (co-PI is Rakamarić): CCF FRS (Failure Resistant Systems : Localized, Layered Formal
Hardware/Software Resilience Methods. (CCF 1255776, 4-1-13 to 3-31-16, $115,500).

• PI (co-PI is Rakamarić): Localized, Layered Formal Hardware/Software Resilience Meth-
ods. SRC Task associated with above award. Program Officer: William Joyner (SRC Task
2426.001, $77,000).

• Sole PI: CSR: SMALL: Design Validation Methods for Reliable and Efficient Floating-Point.
(CCF 1421726, 8/1/14 (est) to 7/31/16; $398,341)

176

• Co-PI (PI is Rakamarić): EAGER: Memory Models: Specification and Verification in a
Concurrency Intermediate Verification Language (CIVL). (CCF 1346756, 8-31-13 to 8-30-
15, $300,000).

• PI (with collaborator Martin Burtscher, Texas State Univ): Nixing Scale Bugs in HPC Ap-
plications, (CCF 1439002, XPS Program, 9/1/14 (est) to 8/31/16; $149,992)

• PI (Co-PI is Rakamarić): Nondeterminism Control in Scientific Codes. LLNL Contract,
1-22-14 to 1-21-15, $61,798).

• PI (Co-PI is Rakamarić): Data Race Checkers, LLNL Contract, 8-21-15 to 8-31-16, $61,798).

BOOKS

1. Ganesh Gopalakrishnan, “Computation Engineering: applied automata theory and logic”
(505 pages). Springer, ISBN 0-387-24418-2, 2006.

2. Ganesh Gopalakrishnan and Shaz Qadeer, editors. Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV), Snowbird, UT, July 2011. LNCS 6806.

3. Slind, Konrad; Bunker, Annette; Gopalakrishnan, Ganesh C. (Eds.) Theorem Proving in
Higher Order Logics, 17th International Conference, TPHOLS 2004, Park City, Utah, USA,
September 14-17, 2004, Lecture Notes in Computer Science, Vol. 3223. ISBN: 3-540-23017-3

4. Ganesh Gopalakrishnan and Phillip Windley, editors. Formal Methods in Computer-Aided
Design. Proceedings of the 2nd International Conference, FMCAD ’98. Lecture Notes in
Computer Science 1522, Springer-Verlag, 1998, 538 pages. ISSN 0302-9743.

REFEREED JOURNAL ARTICLES

2014 Alan Humphrey, Qingyu Meng, Martin Berzins, Diego Caminha B De Oliveira, Zvonimir
Rakamaric, Ganesh C. Gopalakrishnan, “Systematic Debugging Methods for Large Scale HPC
Computational Frameworks,” Computing in Science & Engineering, no. 1, pp. 1, PrePrints
PrePrints, doi:10.1109/MCSE.2014.11

REFEREED PAPERS IN WORKSHOPS AND CONFERENCES

1. Charles Jacobsen, Alexey Solovyev, Ganesh Gopalakrishnan, “A Parametrized Floating-
Point Formalization in HOL Light,” Electronic Notes in Theoretical Computer Science, Vol-
ume 317, 18 November 2015, Pages 101107, (selected from the papers presented at the
Seventh and Eighth International Workshops on Numerical Software Verification, NSV).
doi:10.1016/j.entcs.2015.10.010.

2. Wei-Fan Chiang, Ganesh Gopalakrishnan, and Zvonimir Rakamaric, “Unsafe Floating-point
to Unsigned Integer Casting Check for GPU Programs,” NSV 2015, Seattle, WA.

3. Alexey Solovyev, Charles Jacobsen, Zvonimir Rakamaric and Ganesh Gopalakrishnan, “Rig-
orous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions,” pp.
532-550, Nikolaj Bjørner and Frank S. de Boer (ed.), FM 2015, LNCS 9109.

4. Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema,
Daniel Poetzl, Tyler Sorensen and John Wickerson, “GPU concurrency: Weak behaviours
and programming assumptions,” ASPLOS 2015, Istanbul, Turkey.

SOFTWARE RELEASES

1. Vector oriented Utah LLVM Fault Injector (VULFI), http://formalverification.cs.utah.
edu/fmr/vulfi.

2. S3FP, a search based floating-point precision analysis framework. AUTHOR: Wei-
Fan Chiang (PhD student).
Release at http://www.cs.utah.edu/fv/s3fp, 2014.

CONFERENCES/WORKSHOP CHAIRED/Co-CHAIRED

2

177

• Co-Organizers Sebastian Burkhardt, Azadeh Farzan, Ganesh Gopalakrishnan, Stephen Siegel,
Helmut Veith, and Josef Widder, “Exploiting Concurrency Efficiently and Correctly – (EC)2,”
CAV 2012 Workshop, July 7-13, 2012, Berkeley, CA
http://forsyte.at/ec2-2012/

• Co-General-Chair (with Shaz Qadeer) Computer Aided Verification (CAV), Snowbird,
UT, July 2011.

• Co-Organizers Sebastian Burkhardt, Swarat Chaudhuri, Azadeh Farzan, Ganesh Gopalakrish-
nan, Stephen Siegel, and Helmut Veith, “Exploiting Concurrency Efficiently and Correctly –
(EC)2,” CAV 2011 Workshop, July 14-15, 2011, Snowbird, UT http://www.cs.utah.edu/ec2.

PROFESSIONAL ACTIVITIES

• SC15 BoF on “Reproducibility of High Performance Codes and Simulations – Tools, Tech-
niques, Debugging,” Birds of a Feather at Supercomputing 2015. https://gcl.cis.udel.

edu/sc15bof.php.
• PC Member (ERC), Progr. Lang. Design and Implementation (PLDI), 2015.
• PC Member (ERC), Architectural Support for Programming Languages and Systems (ASP-

LOS), 2015.

INVITED / REFEREED TUTORIALS

1. Matthias S. Müller, David Lecomber, Tobias Hilbrich, Mark OConnor, Bronis R. de Supinski,
and Ganesh Gopalakrishnan, “Efficient Parallel Debugging for MPI, Threads, and Beyond”
Full Day Tutorial, Supercomputing, Austin, November 2015.

PhD COMMITTEES AS CHAIR

1. 2019 est, Vinu Joseph.
2. 2019 est, Arnab Das.
3. 2018 est, Saeed Taheri.
4. 2017 est, Simone Atzeni.
5. 2017 est, Mohammed Saeed Al-Mahfoudh
6. 2016 est, Vishal Sharma
7. 2016 est, Sriram Aananthakrishnan
8. 2016 est, Wei-Fan Chiang (co-advised with Zvonimir Rakamarić)
9. 2015 Peng Li (Fujitsu Research).

10. 2012, Subodh Sharma (Post-Doctoral Fellow at Oxford).
11. 2011, Anh Vo (Microsoft).
12. 2010, Sarvani Vakkalanka (Microsoft).
13. 2010, Guodong Li (Fujitsu Research).
14. 2009, Yu Yang (Software Engineer, SFO Area).
15. 2008, Xiaofang Chen (Pinterest)
16. 2007, Robert Palmer (Tableau Software)
17. 2006, Ritwik Bhattacharya (Microsoft)
18. 2004, Ali Sezgin (Postdoc with Sewell, Cambridge)
19. 2004, Yue Yang (co-advised with Lindström, Microsoft)
20. 2003, Annette Bunker (co-advised with Konrad Slind, Intel)
21. 2001, Mike Jones (Associate Professor, Brigham Young University)
22. 2000, Ravi Hosabettu (Juniper Networks)
23. 1999, Ratan Nalumasu (Google)
24. 1996, Prabhakar Kudva (Research Staff Member, IBM)
25. 1992, Venkatesh Akella (Professor, ECE, UC Davis)

INVITED TALKS / PANELS

3

178

1. “Bugs: Black Ice on Parallel Roads,” delivered at three locations:
(a) University of British Columbia.
(b) Aalto University, Helsinki, Finland.

SUPERVISION OF POST DOCTORAL FELLOWS

1. Dr. Alexey Solovyev, recruited 9/2013.
2. Dr. Diego Oliveira, 7/2012 - 5/2014.
3. Dr. Igor Melatti, from 7/2005 till 12/2005. Also summer of 2006.
4. Dr. Abdel Mokkedem, from 7/1997 till 6/1999 (est). Working for Intel corpn.

UNIV. and COLLEGE COMMITTEES

• University Diversity Committee, 2011-2013.
• College Retention, Promotion, and Tenure Committee Representative from the School of

Computing, 2001-02, 2004, 2008, 2010-2011 (as Chair), 2011-2012 (as member).
• 1990-92: College Council representative for CS.

DEPARTMENT COMMITTEES

2015
1. Organizer, Organick Memorial Lecture Committee, 2014, 2015.

Prior to 2015
2. Chairman, Retention, Promotion, and Tenure Committee, 2014.
3. Chairman, Retention, Promotion, and Tenure Committee, 2013.
4. Organizer, Organick Memorial Lecture Series, 2012, 2013.
5. 2009-12: Colloquium Committee Chair
6. 2006-09: Outreach, Colloquium
7. 2007-09: Graduate Admissions
8. 2010-11: Colloquium
9. 2005-06: Colloquium, Undergraduate Studies

10. 2004-05: Undergraduate Studies
11. 2003-04: Graduate Admissions
12. 2001-02: Member, Graduate Studies Committee
13. 2000-01: Member, Graduate Studies Committee
14. 1999-00: Assoc Chair for Research, Department of Computer Science.
15. 1999-00: Member of the Graduate Admissions and Comprehensive Exams Committees.
16. 1998-99: Director of Graduate Admissions, Comprehensive Exams.
17. 1997-98: Departmental RPT Chair, Comprehensive Exams.
18. 1996-97: Computer Engineering, Computer Policies.
19. 1994-95: Undergraduate, Computer Engineering.
20. 1993-94: Undergraduate, Computer Engineering.
21. 1992-93: Colloquium chair.
22. 1990-92: Graduate Committee.
23. 1989-90: Faculty Recruiting, Curriculum.
24. 1987-88: Grad. Admissions.
25. 1986-94: Library representative for the Department.

4

179

MARY WOLCOTT HALL

50 S. Central Campus Dr.; School of Computing, University of Utah; Salt Lake City, UT 84103
801-585-1039; mhall@cs.utah.edu; http://www.cs.utah.edu/∼mhall

EDUCATION
Ph.D., Rice University, April 1991 (Computer Science).
M.S., Rice University, March 1989 (Computer Science).
B.A., Rice University, May 1985 (Computer Science/Mathematical Sciences, Magna Cum Laude).

AWARDS
ACM Distinguished Scientist, since 2011.
CRA Leadership in Science Policy Institute, selected for class of 2015.

RECENT PROFESSIONAL ACTIVITIES
Leadership roles
Member, CRA Board of Directors, 2015-present.
Member, External Advisory Board, Institute for Advanced Computational Science, Stonybrook Uni-
versity, 2015-present.
Member, IEEE Computer Society Awards Committee, 2010-2011,2013-2014.
Chair, ACM and IEEE Computer Society Ken Kennedy Awards Committee, 2010, 2014.
Chair, ACM History Committee, 2009-2013.
Member, IEEE Computer Society Cray and Fernbach Awards Committees, 2009, 2010, 2011.
Member, ACM SIGPLAN Robin Milner Young Rseearcher Award Committee, 2013.

Conference Organization
Panel Chair, IEEE Cluster Conference 2016.
Test of Time Award Co-Chair, SC’15.
Technical Papers Co-Chair, SC’14.
Silver Anniversary Chair and Executive Committee member, SC’13.
Exhibits Chair and Executive Committee member, SC’12.
General Chair, ACM SIGPLAN PLDI 2011.
Program Chair, ACM SIGPLAN PPoPP 2010.
Program Committee service omitted.

Mentoring
Co-Organizer/Speaker, Programming Languages Mentoring Workshop (PLMW@PLDI), June 2016.
Invited Speaker, CRA Career Mentoring Workshop, Feb. 2016.
Invited Speaker, Career Workshop for Women and Minorities in Computer Architecture, held in
conjunction with ACM MICRO, Dec. 2015.
Panelist, Students@SC Education Panel, SC’15, Nov. 2015.
Dinner with interesting people, Students@SC Program, SC’15, Nov. 2015.
Speed Mentor, Early Career Program, SC’15, Nov. 2015.
Mentor, Grace Hopper Conference Scholarship Lunch, Oct. 2015.
Invited Speaker, CS Lunch and Learn (undergraduates), Rice University, Oct. 2014.
Invited Speaker, Broader Engagement Program, SC12, Nov. 2012.

TEACHING
CS 4961/4230, Parallel Programming, Fall 2009,2010,2011,2012,2013.
CS 4400, Computer Systems, Fall 2015.
CS 6963/6235 Parallel Programming for Many-Core Architectures, Spring 2009,2010,2011,2012,2013,2014,2016.
Autotuning of Dense and Sparse Matrices on GPUs, International Summer School on Parallel High

180

Performance Computing using Accelerators, University of Minho, Braga, Portugal, June 2014.
Compiler-based autotuning technology, International Summer School on Advanced Computer Archi-
tecture and Compilation for High-Performance and Embedded Systems, Fiugi, Italy, July 2011.

ADVISING (since 2010)
Phd graduates:
Anand Venkat (2016), “An Integrated Compiler and Runtime Framework for Sparse Matrix Codes,”
Intel Research.

Saurav Muralidharan (2016), “Abstractions and Strategies for Adaptive Programming,” Nvidia Re-
search.

Protonu Basu (2015), “Compiler Optimizations and Autotuning for Stencil Computations and Geo-
metric Multigrid,” Lawrence Berkeley National Laboratory.

Malik Muhammad Murtaza Khan (USC, 2012), “Autotuning, Code Generation and Optimizing
Compiler Technology for GPUs,” Norwegian Institute of Science and Technology.

Masters graduates (with thesis):
Yu-Jung Lo (2015), Axel Rivera (2014), Shreyas Ramalingam (2012), Gabe Rudy (2010)

Masters graduates (with project):
Amit Roy (2016), Prajakta Mane (2015), Suchit Maindola (2012), Gagandeep Sachdev (2011)

GRANTS (since 2010)
1. “SHF: Medium: Collaborative Research: An Inspector/Executor Compilation Framework for

Irregular Applications,” PI, NSF CCF-1564074, $400K to Utah, 08/01/16-07/31/20.

2. “EAGER: Application-driven Data Precision Selection Methods,” Co-PI, NSF CCF-1643056,
$300K, 08/01/16-07/31/18.

3. “Using Active Harmony and CHiLL to Autotune Chapel,” Utah PI, University of Maryland
(Lead), NSA, $126K to Utah, 1/1/14-10/31/16.

4. “CSR: Medium: Energy-Efficient Architectures for Emerging Big-Data Workloads,” Co-PI,
$875K, NSF CNS-1302663, 7/1/13-6/30/17.

5. “Osprey: Efficient Embedded Parallel Computing Technologies,” Utah PI, Nvidia Corporation
(Lead), DARPA PERFECT program, 11/01/12-06/30/16.

6. “Autotuning for Exascale: Self-Tuning Software to Manage Heterogeneity,” PI, $600K to Utah,
DOE Exascale Software Stack Program, 09/01/12-08/31/16.

7. “SI2-SSE: Correctness Verification Tools for Extreme Scale Hybrid Concurrency,” Co-PI, $444K,
NSF SI2-1148127, 6/1/12-5/31/16.

8. “Institute for Sustained Performance, Energy, and Resilience (SUPER),” Utah PI, University
of Southern California (Lead), DOE SciDAC Institute, ($1.075M to Utah), 09/01/11-08/31/16.

9. “Echelon: Extreme scale Compute Hierarchies with Efficient Locality Optimized Nodes,” Utah
PI, Nvidia Corporation (Lead), DARPA UCP Program, ($1.256M to Utah), 8/15/10-05/31/14.

10. “SHF Small: A Compiler-Based Auto-Tuning Framework for Many-Core Code Generation,”
PI, ($316K), 07/01/10-06/30/15.

RECENT REFEREED PUBLICATIONS
Conference Papers

1. “Automating Wavefront Parallelization for Sparse Matrix Codes,” A. Venkat, M. Mohamadi,
J. Park, R. Barik, H. Rong, M. Strout, M. Hall, International Conference on Supercomputing,
Networking, Storage and Analysis (SC), Nov. 2016, Best Paper Finalist.

2. “Synchronization Tradeoffs in GPU Implementations of Graph Algorithms,” R. Kaleem, A.
Venkat, S. Pai, M. Hall, K. Pingali, Proceedings of the IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), May 2016.

181

3. “Architecture-Adaptive Code Variant Tuning,” S. Muralidharan, A. Roy, M. Hall, M. Garland,
and P. Rai, Proceedings of the ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), April 2016.

4. “Generating Efficient Tensor Contractions for GPUs,” T. Nelson, A. Rivera, P. Balaprakash,
M. Hall, P.D. Hovland, E. Jessup, B. Norris, Proceedings of the IEEE International Conference
on Parallel Processing (ICPP), Sept. 2015.

5. “Loop and Data Transformations for Sparse Matrix Code,” A. Venkat, M. Hall, M. Strout,
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), June 2015.

6. “Compiler-Directed Transformations for Higher-Order Stencils,” P. Basu, S. Williams, B. van
Straalen, M. Hall, L. Oliker, P. Collela, Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May 2015.

7. “Nitro: A Framework for Adaptive Code Variant Tuning,” S. Muralidharan , M. Shantharam,
M. Hall, M. Garland, B. Catanzaro, Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), May 2014.

8. “Non-affine Extensions to Polyhedral Code Generation,” A. Venkat, M. Shantharam, M. Hall,
M. M. Strout, Proceedings of the International Conference on Code Generation and Optimiza-
tion (CGO), Feb. 2014.

9. “Compiler Generation and Autotuning of Communication-Avoiding Operators for Geometric
Multigrid,” P. Basu, S. Williams, B. Van Straalen, A. Venkat, L. Oliker, M. Hall, IEEE Inter-
national Conference on High Performance Computing (HiPC), Dec. 2013.

10. “Analyzing the effect of compiler optimizations on application reliability,” M. Demertzi, M.
Annavaram and M. Hall, Proceedings of the IEEE International Symposium on Workload Char-
acterization (ISWC), Nov. 2011.

11. “EigenCFA: Accelerating Flow Analysis with GPUs,” T. Prabhu, S. Ramalingam , M. Might,
M. Hall, In ACM SIGPLAN Principles of Programming Languages (POPL), Jan. 2011.

12. “Autotuning and Specialization: Speeding up Nek5000 with Compiler Technology,” J. Shin,
M. Hall, J. Chame, C. Chen, P. Fischer, P.D. Hovland, International Conference on Supercom-
puting (ICS), June 2010.

Journal Articles

1. “Towards Making Autotuning Mainstream,” P. Basu, M. Hall, M. Khan, S. Maindola, S.
Muralidharan, S. Ramalingam, A. Rivera, M. Shantharam, A. Venkat, International Journal
of High Performance Computing Applications, 27(4), November 2013.

2. “A script-based autotuning compiler system to generate high-performance CUDA code,” M.
Khan, P. Basu, G. Rudy, M. Hall, C. Chen, and J. Chame. ACM Transactions on Architecture
and Code Optimization, 9(4), January 2013.

3. “Hierarchical parallelization and optimization of high-order stencil computations on multicore
clusters,” H. Dursun, M. Kunaseth, K. Nomura, J. Chame, R.F. Lucas, C. Chen, M. Hall, R.K.
Kalia, A. Nakano, P. Vashishta, The Journal of Supercomputing, 62(2):946-966, December 2012.

4. “Understanding ACM’s Past,”, M. Hall, Communications of the ACM, 55(12), December 2012.

5. “Auto-tuning Full Applications: A Case Study”, A. Tiwari, C. Chen, C. Liao, J. Chame, J.
Hollingsworth, M. Hall and D. Quinlan, International Journal of High Performance Computing
Applications, 25(3):286-294, Aug. 2011.

6. “Domain-Specific Optimization of Signal Recognition Targeting FPGAs,” M. Demertzi, P.C.
Diniz, M.W. Hall, A.C. Gilbert and Y. Wang, ACM Transactions on Reconfigurable Technology
and Systems, 4(2), May, 2011.

182

7. “Parameterized specification, configuration and execution of data-intensive scientific work-
flows,” V.S. Kumar, T. Kurc, V. Ratnakar, J. Kim, G. Mehta, K. Vahi, Y.L. Nelson, P.
Sadayappan, E. Deelman, Y. Gil, M. Hall and J. Saltz, Cluster Computing, April 2010.

SELECTED INVITED PRESENTATIONS AND KEYNOTES (since 2010)

1. “Compiler Optimization, Specialization and Autotuning: Achieving Productivity and High
Performance for Diverse Architectures,” International Workshop on Automatic Performance
Tuning, held at IPDPS’16, May 2016.

2. “Domain-Specific Optimization and Autotuning for Performance Portability of Supercomput-
ing Applications,” EE Department Colloquium Series, Brigham Young University, Mar. 2016.

3. “The Role of Compiler Optimization and Autotuning for Reducing Data Movement in High-
Performance Applications,” Keynote, Legacy HPC Application Migration Workshop, in con-
junction with CANDAR 2015, Sapporo, Japan; Seminar, University of Tokyo, Dec. 2015.

5. “Autotuning Compiler and Library Technology for Sparse Matrix Computations,” Colloquium,
Texas A&M University, Oct. 2015.

6. “Compiler Optimization of Computation and Communication in Stencils and Geometric Multi-
grid,” Intel Research, Santa Clara, Jul. 2015.

7. “The Role of Autotuning Compiler Technology,” Streamlining Application Performance Porta-
bility Minisymposium, SIAM CSE, Mar. 2015.

8. “Making Compilers Work: Autotuning for High Performance Applications,” Colloquia speaker,
Rice University, Oct. 2014; University of Texas, Oct. 2014.

11. “Leveraging HPC Expertise and Technology in Data Analytics,” Workshop on Clusters, Clouds,
and Data for Scientific Computing (CCDSC ’14), Leone, Sept. 2014.

12. “The Creative Process in Inventing Computer Science at the University of Utah,” 62nd Annual
Utah State History Conference, Sept. 2014.

13. “Tiling Dense and Sparse Computations for Parallelism and the Memory Hierarchy of GPUs,”
SIAM Parallel Processing Symposium, Feb. 2014.

14. “SC13 Silver Anniversary Panel: Retrospective in Supercomputing Technologies,” Panel Or-
ganizer and Moderator, SC13, Nov. 2013.

15. “Autotuning Compiler and Language Technology and its Role in Exascale Systems,” 6th In-
ternational Conference on Automatic Differentiation, July 2012.

16. “Automating Application Mapping with Autotuning: Paving the Way to Exascale,” DOE
Salishan Conference on High-Speed Computing, Apr. 2012.

17. “Compiler-Based Autotuning for Productive Parallel Programming and its Relationship to
Design Space Exploration,” High-Level Synthesis and Parallel Computation Models Workshop
held in conjunction with IEEE FCCM, May 2011.

18. “Compiler-Based Autotuning of Energy Applications,” USC-DOE Conference on Materials for
Energy Applications: Experiment, Modeling and Simulations, Mar. 2011.

19. “Compiler-Based Autotuning for Productivity and High Performance,” Colloquia, Ohio State
University, Feb. 2011.

20. “Compiler-Based Auto-tuning for Application and Library Code,” DOE SciDAC Workshop on
Libraries and Autotuning for Petascale Applications, Aug. 2010.

21. “Paving the Way for Programming Extreme Scale Systems,” DOE Institute for Computing in
Science, Future of the Field Workshop, Jul. 2010.

22. “Collaborative Autotuning of Scientific Applications,” SIAM Parallel Processing Symposium,
Feb. 2010.

183

Vita

Charles D. Hansen

May 24, 2016

Current Address: School of Computing
50 S. Central Campus Drive, 3190 MEB,
University of Utah
Salt Lake City, Utah 84112 (801) 581-3154 (work)

hansen@cs.utah.edu email
www.cs.utah.edu/˜hansen web page

Professional Employment

7/1 2005 to present University of Utah Professor (School of Computing)
9/1/2003 to 1/1/2016 University of Utah Associate Director Scientific Computing and Imaging Institute
11/1 2011 to 04/30 2012 University Joseph Fourier Visiting Professor
7/1/2008 to 6/30/2010 University of Utah Associate Director School of Computing
8/15 2004 to 7/30 2005 INRIA Rhone-Alpes Visiting Scientist
9/1 1998 to 6/30 2005 University of Utah Associate Professor (School of Computing)
7/1 2001 to 6/03 2003 University of Utah Associate Director School of Computing
2/1 1997 to 8/31 1998 University of Utah Research Associate Professor (Dept. of Computer Science)
9/18 1989 to 1/31 1997 Los Alamos National Lab Technical Staff Member Advanced Computing Laboratory
9/1 1994 to 1/31 1997 Univ. of New Mexico Visiting Research Assistant Professor
9/1 1990 to 1/31 1997 New Mexico Tech Adjunct Professor
8/1 1988 to 7/31 1989: University of Utah Visiting Assistant Professor
7/5 1987 to 7/31 1988: INRIA Postdoctoral Research Scientist (Vision and Robotics)
1/1 1987 to 7/5 1987: University of Utah Research Assistant (Vision Group)
9/15 1986 to 12/31 1986: University of Utah Teaching Assistant (Computer Science Dept)
9/1 1986 to 9/14 1986: University of Utah Research Assistant (Vision Group)
9/1 1983 to 8/31 1986: ARO Research Fellow
6/16 1983 to 8/31 1983: University of Utah Research Assistant (Very Large Text Retrieval Project)
9/15 1982 to 6/15 1983: University of Utah Teaching Assistant (Computer Science Dept)
8/1 1979 to 8/31 1982 Fred P. Gattas Co. Memphis, Tn. Systems Programmer
6/1 1977 to 7/31 1979 D and S Systems, Memphis, Tn. Systems Analyst

Education
AS Computer Science Technology State Technical Institute at Memphis 1977
BS Applied Computer Science Memphis State University 1981
PhD Computer Science University of Utah June 1987

Dissertation title “CAGD-based Computer Vision”

Areas of Interests

Large Scale Scientific Visualization, Rendering Techniques and Computer Graphics, Parallel Algorithms,
Distributed Computation, 3D Shape representation

1

184

Fellowships and Honors

IEEE Fellow: Elected to an IEEE Fellow 2012

IEEE Computer Society Technical Achievement Award “For Seminal Work on Tools for
Understanding Large-Scale Scientific Data Sets”, October 2005, The IEEE VGTC Visualization
Technical Achievement Award was established in 2004. It is given every year to recognize an
individual for a seminal technical achievement in visualization.

Best Paper Nomination ”Visual Analysis of Uncertainties in Ocean Forecasts for Planning and
Operation of Off-Shore Structures”, IEEE Pacific Visualization 2013, March 2013.

Best Paper Award “Physically-Based Interactive Schlieren Flow Visualization”, IEEE Pacific
Visualization 2010, March 2010.

Best Paper Award “Non-Photorealistic Volume Rendering Using Stippling Techniques”, IEEE
Visualization 2002, Oct. 2002.

Best Paper Nomination “Interactive Translucent Volume Rendering and Procedural Modeling”, IEEE
Visualization 2002, Oct. 2002.

Best Paper Award “Interactive Volume Rendering Using Multi-Dimensional Transfer Functions and
Direct Manipulation Widgets”, IEEE Visualization 2001, Oct. 2001.

Best Paper Award “Interactive Ray Tracing for Isosurface Extraction”, IEEE Visualization ’98, Oct.
1998.

Best Panel Award “Tera-Scale Visualization: issues and approaches”, IEEE Visualization ’97, October
1997.

Bourse Chateaubriand Postdoctoral Research Fellowship, INRIA Rocquencourt France,
July 1987 to July 1988

NSF Travel Award NATO Advanced Study Institute on Pattern Recognition Theory and Applications,
Spa Belgium June 14 - June 22, 1986

ARO Fellowship Reliable Robotic Architectures, Army Research Office,
September 1, 1983 to August 31, 1986

Phi Kappa Phi Member University of Utah

Professional Publications Student co-authors are underlined.

Published Papers: Books

1. “Scientific Visualizaiton: Uncertainty, Multifield, Biomedical, and Scalable Visualization”, Charles
Hansen, Min Chen, Christopher Johnson, Arie Kaufman, Hans Hagen editors, Springer-Verlag, 2014.

2. “High Performance Visualization: Enabling Extreme-Scale Scientific Insight”, E. Wes Bethel, Hank
Childs, Charles Hansen, editors, Chapman & Hall/CRC Computational Science, ISBN
9781439875728, 2012.

3. Charles Hansen and Chris Johnson, editors. Visualization Handbook, Elsevier Press, ISBN:
0-12-387582-x, 984 pages, 2004.

Published Papers: Journals

1. “State of the Art in Transfer Functions for Direct Volume Rendering”, Patric Ljung, Jens Krge,
Eduard Grler, Markus Hadwiger, Charles D. Hansen, Anders Ynnerman, Computer Graphics Forum
Journal, Volume 35, Number 3, June 2016

Pascal Grosset and Manasa Prasad and Cameron Christensen and Aaron Knoll and Charles Hansen,
IEEE Transactions on Visualization and Computer Graphics, IEEE Early Access

2

185

2. “TOD-Tree: Task-Overlapped Direct send Tree Image Compositing for Hybrid MPI Parallelism and
GPUs”, Pascal Grosset and Manasa Prasad and Cameron Christensen and Aaron Knoll and Charles
Hansen, IEEE Transactions on Visualization and Computer Graphics, IEEE Early Access

3. “A Survey of Colormaps in Visualization”, Liang Zhou and Charles Hansen, IEEE Transactions on
Visualization and Computer Graphics, IEEE Early Access

4. “A Shot at Visual Vulnerability Analysis”, Ethan Kerzner, Charles Hansen, Miriah Meyer,
Computer Graphics Forum Journal, Volume 34, Number 3, May 2015, pp. 391-400.

5. “Boundary Aware Reconstruction of Scalar Fields”, Stefan Lindholm; Daniel Jnsson and Charles
Hansen and Anders Ynnerman, IEEE Transactions on Visualization and Computer Graphics,
Volume 20, Number 12, November 2014, pp. 2447 - 2455.

6. “GuideME: Slice-guided Semiautomatic Multivariate Exploration of Volumes”, Liang Zhou and
Charles Hansen, Computer Graphics Forum Journal, Volume 33, Number 3, June 2014, pp. 151-160.

7. “Ovis: A Framework for Visual Analysis of Ocean Forecast Ensembles”, Thomas Hoellt, Ahmed
Magdy, Peng Zhan, Guoning Chen, Ganesh Gopalakrishnan, Ibrahim Hoteit, Charles D. Hansen,
and Markus Hadwiger, IEEE Transactions on Visualization and Computer Graphics, Volume 20,
Number 9, 2014, pp. 1114-1126.

8. “Synthetic Brainbows”, Yong Wan, Hideo Otsuna, and Charles Hansen, Computer Graphics Forum
Journal, Volume 32, Number 3, June 2013, pp. 471-480.

9. “Similarity Measures for Enhancing Interactive Streamline Seeding”, Tony McLoughlin, Mark Jones,
Robert Laramee, Charles D. Hansen, IEEE Transactions on Visualization and Computer Graphics,
Volume 19, Number 8, 2013, August 2013, pp.1342-1353.

10. “Ambient Occlusion Effects for Combined Volumes and Tubular Geometry”, Mathias Schott,
Tobias Martin, A.V. Pascal Grosset, Sean T. Smith, Charles D. Hansen, IEEE Transactions on
Visualization and Computer Graphics, Volume 19, Number 6, 2013, June 2013, pp. 913-926.

11. “Dye-Based Flow Visualization”, Grzegorz K. Karch, Filip Sadlo, Daniel Weiskopf, Charles D.
Hansen, Guo-Shi Li, and Thomas Ertl, IEEE Computing in Science & Engineering, Volume 14,
Number 6, November 2012, pp. 80-86.

12. “Transfer Function Combinations”, Liang Zhou, Charles D. Hansen, Computer and Graphics,
Volume 36, Number 6, October 2012, pp. 596-606.

13. “Design of 2D Time-Varying Vector Fields” Guoning Chen, Konstantin Mischaikow, Vivek Kwatra,
Li-Yi Wei, Charles D. Hansen, Eugene Zhang, IEEE Transactions on Visualization and Computer
Graphics, Volume 18, Number 10, October 2012, pp. 1717-1730.

14. ”A Practical Workflow for Making Anatomical Atlases in Biological Research”, IEEE Computer
Graphics and Applications, Yong Wan, A. Kelsey Lewis, Mary Colasanto, Mark van Langeveld,
Gabrielle Kardon, Charles Hansen, Volume 32, Number 5, September 2012, pp. 70-80.

15. “Direct Feature Visualization Using Morse-Smale Complexes”. Attila Gyulassy, Natallia Kotava,
Mark Kim, Charles Hansen, Hans Hagen, Valerio Pascucci, IEEE Transactions on Visualization and
Computer Graphics, Volume 18, Number 9, September, 2012, pp. 1549-1562.

16. “Generalized Swept Mid-structure for Polygonal Models”, Tobias Martin, Guoning Chen,
Suraj Musuvathy, Elaine Cohen, Charles Hansen, Computer Graphics Forum Journal (proceedings
of EuroGraphics), Volume 31, Number 2, May 2012, pp. 805-814.

3

186

Editorial Duties:

Guest Editor: IEEE Transactions on Visualization and Computer Graphics, Vol. 22, No. 6, 2016
Guest Editor: IEEE Transactions on Visualization and Computer Graphics, Vol. 14, No. 6, November/December 2008
Guest Editor: IEEE Transactions on Visualization and Computer Graphics, Vol. 13, No. 6, November/December 2007
Guest Editor: IEEE Computer Graphics and Applications, Vol. 23, No. 2, March 2003
Guest Editor: IEEE Computer Graphics and Applications, Vol. 14, No. 4, July 1994
Guest Editor: IEEE Parallel and Distributed Technology, Vol. 2, No. 2, Summer 1994
Editorial Board: IEEE Transactions on Visualization and Computer Graphics, September 2012 - present
Editorial Board: IEEE Computing NOW, September 2012 - present
Editorial Board: Computers and Graphics, September 2011 - present
Editorial Board: IEEE Transactions on Visualization and Computer Graphics, January 2003 - January 2007
Editorial Board: International Journal of High Performance Computer Graphics, Multimedia and Visualization,

February 1997 - 1999
Associate Editor-in-Chief: IEEE Transactions on Visualization and Computer Graphics, August 2003 - January 2007
Associate Editor-in-Chief: IEEE Transactions on Visualization and Computer Graphics, June 2014 - Present

University Departmental and College Committees

Department: Director: Graphics and Visualization Track, 2012-present
Faculty Search Committee - Computer Vision 2015-2016
Faculty Search Committee - Data Science 2014-2015
Faculty Search Committee - Visualization 2014-2015
Faculty Search Committee - Computer Vision 2013-2014
Faculty Search Committee - Visualization 2013-2014
Faculty Search Committee - Visualization 2012-2013
Research Grants Review 2011
Associate Director, School of Computing, 2009-2010
Research Grants Review 2010
Research Grants Review 2009
Associate Director, School of Computing, 2008-2009
Graduate Admissions Committee 2008
Research Grants Review 2008

University: UPTAC Committee 2014-2017
Graduate Council, Graduate School, 2014-present
Graduate Admissions Committee, Graduate School, 2014-present
Associate Director of the Scientific Computing and Imaging Institute 2015-2016
Associate Director of the Scientific Computing and Imaging Institute 2014-2015
Associate Director of the Scientific Computing and Imaging Institute 2013-2014
Associate Director of the Scientific Computing and Imaging Institute 2012-2013
Associate Director of the Scientific Computing and Imaging Institute 2010-2011
IT Council 2010-2011
Associate Director of the Scientific Computing and Imaging Institute 2009-2010
IT Council 2009-2010
Associate Director of the Scientific Computing and Imaging Institute 2008-2009
IT Council 2008-2009
Leadership Workshop 2008-2009

4

187

Curriculum Vitae

THOMAS C. HENDERSON

Professional Employment

7/89 to present. University of Utah. Professor of Computer Science
8/2011 to 12/2011. University of Karlsruhe, Visiting Professor (sabbatical)
8/2010 to 7/2011. National Science Foundation. Program Director
7/2003 to 12/2003. University of Karlsruhe, Visiting Professor (sabbatical)
7/2000 to 6/2003. University of Utah. Founding Director, School of Computing
12/97 to 7/99. University of Utah. Associate Dean of Engineering
9/91 to 7/1997. University of Utah. Chairman of Computer Science
7/89 to 7/91. University of Utah. Associate Chairman of Computer Science
1/85 to present. University of Utah. Adjunct Professor of Bioengineering
7/84 to 7/89. University of Utah. Associate Prof. of Computer Science
9/88 to 4/89. INRIA, Sophia-Antipolis, Visiting Professor (sabbatical)
7/85 to 7/87. University of Utah. Associate Chairman of Computer Science
1/82 to 6/84. University of Utah. Assistant Prof. of Computer Science
10/80 to 12/81. INRIA, Rocquencourt, France. Visiting Professor
11/79 to 9/80. DFVLR, Oberpfaffenhofen, W. Germany. Research Associate

Education

BS, Math (with Honors), Louisiana State University 1973
PhD, Computer Science, The University of Texas at Austin 1979

Professional Publications

Books

Computational Sensor Networks, Springer-Verlag, May 2009.

Analysis of Engineering Drawings and Raster Map Images, Springer-Verlag, 2014.

Published Papers: Journals

1. “RobotShare: A Google for Robots,” T. Henderson and Y. Fan, special issue on ”Cog-
nitive Humanoid Robots” of the International Journal of Humanoid Robotics, Vol 5,
Bo 2, June 2008, pp. 311-329.

1

188

2. “Feature Fusion for Basic Behavior Unit Segmentation from Video Sequences,” Xinwei
Xue and Thomas C. Henderson, Robotics and Autonomous Systems, Vol. 57, No. 3,
March 2009, pp. 239-248.

3. “Perimeter Detection in Wireless Sensor Networks,” Kyle Luthy, Edward Grant, Nikhil
Deshpande, and Thomas C. Henderson, Journal of Robotics and Autonomous Systems,
Vol. 60, No. 2, Feb, 2012, pp. 266-277.

4. “Target Localization and Autonomous Navigation using Wireless Sensor Networks - A
Pseudo-Gradient Algorithm Approach”, Nikhil Deshpande, Edward Grant, and Thomas
C. Henderson, IEEE Systems Journal Special Issue on Sensor Networks for Advanced
Localization Systems, Vol. 8, No. 1, pp. 93–103, March 2014.

5. “Model Accuracy Assessment in Reaction-Diffusion Pattern Formation in Wireless Sen-
sor Networks,” Thomas C. Henderson, Anshul Joshi, Karl Rashkeev, and Narong Boon-
sirisumpun, Kyle Luthy and Edward Grant, International Journal of Unconventional
Computing, Vol. 10, No. 4, pp. 317-338, 2014.

Oral Presentations: Professional Meetings

1. “Issues Related to Parameter Estimation in Model Accuracy Assessment,” Thomas C.
Henderson and Narong Boonsirisumpun, International Conference on Computational
Science, ICCS 2013, Barcelona, Spain, 5-7 June, 2013.

2. “Symmetry Bundles as Affordances,” Thomas C. Henderson, Anshul Joshi and Wenyi
Wang, Robot Science and Systems, Workshop: “From Experience to Concepts and
Back,” Berlin, Germany, June 27, 2013.

3. “Robot Cognition using Bayesian Symmetry Networks,” Thomas C. Henderson, Anshul
Joshi and Wenyi Wang, Internaitonal Conference on Agents and Artificial Intelligence,
Angers, France, March 6-8, 2014.

4. “Generative Cognitive Representation for Embodied Agents,” Anshul Joshi and Thomas
C. Henderson, IEEE Conference on Multisensor Fusion and Integration for Intelligent
Systems, Beijing, Sept. 28-30, 2014.

5. “SLAMBOT: Structural Health Monitoring using Lamb Waves,” Wenyi Wang, Thomas
C. Henderson, Anshul Joshi and Edward Grant, IEEE Conference on Multisensor Fusion
and Integration for Intelligent Systems, Beijing, Sept. 28-30, 2014.

6. “Symmetry Based Semantic Analysis of Engineering Drawings,” Thomas C. Henderson,
Narong Boonsirisumpun, and Anshul Joshi, IEEE Conference on Multisensor Fusion and
Integration for Intelligent Systems, Beijing, Sept. 28-30, 2014.

2

189

7. “Bayesian Computational Sensor Networks: Small-scale Structural Health Monitoring,”
Wenyi Wang, Anshul Joshi, Nishith Tirpankar, Philip Erickson, Michael Cline, Palani
Thagaraj, and Thomas C. Henderson, International Conference on Computational Sci-
ence, Reykavik, Iceland, June 1-3, 2015.

8. “Informing Change: Course Content Analysis and Organization,” Linda DuHadway
and Thomas C. Henderson, Proceedings IEEE Conference on Frontiers in Education,
El Paso, TX, Oct 21-24, 2015

9. “Actuation in Perception: Character Classification in Engineering Drawings,” Thomas
C. Henderson, Narong Boonsirisumpun and Anshul Joshi, Proceedings IEEE Conference
on Multisensor Fusion and Integration for Intelligent Systems, San Diego, CA, Sept 14-
16, 2015.

10. “Gaussian Processes for Multi-Sensor Environment Modeling,” Philip Erickson, Michael
Cline, Nishith Tirpankar and Thomas C. Henderson, Proceedings IEEE Conference on
Multisensor Fusion and Integration for Intelligent Systems, San Diego, CA, Sept 14-16,
2015.

11. “Artificial Student Agents and Course Mastery Tracking,” Linda DuHadway and Thomas
C. Henderson, Proceedings International Conference on Agents and Artificial Intelli-
gence, Rome, Italy, Feb 24-26, 2016.

12. “Actuation-based Shape Representation applied to Engineering Document Analysis,”
Thomas C. Henderson, Narong Boonsirisumpun and Anshul Joshi, Proceedings Inter-
national Conference on Agents and Artificial Intelligence, Rome, Italy, Feb 24-26, 2016.

13. “Laying a Foundation for the Graphical Course Map,” Linda DuHadway and Thomas
C. Henderson, Proceedings of the ACM Web for All Conference, Montreal, CA, 11-13
April 2016.

International Courses and Committees

• European Union Cognitive Robotics Proposal Evaluation Panel, Brussels, Belgium, 2-5
June 2008, 2009, 2012, 2013.

• NSF Committee of Visitors, Reviewer of Intelligent and Information and Systems Divi-
sion, 19-21 May, 2009.

• NSF Science and Technology Center Site Reviewer, October 2012.

• Co-Program Chair, IEEE International Conference on Robotics and Automation, Karl-
sruhe, Germany, May 2013.

• Co-organizer, Workshop at Robot Science and Systems, Berlin, Germany, June 2013.

3

190

• Program Chair, IEEE Multisensor Fusion and Integration, San Diego, CA, September
2015.

Research Grants and Contracts

1. AFOSR - STTR (2007-2009) “Exploiting Raster Maps for Imagery Analysis” $223,000
(of $750,000 total to IAVO, Inc.)

2. STC Corp (2008) “Qualitative Modeling for Fault Diagnosis,” $47,610.

3. NSF (2010-2012) “Innate Theories in Robotics,” $36,000.

4. NSF (2010-2011) “IPA,” $273,000.

5. AFOSR (2012-2015) “Bayesian Computational sensor Networks,” $614,796.

Honors and Awards

• 2000 Utah Governor’s Medal for Science and Technology

• 2003 IEEE Fellow

• Best Paper Award, IEEE Conference on Multi-sensor Fusion and Integration, Seoul,
Korea, August, 2008.

Doctoral Committees (As Supervisor)

• Chuck Hansen (Computer Science, June 1987) ”CAGD-Based Computer Vision: The
Automatic Generation of Recognition Strategies”

• Rod Grupen (Computer Science, Aug. 1988) ”General Purpose Grasping and Manipu-
lation with Multifingered Robot Hands”

• Ashok Samal (Computer Science, Aug. 1988) ”Parallel Split-Level Relaxation”

• Jun Gu (Computer Science, 1989) ”Parallel Algorithms and Architectures for Very Fast
AI Search”

• Mohamed Dekhil (Computer Science, 1998) “Instrumented Sensor Systems”

• Xinwei Xue (Computer Science, 2008) “Behavior Analysis”

• Linda DuHadway (Computer Science, May 2016) ”Course Transformation: Content,
Structure and Effectiveness Analysis”

• Anshul Joshi (Computer Science, est. 2016) “Symmetry in Robotics”

• Narong Boonsirisumpun (Computing, Robotics Track, est. 2017) ”Semantic Analysis
of Engineering Drawings using Symmetry”

4

191

Tucker Ryer Hermans
School of Computing thermans@cs.utah.edu
50 S Central Campus Drive Room 3190 www.cs.utah.edu/~thermans
Salt Lake City, UT, 84112 +1 (801) 581-8122

Education
Georgia Institute of Technology, School of Interactive Computing Atlanta, GA
Ph.D. Robotics, May 2014
› Thesis: Representing and Learning Affordance-Based Behaviors
› Thesis Committee: Aaron Bobick (advisor), James M. Rehg (co-advisor), Henrik Christensen,

Charles C. Kemp, Mike Stilman, and Dieter Fox (Univ. Washington),
Georgia Institute of Technology, College of Computing Atlanta, GA
M.S. Computer Science: Computational Perception and Robotics, Aug 2012
Bowdoin College Brunswick, ME
A.B. Magna Cum Laude in Computer Science (Hon.) and German, May 2009
Humboldt Universität zu Berlin Berlin, Germany
Coursework in Computer Science and German Literature, 2007–2008
Experience
School of Computing, University of Utah July 2015–Present
Assistant Professor
Department of Mechanical Engineering, University of Utah January 2016–Present
Adjunct Assistant Professor
Technische Universität Darmstadt, Department of Computer Science April 2014–July 2015
Postdoctoral Researcher
Georgia Institute of Technology, School of Interactive Computing Aug 2009–April 2014
Graduate Research Assistant
Georgia Institute of Technology, School of Interactive Computing Fall 2011
Graduate Teaching Assistant: CS 4495 Computer Vision
Awards and Honors
ICDL-Epirob CIS Student Travel Grant 2013
Georgia Tech President’s Fellowship 2009–2013
Phi Beta Kappa, Alpha of Maine 2009
Maine State Police Colonel’s Award 2009
Sarah and James Bowdoin Scholar (Dean’s List) 2006, 2007
Lectures and Invited Talks
Invited Talk:“Visual and Tactile Learning for Robot Manipulation” January 2016
Department of Mechanical Engineering, Brigham Young University
Invited Talk:“Visual and Tactile Learning for Robot Manipulation” April 2015
School of Computing, University of Utah
Invited Talk:“Visual and Tactile Learning for Robot Manipulation” March 2015
School of Computer Science, McGill University
Invited Talk:“Visual and Tactile Learning for Robot Manipulation” February 2015
Department of Computer Science, Drexel University
Guest lecture: “Model Learning” November 2014
Robot Learning (Lernende Roboter), Department of Computer Science, TU Darmstadt
Invited talk: “Tactile Sensing for Object Manipulation in Clutter” September 2014
Third Workshop on Robotics in Clutter, IROS 2014
Academic Service
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2016
Associate Editor
School of Computing, University of Utah 2016
Colloquium Chair
Faculty Hiring Committee: Computer Vision, School of Computing, University of Utah 2015-2016
Committee Member
Graduate Admissions Committee, School of Computing, University of Utah 2015-2016
Committee Member

192

Workshop on “Visual and Tactile Learning for Interaction” at Robotics: Science and Systems
2015

July 2015

Lead Organizer
Faculty Hiring Committee, School of Interactive Computing, Georgia Tech 2012-2013
Student Committee Member
Program Committee Member:
ECCV Workshop on Affordances (2014), RSS Workshop on Affordances (2014), IROS Workshop on Cognitive
Robotics and Systems (2013), RSS Workshop on Robots in Clutter (2013), ICRA Workshop on Interactive
Perception (2013), RoboCup Symposium (2010, 2011)
Reviewer:
International Journal of Robotics Research, IEEE Transactions on Robotics, Autonomous Robots, IEEE Trans-
actions on Cognitive and Developmental Systems, IROS, ICRA, Humanoids, Journal of Intelligent and Robotic
Systems, NIPS 2014 Workshop: Autonomously Learning Robots, HRI: Workshops and Tutorials
Publications
Journal Articles
› F. Veiga, H. van Hoof, J. Peters, and T. Hermans. “Stabilizing Novel Objects through Tactile Prediction of Slip.”

Under Review: IEEE Transactions on Robotics, 2015.
Conference and Workshop Papers
› Z. Yi, R. Calandra, H. van Hoof, F. Veiga, T. Hermans, Y. Zhang, and J. Peters. “Active Tactile Object Ex-

ploration with Gaussian Processes,” Under Review:IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016.

› J. Hoelscher, J. Peters, and T. Hermans. “Evaluation of Tactile Feature Extraction for Interactive Object Recog-
nition.” IEEE-RAS International Conference on Humanoid Robotics (Humanoids), 2015.

› H. van Hoof, T. Hermans, G. Neumann, and J. Peters. “Learning Robot In-Hand Manipulation with Tactile
Features.” IEEE-RAS International Conference on Humanoid Robotics (Humanoids), 2015.

› F. Veiga, H. van Hoof, J. Peters, and T. Hermans. “Detecting Slip and Stabilizing Grip of Novel Objects with Tac-
tile Sensing.” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany,
2015.

› T. Hermans, F. Li, J. M. Rehg, A. F. Bobick. “Learning Contact Locations for Pushing and Orienting Unknown
Objects.” IEEE-RAS International Conference on Humanoid Robotics (Humanoids), Atlanta, GA, USA, October
2013.

› A. Ciptadi, T. Hermans, J. M. Rehg, “An In Depth View of Saliency.” British Machine Vision Conference (BMVC),
Bristol, United Kingdom, September 2013.

› T. Hermans, F. Li, J. M. Rehg, A. F. Bobick. “Learning Stable Pushing Locations.” IEEE International Conference
on Developmental Learning and Epigenetic Robotics (ICDL-Epirob), Osaka, Japan, August 2013.

› T. Hermans, J. M. Rehg, A. F. Bobick. “Decoupling Behavior, Perception, and Control for Autonomous Learning
of Affordances.” IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May
2013.

› T. Hermans, J. M. Rehg, A. F. Bobick.“Decoupling Behavior, Control, and Perception in Affordance-Based Ma-
nipulation.” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): Workshop on Cognitive
Assistive Systems, Vilamoura, Portugal, October 2012.

› T. Hermans, J. M. Rehg, A. F. Bobick.“Guided Pushing for Object Singulation.” IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, October 2012.

› A. Cosgun, T. Hermans, V. Emeli, M. Stilman, “Push Planning for Object Placement on Cluttered Table Sur-
faces.” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011.

› T. Hermans, J. M. Rehg, A. F. Bobick, “Affordance Prediction via Learned Object Attributes,” ICRA Workshop
on Semantic Perception, Mapping, and Exploration, 2011.

› H. Zhou, T. Hermans, A. V. Karandikar, J. M. Rehg, “Movie Genre Classification via Scene Categorization.”
ACM Multimedia, Florence, Italy, November 2010.

› H. Work, E. Chown, T. Hermans, J. Butterfield, M. McGranaghan, “Player Positioning in the Four-Legged
League.” RoboCup: Robot Soccer World Cup XII. Suzhou, China, 2008.

› H. Work, E. Chown, T. Hermans, J. Butterfield, “Robust Team-Play in Highly Uncertain Environments.” Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems. Estoril, Portugal, May 2008.

Peer Reviewed Demonstrations
› T. Hermans, F. Veiga, H. van Hoof, J. Hoelscher, J. Peters, “Demonstration: Learning for Tactile Manipulation.”

Neural Information Processing Systems (NIPS), Montreal, Canada, December 2014.

193

Funding

Current

› None

Pending

› NSF: NRI: Intuitive Teloperation of Underactuated Tactile Sensing Robot Hands (PI) $649,910

Teaching

› CS 6370 /ME EN 6225 “Motion Planning” - Fall 2015
› CS 7939 /ME EN 7960 “Seminar in Robotics” - Fall 2015
› CS 6300 “Artificial Intelligence” - Spring 2016
› CS 7930 “School of Computing Colloquium” - Spring 2016

194

John M. Hollerbach
University of Utah, School of Computing
http://www.cs.utah.edu/˜jmh

PROFESSIONAL PREPARATION

University of Michigan Chemistry B.S. 1968
University of Michigan Mathematics M.S. 1969
Massachusetts Institute of Technology EECS S.M. 1975
Massachusetts Institute of Technology EECS Ph.D. 1978

APPOINTMENTS

University of Utah School of Computing Professor 1994-Present
Mechanical Eng. Adjunct Professor 1994-Present

McGill University Biomedical Eng. and NSERC/CIAR Professor 1989 - 1994
Mechanical Eng. of Robotics

M.I.T. Brain and Cognitive Sciences Associate Professor 1985 - 1989
M.I.T. Psychology Assistant Professor 1982 - 1985
M.I.T. Dept. Psychology and A.I. Lab Research Scientist 1978-1982
M.I.T. EECS and A.I. Lab Research Assistant 1972-1978

HONORS AND AWARDS

Life Fellow, IEEE, 2016.
Volunteer of the Year Award, Utah Regional FIRST Robotics Competition, 2013.
Distinguished Service Award, IEEE Robotics and Automation Society, 2012.
Outstanding Teacher Award, School of Computing, University of Utah, 2006.
Student Choice Teaching Award, Associated Students of the University of Utah, 2006.

SELECTED SERVICE

Editor-in-Chief, International Journal of Robotics Research, 2000 - Present. Top-rated robotics
journal by impact factor.

Director, Robotics Track, University of Utah School of Computing. Since 2005, the Robotics
Track has been a joint program of study for M.S. and Ph.D. students in the School of Computing
and Department of Mechanical Engineering, and the second such degree program after CMU.

Vice President for Technical Activities 2010-2011, and Vice President for Conference Activities
2008-2009, IEEE Robotics and Automation Society.

Organizing Committee, Utah Regional FIRST Robotics Competition, 2010-Present. As part of
our outreach activities for an NSF IGERT on Biocentric Robotics, the robotics group started the

195

Utah Regional FIRST Robotics Competition (FRC). Until then, there were only 2 or 3 Utah high
school teams participating in FRC, and they had to travel out of state. Now there are more than
two dozen, and it has been made mandatory for the 5 high schools of the Canyons School District,
and the regional has hosted up to 53 teams in total.

co-Founder, University of Utah Robotics Center (URC), January 2016. The URC formalizes the
buildup of robotics at Utah over the years, which includes common labs and equipment, the
Robotics Track, and the Utah Regional FRC.

Member, Interim Computing Community Consortium (CCC) Council, 2006-2007. This interim
committee created the permanent CCC Council of the CRA. Spearheaded the formation of the
CCC Iniative on Robotics by asking Henrik Christensen and select members of the robotics
community to submit a proposal to the CCC. Participated in a roadmapping activity, which
eventually resulted in the creation of the National Robotics Initiative.

COURSES TAUGHT

CS 5310/6310 & ME EN 5220/6220 Introduction to Robotics, 1994-present.
CS 5300/6300 Artificial Intelligence, 2011, 2014-15.
CS 7320 & ME EN 7220 System Identification for Robotics, 2006-present.
CS 7939 & ME EN 7960-002 Robotics Seminar, 2005-present.

RECENT Ph.D. SUPERVISION

Current: 4 Ph.D. students. Graduated 2 Ph.D. students in recent past.

RECENT RESEARCH

Fingertip Force Prediction by Imaging the Fingernail. Normal and shear forces of the fingerpad
contact with a flat surface can be estimated with external camera imaging of the fingernail and
surrounding skin. This permits contact force to be estimated without instrumented objects, and
can be used for scientific studies of grasping and for human-computer interfaces. This is a joint
project with Prof. Steve Mascaro of Mechanical Engineering, and is currently supported by an
NSF NRI grant.

Treadport Active Wind Tunnel. The Treadport is a large tilting treadmill inside a CAVE-like virtual
environment with stereo display and floor projection. A user wears a harness attached to a horizon-
tal mechanical tether, which measures user position to control the speed of the belt and progress
and direction in the virtual environment. The tether also exerts a frontal horizontal force, which
can simulate collision forces, missing inertial forces, and slope walking. A wind tunnel has been
created around the Treadport to generate wind on the cross section of the user with speeds up to
20mph and from a broad frontal direction. This is the world’s first steerable wind tunnel in any
context. A natural odor display is created by injecting smells into the wind, and an infrared heat
source is used for radiant heat display to simulate an outdoor virutal environment in combination.

196

This project has been funded by two NSF grants. This has been a joint project with Profs. Mark
Minor and Eric Pardyjak of Mechanical Engineering.

Gait Rehabilitation with the Treadport. One view of the Treadport is as the most realistic simu-
lation of real-world walking in a safe environment. This capability is being utilized for patients
with incomplete spinal cord injuries (iSCI) and Parkinson’s patients (currently supported by two
separate NSF grants). iSCI patients can regain some ability to walk, but there is a big gap between
their clinical training and real-world walking in terms of remaining gait abnormalities and robust-
ness to falling. The Treadport can present realistic challenges and tasks in a safe setting that better
prepares patients for the real world. For Parkinson’s patients, a challenge is walking on uneven ter-
rain such as on cobblestones. This project is creating an actuated shoe with multiple controllable
air bladders to present uneven terrain. The Treadport’s stereoscopic floor display can create virtual
objects to step over. The iSCI research is in collaboration with Jake Abbott, and the Parkinson’s
research with Mark Minor and Andrew Merriweather of Mechanical Engineering and Bo Foreman
of Physical Therapy.

SELECTED PUBLICATIONS

Grieve, T., Hollerbach, J.M., and Mascaro, S.A., “Optimizing Fingernail Imaging Calibration for
3-D Force Magnitude Prediction,” IEEE Trans. Haptics, in press.

Grieve, T., Hollerbach, J.M., and Mascaro, S.A., “3-D Fingertip Touch Force Prediction Using
Fingernail Imaging with Automated Calibration,” IEEE Trans. Robotics, 31, 2015, pp. 2116-2129.

Hejrati, B., Crandall, K., Hollerbach, J.M., and Abbott, J.J., “Kinesthetic Force Feedback and
Belt Control for the Treadport Locomotion Interface,” IEEE Transactions on Haptics, 8, 2015, pp.
176-187.

Hejrati, B., Hull, D., Black, J., Abbott, J.J., and Hollerbach, J.M., “Investigation of the Treadport
for gait rehabilitation of spinal cord injury,” Engineering in Medicine and Biology Conference,
Los Angeles, August, 2012, pp. 4553-4558.

Kulkarni, S., Fisher, C.J., Lefler, P., Desai, A., Chakravarthy, S., Pardyjak, E., Minor, M.A., and
Hollerbach, J.M., “A Full-Body Steerable Wind Display for a Locomotion Interface,” IEEE Trans.
Visualization and Computer Graphics, 21, 2015, pp. 1146-1159.

Kulkarni, S., Chakravarthy, S., Minor, M.A., Pardyjak, E.R., and Hollerbach, J.M., “Control of a
duct flow network for wind display in a virtual environment,” IEEE/ASME Trans. Mechatronics,
17, 2012, pp. 1021-1030.

Kulkarni, S., Minor, M.A., Deaver, M.W., Pardyjak, E.R., and Hollerbach, J.M., “Design, sensing,
and control of a scaled wind tunnel for atmospheric display,” IEEE/ASME Trans. Mechatronics,
17, 2012, pp. 635-645.

Kulkarni, S., Deaver, M.W., Pardyjak, E.R., Minor, M.A., and Hollerbach, J.M., “Design elements
of a novel atmospheric flow simulator,” ASME J. Fluids Engineering, 133, 2011, pp. 121402-1-10.

Sun, Y., Hollerbach, J.M., and Mascaro, S.A., “Estimation of finger force direction with computer
vision,” IEEE Trans. Robotics, 25, 2009, pp. 1356-1369.

197

Sun, Y., Hollerbach, J.M., and Mascaro, S.A., “Predicting fingertip forces by imaging coloration
changes in the fingernail and surrounding skin,” IEEE Trans. Biomedical Engineering, 55, 2008,
pp. 2363-2371.

198

Curriculum Vitae
Peter A. Jensen

Lecturing Associate Professor
School of Computing at the University of Utah

October 2016

Career Focus

My career focus is to use innovative teaching methods to teach college students
computer science skills and principles. As a lecturing faculty member in the School of
Computing, I primarily work to advance undergraduate education through excellence in teaching
and exploration of new methods and technologies for teaching computer science. I also
participate in academic governance, student advising, undergraduate administration, and
outreach to the broader community. I have interests in computer engineering and computer
science related to architecture, number theory, and entertainment and arts engineering.

Education

University of Utah
Doctor of Philosophy: Computer science
Completed February 2008

University of Utah
Bachelor of Science: Computer science
Completed May 1995
Magna cum laude, with honors

Professional background

September 1995 - Present
School of Computing, University of Utah – Salt Lake City, Utah
Lecturing Associate Professor / Lecturing Assistant Professor / Instructor / Teaching Assistant /
Research Assistant / Outreach Coordinator
 My research experience has included brief forays into operating systems, robotics,
scientific computing, but my primary work has been in computer science education. I have
implemented dynamic web page tools and databases in support of on-line classes, and I have
taught a variety of courses (see below).

January 2008 – Present
Clark Planetarium – Salt Lake City, Utah
Consultant / Programmer

 I develop and maintain (on an occasional basis) software in support of educational
displays at the planetarium. I have created 3D multimedia applications, I have helped develop
and implement educational user interfaces, and I have written interface code for use with a
Kinect, touchscreens, trackballs, and an industrial scale.

March 1996 – December 2005
NBO Systems, Inc. – Salt Lake City, Utah
Consultant / Programmer
 I developed software and hardware for ticketing and sales kiosks and I programmed a
robust, high-throughput multithreaded application for credit card transaction processing.

199

March 1998 – August 1998
Punkinhead L.L.C. – Murray, Utah
Developer / Programmer
 I developed a small application called ‘Me on a Pumpkin’, which used image processing
to allow a user to input a picture and convert it into a stencil appropriate for pumpkin carving.

July 1993 – March 1995
Sculptured Software – Salt Lake City, Utah
Programmer
 I worked with a development team to create games for the Super Nintendo console
system. My responsibilities included programming data compression routines, post-process
editing of artwork, and the design, artwork, and programming for animations.

May 1986 – July 1993
Mastery Development – Redmond, Washington
Senior programmer / Consultant
 My responsibilities included the programming of educational software and games for
elementary school students, the design and implementation of hardware, drivers, and software for
a 48-computer network with high-bandwidth multicast support, and the development of utilities to
support the software and hardware production assembly lines.

Teaching History

For more than 18 years I have maintained a pattern of teaching excellence, and I
continuously work to improve my pedagogy, my use of teaching tools, and my professionalism.

University of Utah Courses

(Course numbering/naming has changed. Courses are listed using current titles and numbers.)

Course
Name

Course
Number

Semesters
Taught

Engineering Computing CS 1000 Spring 2012, Spring 2011

Introduction to Java (non-major) CS 1021 Fall 2009, Fall 2004, Summer 2002,
Spring 2002, Fall 2001, Fall 1999, Fall 1998,
Summer 1998

Creating Interactive Web Content CS 1040 Spring 2007, Fall 2006, Spring 2006,
Summer 2002

Introduction to Computer Science CS 1400 Summer 2013

Object-Oriented Programming CS 1410 Fall 2014, Fall 2013, Spring 2013, Fall 2012,
Spring 2012, Fall 2011, Spring 2011,
Spring 2010, Fall 2009, Spring 2009,
Fall 2008, Spring 2008, Fall 2007,
Spring 2007, Fall 2006, Spring 2006

Data Structures and Algorithms CS 2420 Spring 2014, Summer 2010, Spring 2009,
Spring 2008, Spring 2005, Summer 1999

200

Software Practice II CS 3505 Spring 2015, Spring 2014, Spring 2013,
Spring 2010

Computer Design Lab CS 3710 Fall 2016

Computer Organization CS 3810 Fall 2016, Spring 2015, Fall 2014, Fall 2013,
Fall 2012, Fall 2011, Fall 2010, Fall 2009,
Fall 2008, Fall 2007

Algorithms CS 4150 Spring 2006

Programming Challenges CS 4190 Fall 2014, Fall 2012, Fall 2011, Fall 2010,
Spring 2009, Spring 2008

Mobile Apps: iPhone
(Instructor Mentor)

CS 4962 Spring 2012, Spring 2011, Spring 2010

Teaching Introductory CS CS 5040 Fall 2013, Fall 2006, Spring 2001

Awards

Award Years received

School of Computing Outstanding Teaching Award 2012, 2010, 2007

Dean’s letter of teaching excellence 2013 (x2), 2012, 2011, 2010 (x2),
2009 (x2), 2008 (x2), 2007, 2002, 1999

Service Rolls

June 2016 – Present Committee Chair
University of Utah – Senate Advisory Committee on IT

January 2014 – Present Senator
University of Utah – Academic Senate

December 2013 – Present Representative
College of Engineering – College Council

August 2005 – Present Advisor / Mentor
School of Computing – Advising

August 2008 – Present CE Committee Member / ABET
Computer Engineering – Service

October 1998 – Present Team coach
ACM – Rocky Mountain Regional Programming Contest

January 2015 – May 2016 Committee Member
University of Utah – Faculty IT Ad hoc Committee of the Academic Senate

201

August 2008 – August 2014 Participant / Member
School of Computing – Curriculum Committee

September 2013, September 2014 Meeting Leader
Utah State Higher Education – Major’s Meeting

September 2013 – May 2014 Committee Member
University of Utah – Committee for Technology Enhanced Curriculum

January 2011 – December 2013 Outreach Coordinator
School of Computing

October 2008 – June 2012 Event director
College of Engineering – ‘Utah Engineering’ (An NSF Grant)

Additional Service - Outreach Events

2014, 2012, 2010, 2009, 2007, 2006 Utah Site Director
Rocky Mountain Regional ACM Contest

2012, 2011, 2010, 2009 Organizer / Director
Meet an Inventor Night

June 2008 Session Leader
Utah Bio Innovation Summit

March 2007 Organizer / Director
Utah High School Programming and Design Competition

1996 – 2004 Chief Judge / Problem writer
Utah High School Programming Competition

Publications

Peter Jensen. Hybrid Fault Localization in Programs Written By Novice Programmers. Ph.D.
dissertation, School of Computing, University of Utah, 2008.

Peter Jensen, edited by Lee Siegel. Press release – School of Computing dominates again. In
The Daily Utah Chronicle, The Salt Lake Tribune, and picked up nationally by ZDNet, November
2006.

Joseph Zachary and Peter Jensen. Exploiting value-added content in an online course:
introducing programming concepts via HTML and JavaScript. In Proceedings of the 34th
SIGCSE technical symposium on computer science education, pages 396-400, February 2003.

Elizabeth Odekirk, Dominic Jones, and Peter Jensen. Three semesters of CSO using Java:
assignments and experiences. In Proceedings of the 5th annual SIGCSE/SIGCUE ITiCSE
conference on innovation and technology in computer science education, pages 144-147, July
2000.

202

Christopher R. Johnson - Summary Curriculum Vita 2016

Professional Experience – Current Positions:

Director, Scientific Computing and Imaging Institute, University of Utah (2000-)
Distinguished Professor, School of Computing, University of Utah (2003-)
Research Professor of Bioengineering, University of Utah (2002-)
Adjunct Professor of Physics, University of Utah (2002-)
Co-Director, NIH Center for Integrative Biomedical Computing (2000-)

Professional Experience – Selected Past Positions:

Co-Director, DOE Visualization and Analytics Center for Enabling Technologies (2006-11)
Director, School of Computing, University of Utah (2003-05)
Director, Engineering Scholars Program, University of Utah (1999 – 2004)
Director, University ACCESS Program, University of Utah (1993-96)
Co-Director, Computational Engineering and Science Program (1992-98)

Honors and Awards – Selected:

Elected Fellow of the IEEE (2014), SIAM (2009), AAAS (2005), AIMBE (2004)
IEEE Sidney Fernbach Award (2013)
College of Science Outstanding Alumni Award, Wright State University (2013)
IEEE IDPDS Charles Babbage Award (2012)
IEEE Visualization Career Award (2010)
Rosenblatt Award – University of Utah (2010)
Utah Cyber Pioneer Award (2009)
Governor’s Medal for Science and Technology (1999)

Scholarship

Books:

1. M. Chen, H. Hagen, C. Hansen, C.R. Johnson, and A. Kauffman, editors. Scientific
Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization. Springer-
Verlag, 416 pages, 2014.  

2. C. Hansen and C.R. Johnson, editors. Visualization Handbook. Elsevier/Academic
Press, 962 pages, 2004.  

Peer Reviewed Articles – Recent from more than 150

1. B. Hollister, G. Duffley, C. Butson, and C.R. Johnson. Visualization for Understanding
Uncertainty in Activation Volumes for Deep Brain Stimulation, in Eurographics
Conference on Visualization (EuroVis) 2016, Editors: K.L. Ma G. Santucci, and J. van
Wijk, 2016 (in press).  

2. P. Rosen, B. Burton, K. Potter, C.R. Johnson. muView: A Visual Analysis System for

203

Exploring Uncertainty in Myocardial Ischemia Simulations, In Visualization in Medicine
and Life Sciences III, Edited by L. Linsen, B. Hamann, and H.C. Hege, Springer, pp. 45-
65. 2016.  

3. X. Tong, J. Edwards, C. Chen, H. Shen, C. R. Johnson, P. Wong. View-Dependent
Streamline Deformation and Exploration, In IEEE Transactions on Visualization and
Computer Graphics, vol. 22, no. 7, pp. 1788-1801, 2016  

4. C. R. Johnson. Visualization of Scalar and Vector Fields. In Encyclopedia of Applied
and Computational Mathematics, Editor: Bjorn Engquist, pp. 1537-1546, Springer,
ISBN: 978-3-540-70528-4 (Print) 978-3-540-70529-1 (Online), 2015.  

5. C.R. Johnson. Computational Methods and Software for Bioelectric Field Problems. In
Biomedical Engineering Handbook, J.D. Bronzino and D.R. Peterson, editors, 4th
Edition, vol I, CRC Press, Boca Raton, Chapter 43, 2015.  

Keynote, Plenary, and Distinguished Lectures – Recent from more than 90

1. Image-Based Modeling, Simulation, and Visualization, IBM Research, Almaden,
September 2016, (IBM Distinguished Lecture).  

2. Big Data Visual Analysis, Platform for Advanced Scientific Computing (PASC16),
Lausanne, June 2016 (Plenary Presentation).  

3. Big Data Visual Analysis, Illinois Institute of Technology, October 2015 (Sigma Xi
Lecture).  

4. Visualizing the Future of Medicine, Fermi Lab, Batavia, September 2015 (Fermi
Lecture).  

5. Image-Based Modeling, Simulation, and Visualization, International Symposium on
Big  Data and Predictive Computational Modeling, Munich, May 2015 (Keynote
Presentation).  

Additional Invited Lectures – Recent from more than 170

1. Image-Based Modeling, Simulation, and Visualization, Beihang University, Beijing,
December 2015.  

2. Big Data Visual Analysis, Big Data Science Park, Guiyang, December 2015.  
3. Big Data Visual Analysis, Haite High-Tech, Chengdu, December 2015.  
4. Visualizing the Future of Medicine, University of Chicago, Chicago, October 2015.  
5. Exploratory Visualization for Pattern Discovery, Future in Review Conference 2015,

Park City, October 2015.  31  
6. The Future of Uncertainty Visualization, Workshop on Visualization for Decision Making

Under Uncertainty, Chicago, October 2015.  
7. Big Data Visual Analysis, University of Queensland, Brisbane, September 2015.  

204

8. Big Data Visual Analysis, Monash University, Melbourne, September 2015.  
9. Big Data Visual Analysis, ICERM Workshop on Mathematics in Data Science,

Providence, July 2015.  
10. Large-Scale Visual Analysis, National Research Council Board on Atmospheric

Sciences and Climate, Boulder, March 2015.  

Research Grants and Contracts - Current Support

NIH/NIGMS Center for Integrative Biomedical Computing, 15 years (three 5 year competitive
renewals, $17,289,281. Chris R. Johnson (Co-PI), Rob MacLeod (Co-PI), Ross Whitaker (Co-
PI), April 30, 2020.

NIH/NIGMS: Predictive Modeling of Bioelectric Activity on Mammalian Multilayered Neuronal
Structures in the Presence of Supraphysiologic. 5 years, $3,146,740. Gianluca Lazzi (PI),
Chris R. Johnson (Co-PI), Miriah Meyer (Co-PI), August 30, 2017.

DOE: Scalable Data Management Analysis and Visualization (SDAV) Institute. 5 years,
$2,250,000. Valerio Pascucci (PI), Chris R. Johnson (Co-PI), Chuck Hansen (Co-PI), February
28, 2017.

NVIDIA Center of Excellence Renewal. 2 years. $324,000. Chris R. Johnson (PI), Chuck
Hansen (Co-PI), December 31, 2017.

Research Grants and Contracts - Past Support: 61 awards for more than $72M in funding
as PI and Co-PI.

Teaching

Advising: 11 postdocs, 18 Ph.D. students, 12 M.S. students, 74 Ph.D. committees (8 different
Departments), 39 M.S. committees, 8 undergraduate projects

New Courses Developed: Advanced Methods in Scientific Computing I & II, Scientific
Visualization, Computational Inverse Problems

New Courses Co-Developed: Engineering Computing, Integrated Sciences (ACCESS),
Algorithms and Architectures for Scientific Computing

Service to the Profession

Journal and Book Editorial Boards: 7 current, 6 past, 4 special issues

Advisory Boards and National Committees – Current selected from 40

CRA Board of Directors; MATHEON International Advisory Board; IEEE Visualization and
Graphics Technical Committee – Executive Committee; HPC Technical Computing Advisory
Panel

205

Other: Chair or Co-Chair – Conferences and Workshops (15); Award Committees, Program
Committees, Paper Committees (>100); NSF, NIH, DOE, and CRA National Committee
Reports (15)

Service to the University – Selected

Vice President for Research Search Committee (twice); Distinguished Professor Advisory
Committee; Advisory Board, UU’s Professional Master of Science and Technology Program;
Dean of Dentistry Search Committee; Neuroscience Initiative Executive Committee; Chair of
Radiology Search Committee; Entrepreneurial Faculty Advisory – Executive Committee;
Department of ECE Chair Search Committee; Center for Quantitative Biology Advisory Board;
University Information Technology Committee; Brain Institute, Scientific Advisory Board;
Medical Informatics Chair Search Committee; HPC Strategic Planning Committee; University
Rhodes Scholarship Committee; University Bachelors in Undergraduate Studies Committee

Presentations (selected): Gould Distinguished Lecture; Frontiers of Science Lecture; Utah
Senate Leadership; Utah Legislative Higher-Education Appropriations Committee; Park City
Institute; SLC Rotary Club; University Advisory Board; College of Engineering External
Advisory Board; Alumni Association, California (multiple); Alumni Association, Seattle
(multiple); Centennial Celebration for the College of Engineering; Research Presentations in
the Departments of Bioengineering, Computer Science, Mathematics, Physics, Biomedical
Informatics, Geology and Geophysics, Radiology, Cardiology, Internal Medicine, School of
Medicine Library, and the Cardiovascular Research and Training Institute, Center for High
Performance Computing, Energy Geosciences Institute, Huntsman Cancer Institute, Utah
Center for Advanced Imaging, Center for Interdisciplinary Art and Technology

206

DAVID E. JOHNSON
University of Utah, School of Computing
http://www.cs.utah.edu/~dejohnso
dejohnso@cs.utah.edu

EDUCATION
Carleton College Computer Science/Physics B.A. 1990
University of Utah Computer Science Ph.D. 2005
Dissertation Title: Minimum Distance Queries for Haptic Rendering

PROFESSIONAL APPOINTMENTS
University of Utah School of Computing Assistant Professor (Lec) 8/2015 - present
University of Utah School of Computing Associate Instructor 8/2014 – 7/2015
University of Utah School of Computing Research Associate 6/2005 – 7/2014
University of Utah School of Computing Research Staff 6/1999 – 5/2005
University of Utah Computer Science Research Assistant 9/1995 – 5/1999
University of Utah Computer Science Utah Graduate Fellowship 9/1994 – 8/1995
University of Utah Computer Science NSF Graduate Fellowship 9/1991 – 8/1994
University of Utah Computer Science Teaching Assistant 9/1990 – 8/1991

TEACHING EXPERIENCE
Software Practice II, CS3505, University of Utah
 Fall 2015, Spring 2016
Introduction to Computer Science, CS/EAE1400/1030, University of Utah
 Fall 2014, Spring 2015, Fall 2015, Spring 2016
*Programming for Engineers, ME6250, University of Utah
 Fall 2012-2014
Explorations in Computer Science, CS1060, University of Utah
 Fall 2009, Spring 2010-2014
*Geometric Computation for Motion Planning, CS6370, University of Utah,

Fall 2005-2014, Spring 2015
*Virtual Reality, CS6360, University of Utah,

Spring 2007, 2008, 2009, 2011, 2014
* Courses that were developed by Dr. Johnson

CURRENT FUNDING
NSF, “EXP: Deepening Conceptual Understanding with Hands-on, Augmented-Reality
Experimentation”. PI. 2012-August 2016. $524,051.

NSF, “CHS: Small: Toward a New Generation of Untethered Magnetic Haptic Interfaces”.
Senior Personnel. 2014-July 2017. $500,000.

PROFESSIONAL ACTIVITIES
Invited Talks

Course lecturer, "Recent Advances in Haptic Rendering and Applications,"
SIGGRAPH 2005.

Invited speaker, "Building a Shape Display," Intel Research, 2002.
Invited speaker, "Haptic Rendering of NURBS Models," IMA Haptics 2001.

207

Conference Organization
Session chair for Graphics Interface 2009.
Demonstrations Chair for World Haptics 2008.
Session co-chair for ASME IDETC/CIE 2005.

External Paper Reviewer

ACM SIGGRAPH
ASME Symposium on Haptic Interfaces
IEEE World Haptics
IEEE VR
IEEE Int. Conf. on Robotics and Automation
3D Symposium on Interactive Computer Graphics
International Journal of Robotics Research
Journal of Computer-Aided Design
IEEE Visualization
Eurographics
ASME International Design Engineering Technical Conference

SERVICE ACTIVITIES
2008-current Organizing committee and Head Robot Design Judge for FIRST

FLL robot competition clubs
Summer 2008-current Director and instructor, GREAT summer camp. Founded and grew

a summer outreach program serving over 600 students in weekly
programs.

Summer 1998-2001 Instructor, High School Computing Institute summer camp

STUDENT ADVISING
Seiedmuhammad Yazdian, Ph.D. Mechanical Engineering, committee member
Mohammadreza Mollaei, Ph.D. Mechanical Engineering, committee member
Nathan Nelson, Ph.D. Mechanical Engineering, committee member
Brian Gleeson, Ph.D. Mechanical Engineering, committee member, graduated 2012
Ramya Bandaru, M.S. of Mechanical Engineering, committee member, graduated 2009
Daniel Perry, M.S. Computing, committee member, graduated 2008
Brandt Erickson, Ph.D. Computing, committee member,
Matt Frey, M.S. of Mechanical Engineering, committee member, graduated 2007

JOURNAL PUBLICATIONS
AJ Doxon, DE Johnson, HZ Tan, WR Provancher, “Human Detection and Discrimination of
Tactile Repeatability, Mechanical Backlash, and Temporal Delay in a Combined Tactile-
Kinesthetic Haptic Display System”, IEEE Transactions on Haptics. 6(4), 453-463, 2013.

J Park, AJ Doxon, WR Provancher, DE Johnson, HZ Tan, “ Haptic edge sharpness perception
with a contact location display”, IEEE Transactions on Haptics. 5(4), 323-331, 2012.

AJ Doxon, DE Johnson, HZ Tan, WR Provancher, “ Force and contact location shading methods
for use within two-and three-dimensional polygonal environments”, Presence: Teleoperators
and Virtual Environments 20 (6), 505-528, 2011.

Joon-Kyung Seong, David E. Johnson, Gershon Elber, and Elaine Cohen, "Critical Point
Analysis Using Domain Lifting for Fast Geometry Queries," Journal of Computer-Aided Design,
2010.

208

Johnson, D., Willemsen, P., and Cohen, E., “6-DOF Haptic Rendering Using Spatialized Normal
Cone Search,” Special Issue – Haptics, Virtual and Augmented Reality, IEEE Transactions on
Visualization and Computer Graphics, 2005.

K. Museth, D. Breen, R. Whitaker, S. Mauch and D. Johnson, "Algorithms for Interactive Editing
of Level Set Models," The International Journal of Eurographics Assoc.: Computer Graphics
Forum Vol. 24, No. 4, pp. 821-841, December 2005.

REFEREED CONFERENCE PUBLICATIONS
D Johnson, “ITCH: Individual Testing Of Computer Homework For Scratch Assignments”,
Special Interest Group on Computer Science Education (SIGCSE 2016).

S Yazdian, AJ Doxon, DE Johnson, HZ Tan, WR Provancher. “Compliance display using a
tilting-plate tactile feedback device”, Haptics Symposium (HAPTICS), 2014 IEEE, 1-1, 2014.

S Yazdian, AJ Doxon, DE Johnson, HZ Tan, WR Provancher, “Compliance display using a
tilting-plate tactile feedback device”, Haptics Symposium (HAPTICS), 2014 IEEE, 13-18 2014.

JB Brink, AJ Petruska, DE Johnson, JJ Abbott, “Factors affecting the design of untethered
magnetic haptic interfaces”, Haptics Symposium (HAPTICS), 2014 IEEE, 107-114 2014 (Best
Paper Award).

T Taylor, DE Johnson, “Tangible simulations Generalized haptic devices for human-guided
computer simulations”, 2013 International Conference Collaboration Technologies and Systems
(CTS), 2013.

J Park, WR Provencher, DE Johnson, HZ Tan, “Haptic contour following and feature detection
with a contact location display”, World Haptics Conference (WHC), 2013, 7-12, 2013.

S Yazdian, AJ Doxon, DE Johnson, HZ Tan, WR Provancher, “2-DOF contact location display
for manipulating virtual objects”, World Haptics Conference (WHC), 2013, 443-448, 2013.

J Park, AJ Doxon, WR Provancher, DE Johnson, HZ Tan. “Edge sharpness perception with
force and contact location information”, World Haptics Conference (WHC), 2011 IEEE, 517-522,
2011.

LJ Flemming, DE Johnson, SA Mascaro, “Optimal control of multi-input SMA actuator arrays
using graph theory”, Robotics and Automation (ICRA), 2011 IEEE International Conference on,
6109-6114, 2011.

P Willemsen, DE Johnson, J Clark, A Larson, E Pardyjak, “ Adaptive Optimization of Urban
Layout for Air Quality using a GPU Cluster“, Ninth Symposium on the Urban Environment. 2010

A Mahoney, J Bross, D Johnson, “Deformable robot motion planning in a reduced-dimension
configuration space”, Robotics and Automation (ICRA), 2010 IEEE International Conference on,
5133-5138, 2010.

Andrew J. Doxon, David E. Johnson, Hong Z. Tan, and William R. Provancher, "Force and
Contact Location Shading Thresholds for Smoothly Rendering Polygonal Models", 2010 Haptics
Symposium, March 25-26, 2010.

Brian Gleeson and David E. Johnson, "Expressive Haptic Rendering with Cartoon-Inspired
Effects", 2010 Haptics Symposium, March 25-26, 2010.

Johnson, D., Riesenfeld, R., Cohen, E., and Drake, S., "Interactive Functional
Reparameterization of Geometric Models," in ASME IDETC/DAC 2009, August 2009.

209

David E. Johnson and Elaine Cohen, "Computing Surface Offsets and Bisectors Using a
Sampled Constraint Solver," Graphics Interface 2009, May 2009.

BOOK CHAPTERS
David E. Johnson and Elaine Cohen, "Haptic Rendering of Sculptured Models," in Haptic
Rendering: Foundations, Algorithms, and Applications (Ming Lin and Miguel Otaduy, eds.), AK
Peters, 2008.

GRADUATE ADVISOR

Dr. Elaine Cohen, School of Computing, University of Utah.

210

 1

Sneha Kumar Kasera

School of Computing kasera@cs.utah.edu
University of Utah http://www.cs.utah.edu/~kasera
50 S Central Campus Drive, Rm 3190 Phone: (801) 581-4541
Salt Lake City, UT 84112 Fax: (801) 581-5843

INTERESTS

Computer networks and systems – technologies, protocols and applications encompassing network security and
privacy and reliability, mobile and pervasive systems and wireless networks, Internet of things, crowdsourcing,
dynamic spectrum access, network resource management, measurements, and modeling, and social network
applications.

EDUCATION

University of Massachusetts Amherst, MA
Doctor of Philosophy in Computer Science 1999

Indian Institute of Science Bangalore, India
Master of Engineering in Electrical Communications Engineering 1990

EMPLOYMENT
University of Utah Salt Lake City, UT
Professor, School of Computing 2015-present
Associate Professor, School of Computing 2009-2015
Assistant Professor, School of Computing 2003-2009
Adjunct Associate Professor, Electrical and Computer Engineering 2009-present

Bell Labs Research, Lucent Technologies Holmdel, NJ
Member of Technical Staff, Mobile Networking Research Department 1999-2003

PUBLICATIONS∗ (2009 – present)

Journal Articles
1. S. N. Premnath, J. Croft, N. Patwari, and S. K. Kasera, “Efficient High Rate Secret Key Extraction in Wireless

Sensor Networks Using Collaboration,” in ACM Transactions on Sensor Networks, November 2014.
2. N. Patwari, J. Wilson, S. Ananthanarayana, S. K. Kasera, D. Westenskow, “Monitoring Breathing via Signal

Strength in Wireless Networks,” in IEEE Transactions on Mobile Computing, vol. 13, no. 8, pages 1774-
1786, August 2014.

3. S. N. Premnath, D. Wasden, S. K. Kasera, N. Patwari, B. Farhang-Boroujeny, “Beyond OFDM: Best Effort
Dynamic Spectrum Access Using Filterbank Multicarrier,” in IEEE Transactions on Networking, vol. 21, no.
3, June 2013.

4. S. N. Premnath, S. Jana, J. Croft, P. Lakshmane Gowda, M. Clark, S. K. Kasera, N. Patwari, S. V.
Krishnamurthy, “Secret Key Extraction from Wireless Signal Strength in Real Environments,” in IEEE
Transactions on Mobile Computing, vol. 12, no. 5, May 2013.

5. D. Maas, M. H. Firooz, J. Zhang, N. Patwari, S. K. Kasera, “Channel Sounding for the Masses: Low
Complexity GNU 802.11b Channel Impulse Response Estimation,” in IEEE Transactions on Wireless
Communications, vol. 11, no. 1, pages 1-8, January 2012.

6. N. Patwari and S. K. Kasera, “Temporal Link Signature Measurements for Location Distinction,” in IEEE
Transactions on Mobile Computing, vol. 10, no. 3, pages 449-462, March 2011.

7. S. Jana and S. K. Kasera, “On Fast and Accurate Detection of Unauthorized Access Points Using Clock
Skews,” in IEEE Transactions on Mobile Computing, vol. 9, no. 3, pages 449-462, March 2010.

8. N. Patwari, J. Croft, S. Jana, and S. K. Kasera, “High-Rate Uncorrelated Bit Extraction for Shared Secret Key
Generation from Channel Measurements,” in IEEE Transactions on Mobile Computing, vol. 9, no. 1, pages
17-30, January 2010.

∗ Underlined names are those of my students.

211

 2

Papers in Reviewed Conferences
1. M. Khaledi, M. Khaledi, and Sneha Kumar Kasera, “Profitable Task Allocation in Mobile Cloud Computing,”

in Proc. of the 12th ACM International Symposium on QoS and Security for Wireless Networks
(Q2SWINET), November 2016.

2. M. Khaledi, M. Khaledi, Sneha Kumar Kasera, and N. Patwari, “Preserving Location Privacy in Radio
Networks Using a Stackelberg Game Framework,” in Proc. of the 12th ACM International Symposium on
QoS and Security for Wireless Networks (Q2SWINET), November 2016.

3. P. Lundrigan, M. Khaledi, M. Kano, N. Subramanyam, and Sneha Kumar Kasera, “Mobile Live Video
Upstreaming,” in Proc. of the 28th International Teletraffic Congress, September 2016.

4. J. Kunz, C. Becker, M. Jamshidy, Sneha Kumar Kasera, R. Ricci, and K. Van der Merwe, “OpenEdge: A
Dynamic and Secure Open Edge Service Network,” in Proc. of IEEE/IFIP Network Operations and
Management Symposium (NOMS), April 2016.

5. R. Quinn, J. Kunz, A. Syed, Sneha Kumar Kasera, R. Ricci, and K. Van der Merwe, “KnowNet: Towards a
Knowledge Plane for Enterprise Network Management,” in Proc. of IEEE/IFIP Network Operations and
Management Symposium (NOMS), April 2016.

6. A. Banerjee, R. Mahindra, K. Sundresan, Sneha K. Kasera, K. Van der Merwe, and S. Rangarajan, “Scaling
the LTE Control-Plane for Future Mobile Access,” in Proc. of ACM CoNEXT, December 2015.

7. A. Banerjee, B. Nguyen, V. Gopalakrishnan, Sneha K. Kasera, S. Lee, and K. Van der Merwe, “Efficient,
Adaptive, Scalable Device Activation for M2M Communications,” in Proc. of IEEE International Conference
on Sensing, Communications, and Networking (SECON), June 2015.

8. M. Probst, J.C. Park, and S. Kasera, “Exploiting Altruism in Social Networks for Friend-to-Friend Malware
Detection,” in Proc. of 2nd IEEE Conference on Communications and Network Security, October 2014.

9. A. Banerjee, D. Maas, M. Bocca, N. Patwari, and Sneha K. Kasera, “Violating Privacy Through Walls by
Passive Monitoring of Radio Windows,” in Proc. of 7th ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec), July 2014.

10. S. N. Premnath, P. Lakshmane Gowda, Sneha K. Kasera, N. Patwari, and R. Ricci, “Secret Key Extraction
Using Bluetooth Wireless Signal Strength Measurements,” in Proceedings of IEEE International Conference
on Sensing, Communications, and Networking (SECON), June 2014.

11. M. Khaledi, S. Kasera, N. Patwari, M. Bocca, “Energy Efficient Radio Tomographic Imaging,” in Proc. of
IEEE International Conference on Sensing, Communications, and Networking (SECON), June 2014.

12. S. N. Premnath, S. K. Kasera, N. Patwari, and B. Farhang-Boroujeny, “Beyond OFDM: Best-Effort Dynamic
Spectrum Access Using Filterbank Multicarrier,” in Proc. of COMSNETS, January 2012.

13. D. Maas, N. Patwari, S. K. Kasera, D. Wasden, and M. Jensen, “Experimental Performance Evaluation of
Location Distinction for MIMO Links,” in Proc. of COMSNETS, January 2012.

14. S. N. Premnath, Sneha K. Kasera, N. Patwari, and B. Farhang-Boroujeny, “Efficient Dynamic Spectrum
Access in Vehicular Networks using Filterbank Multicarrier,” in Proc. of the First International Conference
on Wireless Technologies for Humanitarian Relief, December 2011.

15. M. Seth, S. K. Kasera, and R. Ricci, “Emergency Service in WiFi Networks Without Access Point
Association,” in Proc. of the First International Conference on Wireless Technologies for Humanitarian
Relief, December 2011.

16. J. Zhang, Sneha K. Kasera, N. Patwari, and P. Rai, “Distinguishing Locations Across Perimeters Using
Wireless Link Measurements,” in Proc. of IEEE Infocom, April 2011.

17. M. Probst, J.C. Park, R. Abraham, Sneha K. Kasera, “SocialSwarm: Exploiting Distance in Social Networks
for Collaborative Flash File Distribution,” in Proc. of IEEE International Conference on Network Protocols
(ICNP), October 2010.

Papers in Workshops

1. S. K. Kasera, J. Phillips, and N. Patwari, “Detecting and Localizing Spectrum Offenders Using
Crowdsourcing,” IEEE DySPAN Workshop on Foundations in Spectrum Management Res., September 2015.

2. B. Nguyen, A. Banerjee, V. Gopalakrishna, S.J. Lee, Sneha Kumar Kasera, A. Shaikh, and J. Van der Merwe,
“Towards Understanding TCP Performance on LTE/EPC Mobile Networks,” in 4th ACM Sigcomm
Workshop on All Things Cellular: Operations, Applications, and Challenges, August 2014.

3. M. Bocca, S. Gupta, O. Kaltiokallio, B. Mager, Q. Tate, S.K. Kasera, N. Patwari, S. Venkatasubramanian,
“RF-based device-free localization and tracking for ambient assisted living,” Evaluating AAL Systems
through Competitive Benchmarking (EvAAL) Workshop, September 2012.

212

 3

Invited, Other Papers Published or Presented
1. J. Novak, S. Kasera, N. Patwari, “Preventing Wireless Network Configuration Errors in Patient Monitoring

Using Device Fingerprints,” in the 4th IEEE International Workshop on Data Security and Privacy in
Wireless Networks, June 2013.

2. A. Banerjee, M. Maheshwari, N. Patwari, and Sneha K. Kasera, “Detecting Receiver Attacks in VRTI-based
Device Free Localization,” in the 3rd IEEE International Workshop on Data Security and Privacy in Wireless
Networks, June 2012.

3. M. Maheshwari, S. Ananthanarayanan, A. Banerjee, N. Patwari, and Sneha K. Kasera, “Detecting Malicious
Nodes in RSS-based Localization,” in the 2nd IEEE International Workshop on Data Security and Privacy in
Wireless Networks, June 2011.

Reviewed Poster Papers/Demos in Top Conferences

1. J. Croft, N. Patwari, and Sneha K. Kasera, “Bit Extraction from Received Signal Strength,” Demonstration
paper, in ACM MOBICOM, September 2010.

Disclosures and Patents

1. C. Becker, Sneha Kumar Kasera, and J. van der Merwe, “Open Access Network Secure Authentication
Systems and Methods,“ U.S. Patent filed, January 2016.

2. A. Banerjee, Sneha Kumar Kasera, and J. van der Merwe, “Adaptive Group Paging for a Communication
Network,” U.S. Patent filed, October 2015.

3. Suman Jana and Sneha K. Kasera, “Method and System for Detecting Unauthorized Wireless Access Points
Using Clock Skews,” U.S. Patent 9,049,225, June 2015.

4. Joe Novak and Sneha Kumar Kasera, “Auto-tuning Active Queue Management,” U.S. Patent filed, May 2015.
5. N. Patwari and Sneha K. Kasera, “Robust Location Distinction Using Temporal Link Signatures,” U.S. Patent

8,989,764, March 2015.
6. J. van der Merwe, R. Ricci, Sneha Kumar Kasera, M. Strum, R. Peterson, J. Peterson, “Programmable Data

Network Management and Operation,” PCT/U.S. Patent filed, August 2013.
7. N. Patwari, J. Croft, S. Jana, and Sneha K. Kasera, “Method and System for High Rate Uncorrelated Shared

Secret Bit Extraction from Wireless Link Characteristics,” U.S. Patent 8,515,061, August 2013.
8. Sneha K. Kasera, N. Patwari, J. Croft. S. Jana, “Method and System for Secret Key Exchange Using Wireless

Link Characteristics and Random Device Movement,” U.S. Patent 8,503,673, August 2013.
9. Sneha K. Kasera, J. Pinheiro, C. Loader, M. Karaul. A. Hari and T. LaPorta, “Fast and Robust Signaling

Overload Control,” U.S. Patent 7,792,252, June 2010.

TEACHING & MENTORING (2009 – present)
University of Utah Salt Lake City, UT
Assistant/Associate/Full Professor, School of Computing 2003-present

Lectured Classes
• Network Security, CS 5490/6490, Fall 2011 - 2016, Spring 2009
• Wireless & Mobile Networks, CS 6956, Spring 2013 - 2015
• Computer Networks, CS 5480/6480, Spring 2012
• Computer Networks, CS 5480, Spring 2010

Seminar Classes
• Networking Research, CS 7943-001, Spring 2016, Spring 2015
• Mobile Networking, CS 7943-001, Spring 2012
• Advanced Network Security, CS 7943-001, Spring 2010, Spring 2009

Chair of PhD and MS Thesis Student Committees
• Current PhD/MS Thesis Students (total 9): Philip Lundrigan (PhD), Mojgan Khaledi (PhD), Jared Plumb

(PhD), Joe Novak (PhD), Christopher Becker (PhD), Aniqua Baset (PhD), Shamik Sarkar (PhD), Aarushi
Sarbhai (MS Thesis), Shobhi Maheshwari (MS Thesis)

• Graduated Students (PhD/MS Thesis, Defense date) (total 11): Arijit Banerjee (PhD, October 2nd 2015),
Sriram Premnath (PhD, February 6th 2013), Matthew Probst (PhD, November 7th 2012), Junxing Zhang (PhD,

213

 4

May 24th 2010), Robert Ricci (PhD, January 5th 2010), Naveen D.S. (MS Thesis, May 1st 2014), Prarthana
Lakshmane Gowda (MS Thesis, July 5th 2012), Manas Maheshwari (MS Thesis, May 13th 2011), Manav Seth
(MS Thesis, May 9th 2011), Michael Clark (MS Thesis, May 5th 2010), S. Jana (MS Thesis, May 1st 2009)

SERVICE (2010 – present)

Professional External Service
Associate Editor

1. IEEE Transactions on Mobile Computing (2011 - 2015)
2. IEEE/ACM Transactions on Networking (2009 - 2013)
3. ACM/Springer Wireless Networks Journal (2007 - 2011)
4. Computer Networks Journal (COMNET) (2005 - 2010)

Technical Program Committee Chair
1. Technical Program Committee Co-Chair – ACM Sigsac 10th Conference on Security and Privacy in

Wireless and Mobile Networks (WiSec), Boston, 2017
2. Technical Program Committee Co-Chair – ACM Sigmobile 21st Annual International Conference on Mobile

Computing and Networking (MOBICOM), Paris, France, 2015
3. Technical Program Committee Co-Chair – IEEE International Conference on Networks Protocols (ICNP),

Vancouver, BC, 2011
4. Technical Program Committee Co-Chair – IEEE Conference on Sensor, Mesh, and Ad Hoc

Communications, and Networks (SECON), Salt Lake City, UT, 2011

Other Conference/Workshop Organization
• Steering Committee Member - IEEE Conference on Sensor, Mesh, and Ad Hoc Communications, and

Networks (SECON), 2012-15
• Technical Program Committee Area Chair - IEEE Conference on Sensor, Mesh, and Ad Hoc

Communications, and Networks (SECON), 2014
• Technical Program Committee Area Chair - IEEE Conference on Sensor, Mesh, and Ad Hoc

Communications, and Networks (SECON), 2012
• Co-chair and organizer, Army Research Office Workshop on Fingerprinting, 2011
• Technical Program Committee Area Chair – IEEE International Conference on Network Protocols, 2010
• Finance Co-Chair - ACM Sigmobile International Conference on Mobile Computing and Networking

(MOBICOM), 2010
• Student Poster Co-Chair - IEEE International Conference on Network Protocols, 2010

Technical Program Committee Member (total 21): ACM MOBICOM 2016, ACM WiSec 2016, ACM
MOBIHOC 2016, ACM WiSec 2015, ACM MOBIHOC 2014, COMSNETS 2014, IEEE ICNP 2013, ACM
MOBICOM 2013, ACM MOBICOM 2012, IEEE ICDCS 2012, ACM SIGMETRICS 2010, IEEE SECON,
2010, IEEE INFOCOM 2010, ACM MOBICOM 2010, IEEE ICNP, 2010, ACM MOBICOM 2009

Review Panels (total 14): National Science Foundation – 13 panels, Department of Energy – 1 panel

K -12 Outreach

• Co-organized three-day Summer Camps for high school students, June 2009-2011.
• Recruited 19 undergraduate students for developing teaching/learning modules for high school students that

demonstrate the use of pre-calculus and high school science concepts in Computer Science.
• Visited high schools in the Salt Lake City area for Computer Science sessions.
• Salt Lake Valley Science and Engineer Fair Judging, 2011.

HONORS (2010 – present)
• “Highest Accuracy Award" at the “2012 Evaluating Ambient Assisted Living Systems through Competitive

Benchmarking (EvAAL) Competition on Indoor Localization and Tracking for AAL,” Madrid, Spain,
September 2012.

• IEEE Computer Society 2011 Golden Core Award for leadership and service.

214

Ladislav Kavan
University of Utah

Research Interests

Computer graphics and animation, deformation modeling, medical applications, numerical methods,
physics-based simulation, combining data and physics, applied geometry, real-time rendering.

Education

Ph.D., Computer Science March 2004 – June 2007
Faculty of Electrical Engineering, Czech Technical University, Prague

Mgr. (summa cum laude), Computer Science September 1998 – September 2003
(Combined B.Sc. and M.Sc. degrees)
Faculty of Mathematics and Physics, Charles University, Prague

Recent Journal Articles

1. Fast and Robust Inversion-Free Shape Manipulation
Liu T., Gao M., Zhu L., Sifakis E., Kavan L.
In: Computer Graphics Forum (Proceedings of Eurographics 2016).

2. Computational Bodybuilding: Anatomically-based Modeling of Human Bodies
Saito S., Zhou Z., Kavan L.
In: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2015).

3. Linear Subspace Design for Real-Time Shape Deformation
Wang Y., Jacobosn A., Barbič J., Kavan L.
In: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2015).

4. Skuller: A Volumetric Shape Registration Algorithm for Modeling Skull Deformities
Sahillioglu Y., Kavan L.
In: Medical Image Analysis, 2015.

5. Adaptable Anatomical Models for Realistic Bone Motion Reconstruction
Zhu L., Hu X., Kavan L.
In: Computer Graphics Forum (Proceedings of Eurographics 2015).

6. Reducing Numerical Dissipation in Smoke Simulation
Huang Z., Kavan L., Li W., Hui P., Gong G.
In: Graphical Models, 2015.

7. A Simple Method for Correcting Facet Orientations in Polygon Meshes Based on Ray
Casting
Takayama K., Jacobson A., Kavan L., Sorkine-Hornung O.
In: Journal of Computer Graphics Techniques, 2014.

8. Projective Dynamics: Fusing Constraint Projections for Fast Simulation
Bouaziz S., Martin S., Liu T., Kavan L., Pauly M.
In: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2014).

9. Ink-and-Ray: Global Illumination for Hand-Drawn Animation
Sykora D., Kavan L., Cadik M., Jamriska O., Jacobson A., Whited B., Simmons M., Sorkine O.
In: ACM Transactions on Graphics (Presented at ACM SIGGRAPH 2014).

March 2016 Ladislav Kavan – CV 1 of 4

215

10. Basis Enrichment and Solid-fluid Coupling for Model-reduced Fluid Simulation
Gerszewski D., Kavan L., Sloan P.-P., Bargteil A.
In: Computer Animation and Virtual Worlds, 2014.

11. Fast Simulation of Mass-Spring Systems
Liu T., Bargteil A., O’Brien J., Kavan L.
In: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2013).

12. Anatomy Transfer
Dicko A., Gilles B., Liu T., Kavan L., Cani M.-P., Palombi O., Faure F.
In: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2013).

13. Locally Injective Mappings
Schüller C., Kavan L., Panozzo D., Sorkine O.
In: Computer Graphics Forum (Proceedings of SGP 2013).

14. Robust Inside-Outside Segmentation using Generalized Winding Numbers
Jacobson A., Kavan L., Sorkine O.
In: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2013).

15. Elasticity-Inspired Deformers for Character Articulation
Kavan L., Sorkine O.
In: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2012).

16. Fast Automatic Skinning Transformations
Jacobson A., Baran I., Kavan L., Popovic J., Sorkine O.
In: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2012).

17. Physics-inspired Upsampling for Cloth Simulation in Games
Kavan L., Gerszewski D., Bargteil A., Sloan P.-P.
In: ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2011).

18. Least Squares Vertex Baking
Kavan L., Bargteil A., Sloan P.-P.
In: Computer Graphics Forum (Proceedings of EGSR 2011).

Recent Peer-Reviewed Conference Papers

19. Fast Grid-Based Nonlinear Elasticity for 2D Deformations
Rajsekhar S., Wang Y., Mitchell N., Kavan L., Sifakis E.
In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation 2014.

20. Sound Localization and Multi-Modal Steering for Autonomous Virtual Agents
Wang Y., Kapadia M., Huang P., Kavan L., Badler N.
In: ACM SIGGRAPH I3D 2014 Symposium.

21. Ambient Obscurance Baking on the GPU
Sloan P.-P., Tranchida J., Chen H., Kavan L.
In: ACM SIGGRAPH Asia Technical Briefs 2013.

22. Enhancements to Model-Reduced Fluid Simulation
Gerszewski D., Kavan L., Sloan P.-P., Bargteil A.
In: ACM SIGGRAPH Motion in Games 2013.

Patents

23. Continuum Model for Position Based Dynamics
Kavan L.
In: US Patent 20130103358, 2013.

March 2016 Ladislav Kavan – CV 2 of 4

216

24. Physics-inspired Upsampling for Cloth Simulation
Kavan L., Sloan P.-P.
In: US Patent 20130046522, 2013.

Awards and Funding

NSF CAREER 2014 – 2019
Geometric Shape Deformation with Applications in Medicine $550,000
PI: Kavan

Fulbright Scholarship (MIT) 2007
Algorithms for Real-time Computer Animation approx. $75,000
PI: Kavan (award not accepted due to other offers)

Professional Activities

Associate Editor for

ACM Transactions on Graphics (since 2013)

Graphical Models (since 2012)

Program Committee Member

ACM SIGGRAPH 2015, 2014
ACM SIGGRAPH Asia 2013, 2012
Eurographics 2015
Shape Modeling International 2014, 2013
Mathematical Progress in Expressive Image Synthesis 2014
Eurographics Short Papers 2013
Symposium on Geometry Processing 2015, 2014, 2013, 2012
ACM SIGGRAPH I3D Symposium 2014, 2013, 2012, 2011
ACM/Eurographics Symposium on Computer Animation 2015, 2014, 2013, 2012, 2011
Eurographics 2012 State-of-the-Art Reports
3D Imaging, Modeling, Processing, Visualization & Transmission 2012
Pacific Graphics 2014, 2013, 2010

Panelist

NSF (two panels in 2014)

Chair

ACM/Eurographics Symposium on Computer Animation Posters 2013

Eurographics 2007 (Game Industry Presentations co-chair, with Steven Collins)

Paper Reviewer for

ACM SIGGRAPH, ACM SIGGRAPH Asia, ACM Transactions on Graphics, IEEE TVCG,
Eurographics, Computer Graphics Forum, EGSR, Pacific Graphics, SCA, I3D, C&G, GMOD,
VRIPhys, WSCG, Web3D, AES, SVE, CASA, 3IA, CEMVRC

Teaching Experience

Instructor Spring 2016
CS 6660: Physically Based Animation University of Utah

Instructor Fall 2015, Fall 2014, Fall 2013
EAS 205: Applications of Scientific Computation University of Pennsylvania

March 2016 Ladislav Kavan – CV 3 of 4

217

Instructor Spring 2015, Spring 2014, Spring 2013
CIS 563: Physically Based Animation University of Pennsylvania

Seminar Co-organizer (with H. Zimmer) Spring 2012
Advanced Methods in Computer Graphics ETH Zürich

Instructor Summer 2005
Real-time Computer Animation Czech Technical University, Prague

Teaching Assistant Spring 2005
Theoretical Computer Science Czech Technical University, Prague

Teaching Assistant Spring 2004, Fall 2004
C++ Programming Language Czech Technical University, Prague

Teaching Assistant Spring 2005
Algorithms Czech Technical University, Prague

Recent Colloquia, Courses, and Invited Talks

Stanford University May 2015
Interactive Human Modeling and Simulation Stanford, CA

University of Utah April 2015
Interactive Human Modeling and Simulation Salt Lake City, UT

Walt Disney Animation Studios April 2015
Real-time Simulation of Deformable Objects Burbank, CA

University of California, Los Angeles April 2015
Interactive Human Modeling and Simulation Los Angeles, CA

Bespoke April 2015
Interactive Human Modeling and Simulation San Francisco, CA

Pixar March 2015
Interactive Human Modeling and Simulation Emeryville, CA

Carnegie Mellon University February 2015
Real-time Simulation of Deformable Objects Pittsburgh, PA

IST Austria February 2015
Real-time Simulation of Deformable Objects Klosterneuburg, Austria

IST Austria February 2015
Special Topics in Interactive Elasticity Klosterneuburg, Austria

HiVisComp February 2015
Fast Simulation of Mass-Spring Systems Tatranska Lomnica, Slovakia

VirtaMed February 2015
Real-time Simulation of Deformable Objects Zürich, Switzerland

University of California, San Diego October 2014
Modeling Deformable Objects using Direct and Physics-based Methods San Diego, CA

SIGGRAPH 2014 Course (with A. Jacobson, Z. Deng, and J.P. Lewis) August 2014
Skinning: Real-time Shape Deformation Vancouver, Canada

March 2016 Ladislav Kavan – CV 4 of 4

218

1

Robert Kessler Curriculum Vitae

Education

Ph.D., Computer Science, University of Utah, 1981, M.S., Computer Science, University of Utah,
1977, B.S., Computer Science, University of Utah, 1974 (Magna cum Laude)

Professional Employment

• July 2010 to present, Executive Director, Entertainment Arts and Engineering – EAE
designated Qualified Independent Teaching Program (approved by Academic Senate May
2013); Master’s of Entertainment Arts and Engineering (with three emphases) (approved
by Board of Regents March 2013)

• July 2009 to Dec 2011, Phased retirement (0.75 FTE), Retirement cancelled Jan 1, 2012
• July 2006 to Dec 2010, Associate Director, School of Computing
• July 1997 to June 2000, Chairman of Computer Science
• July 1997 to present, Professor of Computer Science (University of Utah)
• November 1996 to December 2005, Member, Board of Directors, emWare Inc., Salt Lake

City, Utah (emWare’s assets were sold to a large Japanese company and effectively
ceased to exist).

• December 1995 to June 1996, Acting Chairman of Computer Science
• July 1994 to August 1995, June 1996 to September 1996, Visiting Scientist, Hewlett-

Packard Research Labs, Palo Alto, CA.
• July 1993 to June 1994, July 1995 to Dec 1995, Associate Chairman of Computer Science.
• December 1991 to December 1994, Chairman of Board and Founder, Hippo Software Inc,

Salt Lake City, Utah.
• July 1990 to September 1994, Director, Center for Software Science, University of Utah.
• July 1987 to June 1997, Associate Professor of Computer Science, University of Utah

(received tenure beginning July 1990).
• July 1983 to June 1987, Research Assistant Professor of Computer Science, University of

Utah.
• November 1982 to February 1996, Chairman of Board and Founder, Medical Software

Systems, Salt Lake City, Utah.
• November 1982 to June 1983, Research Computer Scientist, University of Utah.

Research/Scholarship (since 2007)

• Principal Investigator, “EAE Lab Hardware”, Intel, $40,000 (equipment gift), CPUs and
SSDs for our EAE graduate lab, 7/1/2014.

• Principal Investigator, “Vein Craft”, College of Nursing and AVA Foundation, $25,000 (Gift),
1/1/2015 – 5/31/2015.

• Administrator, “Games and Simulations”, Rockwell Collins, $142,481, 1/1/2014 –
12/31/2014 (Mark van Langeveld PI, Roger Altizer and Jose Zagal – Co-PIs).

• Principal Investigator, “Reflex Game”, Reflexology, $53,604, 9/1/2013 – 6/30/2014.
• Co- Principal Investigator, “Diabetes Game”, Center for Medical Innovation, $25,000,

5/1/2013 – TBD.
• Co-P Principal Investigator, “National Energy Foundation Game”, $33,000, 5/1/2013 –

8/15/2013 (Roger Altizer, PI)

219

2

• Principal Investigator, “Smarty Pants: Pets” TBRIS Technologies, LLC, 09/01/2012 -
11/15/2012. $17,000.

• Principal Investigator, “Cat Siena Game” Siena Entertainment, 02/01/2012 - 06/30/2012.
$11,500.00.

• Co-PI, “PE Video Game,” University of Utah Dept of Pediatrics, $35,000, Summer 2011
(Roger Altizer, P.I.), Additional $50K funding received from Jack Britain’s office in 2012.

• Principal Investigator, “EAE Summer Camp”, State ASTEC, $7,500. July 2007-2008.

Note – Prior to 2007, grants totaling $2.4M as PI, cash development grant totaling $2.6M as PI,
and equipment/software donations totaling over $8M as PI. Millions of dollars of grants as Co-PI
or Faculty Associate.

Honors

• EAE undergraduate program ranked by Princeton Review #1, #2, #2, #1, #3, #2 in 2016,
2015, 2014, 2013, 2012, 2011 respectively.

• EAE graduate program ranked by Princeton Review #3, #1, #4, #2 in 2016, 2015, 2014,
2013 respectively.

• Our paper, “Strengthening the Case for Pair Programming” was chosen as one of the top
30 papers out of over 1000 papers submitted to IEEE Software over the past 25 years.
This was described in the Jan/Feb 2009 issue of IEEE Software.

• University of Utah Distinguished Teaching Award, 2001.
• Nominated for University Distinguished Teaching Award, 1999, 2000.
• College of Engineering Outstanding Teaching Award for 2000.

Books

• Laurie Williams and Robert Kessler, “Pair Programming Illuminated,” Addison Wesley, July
2002, 265 pages

• “LISP, Objects, and Symbolic Programming,” Scott, Foresman/Little, Brown, January 1988,
656 pages.

Refereed Publications Since 2007

• “The Intersection of Video Games and Patient Empowerment: case study of a real world
application”, Interactive Entertainment 2013 (September 2013) (C. Caldwell; C. Bruggers;
R. Altizer; T. D’Ambrosio; R. Kessler; B. Christiansen)

• “Patient-Empowerment Interactive Technologies” Sci. Transl. Med. 4, 152ps16 (2012) (C.
S. Bruggers, R. A. Altizer, R. R. Kessler, C. B. Caldwell, K. Coppersmith, L. Warner, B.
Davies, W. Paterson, J. Wilcken, T. A. D’Ambrosio, M. L. German, G. R. Hanson, L. A.
Gershan, J. R. Korenberg, G. Bulaj)

• “When the games industry and academia collide: How we impact each other” 2012 IEEE
International Games Innovation Conference (September 2012), pg. 1-
4 (C. Caldwell; R. Kessler; R. Altizer; M. Van Langefeld) [Winner – Best Paper in Education
Track]

• “Digital Visualization Tools Improve Teaching 3D Character Modeling,” SIGCSE 2010 (M.
van Langeveld and R. Kessler)

• “Educational Impact of Digital Visualization and Auditing Tools On a Digital Character
Production Course,” ICFDG 2009 (M. van Langeveld and R. Kessler)

220

3

• “Entertainment Arts and Engineering or How to Fast Track A New Interdisciplinary
Program),” SIGCSE 2009 (R. Kessler, M. van Langeveld, and R. Altizer).

• “Two in the Middle: Digital Character Production and Machinima Courses,” SIGCSE 2009
(M. van Langeveld and R. Kessler)

• “A History of Computing Course with a Technical Focus,” SIGCSE 2009 (G. Draper, R.
Kessler and R. Riesenfeld).

Patents
• U.S. Patent Pending “Empowering Patients During Disease Therapy Using An Interactive

Video Game That Links Exercise and Positive Visualization”, Grzegorz Bulaj, Carol S.
Bruggers, Roger A. Altizer, Robert Kessler, Craig Caldwell, Wade R. Patterson, Kurt J.
Coppersmith, Laura M. Warner, Brandon Davies. Filed: May 2012.

Published Games

• 42 different video games have been published by our senior and master’s students since
2010. My role was executive producer as faculty advisor.

Courses Developed since 2007

• CS6070/FILM6711, EAE:MGS Game Projects I – a class for learning how to develop
games using a rapid prototyping style of a new game every four weeks.

• CS6071/FILM6712, EAE:MGS Game Projects II – a class where game ideas are pitched
and then narrowed down to a game chosen by faculty and industry to be built in a large
team of students.

• CS6072/FILM6713, EAE:MGS Game Projects III – this class takes the alpha version of the
game and creates a beta version and submits to a festival.

• CS6073/FILM6714, EAE:MGS Game Projects IV – polishing the game and publishing it.

Graduated 10 Doctoral. 1 MPhil, and 24 MS Students as Chairman. Served on many, many
doctoral and masters committees.

Entertainment Arts and Engineering

• 10 lecturing and joint appointed faculty
• 4 full time and 2 part time staff
• 130 master’s graduate students
• 300 to 400 undergraduate emphasis students
• $3.8M annual budget
• 14K sq ft remodeled space in old Law Library building
• Ranked #1 undergraduate or graduate program in the world three of the last four years

Internal Service Highlights (since 2007)

• Negotiated $20K cash donation female EAE graduate scholarships from Intel 2016
• Created Master’s of Entertainment Arts and Engineering graduate degree (2013)
• EAE becomes Qualified Interdisciplinary Teaching Program (2013)
• Co-Founded EAE master’s program (2010)
• Driving force behind creation of the Entertainment Arts and Engineering interdisciplinary

(CS and Film) undergraduate track (2007)

221

4

• Steered the reorganization and revamping of our entire computational infrastructure
including eliminating the research charge facility (2007-2011)

• Chairman of University SCAC committee (2005-2013)

External service – typical activities, editorial board, reviewing, vice chairman of SIGPLAN, etc.

Media Appearances – too many to count. The Spring 2013 issue of Continuum includes an
excellent spread on the EAE program. (http://continuum.utah.edu/features/game-on)

222

Biographical Sketch

Dr. Robert M. Kirby

School of Computing phone: 801-585-3421
University of Utah fax: 801-585-6513
50 S. Central Campus Dr. RM 3190 kirby@cs.utah.edu
Salt Lake City, UT 84112 http://www.cs.utah.edu/~kirby

A. PROFESSIONAL PREPARATION

Florida State University Tallahassee, FL Applied Mathematics and B.S., 1997
Computer Science

Brown University Providence, RI Applied Mathematics Sc.M., 1999
Brown University Providence, RI Computer Science Sc.M., 2001
Brown University Providence, RI Applied Mathematics Ph.D., 2002

B. APPOINTMENTS

University of Utah Professor of Computing 07/2014 – present
Imperial College London Leverhulme Visiting Professor in Aeronautics 12/2008 – 06/2009
Imperial College London Visiting Academic 09/2008 – 11/2008
University of Utah Associate Professor of Computing 07/2008 – 06/2014
University of Utah Assistant Professor of Computing 09/2002 – 06/2008
Brown University Research Associate 09/1997 – 08/2002

D. LEADERSHIP ROLES

• Associate Director, School of Computing, University of Utah, 2014 – present.

• Director and Program Manager, Multi-Scale Multidisciplinary Modeling of Electronic Materials (MSME)
Collaborative Research Alliance (CRA), University of Utah, 2016 – present.

• Assistant Program Manager, Multi-Scale Multidisciplinary Modeling of Electronic Materials (MSME)
Collaborative Research Alliance (CRA), University of Utah, 2012 – 2016.

• Chair, Scientific Computing Track, Computing PhD Program, School of Computing, University of
Utah, 2004 – 2014.

• Director of Graduate Studies, School of Computing, University of Utah, 2012 – 2014.

• Associate Director, Computational Engineering and Science Program, University of Utah, 2004–2005,
2012 – 2014.

• Senator, Academic Senate, University of Utah, 2006 – 2008.

• Director, Computational Engineering and Science Program, University of Utah, 2005 – 2008.

• Associate Director, Scientific Computing and Imaging Institute, University of Utah, 2006–2007.

E. PUBLICATIONS (selected from over 140 publications)

1. Carlo Forestiere, Yanyan He, Ren Wang, Robert M. Kirby and Luca Dal Negro, “Inverse Design of
Metal Nanoparticles’ Morphology”, ACS Photonics, In Press, 2015.

2. Hadi Meidani, Justin B. Hooper, Dmitry Bedrov and Robert M. Kirby, “Calibration and Ranking of
Coarse-Grained Models in Molecular Simulations Using Bayesian Formalism”, International Journal
for Uncertainty Quantification, In Press, 2015.

223

3. Yanyan He, Mahsa Mirzargar, Sophia Hudson, Robert M. Kirby and Ross T. Whitaker, “An Uncer-
tainty Visualization Technique Using Possibility Theory: Possibilistic Marching Cubes”, International
Journal for Uncertainty Quantification, In Press, 2015.

4. X. Li, J.K. Ryan, R.M. Kirby and C. Vuik, “Smoothness-Increasing Accuracy-Conserving (SIAC) Fil-
ters for Derivative Approximations of discontinuous Galerkin (DG) Solutions over Nonuniform Meshes
and Near Boundaries”, Journal of Computational and Applied Mathematics, In Press, 2015.

5. Mahsa Mirzargar, Jennifer K. Ryan and Robert M. Kirby, “Smoothness-Increasing Accuracy-Conserving
(SIAC) Filtering and Quasi-Interpolation: A Unified View”, Journal of Scientific Computing, In Press,
2015.

6. Sergey Yakovlev, David Moxey, Robert M. Kirby and Spencer J. Sherwin,“To CG or to HDG: A
Comparative Study in 3D”, Journal of Scientific Computing, In Press, 2015.

7. Yanyan He, Mahsa Mirzargar and Robert M. Kirby,“Mixed Aleatory and Epistemic Uncertainty Quan-
tification Using Fuzzy Set Theory”, International Journal of Approximate Reasoning, Vol. 66, pages
1–15, 2015.

8. Varun Shankar, Grady B. Wright, Robert M. Kirby and Aaron L. Fogelson, “Augmenting the Immersed
Boundary Method with Radial Basis Functions (RBFs) for the Modeling of Platelets in Hemodynamic
Flows”, International Journal for Numerical Methods in Fluids, In Press, 2015.

9. Mukund Raj, Mahsa Mirzargar, Robert M. Kirby and Ross T. Whitaker, “Evaluating Alignment of
Shapes by Ensemble Visualization”, IEEE Computer Graphics and Applications, In Press, 2015.

10. C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. de Grazia, S. Yakovlev,
J-E Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto,
R.M. Kirby and S.J. Sherwin, “Nektar++: An open-source spectral/hp element framework”, Computer
Physics Communications, In Press, 2015.

11. Jennifer K. Ryan, Xiaozhou Li, Robert M. Kirby and Kees Vuik, “One-Sided Position-Dependent
Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering Over Uniform and Non-Uniform Meshes”,
Journal of Scientific Computing, In Press, 2014

12. Varun Shankar, Grady B. Wright, Robert M. Kirby and Aaron L. Fogelson, “A Radial Basis Function
(RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces”,
Journal of Scientific Computing, Volume 63, pages 745-768, 2015.

13. Mahsa Mirzargar, Ross T. Whitaker and Robert M. Kirby, “Curve Boxplot: Generalization of Box-
plot for Ensembles of Curves”, IEEE Transactions on Visualization and Computer Graphics (IEEE
Visualization Issue), Volume 20, Number 12, pages 2654-2663, 2014.

14. Zhisong Fu, Sergey Yakovlev, Robert M. Kirby and Ross T. Whitaker, “Fast Parallel Solver for Levelset
Equations on Unstructured Meshes”, Concurrency and Computation: Practice and Experience, Volume
27, pages 1639-1657, 2015.

15. Liam C. Jacobson, Robert M. Kirby and Valeria Molinero,“How Short Is Too Short for the Interac-
tions of a Water Potential? Exploring the Parameter Space of a Coarse-Grained Water Model Using
Uncertainty Quantification”, Journal of Physical Chemistry B, Volume 119, pages 8190–8202, 2014.

16. A. Bolis, C.D. Cantwell, R.M. Kirby and S.J. Sherwin, “h to p efficiently: Optimal implementation
strategies for explicit time-dependent problems using the spectral/hp element method”, International
Journal for Numerical Methods in Fluids, Volume 75, Issue 8, pages 591-607, 2014.

17. Varun Shankar, Grady B. Wright, Aaron L. Fogelson and Robert M. Kirby, “A Radial Basis Function
(RBF)-Finite Difference Method for the Simulation of Reaction-Diffusion Equations on Stationary
Platelets within the Augmented Forcing Method”, International Journal for Numerical Methods in
Fluids, Volume 75, Issue 1, pages 1-22, 2014.

224

18. James King, Sergey Yakovlev, Zhisong Fu, Robert M. Kirby and Spencer J. Sherwin, “Exploiting Batch
Processing on Streaming Architectures to Solve 2D Elliptic Finite Element Problems: A Hybridized
Discontinuous Galerkin (HDG) Case Study”, Journal of Scientific Computing, Volume 60, pages 457-
482, 2014.

19. C.D. Cantwell, S. Yakovlev, R.M. Kirby, N.S. Peters and S.J. Sherwin, “High-order continuous spec-
tral/hp element discretisation for reaction-diffusion problems on a surface”, Journal of Computational
Physics, Vol. 257, Part A, pages 813-829, 2014.

20. Zhisong Fu, T. James Lewis, Robert M. Kirby and Ross T. Whitaker, “Architecting the Finite Element
Method Pipeline for the GPU”, Journal of Computational and Applied Mathematics, Volume 257, pages
195-211, 2014.

21. Blake Nelson, Robert M. Kirby and Steven Parker,“Optimal Expression Evaluation Through the Use
of Expression Templates When Evaluating Dense Linear Algebra Operations”, ACM Transactions on
Mathematical Software, Vol. 40, Issue 3, pages 21:1-21:21, 2014.

22. Ross Whitaker, Mahsa Mirzargar and Robert M. Kirby, “Contour Boxplots: A Method for Character-
izing Uncertainty in Feature Sets from Simulation Ensembles”, IEEE Transactions on Visualization
and Computer Graphics (IEEE Visualization Issue), Vol. 19, Issue 12, pages 2713-2722, 2013.

23. Zhisong Fu, Robert M. Kirby and Ross T. Whitaker, “A Fast Iterative Method for Solving the Eikonal
Equation on Tetrahedral Domains”, SIAM Journal of Scientific Computing, Vol. 35, No. 5, pages
C473-C494, 2013.

24. Hanieh Mirzaee, Jennifer K. Ryan and Robert M. Kirby, “Smoothness-Increasing Accuracy-Conserving
(SIAC) Filtering for Discontinuous Galerkin Solutions: Applications to Structured Tetrahedral Meshes”,
Journal of Scientific Computing, Vol. 58, No. 3, pages 690-704, 2014.

25. Tiago Etiene, Daniel Jönsson, Timo Ropinski, Carlos Scheidegger, Joao Comba, L. Gustavo Nonato,
Robert M. Kirby, Anders Ynnerman and Claudio T. Silva, , “Verifying Volume Rendering Using
Discretization Error Analysis”, IEEE Transactions on Visualization and Computer Graphics, Vol. 20,
No. 1, pages 140-154, 2014.

26. Blake Nelson, Robert M. Kirby, Robert Haimes, “GPU-Based Volume Visualization From High-Order
Finite Element Fields”, IEEE Transactions on Visualization and Computer Graphics, Vol. 20, No. 1,
pages 70-83, 2014.

27. Dafang Wang, Robert M. Kirby, Rob S. MacLeod and Chris R. Johnson, “Inverse electrocardiographic
source localization of ischemia: an optimization framework and finite element solution”, Journal of
Computational Physics, Vol. 250, Issue 1, pages 403-424, 2013.

28. Robert M. Kirby and Miriah Meyer, “Visualization Collaborations: Reflections on What Works and
Why”, IEEE Computer Graphics and Applications, Volume 33, Issue 6, pages 82-88, 2013.

29. Varun Shankar, Grady B. Wright, Aaron L. Fogelson and Robert M. Kirby, “A Study Of Different
Modeling Choices For Simulating Platelets With The Immersed Boundary Method”, Applied Numerical
Mathematics, Vol. 63, pages 58-77, 2013.

30. Hanieh Mirzaee, James King, Jennifer K. Ryan and Robert M. Kirby, “Smoothness-Increasing Accuracy-
Conserving (SIAC) Filters for Discontinuous Galerkin Solutions Over Unstructured Triangular Meshes”,
SIAM Journal of Scientific Computing, Vol. 35, No. 1, pages 212-230, 2013.

31. Chao Yang, Dongbin Xiu and Robert M. Kirby, “Visualization of Covariance and Cross-Covariance
Fields”, International Journal for Uncertainty Quantification, Vol. 3, Issue 1, pages 25-38, 2013.

32. Torben Patz, Tobias Preusser and Robert M. Kirby, “Ambrosio-Tortorelli Segmentation of Stochastic
Images: Model Extensions, Theoretical Investigations and Numerical Methods”, International Journal
of Computer Vision, Vol. 103, Issue 2, pages 190-212, 2013.

33. Blake Nelson, Eric Liu, Robert Haimes and Robert M. Kirby, “ElVis: A System for the Accurate and
Interactive Visualization of High-Order Finite Element Solutions”, IEEE Transactions on Visualization
and Computer Graphics (IEEE Visualization Issue), Vol. 18, No. 12, pages 2325-2334, 2012.

225

F. INVITED TALKS (2015 Only)

1. (Speaker) Salt Lake City Data Science Meetup, Salt Lake City, UT. Presented a talk entitled “Ensemble
Visualization and Uncertainty Characterization Using Generalized Notions of Data Depth”, December
2015.

2. (Speaker) Imperial College London School of Computing and Department of Aeronautics, London, UK.
Presented a talk entitled “Ensemble Visualization and Uncertainty Characterization Using Generalized
Notions of Data Depth”, November 2015.

3. (Speaker) University of East Anglia Department of Mathematics, Norwich, UK. Presented a talk
entitled: “Ensemble Visualization and Uncertainty Characterization Using Generalized Notions of
Data Depth”, November 2015.

4. (Speaker) Rensselaer Polytechnic Institute Scientific Computation Research Center, Troy, NY. Pre-
sented a talk entitled: “Multiscale modeling and uncertainty quantification as part of ’Materials by
Design’”, October 2015.

5. (Speaker) National Hurricane Center, Florida International University. Presented a talk entitled:
“Ensemble Visualization and Uncertainty Characterization Using Generalized Notions of Data Depth”,
October 2015.

6. (Speaker) Nektar++ Workshop 2015. Presented a talk entitled: “Nektar ++: A look into the future”,
July 2015.

7. (Speaker) 2015 MACH Conference (Annapolis, MD). Presented a talk entitled: “Surrogate-Based
Bayesian Model Ranking of Atomistic Models”, April 2015.

F. TEACHING AND MENTORING (2015 Only)

1. Teaching: Spring 2015: CS 2100 Discrete Structures. Approximately 120 sophomores and juniors.

2. Mentoring: Harshitha PV (MS), M.S. Srivatsa (MS), Vidhi Zala (MS), Ashok Jallepalli (PhD), James
King (PhD), Yanyan He (postdoc), Mahsa Mirzargar (postdoc), Shankar Sastry (postdoc)

H. SYNERGISTIC ACTIVITIES
• Awards: Leverhulme Visiting Professorship, 2008-2009; Best paper award at International

SuperComputing (ISC) 2016; Best paper award at ACM Solid and Physical Modeling Sym-
posium 2008; Best paper award at Parallel and Distributed Systems: Testing and Debug-
ging (PADTAD) 2007; Best paper award at Formal Methods for Industry Critical Systems
(FMICS) 2007; Outstanding paper award at EuroPVM-MPI 2006; NSF CAREER Award
NSF-CCF0347791 2004; Joukowski Award for Outstanding Dissertation 2003.

• Software: Co-Lead Architect and Developer of the Open-Source Simulation Software Nek-
tar++: nektar.info

• Editorial Boards: Mathematics and Computers in Simulation (2007–2009).

• Conference Organization: SciVis Papers Co-Chair, IEEE Visualization 2016 and 2017,
General Chair, ICOSAHOM 2014, Panels co-chair, IEEE Visualization 2007–2009. Panel
Organizer (with Prof. Claudio Silva, NYU-Poly), IEEE Visualization 2011.

• Program Committee Member: International Conference on High Performance Computing
2007; Thread Verification Workshop 2006.

226

BIOGRAPHICAL SKETCH
Provide the following information for the Senior/key personnel and other significant contributors in the order listed on Form Page 2.

Follow this format for each person. DO NOT EXCEED FIVE PAGES.
NAME: Alexander Lex

eRA COMMONS USER NAME (credential, e.g., agency login): ALEXANDERLEX

POSITION TITLE: Assistant Professor of Computer Science Assistant Professor

EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as
nursing, include postdoctoral training and residency training if applicable.)

INSTITUTION AND LOCATION DEGREE
(if applicable)

Completion Date
MM/YYYY FIELD OF STUDY

Graz University of Technology (Graz, Austria) BSc 09/2006 Computer Science
McMaster University (Hamilton, OT, Canada) Grad. training 05/2007 Computer Science
Graz University of Technology (Graz, Austria) MSc 07/2008 Computer Science
Graz University of Technology (Graz, Austria) PhD 03/2012 Computer Science
Harvard University (Boston, MA, USA) Postdoctoral 05/2015 Computer Science

A. Personal Statement
I develop interactive data analysis methods for experts and scientists. My primary research interests are
interactive data visualization and analysis especially applied to molecular biology and pharmacology.
While certain analytical questions can or will be solvable through automatic means, I concern myself with the
challenges that require human reasoning. Data analysis in support of addressing these challenges requires an
interactive and visual approach that tightly integrates algorithms, statistics, and machine learning.
I am a co-founder and leader of the Caleydo Project, which is both, software that can be used by life science
experts to visualize biomolecular data and pathways, but also a platform for implementing prototypes of radical
visualization ideas.
My previous research with respect to visualization of genomic data and my formal training in computer science
and visualization, as well as my numerous close collaborations with biologists for visualization in molecular
biology are an excellent foundation to address the problems of visualization for biomolecular and clinical data
for large patient cohorts and will allow me to significantly contribute to this project.

B. Positions and Honors

Positions and Employment
08/2008 - 03/2012 Research Assistant, Graz University of Technology, Austria
08/2010 - 09/2012 Lecturer, Graz University of Technology, Austria
08/2011 - 09/2011 Visiting Researcher, Center for Biomedical Informatics, Harvard Medical School, USA
03/2012 - 09/2012 Post-Doctoral Researcher, Graz University of Technology, Austria
10/2012 - 05/2015 Post-Doctoral Fellow, Harvard University
01/2015 - 05/2015 Lecturer, Harvard University
07/2015 - Assistant Professor of Computer Science, University of Utah

Other Experience and Professional Memberships
2014 - 2015 Organizing committee, IEEE VIS
2014 - 2016 Program committee, IEEE InfoVis
2015 - 2016 Program chair, Symposium on Visualization in Data Science (VDS)
2012 - 2016 Organizing committee, IEEE Symposium on Biological Data Visualization (BioVis)
2012 - 2014 Program committee, Conference on Human-Computer Interaction & Knowledge Discovery
2008 - 2014 Member, Institute of Electrical and Electronics Engineers (IEEE)

Awards and Honors
2006 Joint Study scholarship for student exchange with McMaster University, Hamilton, On, Canada.
2007 Research grant for students. Faculty of Computer Science, Graz University of Technology.

227

2007 Award for excellent performance as a student. Graz University of Technology.
2010 Co-recipient best student paper award, ACM Graphics Interface
2011 Co-recipient of best paper award, IEEE InfoVis
2012 Recipient of best dissertation award by the Forum Technology and Society, TU Graz.
2012 Co-recipient of best paper award, IEEE BioVis
2012 Co-recipient of 3rd best paper award, IEEE/Eurographics EuroVis
2013 Erwin Schroedinger Postdoctoral Scholarship, Austrian Science Fund (FWF)
2013 Co-recipient of best paper award, IEEE InfoVis
2014 Co-recipient of honorable mention award, ACM CHI
2015 Human Technology Interface Award for the work on cancer subtype visualization (StratomeX)

C. Contribution to Science
* indicates joint-first authorship
1. Cancer subtype analysis can improve our understanding of cancers and pave the way to improved patient

outcomes. The investigation of cancer subtypes is highly data driven and makes use of large and
heterogeneous data sets. These datasets are difficult to analyze and require both computational and
advanced visual methods to facilitate human reasoning and exploration. Together with colleagues, I have
developed methods to visualize patient stratifications based on various datasets, explore and investigate
their impact on outcome, potential confounding factors, and their relationships to alternative stratifications.
This body of work has profoundly influenced how cancer subtypes are visually analyzed and
communicated.

a. Streit M*, Lex A*, Gratzl S, Partl C, Schmalstieg D, Pfister H, Park PJ, Gehlenborg N. Guided visual
exploration of genomic stratifications in cancer. Nat Methods. vol 11, no 9, pp 884-5 PMCID:
PMC4196637.

b. A. Lex, M. Streit, H.-J. Schulz, C. Partl, D. Schmalstieg, P. J. Park, and N. Gehlenborg,
“StratomeX: Visual Analysis of Large-Scale Heterogeneous Genomics Data for Cancer Subtype
Characterization,” Computer Graphics Forum (EuroVis ’12), vol. 31, no. 3, pp. 1175–1184, 2012.

c. C. Turkay, A. Lex, M. Streit, H. Pfister, and H. Hauser, “Characterizing Cancer Subtypes using the
Dual Analysis Approach in Caleydo,” IEEE Computer Graphics and Applications, vol. 34, no. 2, pp.
38–47, Mar. 2014.

d. A. Lex, H.-J. Schulz, M. Streit, C. Partl, and D. Schmalstieg, “VisBricks: Multiform Visualization of
Large, Inhomogeneous Data,” IEEE Transactions on Visualization and Computer Graphics (InfoVis
’11), vol. 17, no. 12, pp. 2291–2300, 2011.

2. Biological networks, such as pathways, provide critical context to experimental data. However, the joint

analysis of, for example, gene expression, copy number or mutation data with networks is hindered by the
problems of visualizing multivariate networks. To remedy this, I have developed methods to visualize large
and highly multivariate networks that convey both the topology of the network and detailed information
about experimental data associated with user-selected subsets of the network.

a. A. Lex, C. Partl, D. Kalkofen, M. Streit, A. M. Wasserman, S. Gratzl, D. Schmalstieg, and H. Pfister,
“Entourage: Visualizing Relationships between Biological Pathways using Contextual Subsets,”
IEEE Transactions on Visualization and Computer Graphics (InfoVis ’13), vol. 19, no. 12, pp. 2536-
2545, 2013.

b. C. Partl, A. Lex, Marc Streit, Denis Kalkofen, Karl Kashofer, and Dieter Schmalstieg, “enRoute:
Dynamic Path Extraction from Biological Pathway Maps for Exploring Heterogeneous Experimental
Datasets.” BMC Bioinformatics, vol. 14, no. Suppl 19, p. S3, Nov. 2013. PMCID: PMC3980897

c. C. Partl, A. Lex, M. Streit, D. Kalkofen, K. Kashofer, and D. Schmalstieg, “enRoute: Dynamic Path
Extraction from Biological Pathway Maps for In-Depth Experimental Data Analysis. Proceedings of
the IEEE Symposium on Biological Data Visualization (BioVis '12) 2012, pp. 107-114, Seattle, WA,
USA, Oct. 2012.

d. M. Streit, A. Lex, M. Kalkusch, K. Zatloukal, and D. Schmalstieg, “Caleydo: Connecting Pathways
and Gene Expression,” Bioinformatics, vol. 25, no. 20, pp. 2760–2761, 2009. PMCID: PMC2759551

3. In addition to visualization methods for biological data, I have also developed multiple fundamental data

visualization techniques. I developed, for example, a method to visualize and analyze intersections of many

228

sets, providing an alternative to the often misused Venn diagrams. This technique has been used, for
example, to evaluate various algorithms and parameterizations of single nucleotide variant calling
algorithms. Other fundamental visualization techniques tackle the challenges of multivariate rankings, high-
dimensional and heterogeneous data visualization, and effective highlighting across multiple views.

a. S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit, “LineUp: Visual Analysis of Multi-
Attribute Rankings”. IEEE Transactions on Visualization and Computer Graphics (InfoVis ’13), vol.
19, no. 12, pp. 2277–2286, 2013.

b. A. Lex, M. Streit, C. Partl, K. Kashofer, D. Schmalstieg, “Comparative Analysis of Multidimensional,
Quantitative Data.” IEEE Transactions on Visualization and Computer Graphics (InfoVis'2010),
16(6), pp. 1027-1035, Nov.-Dec. 2010

c. M. Steinberger, M. Waldner, M. Streit, A. Lex, and D. Schmalstieg, “Context-Preserving Visual
Links,” IEEE Transactions on Visualization and Computer Graphics (InfoVis ’11), vol. 17, no. 12,
pp. 2249–2258, Dec. 2011.

d. T. Geymayer, M. Steinberger, M. Streit, A. Lex, and D. Schmalstieg, “Show me the Invisible:
Visualizing Hidden Content.” In proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '14), pp. 3705-3714, 2014.

Complete List of Published Work in My Bibliography:
http://www.ncbi.nlm.nih.gov/sites/myncbi/alexander.lex.1/bibliography/48797429/public/?sort=date&direction=a
scending

D. Research Support
Ongoing Research Support

U01 CA198935 Park, Peter (PI) 06/01/15-05/31/18
National Cancer Institute (NCI)
Visual analysis of genomic and clinical data from large patient cohorts
To develop new methods and software tools for integrating genomic and clinical data.
Role: Subcontract / Co-Investigator

Completed Research Support

Erwin Schroedinger Postdoctoral Scholarship Lex (PI) 01/05/12-31/08/15
Austrian Science Fund (FWF)
Visual Analysis of Heterogeneous Data using Semantic Subsets.
The goal of this project was to develop methods for a divide and conquer approach to visualizing large and
heterogeneous data, as for example found in cancer subtype analysis.
Role: PI

229

CURRICULUM VITAE of Feifei Li

Webpage: http://www.cs.utah.edu/∼lifeifei E-mail: lifeifei@cs.utah.edu

Research Interests

Database systems and large-scale data management, systems, and analytics. Security issues in data man-
agement and systems.

Education

September 2002 - August 2007 Ph.D. in Computer Science, Computer Science Department, Boston University,
PhD Thesis: “Query and Data Security Issues in the Data Outsourcing Model”.

September 1998 - Jan 2002 B.S. in Computer Engineering, School of Computer Engineering, Nanyang Techno-
logical University, Singapore (transferred from Tsinghua University, China).

Honors and Awards

• SIGMOD Best Paper Award, ACM SIGMOD 2016.

• SIGMOD Best Demonstration Award, ACM SIGMOD 2015.

• Google Faculty Award, 2015.

• IEEE ICDE 2014 10+ Years Most Influential Paper Award.

• Teaching Dean’s List, Top 15% Class in the College of Engineering, CS 6530, Fall 2013.

• SIGMOD Best Undergraduate Research Poster Award (Advisor), SIGMOD 2013.

• Google App Engine Education Award, 2012.

• HP Labs Innovation Research Award (61 awards selected from more than 500 worldwide submissions), 2012.

• HP Labs Innovation Research Award (62 awards selected from 626 worldwide submissions), 2011.

• COFRS (Committee on Faculty Research Support) Award, Florida State University, 2011.

• NSF Career Award, 2011.

• First Year Assistant Professor Award, Florida State University, 2008.

• Best Presenter Award, in research summer interns Seminar@Luch Series, IBM T.J. Watson Research Center,
August, 2006.

• Best Paper Award, in 20th IEEE International Conference on Data Engineering (ICDE), 2004.

• First Class Honor (Accelerating Honor), School of Computer Engineering, Nanyang Technological University,
Singapore, 2002.

• Defense Science & Technology Agency Gold Medal, Singapore, 2001.

• Merit Award in Singapore Advanced e-Business Applications Competition, 2000.

• National Science Class, China, 1997.

Professional Experience

• ZhiYuan College, Shanghai Jiao Tong University, Shanghai, China,

Visiting Professor July, 2014 - July, 2015

• School of Computing, University of Utah, Salt Lake City, UT, USA

Associate Professor July, 2013 - Present

• School of Computing, University of Utah, Salt Lake City, UT, USA

Assistant Professor Aug, 2011 - June, 2013

• Computer Science Department, Florida State University, Tallahassee, FL, USA

Assistant Professor & Director for the SAIT Laboratory Aug, 2007 - Aug, 2011

• Database Research Group, Microsoft Research, Redmond, WA, USA

Research Summer Intern May, 2007 - August, 2007

• Database Management Research Department, AT&T Shannon Research Lab, Florham Park, NJ, USA

Research Consultant 2007 - 2009

• Database Research Group, IBM T.J.Watson Research Center, Hawthorne, NY, USA

Research Summer Intern June, 2006 - September, 2006

• SQL Server Group, Microsoft, Redmond, WA, USA

Summer Intern June, 2005 - September, 2005

230

http://www.cs.utah.edu/~lifeifei

Grants

1. “III: Small: Towards a Database Engine for Interactive and Online Sampling and Analytics”, sole PI, NSF IIS,
09/01/16- 08/31/19, $500,000.

2. “NSF DSSP Workshop: Data Science for Secure and Privacy-Aware Big Data Management and Mining”, sole
PI, NSF, 09/07/16- 09/06/17, $98,000.

3. Research Experience for Undergraduate (for the NSF SEAL project), PI, NSF, 09/16-08/17, $16,000.

4. Research Experience for Undergraduate (for the NSF STORM project), PI, NSF, 09/16-08/17, $16,000.

5. “TWC: Medium: Collaborative: Seal: Secure Engine for AnaLytics - From Secure Similarity Search to Secure
Data Analytics”, PI, NSF SaTC, co-PI Jeff Phillips, PI at UCSB Rachel Lin, 07/15/15-06/30/19, $942,056:
$600,007 at Utah and $342,049 at UCSB.

6. “Spatio-Temporal Online Analytics With Concept Enriched Text”, PI, Google Research Awards program,
02/2015-02/2016, $57,640.

7. “Automated Query Engine for Large Heterogeneous Data”, PI, NSFC (NSF China) Oversea Collaboration
Grant, co-PI Bin Yao at Shanghai Jiao Tong University, 01/01/2015-12/31/2016, Chinese RMB 200,000.

8. “CIF21 DIBBs: STORM: Spatio-Temporal Online Reasoning and Management of Large Data”, PI, NSF DIBBs
program, co-PI John Horel, Jeff Phillips, Paul Rosen, 11/01/2014-10/31/2017, $1,157,975.

9. Research Experience for Undergraduate (for the NSF BIGDATA grant), PI, NSF, 04/14-04/15, $16,006.

10. “BIGDATA: Small: DCM: DA: Building a Mergeable and Interactive Distributed Data Layer for Big Data
Summarization Systems”, PI, NSF BIGDATA program, co-PI Jeff Phillips, 09/15/2013-08/31/2016, $685,380.

11. “TWC: Medium: TCloud: A Self-Defending, Self-Evolving and Self-Accounting Trustworthy Cloud Platform”,
co-PI, NSF, PI Jacobus Van Der Merwe, co-PIs Robert Ricci, Eric Eide, 09/01/2013-08/31/2017, $999,991.

12. “CSR: Medium: Energy-Efficient Architectures for Emerging Big-Data Workloads”, co-PI, NSF CNS, PI Rajeev
Balasubramonian, co-PIs Al Davis, Mary Hall, 07/01/2013-06/30/2017, $873,286.

13. Research Experience for Undergraduate (for the CAREER grant), sole PI, NSF, 07/12-07/13, $16,000.

14. “Time-Sensitive and Keyword-Aware Recommendation in Large Data”, sole-PI, HP, 09/01/2011-08/31/2013,
$125,000 (supported by two HP IRP awards at $45,000 in 2011-2012 with an additional $5,000 for collaboration
support, and $70,000 in 2012-2013 with an additional $5,000 for collaboration support).

15. “Non-Conventional Search and Identification of Delinquent Parents”, co-PI (PI at Utah), PI: Sudhir Aggarwal
(FSU), co-PI: Piyush Kumar (FSU), Florida Department of Revenue, 2/16/2011-9/29/2013, $632,465.

16. “Efficient Aggregate Similarity Search”, sole PI, FSU COFRS (Committee on Faculty Research Support)
Award, 2011, $14,000.

17. “CAREER: Novel Query Processing Techniques for Distributed Probabilistic Data”, sole PI, NSF IIS Program,
02/11-01/16, $498,138.

18. “Scholarship for Service at Florida State University”, co-PI, PI: Mike Burmester (FSU), co-PIs: Sudhir Ag-
garwal (FSU), Xiuwen Liu (FSU), NSF Division of Undergraduate Education, 09/10-08/14, $1,853,894.

19. “III:Small: Efficient Ranking and Aggregate Query Processing for Probabilistic Data”, sole PI, NSF IIS Pro-
gram, 09/09-09/12, $328,831.

20. Research Experience for Undergraduate (for the CT-ISG grant), sole PI, NSF, 06/09-09/11, $12,000.

21. “CT-ISG: Collaborative Research: Towards Trustworthy Database Systems”, sole PI at FSU, NSF Cyber Trust
Program, 10/08-09/11, $150,620.

22. DoD 2009 IASP (Information Assurance Scholarship Program) Grant, co-PI, PI: Mike Burmester (FSU), 08/09-
08/10, $46,977.

23. “Building Trustworthy Database Systems”, sole PI, FSU CRC Planning Grant, 12/01/07-11/30/08, $12,000.

24. “Query Verification for Distributed Databases”, sole PI, FSU CRC First Year Assistant Professor Grant,
05/08-08/08, $16,000.

25. “Ranking and Aggregate Query Processing for Large Scientific Data with Fuzzy Information”, Source: FSU

Undergraduate Research Award, sole PI, Student: Justin DeBrabant, $4,000, 2009.

231

Selected Recent Publications
1. Spell: Streaming Parsing of System Event Logs, by M. Du, F. Li. In Proceedings of 16th IEEE International

Conference on Data Mining (IEEE ICDM 2016), pages TBA, Barcelona, Spain, December, 2016.

2. Fast And Concurrent RDF Queries With RDMA-Based Distributed Graph Exploration, by J. Shi, Y. Yao,
R. Chen, H. Chen, F. Li. In Proceedings of 12th USENIX Symposium on Operating Systems Design and
Implebbmentation (OSDI 2016), pages TBA, Savannah, USA, November, 2016.

3. Simba: Spatial In-Memory Big Data Analytics, by D. Xie, F. Li, B. Yao, G. Li, L. Zhou, Z. Chen, M. Guo.
Demo Paper. In Proceedings of 24th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (ACM SIGSPATIAL 2016), pages TBA, San Francisco, USA, November, 2016.

4. Simba: Efficient In-Memory Spatial Analytics, by D. Xie, F. Li, B. Yao, G. Li, L. Zhou, M. Guo In Proceedings
of 35th ACM SIGMOD International Conference on Management of Data (ACM SIGMOD 2016), pages
1071-1085, San Francisco, USA, June, 2016.

5. Wander Join: Online Aggregation via Random Walks, by F. Li, B. Wu, K. Yi, Z. Zhao In Proceedings of 35th
ACM SIGMOD International Conference on Management of Data (ACM SIGMOD 2016), pages 615-629,
San Francisco, USA, June, 2016. SIGMOD Best Paper Award

6. Graph Analytics Through Fine-Grained Parallelism, by Z. Shang, F. Li, J. X. Yu, Z. Zhang, H. Cheng. In
Proceedings of 35th ACM SIGMOD International Conference on Management of Data (ACM SIGMOD
2016), pages 463-478, San Francisco, USA, June, 2016.

7. Matrix Sketching Over Sliding Windows, by Z. Wei, X. Liu, F. Li, S. Shang, X. Du, J. Wen. In Proceedings
of 35th ACM SIGMOD International Conference on Management of Data (ACM SIGMOD 2016), pages
1465-1480, San Francisco, USA, June, 2016.

8. Privacy Preserving Subgraph Matching on Large Graphs in Cloud, by Z. Chang, L. Zou, F. Li, In Proceedings
of 35th ACM SIGMOD International Conference on Management of Data (ACM SIGMOD 2016), pages
199-213, San Francisco, USA, June, 2016.

9. Oblivious RAM: A Dissection and Experimental Evaluation, by Z. Chang, D. Xie, F. Li, In Proceedings of
42nd International Conference on Very Large Data Bases (VLDB 2016), pages 1113-1124, New Delhi India,
2016.

10. Spatial Online Sampling and Aggregation, by L. Wang, R. Christensen, F. Li, K. Yi, In Proceedings of 42nd
International Conference on Very Large Data Bases (VLDB 2016), pages 84-95, New Delhi India, 2016.

11. ATOM: Automated Tracking, Orchestration, and Monitoring of Resource Usage in Infrastructure as a Service
Systems, by M. Du, F. Li, In Proceedings of IEEE International Conference on Big Data (IEEE BigData
2015), pages 271-278, Santa Clara CA, November, 2015.

12. Distributed Online Tracking, by M. Tang, F. Li, Y. Tao, In Proceedings of 34th ACM SIGMOD International
Conference on Management of Data (ACM SIGMOD 2015), pages 2047-2061, Melbourne, Australia, June
2015.

13. STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data, by R. Chris-
tensen, L. Wang, F. Li, K. Yi, J. Tang, N. Villa, In Proceedings of 34th ACM SIGMOD International Confer-
ence on Management of Data (ACM SIGMOD 2015), system demo, pages 1111-1116, Melbourne, Australia,
June 2015 (SIGMOD Best Demonstration Award).

14. Scalable Histograms on Large Probabilistic Data, by M. Tang, F. Li, In Proceedings of 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD 2014), pages 631–640,
NYC, NY, August 2014.

15. Continuous Matrix Approximation on Distributed Data, by M. Ghashami, J. Phillips, F. Li, In Proceedings
of 40th International Conference on Very Large Databases (VLDB 2014), pages 809–820, Hangzhou, China,
September 2014.

16. Optimal Splitters for Temporal and Multi-version Databases, by W. Le, F. Li, Y. Tao, R. Christensen, In
Proceedings of 32nd ACM SIGMOD International Conference on Management of Data (ACM SIGMOD
2013), pages 109-120, NYC, NY, June 2013.

17. Quality and Efficiency for Kernel Density Estimates in Large Data, by Y. Zheng, J. Jestes, J. Phillips, F. Li,
In Proceedings of 32nd ACM SIGMOD International Conference on Management of Data (ACM SIGMOD
2013), pages 433-444, NYC, NY, June 2013.

18. Adaptive Log Compression for Massive Log Data, by R. Christensen, F. Li, In Proceedings of 32nd ACM
SIGMOD International Conference on Management of Data (ACM SIGMOD 2013, Undergraduate Research
Poster), SIGMOD Best Undergraduate Research Poster Award, pages 1283-1284, NYC, NY, June 2013.

19. Secure Nearest Neighbor Revisited, by B. Yao, F. Li, X. Xiao, In Proceedings of 29th IEEE International
Conference on Data Engineering, (IEEE ICDE 2013), pages 733-744, Brisbane, Australia, April, 2013.

232

20. LogKV: Exploiting Key-Value Stores for Log Processing, by Z. Cao, S. Chen, F. Li, M. Wang, X. Sean Wang,
In Proceedings of 6th Biennial Conference on Innovative Data Systems Research (CIDR 2013), pages NA,
Asilomar, California, January 2012.

21. Ranking Large Temporal Data, by J. Jestes, J. Phillips, F. Li, M. Tang, In Proceedings of 38th International
Conference on Very Large Databases (VLDB 2012), PVLDB 5(11) pages 1412-1223, Istanbul, Turkey, August
2012.

22. Building Wavelet Histograms on Large Data in MapReduce, by J. Jestes, K. Yi, F. Li, In Proceedings of 38th
International Conference on Very Large Databases (VLDB 2012), PVLDB 5(2): 109-120, Istanbul, Turkey,
August 2012.

23. Towards Fair Sharing of Block Storage in a Multi-tenant Cloud, by X. Ling, Y. Mao, F. Li, R. Ricci, In
Proceedings of 4th USENIX Workshop on Hot Topics in Cloud Computing (USENIX HotCloud 2012,
pages TBA, Boston, MA, June 2012.

24. Approximate Aggregation Techniques for Sensor Databases, by J. Considine, F. Li, G. Kollios, and J. Byers.
In Proceedings of the 20th IEEE International Conference on Data Engineering (IEEE ICDE 2004), pages
449-460, Boston, MA, March 30 - April 2, 2004. Best Paper Award

Selected Professional Service

1. PC Associate Chair, ACM SIGMOD 2015, 34th ACM SIGMOD/PODS International Conference on Manage-
ment of Data and Principle of Database Systems.

2. Associate Editor, IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), since November,
2013.

3. PC co-Chair, WAIM’14, 15th International Conference on Web Age Information Management.

4. General co-Chair, SIGMOD’14, 33rd ACM SIGMOD/PODS International Conference on Management of Data
and Principle of Database Systems.

5. PC Area Vice Chair, ICDE’14, 30th IEEE International Conference on Data Engineering.

6. Demo PC Chair, VLDB’14, 40th International Conference on Very Large Databases.

7. PC members for the annunal SIGMOD, VLDB, ICDE conferences.

8. Panel members for NSF, HKRGC, Qatar National Research Fund (QNRF).

Teaching Experience

• Track Director, School of Computing, University of Utah. Director for the Data Track Graduate Program. Fall
2011 to Fall 2013.

• Instructor, ZhiYuan College, Shanghai Jiao Tong University. ACM Class, Database Systems and Big Data
Management. Fall 2014 and Spring 2015.

• Instructor, School of Computing, University of Utah. Graduate Course: CS6530, Advanced Database Systems.
Fall 2012, Fall 2013, Fall 2015, Fall 2016.

• Instructor, School of Computing, University of Utah. Undergraduate Course: CS5530 Database Systems.
Spring 2012, Spring 2013, Spring 2014, Spring 2016

• Instructor, School of Computing, University of Utah. Graduate Course: CS7941 Data Reading Group. Spring
2012, Spring 2013, Fall 2013, Fall 2015.

• Instructor, School of Computing, University of Utah. Graduate Course: CS6931 Database Seminar. Spring
2012.

• Instructor, School of Computing, University of Utah. Graduate Course: CS6960 Database Kernels and Large
Data Management. Fall 2011.

• Instructor, Computer Science Department, Florida State University. Undergraduate Course: COP4710 Theory
and Structure of Databases. Fall 2010, Spring 2010, Fall 2009, Fall 2008, Spring 2008.

• Instructor, Computer Science Department, Florida State University. Graduate Course: COP5725 Database
Systems. Spring 2011, Spring 2010, Spring 2009, Fall 2007.

• Instructor, Computer Science Department, Florida State University. Graduate Course: CIS5930 Advanced
Topics in Data Management. Fall 2008.

233

Miriah Meyer

72 Central Campus Dr, Rm 3750, Salt Lake City, UT 84112
http://www.cs.utah.edu/⇠miriah

miriah@cs.utah.edu
July 2016

Education

Ph.D. in Computer Science, 2008
University of Utah, Salt Lake City, UT
Thesis: Dynamic Particle Systems for Adaptive Sampling of Implicit Surfaces
Advisor: Ross Whitaker

B.S. in Astronomy & Astrophysics with Honors, 1999
Pennsylvania State University, University Park, PA
Minors: Physics, Women’s Studies

Professional Appointments

USTAR Assistant Professor, 2011 – present
School of Computing
Scientific Computing and Imaging (SCI) Institute
University of Utah, Salt Lake City, UT

Visiting Scientist, 2010 – 2011
Broad Institute of MIT and Harvard, Cambridge, MA

Postdoctoral Research Fellow, 2008 – 2011
School of Engineering and Applied Sciences
Harvard University, Cambridge, MA
Supervisors: Hanspeter Pfister and Tamara Munzner

Awards

Outstanding Teaching Award, School of Computing, University of Utah, 2015

NSF CAREER Award, 2014

Best Paper Award, ACM AVI Conference, 2014

PopTech Science Fellow, 2013

TED Fellow, 2013

Microsoft Research Faculty Fellowship, 2012

FastCompany Magazine’s 100 Most Creative People in Business, 2012

MIT Technology Review TR35: The Top 35 Innovators Under 35, 2011

NSF/CRA Computing Innovation Fellowship, 2009

AAAS Mass Media Fellowship, 2006

Selected Publications

1

Journal Publications

L. Padilla, P. S. Quinan, M. Meyer, S. Creem-Regehr. Evaluating the Impact of Binning 2D Scalar Fields,
Transactions on Visualization and Computer Graphics (Proceedings of InfoVis), accepted.

A. Bigelow, S. Drucker, D. Fisher, M. Meyer. Iterating Between Tools to Create and Edit Visualizations,
Transactions on Visualization and Computer Graphics (Proceedings of InfoVis), accepted.

1
underlined names indicate student authors

234

S. McKenna, D. Staheli, C. Fulcher, M. Meyer. BubbleNet: A Cyber Security Dashboard for Visualizing
Patterns, Computer Graphics Forum (Proceedings of EuroVis), 35(3):281-290, 2016.

N. McCurdy, J. Lein, K. Coles, M. Meyer. Poemage: Visualizing the Sonic Topology of a Poem, IEEE
Transactions on Visualization and Computer Graphics (Proceedings of InfoVis), 22(1):439-448, 2016.

P. S. Quinan, M. Meyer. Visually Comparing Weather Features in Forecasts, IEEE Transactions on
Visualization and Computer Graphics (Proceedings of InfoVis), 22(1):389-398, 2016.

S. McKenna, M. Meyer, S. Gerber. s-CorrPlot: An Interactive Scatterplot for Exploring Correlation,
Journal of Computational and Graphical Statistics, 2015.

E. Kerzner, L. Butler, C. Hansen, M. Meyer. A Shot at Visual Vulnerability Analysis, Computer Graphics
Forum (Proceedings of EuroVis), 34(3):391-400, 2015.

M. Meyer, M. Sedlmair, P. S. Quinan, T. Munzner. The Nested Blocks and Guidelines Model, Journal of
Information Visualization, 14(3):234-249, 2015.

S. McKenna, D. Mazur, J. Agutter, M. Meyer. Design Activity Framework for Visualization Design, IEEE
Transactions on Visualization and Computer Graphics (Proceedings of InfoVis), 20(12):2191-2200, 2014.

G. McInerny, M. Chen, R. Freeman, D. Gavaghan, M. Meyer, F. Rowland, D. Spiegelhalter, M. Steganer,
G. Tessarolo, J. Hortal. Information Visualization for Science & Policy: Engaging Users & Avoiding Bias,
Trends in Ecology & Evolution, 29(3):148-157, 2014.

R. Kirby, M. Meyer. Visualization Collaborations: Reflections on What Works and Why, IEEE Computer
Graphics and Applications, 33(6):82-88, 2013.

A. Abdul-Rahman, J. Lein, K. Coles, E. Maguire, M. Meyer, M. Wynne, C. Johnson, A. Trefethen, M.
Chen. Rule-based Visual Mappings with a Case Study on Poetry Visualization, Computer Graphics Forum
(Proceedings of EuroVis), 32(3), 2013.

M. Sedlmair, M. Meyer, T. Munzner. Design Study Methodology: Reflections from the Trenches and the
Stacks, IEEE Transactions on Visualization and Computer Graphics (Proceedings of InfoVis), 18(12):2431-
2440, 2012. Best Paper Honorable Mention.

C. Fowlkes, K. Eckenrode, M. Bragdon, M. Meyer, Z. Wunderlich, L. Simirenko, C. Luengo, S. Keranen, C.
Henriquez, D. Knowles, M. Biggin, M. Eisen, A. DePace. A Conservered Developmental Patterning Net-
work Produces Quantitatively Di↵erent Output in Multiple Species of Drosophila, PLoS Genetics, 7(10), 2011.

M. Meyer, T. Munzner, A. DePace, H. Pfister. MulteeSum: A Tool for Comparative Spatial and Temporal
Gene Expression Data, IEEE Transactions on Visualization and Computer Graphics (Proceedings of
InfoVis), 16(6):908–917, 2010.

M. Meyer, B. Wong, T. Munzner, M. Styczynski, H. Pfister. Pathline: A Tool for Comparative Functional
Genomics, Computer Graphics Forum (Proceedings of EuroVis), 29(3):1043–1052, 2010.

M. Grabherr, P. Russell, M. Meyer, E. Mauceli, J. Alfoldi, F. DiPalma, K. Lindblad-Toh. Genome-wide
synteny through highly sensitive sequence alignment: Satsuma, Bioinformatics, 26(9):1145–1151, 2010.

M. Meyer, T. Munzner, H. Pfister. MizBee: A Multiscale Synteny Browser, IEEE Transactions on Visu-
alization and Computer Graphics (Proceedings of InfoVis), 15(6):897–904, 2009. Best Paper Honorable

Mention.

Refereed Conference and Workshop Publications

S. McKenna, D. Staheli, M. Meyer. Unlocking User-Centered Design Methods for Building Cyber Security
Visualizations, Proceedings of the IEEE Symposium on Visualization for Cyber Security (VizSec), 2015.

N. McCurdy, V. Srikumar, M. Meyer. RhymeDesign: A Tool for Analyzing Sonic Devices in Poetry,
Workshop on Computational Linguistics for Literature, NAACL HLT, 2015.

A. Bigelow, S. Drucker, D. Fisher, M. Meyer. Reflections on How Designers Design With Data, Proceedings
of the ACM International Conference on Advanced Visual Interfaces (AVI), 2014. acceptance rate: 28%.
Best Paper Award.

235

M. Meyer, M. Sedlmair, T. Munzner. The Four-Level Nested Model Revisited: Blocks and Guidelines, in
Proceedings of the ACM Workshop on BEyond time and errors: novel evaLuation methods for Information
Visualization (BELIV), IEEE VIS 2012.

A. Duchowski, M. Price, M. Meyer, P. Orero. Aggregate Gaze Visualization with Real-time Heatmaps, in
Proceedings of the ACM Symposium on Eye Tracking Research & Applications (ETRA), 2012. acceptance
rate: 31%

Book In Progress

M. Meyer and D. Fisher. Making Sense of Data: Designing E↵ective Visualizations, O’Reilly Media, fall
2016.

Funding

Current

NIH Grant PRISMS: Informatics Federation Architecture Center, K. Sward (PI) et al, M. Meyer (Project
Lead), NIH (NIBIB), Sept 2015-2019. $5,529,663 ($546,140).

NSF CAREER Grant Design Decision Patterns for Visualizing Multivariate Graphs, M. Meyer (PI),
NSF Computer Graphics and Visualization (CISE-IIS), July 2014-2019. $400,000 ($400,000).

DARPA Grant The Visualization Design Environment, J. Baumes (PI) et al, M. Meyer (co-PI), DARPA
XDATA, August 2012-2017. $3,038,000 ($550,000).

NIH Grant Predictive Modeling of Bioelectric Activity on Mammalian Multilayered Neuronal Structures
in Presence of Supraphysiological Electric Fields, G. Lazzi (PI) et al, M. Meyer (co-PI), NIH (NIGMS),
August 2012-2017. $3,982,276 ($285,089).

NIH Grant Refining and Testing the Electronic Social Network Assessment Program, M. Reblin (PI) et al,
M. Meyer (co-PI), NIH (NCI), September 2015-2016. $250,000 ($19,265).

NSF Large Grant Modeling, Display, and Understanding Uncertainty in Simulations for Policy Decision
Making, R. Whitaker (PI) et al, M. Meyer (co-PI), NSF Computer Graphics and Visualization (CISE-IIS),
September 2012-2016. $1,280,000 ($324,095).

Completed

NEH Start-up Grant Poemage Prototype, M. Meyer (PI), K. Coles (co-PI), May 2015-2016. $60,000
($30,000).

University of Utah SEED Grant The Eye of the Storm: Visualizing Poetry in Space and Time, K.
Coles (PI), M. Meyer (co-PI), August 2013-2014. $28,000 ($14,000).

DoD STTR Grant SACURE: Situational Awareness for Cyber-secURity Evaluation and training, R.
Pokorny (PI) et al, M. Meyer (co-PI), June 2013. $150,000 ($15,000).

State of Utah TCIP Grant Using Cloud-based Computing as a Channel for Genetics Visualization
Software, M. Meyer (PI), August 2012-2013. $40,000 ($40,000).

Microsoft Research Faculty Fellowship Award July 2012. $200,000 ($200,000).

Keynotes and Distinguished Lectures

Designing Visualizations
International Workshop on Bio-Design Automation Keynote, August 2015
Show and Tell Speaker Series, University of Chicago, May 2015
Strata Conference Keynote, October 2014

236

Designing Visualizations for Scientists
Rocky Mountain CUWiP Conference Keynote, January 2014

Visualizing Data: Why an (Interactive) Picture is Worth a Thousand Numbers
Park City Institute Lecture Series, August 2013
CI-WATER Symposium Keynote, May 2013
Women’s History Month Keynote, Westminster College, March 2013
Gould Distinguished Lecture Series at the University of Utah, September 2012

Designing Visualizations for Biological Research
Design Research Conference Keynote, IIT Institute of Design, October 2012
Arts | Humanities | Complex Networks Keynote – a Leonardo symposium at NetSci, June 2012

Teaching

Introduction to Algorithms and Data Structures (CS 2420), University of Utah, 2015 – 2016

Visualization Seminar (CS 7942), University of Utah, 2012 – 2013, 2015

Visualization (CS 5630/6630), University of Utah, 2012 – 2014

SCI Seminar (CS 7932), University of Utah, 2013 – 2014

Design Studies (CS 7690), University of Utah, 2013

Uncertainty Study Group, University of Utah, 2012 – 2103

Information Visualization (CS 6964), University of Utah, 2012

InfoVis Journal Club, University of Utah, 2011

Visualization (CS 171), Harvard University
Co-instructor and Head Teaching Fellow with Prof. Hanspeter Pfister, 2008 and 2009

Guest Lectures
Undergraduate Research Forum (CS 3020), University of Utah, 2014 – 2015
Business Leadership, University of Utah, 2013
Scientific Computing (CS 3200), University of Utah, 2012 and 2013
Scientific Computing (BIOL/CHEM/PHYS 370), Westminster College, 2013
Introduction to Computer Science (CS 1400), University of Utah, 2012
Data Visualization (CS 171), Harvard University, 2010 and 2011

Students

Current PhD
Alex Bigelow (2012 – 2018)
Ethan Kerzner (2013 – 2017)
Nina McCurdy (2013 – 2018)
Sean McKenna (2012 – 2017)
Jimmy Moore (2015 – 2020)
Sam Quinan (2012 – 2018)

Current Undergraduate
Safia Hassan

Graduated
Alex Bigelow, B.S., “Visualization of Large-Scale Epigenetic Data”, 2012
Joshua Dawson, M.S., “Visualizing the UTA Transit System”, 2015
Dasha Pruss, B.S., “Toward Interactive Visualization of Connectome Paths”, 2016
Zella Urquhart, B.S., 2016

237

Matthew Might

Professional experience since 2009
• Executive Office of the President at The White House. Washington, D.C., U.S.A.

Strategist. March 2016–Present.

– Advisor to the President’s Precision Medicine Initiative.
– Member of Office of Management and Budget.
– Member of United States Digital Service Headquarters.

• Harvard Medical School, Department of Biomedical Informatics. Boston, Massachussetts, U.S.A.
Associate Professor, Visiting. July 2015–Present.

• University of Utah, School of Computing. Salt Lake City, Utah, U.S.A.
Presidential Scholar. July 2014–Present.
Associate Professor, Tenured. July 2014–Present.
Assistant Professor, Tenure-Track. Fall 2008–June 2014.

Education

• Ph.D., Computer Science. Fall 2003–Summer 2007.
Georgia Institute of Technology. Atlanta, Georgia, U.S.A.
Advisor: Olin Shivers. GPA: 4.00
Dissertation: Environment Analysis of Higher-Order Languages.
Minor: Economics.

• M.S., Computer Science. Fall 2002–Spring 2003.
Georgia Institute of Technology. Atlanta, Georgia, U.S.A.
Specialization: Information security. GPA: 4.00
(Note: M.S. degree not officially awarded until 2005.)

• B.S., Computer Science. Fall 1999–Fall 2001.
Georgia Institute of Technology. Atlanta, Georgia, U.S.A.
Specialization: Systems. Minor: Economics. GPA: 3.94

Publications since 2009

C1. Jason Hemann, William Byrd, Daniel Friedman and Matthew Might. “A Small Embedding of Logic
Programming with a Simple Complete Search.” Accepted to Dynamic Languages Symposium 2016. (DLS 2016).
October 2016.

C2. Thomas Gilray, Michael Adams and Matthew Might. “Allocation Characterizes Polyvariance.” Accepted to
International Conference on Functional Programming (ICFP 2016). September 2016.

C3. Michael Adams, Celeste Hollenbeck and Matthew Might. “On the Complexity and Performance of Parsing with
Derivatives.” Proceedings of the 37th Annual Conference of Programming Language Design and Implementation (PLDI
2016). Santa Barbara, California. June 2016.
[16% acceptance rate. 48 accepted. 304 submitted. Celeste is my student.]

C4. James King, Thomas Gilray, Robert M. Kirby, and Matthew Might “Dynamic Sparse-Matrix Allocation on
GPUs.” International Supercomputing Conference (ISC 2016). Istanbul, Turkey. June 2016. [42% acceptance rate. 25
accepted. 60 submitted. Winner of PRACE ISC Best Paper Award.]

238

Matthew Might Curriculum VitæMatthew Might Curriculum VitæMatthew Might Curriculum Vitæ

C5. Thomas Gilray, Steven Lyde, Michael D. Adams, Matthew Might and David Van Horn. “Pushdown
Control-Flow Analysis for Free.” Symposium on Principles of Programming Languages (POPL 2016). St. Petersburg,
Florida. January 2016. pages 691 – 703.
[23% acceptance rate. 59 accepted. 253 submitted. Thomas and Steven are my students.]

C6. David Darais, Matthew Might and David Van Horn. “Galois Transformers and Modular Abstract Interpreters:
Reusable Metatheory for Program Analysis.” Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA 2015). Pittsburgh, Pennsylvania. October, 2015. pages 552 – 571.
[25% acceptance rate. 53 accepted. 210 submitted.]

C7. Steven Lyde, William E. Byrd and Matthew Might. “Control-Flow Analysis of Dynamic Languages via Pointer
Analysis.” Dynamic Languages Symposium (DLS 2015). Pittsburgh, Pennsylvania. October, 2015. pages 54 – 62.
[35% acceptance rate. 14 accepted. 40 submitted. Steven is my student.]

C8. Peter Aldous and Matthew Might. “Static Analysis of Non-interference in Expressive Low-Level Languages.”
22nd International Static Analysis Symposium (SAS 2015). Saint-Malo, France. 9 September 2015.
[41% acceptance rate. 18 accepted. 44 submitted. Peter is my student.]

C9. Shuying Liang, Weibin Sun and Matthew Might. “Fast Flow Analysis with Gödel Hashes.” 14th IEEE
International Working Conference on Source Code Analysis and Manipulation (SCAM 2014). Victoria, BC,
Canada. 29 September 2014.
[32% acceptance rate. 26 accepted. 82 submitted. Best Paper Award. Shuying is my Ph.D. student.]

C10. Shuying Liang, Weibin Sun, Matthew Might, Andrew Keep and David Van Horn. “Pruning, Pushdown
Exception-Flow Analysis.” 14th IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM 2014). Victoria, BC, Canada. 29 September 2014.
[32% acceptance rate. 26 accepted. 82 submitted. Shuying is my Ph.D. student.]

C11. J. Ian Johnson, Nicholas Labich, Matthew Might, David Van Horn. “Optimizing Abstract Abstract Machines.”
Proceedings of the International Conference on Functional Programming 2013 (ICFP 2013). Boston, Massachusetts.
September, 2013.
[30% acceptance rate. 40 accepted. 133 submitted.]

C12. Steven Lyde, Matthew Might. “Extracting Hybrid Automata from Control Code.” Proceedings of the 5th Annual
NASA Formal Methods Symposium (NFM 2013). Short paper category. Moffet Field, CA. May, 2013.
[37% (37% short, 37% long) acceptance rate. 37 (9 short, 28 long) accepted. 99 (24 short, 75 long) submitted.
Steven Lyde is my Ph.D. student.]

C13. Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais, Dave Clark, Frank Piessens.
“Monadic Abstract Interpreters.” Proceedings of the 34th Annual Conference of Programming Language Design and
Implementation (PLDI 2013). Seattle, Washington. June, 2013.
[17% acceptance rate. 46 accepted. 267 submitted.]

C14. Christopher Earl, Ilya Sergey, Matthew Might and David Van Horn. “Introspective Pushdown Analysis of
Higher-Order Programs.” Proceedings of the International Conference on Functional Programming 2012 (ICFP 2012).
Copenhagen, Denmark. September, 2012. pages 177–188.
[36% acceptance rate. 32 accepted. 88 submitted. Christopher Earl is my Ph.D. student. Invited for submission to
special issue of Journal of Functional Programming: Best Papers of ICFP 2012.]

C15. Jan Midtgaard, Michael D. Adams and Matthew Might. “A Structural Soundness Proof for Shivers’s Escape
Technique: A Case for Galois Connections.” Static Analysis Symposium 2012 (SAS 2012). Deauville, France.
September, 2012. pages 352–369.
[40% acceptance rate. 25 accepted. 62 submitted.]

C16. Michael D. Adams, Andrew W. Keep, Jan Midtgaard, Matthew Might, Arun Chauhan and R. Kent Dybvig.
“Flow-Sensitive Type Recovery in Linear-Log Time.” Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA 2011). Portland, Oregon. October, 2011. page 483–498.
[37% acceptance rate. 61 accepted. 165 submitted.]

2

239

Matthew Might Curriculum VitæMatthew Might Curriculum VitæMatthew Might Curriculum Vitæ

C17. Matthew Might, David Darais and Daniel Spiewak. “Parsing with Derivatives: A Functional Pearl.” Proceedings
of the 16th ACM International Conference on Functional Programming (ICFP 2011). Tokyo, Japan. September, 2011.
pages 189–195.
[34% acceptance rate. 38 accepted. 112 submissions. David Darais was a B.S. student.
Note: The reported acceptance rate for the submission category “Functional Pearl” was 25%.]

C18. Matthew Might and David Van Horn. “A family of abstract interpretations for static analysis of concurrent
higher-order programs.” Proceedings of the 2011 Static Analysis Symposium (SAS 2011). Venice, Italy. September,
2011. pages 180–197.
[32% acceptance rate. 22 accepted. 67 submitted.]

C19. Tarun Prabhu, Shreyas Ramalingam, Matthew Might and Mary Hall. “EigenCFA: Accelerating flow analysis
with GPUs.” Proceedings of the 38th Annual ACM Symposium on the Principles of Programming Languages (POPL
2011). Austin, Texas. January, 2011. pages 511–512.
[23% acceptance rate. 49 accepted. 209 submitted. Tarun Prabhu was my M.S. student.]

C20. David Van Horn and Matthew Might. “Abstracting abstract machines.” Proceedings of the 15th ACM International
Conference on Functional Programming (ICFP 2010). Baltimore, Maryland. September, 2010. pages 51–62.
[33% acceptance rate. 33 accepted. 99 submitted. Invited for submission to special issue of Journal of Functional
Programming: Best Papers of ICFP 2010.]

C21. Matthew Might. “Abstract interpreters for free.” Proceedings of the 2010 Static Analysis Symposium (SAS 2010).
Perpignan, France. September, 2010. pages 407–421.
[30% acceptance rate. 25 accepted. 82 submitted.]

C22. Matthew Might, Yannis Smaragdakis and David Van Horn. “Resolving and exploiting the k-CFA paradox:
Illuminating functional v. object-oriented program analysis.” Proceedings of the 31st Annual Conference on
Programming Language Design and Implementation (PLDI 2010). Toronto, Canada. June, 2010. pages 305–315.
[20% acceptance rate. 41 accepted. 204 submitted.]

C23. Matthew Might. “Shape analysis in the absence of pointers and structure.” Proceedings of the 11th Annual
Conference on Verification, Model-Checking and Abstract Interpretation (VMCAI 2010). Madrid, Spain. January, 2010.
pages 263–278.
[37% acceptance rate. 21 accepted. 57 submitted.]

C24. Matthew Might and Panagiotis Manolios. “A posteriori soundness for non-deterministic abstract
interpretations.” Proceedings of the 10th Annual Conference on Verification, Model-Checking and Abstract Interpretation
(VMCAI 2009). Savannah, Georgia. January, 2009. pages 1–15.
[33% acceptance rate. 24 accepted. 72 submitted.]

J1. Christopher Earl, Matthew Might, Abhishek Bagusetty and James Sutherland. “An efficient, parallel, and
portable domain-specific language for numerically solving partial differential equations.” Journal of Systems and
Software. pages 1–12. January 2016.

J2. Katherine F. Lambertson, Stephen A. Damiani, Matthew Might, Robert Shelton and Sharon F. Terry.
“Participant-Driven Matchmaking in the Genomic Era.” Journal of Human Mutation. Volume 36. Issue 10. pages
965–973. October 2015.

J3. Kimball Germane and Matthew Might (2014). “Deletion: The curse of the red-black tree.” Journal of Functional
Programming, 24(4), pp 423-433. July 2014.

J4. J. Ian Johnson, Ilya Sergey, Christopher Earl, Matthew Might and David Van Horn. “Pushdown flow analysis
with abstract garbage collection.” Journal of Functional Programming. 24, pp 218-283. May 2014.
[Extended report invited as a Best Paper of ICFP 2012.]

J5. Matthew Might and Matt Wilsey. “The shifting model in clinical diagnostics: how next-generation sequencing
and families are altering the way rare diseases are discovered, studied, and treated.” Genetics in Medicine.
Peer-reviewed commentary. 20 March 2014.

3

240

Matthew Might Curriculum VitæMatthew Might Curriculum VitæMatthew Might Curriculum Vitæ

J6. David Van Horn and Matthew Might. “Systematic Abstraction of Abstract Machines.” Journal of Functional
Programming. September 2012. Volume 22. Special Issue 4-5. pages 705–746.
[Extended report invited as a Best Paper of ICFP 2010.]

J7. David Van Horn and Matthew Might. “Abstracting Abstract Machines: A Systematic Approach to Higher-Order
Program Analysis.” Communications of the ACM. 2011. September, 2011. pages 101–109.
[Nominated and selected by CACM to appear as a Research Highlight. Only two research highlights per month
are selected across computer science.]

E1. Jan Midtgaard and Matthew Might, Editors. 2012 Proceedings of the Workshop on Numeric and Symbolic Abstract
Domains (NSAD 2012). Electronic Notes in Theoretical Computer Science. Elsevier. Volume 287, pages 1-100.
Deauville, France. 10 September 2012.
[77% acceptance rate. 7 papers accepted. 9 papers submitted.]

E2. Matthew Might, Editor. 2011 Proceedings of the Workshop on Scheme and Functional Programming. Electronic
Proceedings. Portland, Oregon. 23 October 2011.
[77% acceptance rate. 7 papers accepted. 9 papers submitted.]

E3. Dixie Baker, Matthew Might, Pearl O’Rourke, Laura Lyman Rodriguez, Tania Simoncelli, John Wilbanks.
”Participant Engagement, Data Privacy, and Novel Ways of Returning Information to Participants.” Working
Group Report for NIH Large Cohort Precision Medicine Workshop. 11 February 2015. Bethesda, Maryland.
[Presented by Pearl O’Rourke at the kick-off NIH Precision Medicine Workshop.]

Teaching since 2009
• Instructor, CS5470: “Compilers.” 60 students. Spring 2015.

• Instructor, CS6475: “Advanced topics in compilation.” 21 students. Fall 2013.

• Instructor, CS5470: “Compilers.” 53 students. Spring 2013.

• Instructor, CS5959: “Scripting language design and implementation.” 14 students. Spring 2012.

• Instructor, CS7938: “Static analysis seminar.” 7 students. Spring 2012.

• Instructor, CS5470: “Compilers.” 35 students. Spring 2011.

• Instructor, CS7938: “Static analysis seminar.” 7 students. Spring 2011.

• Instructor, CS7938: “Static analysis seminar.” 3 students. Spring 2010.

• Instructor, CS6470: “Advanced topics in compilation.” 15 students. Fall 2009.

• Instructor, CS6969: “Programming language analysis.” 15 students. Spring 2009.

• Instructor, CS7938: “Static analysis seminar.” 4 students. Spring 2009.

Awards

A1. Quora Top Writer 2016. Quora. January 2016.

A2. Presidential Scholar. University of Utah. July 2014.

A3. Top 15% of College Teaching (Undergraduate Lecturing). AY 2012-2013.

A4. Outstanding Instructor Award, School of Computing. AY 2012-2013.

A5. Top 15% of College Teaching (Undergraduate Lecturing). AY 2011-2012.

A6. Nominee for ACM SIGPLAN Dissertation Award. 2007.

A7. Nominee for ACM Doctoral Dissertation Award. 2007.

A8. Outstanding Doctoral Dissertation, Computing, Georgia Tech. 2007.

4

241

Chris John Myers

Department of Electrical and Computer Engineering, University of Utah
50 S. Central Campus Dr. Rm. 4112, Salt Lake City, UT 84112-9206

(801) 581-6490, myers@ece.utah.edu, http://www.async.ece.utah.edu/∼myers

Education

Stanford University, Stanford, California (1991-1995)
Ph.D. degree in Electrical Engineering (1995)

Thesis: Computer-Aided Synthesis and Verification of Gate-Level Timed Circuits
M.S. degree in Electrical Engineering (1993)

California Institute of Technology, Pasadena, California (1987-1991)
B.S. degree with honor in Electrical Engineering and History (1991)

Professional Experience (Selected)

Professor of Electrical and Computer Engineering, University of Utah (2006-present)
Adjunct Professor of Computer Science, University of Utah (2007-present)
Adjunct Professor of Bioengineering, University of Utah (2007-present)

Awards (Selected)

Fellow of the IEEE (2013)
ECE Departmental Service Award, University of Utah (2013)

Service (Selected)

Computer Engineering Committee Member, University of Utah (1995-present)

Recruiting Committee Member, University of Utah (1995-1998,1999-2000, 2015-present)

Member of the IEEE, S’91-M’96-SM’04-Fellow’13 (1991-present)

Member of the ACM (1996-present)

Technology Editor, ACS Synthetic Biology (2017-present)

Member of the Editorial Board, Engineering Biology (2016-present)

Member of the Editorial Board, Synthetic Biology (2016-present)

Member of the Steering Committee, Synthetic Biology Open Language (2015-present)

Member of the Steering Committee, Synthetic Biology Standards Consortium (2015-present)

Guest Editor, IEEE Design & Test Magazine (2015-present)

Organizer, COMBINE Forum 2015 (2015)

COMBINE (COmputational Modeling in Biology NEtworks) Coordinator (2014-present)

Associate Editor, IEEE Life Sciences Letters, (2014-present)

Member of the Steering Committee, Frontiers in Analog CAD Workshop (2010-present)

1
242

Courses Developed (Selected)

1. Modeling and Analysis of Biological Networks - In 2009, I published the textbook, Engineering
Genetic Circuits, used for this course.

2. Asynchronous Circuit Design - In 2001, I published the textbook, Asynchronous Circuit Design,
used for this course.

3. Computer Aided Design of Digital Circuits - This course provides an introduction to algorithms
for the synthesis and optimization of digital designs.

4. Embedded System Design - I completely redesigned this course to focus on embedded system
design issues rather than just interfacing with a PC.

5. Formal Verification - This course presents state-of-the-art methods for the formal verification
of hardware and software systems. A new version of this class was developed in 2012.

Publications (Selected)

Books

1. C. J. Myers, Engineering Genetic Circuits, Chapman & Hall/CRC Press, July, 2009.

2. C. J. Myers, Asynchronous Circuit Design, John Wiley and Sons, July, 2001.

Book Chapters and Books Edited

1. C. Myers, K. Clancy, G. Misirli, E. Oberortner, M. Pocock, J. Quinn, N. Roehner, and H.
Sauro, “The Synthetic Biology Open Language”, in Computational Methods in Synthetic Biology,
Methods in Molecular Biology, Volume 1244, pages 323-336, 2015.

2. C. Madsen, C. Myers, N. Roehner, C. Winstead, and Z. Zhang, “Efficient Analysis Methods
in Synthetic Biology”, in Computational Methods in Synthetic Biology, Methods in Molecular
Biology, Volume 1244, pages 217-257, 2015.

3. A. Fisher, D. Kulkarni, and C. Myers, “A new assertion property language for analog/mixed-
signal circuits”, in Languages, Design Methods, and Tools for Electronic System Design - Selected
Contributions from FDL 2013, Lecture Notes in Elec. Eng., Vol. 311, pages 45-65, 2015.

4. C. Myers, “Platforms for Genetic Design Automation”, in Methods in Microbiology 2013: Mi-
crobial Synthetic Biology, November, 2013.

Journal Articles

1. N. Roehner, J. Beal, K. Clancy, B. Bartley, G. Misirli, R. Grunberg, E. Oberortner, M. Pocock,
M. Bissell, C. Madsen, T. Nguyen, M. Zhang, Z. Zhang, Z. Zundel, D. Densmore, J. Gennari,
A. Wipat, H. Sauro, and C. Myers, “Sharing structure and function in biological design with
SBOL 2.0”, to appear in ACS Synthetic Biology.

2. D. Waltemath, J.. Karr, F. Bergmann, V. Chelliah, M. Hucka, M. Krantz, W. Liebermeister,
P. Mendes, C. Myers, P. Pir, B. Alaybeyoglu, N. Aranganathan, K. Baghalian, A. Bittig, P.
Burke, M. Cantarelli, Y. Chew, R. Costa, J. Cursons, T. Czauderna, A. Goldberg, H. Gómez,
J. Hahn, T. Hameri, D. Kazakiewicz, I. Kiselev, V. Knight-Schrijver, C. Knüpfer, M. König,
D. Lee, A. Lloret-Villas, N. Mandrik, J. Medley, B. Moreau, H. Meshkin, S. Palaniappan, D.
Priego-Espinosa, M. Scharm, M. Sharma, K. Smallbone, N. Stanford, J. Song, T. Theile, M.
Tokic, N. Tomar, V. Touré, J. Uhlendorf, T. Varusai, L. Watanabe, F. Wendland, M. Wolfien,
J. Yurkovich, Y. Zhu, A. Zardilis, A. Zhukova, and F. Schreiber, “Toward community standards
and software for whole-cell modeling”, to appear in IEEE Trans. on Bio. Eng..

3. V. Dubikhin, D. Sokolov, C. Myers, and A. Yakovlev, “Design of Mixed-signal Systems with
Asynchronous Control”, to appear in IEEE Design and Test.

2
243

4. Z. Zhang, T. Nguyen, N. Roehner, G. Misirli, M. Pocock, E. Oberortner, M. Samineni, Z.
Zundel, J. Beal, K. Clancy, A. Wipat, C. Myers, “libSBOLj 2.0: A Java Library to Support
SBOL 2.0”, to appear in IEEE Life Sciences Letters.

5. L. Watanabe and C. Myers, “Efficient Analysis of SBML Models of Cellular Populations Using
Arrays”, to appear in ACS Synthetic Biology.

6. T. Nguyen, N. Roehner, Z. Zundel, and C. Myers, “A Converter from the Systems Biology
Markup Language to the Synthetic Biology Open Language”, to appear in ACS Syn. Bio..

7. Z. Zheng, W. Serwe, J. Wu, T. Yoneda, H. Zheng, and C. Myers, “An Improved Fault-Tolerant
Routing Algorithm for a Network-on-Chip Derived with Formal Analysis”, to appear in Science
of Computer Programming.

8. C. Myers, “Computational Synthetic Biology: Progress and the Road Ahead”, in IEEE Trans-
actions on Multi-scale Computing Systems, 1(1): 19-32, 2015.

9. J. Quinn, R. Cox, A. Adler, J. Beal, S. Bhatia, Y. Cai, J. Chen, K. Clancy, M. Galdzicki,
N. Hillson, N. Le Novère, A. Maheshwari, J. Alastair, C. Myers, Umesh P, M. Pocock, C.
Rodriguez, L. Soldatova, G.-B. Stan, N. Swainston, A. Wipat, and H. Sauro, “SBOL Visual: A
Graphical Language for Genetic Designs”, in PLOS Biology, 13(12): e1002310, 2015.

10. N. Rodriguez, A. Thomas, L. Watanabe, I. Vazirabad, V. Kofia, H. Gómez, F. Mittag, J.
Rudolph, F. Wrzodek, E. Netz, A. Diamantikos, J. Eichner, R. Keller, C. Wrzodek, S. Fröhlich,
N. Lewis, C. Myers, N. Le Novère B. Palsson, M. Hucka, and A. Dräger, “JSBML 1.0: providing
a smorgasbord of options to encode systems biology models”, in Bioinfo., 31(20):3383-6, 2015.

11. F. Schreiber, G. Bader, M. Golebiewski, M. Hucka, B. Kornmeier, N. Le Novère, C. Myers,
D. Nickerson, B. Sommer, D. Waltemath and S. Weise, “Specifications of Standards in Systems
and Synthetic Biology”, Journal of Integrative Bioinformatics, 12(2):258, 2015.

12. L. Smith, M. Hucka, S. Hoops, A. Finney, M. Ginkel, C. Myers, I. Moraru and W. Liebermeis-
ter, “SBML Level 3 package: Hierarchical Model Composition, Version 1 Release 3”, Journal of
Integrative Bioinformatics, 12(2):268, 2015.

13. M. Hucka, F. Bergmann, A. Dräger, S. Hoops, S. Keating, N. Le Novère, C. Myers, B. Olivier,
S. Sahle, J. Schaff, L. Smith, D. Waltemath and D. Wilkinson. “Systems Biology Markup
Language (SBML) Level 2 Version 5: Structures and Facilities for Model Definitions”, Journal
of Integrative Bioinformatics, 12(2):271, 2015.

14. B. Bartley, J. Beal, K. Clancy, G. Misirli, N. Roehner, E. Oberortner, M. Pocock, M. Bissell, C.
Madsen, T. Nguyen, Z. Zhang, J. Gennari, C. Myers, A. Wipat and H. Sauro. “Synthetic Biology
Open Language (SBOL) Version 2.0.0”, Journal of Integrative Bioinformatics, 12(2):272, 2015.

15. N. Roehner, Z. Zhang, T. Nguyen, C. Myers, “Generating Systems Biology Markup Language
Models from the Synthetic Biology Open Language”, in ACS Synthetic Biology, 4(8), 867-943,
August 21, 2015.

16. M. Hucka, D. Nickerson, G. Bader, F. Bergmann, J. Cooper, E. Demir, A. Garny, M. Golebiewski,
C. Myers, F. Schreiber, D. Waltemath, N. Le Novère, “Promoting coordinated development of
community-based information standards for modeling in biology: the COMBINE initiative”, in
Frontiers in Bioengineering and Biotechnology, 3(19), 2015.

17. H. Zheng, Z. Zhang, C. Myers, E. Rodriguez, and Y. Zhang, “Compositional Model Checking
of Concurrent Systems”, in IEEE Transactions on Computers, 64(6), June, 2015.

18. N. Roehner, E Oberortner, M. Pocock, J. Beal, K. Clancy, C. Madsen, G. Misirli, A. Wipat,
H. Sauro, C. Myers, “A Proposed Data Model for the Next Version of the Synthetic Biology

3
244

Open Language”, in ACS Synthetic Biology, 4(1), 57-71, January 16, 2015.

19. C. Myers, H. Sauro, and A. Wipat, “Introduction to the Special Issue on Computational
Synthetic Biology”, in ACM Journal on Emerging Technologies in Computing Systems, 11(3),
December, 2014.

20. C. Madsen, Z. Zhang, N. Roehner, C. Winstead, and C. Myers, “Stochastic Model Checking
of Genetic Circuits”, in ACM Journal on Emerging Technologies in Computing Systems, 11(3),
December, 2014.

21. L. Watanabe and C. Myers, “Hierarchical Stochastic Simulation Algorithm for SBML Models
of Genetic Circuits”, in Frontiers in Bioengineering and Biotechnology, 2(55), 2014.

22. N. Roehner and C. J. Myers, “Directed Acyclic Graph-Based Technology Mapping of Genetic
Circuit Models.”, in ACS Synthetic Biology, 3(8), 543-555, August 15, 2014.

23. M. Galdzicki, K. Clancy, E. Oberortner, M. Pocock, J. Quinn, C. Rodriguez, N. Roehner, M.
Wilson, L. Adam, J. C. Anderson, B. Bartley, J. Beal, D. Chandran, J. Chen, D. Densmore, D.
Endy, R. GruÌĹnberg, J. Hallinan, N. Hillson, J. Johnson, A. Kuchinsky, M. Lux, G. Misirli,
J. Peccoud, H. Plahar, E. Sirin, G.-B. Stan, A. Villalobos, A. Wipat, J. Gennari, C. Myers,
H. Sauro, “SBOL: A community standard for communicating designs in synthetic biology”, in
Nature Biotechnology, 32(6): 545-550, June, 2014.

24. D. Waltemath, F. Bergmann, C. Chaouiya, T. Czauderna, P. Gleeson, C. Goble, M. Golebiewski,
M. Hucka, N. Juty, O. Krebs, N. Le Novère, H. Mi, I. Moraru, C. Myers, D. Nickerson, B.
Olivier, N. Rodriguez, F. Schreiber, L. Smith, F. Zhang, and E. Bonnet, “Meeting report from
the fourth meeting of the Computational Modeling in Biology Network (COMBINE)”, in Stan-
dards in Genomic Sciences, 9(3), 2014.

25. N. Roehner and C. J. Myers, “A Methodology to Annotate Systems Biology Markup Language
Models with the Synthetic Biology Open Language”, in ACS Synthetic Biology, 3(2): 57-66,
Feb. 21, 2014.

26. J. Stevens and C. Myers, “Dynamic Modeling of Cellular Populations within iBioSim,” in ACS
Synthetic Biology, 2(5): 223-229, Nov. 21, 2012.

27. C. Madsen, C. Myers, T. Patterson, N. Roehner, J. Stevens, and C. Winstead, “Design and
test of genetic circuits using iBioSim,” in IEEE Design and Test, 29(3): 32-39, June, 2012.

28. S. Little, D. Walter, C. Myers, R. Thacker, S. Batchu, and T. Yoneda, “Verification of analog/
mixed-signal circuits using labeled hybrid Petri nets,” in IEEE Transactions on CAD, 30(4):
617-630, April, 2011.

29. N. Barker, C. Myers, and H. Kuwahara, “Learning genetic regulatory network connectivity
from time series data,” in IEEE Transactions on Computational Biology and Bioinformatics,
8(1):152-165, Jan-Mar, 2011.

30. N. Nguyen, C. Myers, H. Kuwahara, C. Winstead, and J. Keener, “Design and analysis of a
robust genetic Muller C-element,” in Journal of Theor. Bio., 264(2): 174-187, May, 2010.

31. S. Little, D. Walter, K. Jones, C. Myers, and A. Sen, “Analog/mixed-signal circuit verification
using models generated from simulation traces,” in The International Journal of Foundations
of Computer Science, 21(2): 191-210, 2010.

32. H. Kuwahara, C. Myers, and M. Samoilov, “Temperature control of fimbriation circuit switch
in uropathogenic escherichia coli : quantitative analysis via automated model abstraction,” in
PLoS Computational Biology, 6(3): e1000723, March 2010.

4
245

Erin Parker

Associate Professor (Lecturer) 50 S. Central Campus Drive parker@cs.utah.edu
School of Computing Room 3190 MEB
University of Utah Salt Lake City, UT 84112 www.cs.utah.edu/∼parker

Experience

2015-present Associate Professor, Lecturer
School of Computing, University of Utah

2008-2015 Assistant Professor, Lecturer
School of Computing, University of Utah

2005-2008 Assistant Professor, Adjunct
School of Computing, University of Utah

2005 Instructor
School of Computing, University of Utah

2002 Instructor
Department of Computer Science, University of North Carolina at Chapel Hill

Teaching — Over 3700 students in sixteen courses taught fifty times.

CS 1050: Computers in Society CS/ECE 3810: Computer Organization
Sp08 Sp16

CS 1060: Explorations in Computer Science CS 4000: Senior Capstone Design
Fa08, Sp09, Fa09 Fa12

CS/EAE 1400: Intro to Computer Science† CS 4400: Computer Systems
Fa10, Sp11, Fa11, Sp12, Su12, Fa12, Sp13, Fa13, Sp14 Fa07, Fa08, Fa09, Fa10, Fa11

CS 1410: Intro to Object-Oriented Programming CS 4500: Senior Capstone Project
Fa13, Sp14, Fa15, Sp16 Sp13

CS 2000: Intro to Program Design in C CS 5040: Teaching Introductory Computer Science
Fa05, Fa06, Fa07 Fa15

CS 2420: Intro to Data Structures & Algorithms CS 5470: Compiler Principles & Techniques
Su06, Su07, Su08, Sp10, Sp11, Sp12, Fa15 Sp05, Sp06, Sp07, Sp08, Sp09, Sp10

CS 3020: Research Forum† CS 5510: Programming Language Concepts
Fa09, Fa10, Fa11, Fa12, Fa13 Fa06

CS 3500: Software Practice I COMP 014: Intro to Programming (UNC)
Sp06 Su02

† denotes courses created

Supervising — Guidance, mentorship, and evaluation of graduate student instructors.

Summer 2013-14 CS 2420, Paymon Saebi

Spring 2013 CS 2420, Daniel Kopta

1

246

Summer 2012 CS 2420, Stephen Ward

Summer 2011 CS 1400, Jake Van Alstyne and Dan Maljovec; CS 2420, Daniel Kopta

Service

School of Computing

2008-present Diversity Committee member

Work to diversify the School of Computing primarily through recruitment and re-
tention of women and underrepresented minority students. Specific duties include
maintaining mailing lists of women undergraduate students, graduate students,
and faculty; facilitating and selecting student representatives for diversity confer-
ences; and semesterly meetings with undergraduate women students.

2010-present Undergraduate Studies Committee member

Review and improve the undergraduate computer science curriculum (particularly
focused on the courses of the first, “pre-major” year).

2011-present Scholarship Committee member (2011-2012) and chair (2013-present)

Organize SoC scholarship applications for review by committee members. Match
high-ranking applicants to awards for which they are eligible. Coordinate with
CoE and ECE, for which the pool of applications overlaps with SoC.

2011-present Undergraduate Committee member

Organize and administer admission to full-major status. Decide on probationary
actions for students who do not meet the minimum requirements for continuing
performance. Approve BS Theses. Decide on exceptions to degree requirements
and determine equivalency of courses completed elsewhere. Manage the CS 1410
Proficiency Test, by which students may waive the CS/EAE 1030 (formerly 1400)
pre-major requirement. Advise students academically.

2016-present ACM’s Committee on Women in Computing (ACM-W) faculty advisor

Advise the members of University of Utah’s ACM-W student chapter, particularly
the chapter leaders, through attending meetings, handling logistics, and recruiting
new members.

2010-2015 CS Undergraduate Student Advisory Council (UgSAC) faculty advisor

Supervised a small group of students committed to enhancing the community of
CS undergraduates by organizing social activities, professional development work-
shops, and collecting valuable feedback on all aspects of the student experience
in the School of Computing.

2

247

2008-2011 Education Outreach coordinator

Created and led outreach programs designed to expose K-12 students to the ex-
citing field of computer science.

College of Engineering

2011-present College of Engineering Scholarship Committee member

Review and rate hundreds of applications for scholarships awarded by the College.

2011-present Society of Women Engineers (SWE) faculty advisor

Advise the members of University of Utah’s SWE section, particularly the section
leaders, through attending regular meetings (leadership and general member),
participating in events (K-12 outreach, professional development, and social),
and attending SWE conferences (national and regional).

2012-present Women in Engineering (WIE) faculty mentor

Mentor the student members of WIE and help coordinate WIE events.

2009-2014 Hi-GEAR (Girls Engineering Abilities Realized) Camp

Created and often presented the computer science activity in this week-long camp
that exposes high-school girls to all kinds of engineering.

University of Utah

2014-present Honors Faculty Advisor

Advise computer science students on the Honors track and connect students to
faculty in the department for supervising their Honors thesis work.

External

2014-present National Center for Women & Information Technology (NCWIT) Aspriations in
Computing award presenter and application reviewer

2009-present Utah Computer Science Teachers Association (CSTA) member

2014 Underrepresented Women in Computing (UWiC) mentor at the Grace Hopper
Celebration of Women in Computing

2009-14 Expanding Your Horizons presenter (annual conference for middle-school girls
interested in math and science)

2013 Scratch Day presenter (annual workshop for elementary- and middle-school stu-
dents interested in computer science)

3

248

2010 NSF Transforming Undergraduate Education in Science Program (TUES) re-
viewer

2008 Principles and Practice of Parallel Programming (PPoPP) local arrangements
chair

Awards

2011 College of Engineering Outstanding Teaching Award

2011, 2006 School of Computing Outstanding Teaching Award

2006-present Dean’s letters for excellent teaching

Education

2004 Ph.D. in Computer Science
University of North Carolina at Chapel Hill
Analyzing the Behavior of Loop Nests in the Memory Hierarchy: Methods, Tools,
and Applications

2001 M.S. in Computer Science
University of North Carolina at Chapel Hill.

1999 B.S. in Computer Science and Mathematics
The College of William and Mary, Williamsburg, Virginia.

Publications

Philip J. Hanlon, Dean Chung, Siddhartha Chatterjee, Daniela Genius, Alvin R. Lebeck, and Erin
Parker. “The Combinatorics of Cache Misses during Matrix Multiplication.” Journal of Computer
and System Sciences. 2001.

Erin Parker and Siddhartha Chatterjee. “An Automata-Theoretic Algorithm for Counting Solu-
tions to Presburger Formulas.” In Proceedings of CC 2004 International Conference on Compiler
Construction, Barcelona, Spain. April, 2004. 32% acceptance rate.

Siddhartha Chatterjee, Erin Parker, Philip J. Hanlon, and Alvin R. Lebeck. “Exact Analysis of
Cache Misses in Nested Loops.” In Proceedings of the International Symposium on Programming
Language Design and Implementation (PLDI), Snowbird, Utah. June, 2001. 21% acceptance rate.

4

249

References

Prof. Joe Zachary, School of Computing (zachary@cs.utah.edu)

Prof. Jim de St. Germain, School of Computing (germain@cs.utah.edu)

5

250

Biographical Sketch
Valerio Pascucci

Center for Extreme Data Management Analysis and Visualization
Scientific Computing and Imaging (SCI) Voice: 801-587-9885
University of Utah Fax: 801-585-6513
72 So. Central Campus Drive E-mail: pascucci@sci.utah.edu
Salt Lake City, Utah 84103 Web: http://CEDMAV.COM

Professional Preparation

• “Laurea” degree in Electrical Engineering, University of Rome, Italy, 1993.
• Qualification for the membership to the Italian Order of Engineers, 1995.
• PhD Computer Science, Purdue University, West Lafayette, IN, USA, 2000.

Appointments

• 2011- Present Director, Center for Extreme Data Management Analysis and

 Visualization (CEDMAV), University of Utah
• 2013- Present Director, Data Center Engineering Certificate, University of Utah
• 2011- Present DoE Laboratory Fellow, Pacific Northwest National Laboratory, WA
• 2011- Present Professor, School of Computing, University of Utah.
• 2011- Present Founder and CEO, ViSUS LLC.
• 2014- Present Technical Adviser, nView medical.
• 2008- Present Faculty, Scientific computing and Imaging Institute, University of Utah.
• 2015- Present Associate Editor, IEEE Transactions on Visualization & Computer

 Graphics (also 2006-2010)
• 2014-2015 Visiting Prof., King Abdullah Univ. of Sci. and Technology (KAUST).
• 2011-2013 Associate Director, Scientific Computing and Imaging Inst., Univ. of

 Utah
• 2008-2011 Associate Professor, School of Computing, University of Utah.
• 2000-2008 Computer Scientist, Project Leader, Group Leader, CASC, LLNL.
• 2005-2009 Adjunct Assistant Professor, Computer Science, Davis.

Publications

Related Publications
1. S. Kumar, C. Christensen, P.-T. Bremer, E. Brugger, V. Pascucci, J. Schmidt, M. Berzins,

H. Kolla, J. Chen, V. Vishwanath, P. Carns, R. Grout. “Fast Multi-Resolution Reads of
Massive Simulation Datasets,” In Proceedings of the International Supercomputing
Conference ISC'14, Leipzig, Germany, June, 2014.

2. S. Kumar, J. Edwards, P.-T. Bremer, A. Knoll, C. Christensen, V. Vishwanath, P. Carns,
J.A. Schmidt, V. Pascucci. “Efficient I/O and storage of adaptive-resolution data,” In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, IEEE Press, pp. 413--423. 2014.

251

3. S. Kumar, A. Saha, V. Vishwanath, P. Carns, J.A. Schmidt, G. Scorzelli, H. Kolla, R. Grout,
R. Latham, R. Ross, M.E. Papka, J. Chen, V. Pascucci. “Characterization and modeling
of PIDX parallel I/O for performance optimization,” In Proc. of SC13: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 67.
2013.

4. A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla, J. Chen, and P.-T.
Bremer. In- situ feature extraction of large scale combustion simulations using
segmented merge trees. In Proc. of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC '14, pp.1020-1031, NJ,
USA, 2014. IEEE Press.

5. W. Widanagamaachchi, P.-T. Bremer, C. Sewell, L.-T. Lo, J. Ahrens, and V.
Pascucci. Data- parallel halo finding with variable linking lengths. In Large Data
Analysis and Visualization (LDAV), 2014, IEEE 4th Symposium on, pp. 27-34,
Nov. 2014.

Other Significant Publications
1. S. Liu, B. Wang, J. J. Thiagarajan, P.-T. Bremer, and V. Pascucci.

Multivariate volume visualization through dynamic projections. In Large Data
Analysis and Visualization (LDAV), 2014, IEEE 4th Symposium on, pages 35-
42, Nov 2014.

2. V. Pascucci, G. Scorzelli, B. Summa, P.-T. Bremer, A. Gyulassy, C. Christensen, S. Philip,
S. Kumar. “The ViSUS Visualization Framework,” In High Performance Visualization:
Enabling Extreme-Scale Scientific Insight, Chapman and Hall/CRC Comp. Science, Ch.
19, Edited by E. Wes Bethel and Hank Childs (LBNL) and Charles Hansen (UofU), 2012.

3. V. Pascucci, P.-T. Bremer, A. Gyulassy, G. Scorzelli, C. Christensen, B. Summa, S.
Kumar. “Scalable Visualization and Interactive Analysis Using Massive Data Streams,” In
Cloud Computing and Big Data, Advan. in Parallel Comp., Vol. 23, IOS Press, pp. 212--
230. 2013.

4. S. Kumar, B. Summa, G. Scorzelli, V. Pascucci, V. Vishwanath, P. Carns, R. Ross, J. Chen,
H. Kolla, and R. Grout. Pidx: Efficient parallel I/O for multi-resolution multi-dimensional
scientific datasets. In IEEE Cluster 2011, Austin Texas, 2011.

Synergistic Activities

• Organizer of Dagstuhl Perspective Workshop on Connecting Performance Analysis
and Visualization to Advance Extreme Scale Computing

• Member of the IEEE 3333-2WG - Standardization of 3D Based Medical Application
Working group. Chair of the Subcommittee of the IEEE 3333-2 WG - P3333.2.3 -
Standard for Three-Dimensional (3D) Medical Data Management.

• Organizer and Program Co-Chair of TopoInVis 2013 and 2009. Co-editor of the book
that followed the meetings: ”Topological Methods in Data Analysis and Visualization:
Theory, Algorithms, and Applications”, Math+Visualization book series, Springer,
2010.

• Program Committee member for over 60 international conferences

252

Jeff M. Phillips
Assistant Professor | School of Computing | University of Utah
Director, Data Management and Analysis Track | Big Data Program
Co-Organizer, Data Group
Center for Extreme Data Management, Analysis, and Visualization
50 S Central Campus Dr., Salt Lake City, UT 84112 | (801) 585-7775
http://www.cs.utah.edu/~jeffp | jeffp@cs.utah.edu

Education
Duke University

Ph.D. in Computer Science, January, 2009.
Thesis Title: Small and Stable Descriptors of Distributions for Geometric Statistical Problems.
Advisor: Pankaj K. Agarwal.

Rice University

Bachelor of Science in Computer Science, May 2003.
Bachelor of Arts in Mathematics, May 2003.

Research Experience
University of Utah, School of Computing (Assistant Professor) (2011-present)
University of Utah, School of Computing (Postdoctoral CI Fellow) (2009-2011)
Duke University, Department of Computer Science (Postdoctoral Associate) (2009)
Duke University, Department of Computer Science (Research Assistant) (2003-2009)
Yahoo! Research (Research Intern) (Summer 2007)
AT&T Research (Visiting Researcher) (Summer/Winter 2005)
Rice University, Department of Computer Science (Research Assistant) (2000-2003)
The Charles Stark Draper Laboratory, Inc. (Research Scientist) (2002-2003)

Fellowships and Awards
NSF CAREER Award. (2014)
Best Paper Award at MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings. (2011)
CCC-CRA-NSF Computing Innovation Fellowship. (2009)
2 year postdoctoral fellowship — 60 awarded among all graduating computer scientists in US

Best Student Paper at International Conference on Automata, Languages and Programming (ICALP). (2008)
Distinguished Department Service Award (Duke Computer Science). (2008)
For 5 years of department service — never before awarded

Outstanding Department Service Award (Duke Computer Science). (2006)
NSF Graduate Research Fellowship. (2004-2007)
3 year full graduate fellowship

James B. Duke Fellowship. (2003-2007)

Book Chapters and Surveys
[S1] Coresets and Sketches (to appear).

Jeff M. Phillips.
Handbook of Discrete and Computational Geometry, 3rd edition, CRC Press, Chapter 49. 2016.

[S2] A Gentle Introduction to the Kernel Distance.
Jeff M. Phillips and Suresh Venkatasubramanian.
arXiv:1103.1625, March 2011.

Conference and Journal Publications (since 2011)
[C1] Streaming Principal Component Analysis.

Mina Ghashami and Daniel Perry, and Jeff M. Phillips.
International Conference on Artificial Intelligence and Statistics (AISTATS), [31%] May 2016.

[C2] Subsampling in Smooth Range Spaces.
Jeff M. Phillips and Yan Zheng.
Algorithmic Learning Theory (ALT), [50%] October 2015.

253

Jeff M. Phillips 2

[C3] L∞ Error and Bandwidth Selection for Kernel Density Estimates of Large Data.
Jeff M. Phillips and Yan Zheng.
ACM Conference on Knowledge Discovery and Data Mining (KDD), [19%] August 2015.

[C4] Geometric Inference on Kernel Density Estimates.
Jeff M. Phillips, Bei Wang, and Yan Zheng.
International Symposium on Computational Geometry (SoCG), [38%] June 2015.

[C5] Improved Practical Matrix Sketching with Guarantees.
Mina Ghashami, Amey Desai, and Jeff M. Phillips.
22nd Annual European Symposium on Algorithms (ESA), [25%] September 2014.
Transactions on Knowledge and Data Engineering (TKDE) (to appear) 2016.

[C6] Continuous Matrix Approximation on Distributed Data.
Mina Ghashami, Jeff M. Phillips, and Feifei Li.
40th International Conference on Very Large Data Bases (VLDB), [22%] September 2014.

[C7] Relative Errors for Deterministic Low-Rank Matrix Approximations.
Mina Ghashami and Jeff M. Phillips.
25th Annual ACM-SIAM Symposium on Discrete Algorithms (SoDA), [28%] January 2014.
extended version as Frequent Directions: Simple and Deterministic Matrix Sketching.
Mina Ghashami, Edo Liberty, Jeff M. Phillips and David P. Woodruff.

[C8] Quality and Efficiency for Kernel Density Estimates in Large Data.
Yan Zheng, Jeffrey Jestes, Jeff M. Phillips, and Feifei Li.
ACM Conference on Management of Data (SIGMOD), [20%] June,2013.

[C9] Nearest Neighbor Searching Under Uncertainty II.
Pankaj K. Agarwal, Boris Aronov, Sariel Har-Peled, Jeff M. Phillips, Ke Yi, Wuzhou Zhang.
32nd ACM Symposium on Principles of Database Systems (PoDS), [25%] June 2013.

[C10] Range Counting Coresets for Uncertain Data.
Amirali Abdullah, Samira Daruki, Jeff M. Phillips.
29th Annual ACM Symposium on Computational Geometry (SoCG), [35%] June 2013.

[C11] Radio Tomographic Imaging and Tracking of Stationary and Moving People via Kernel Distance.
Yang Zhao, Neal Patwari, Jeff M. Phillips, and Suresh Venkatasubramanian.
12th ACM-IEEE Conference on Information Processing in Sensor Networks (IPSN), [21%] April 2013.

[C12] ε-Samples for Kernels.
Jeff M. Phillips.
24th Annual ACM-SIAM Symposium on Discrete Algorithms (SoDA), [30%] January 2013.

[C13] Efficient Protocols for Distributed Classification and Optimization.
Hal Daume III, Jeff M. Phillips, Avishek Saha, and Suresh Venkatasubramanian.
23rd International Conference on Algorithmic Learning Theory (ALT), [49%] October 2012.

[C14] Ranking Large Temporal Data.
Jeffrey Jestes, Jeff M. Phillips, Feifei Li, and Mingwang Tang.
38st International Conference on Very Large Databases (VLDB), [20%] August 2012.
PVLDB 5:1412-1423, 2012.

[C15] Mergeable Summaries.
Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei Wei, and Ke Yi.
31st ACM Symposium on Principals of Database Systems (PODS), [26%] May 2012.
invited to ACM Transactions on Database Systems (TODS) 38:26, 2013.

[C16] Protocols for Learning Classifiers on Distributed Data.
Hal Daume III, Jeff M. Phillips, Avishek Saha, and Suresh Venkatasubramanian.
15th International Conference on Artificial Intelligence and Statistics (AISTATS), [30%] April 2012.

[C17] Efficient Threshold Monitoring for Distributed Probabilistic Data.
Mingwang Tang, Feifei Li, Jeff M. Phillips, and Jeffrey Jestes.
28th IEEE International Conference on Data Engineering (ICDE), [24%] April 2012.

[C18] Uncertainty Visualization in HARDI based on Ensembles of ODFs.
Fangxiang Jiao, Jeff M. Phillips, Yaniv Gur, and Chris R. Johnson.
5th IEEE Pacific Visualization Symposium (PacificVis), [34%] February 2012.

[C19] Lower Bounds for Number-in-Hand Multiparty Communication Complexity, Made Easy.
Jeff M. Phillips, Elad Verbin, and Qin Zhang.
23th Annual ACM-SIAM Symposium on Discrete Algorithms (SoDA), [31%] January 2012.
SIAM Journal of Computing (SICOMP) (to appear) 2015.

254

Jeff M. Phillips 3

[C20] Geometric Computation on Indecisive Points.
Allan G. Jørgensen, Maarten Löffler, and Jeff M. Phillips.
Algorithms and Data Structures Symposium (WADS), [42%] August 2011.

[C21] Computing Hulls, Centerpoints, and VC-Dimension in Positive Definite Space.
P. Thomas Fletcher, John Moeller, Jeff M. Phillips, and Suresh Venkatasubramanain.
Algorithms and Data Structures Symposium (WADS), [42%] August 2011.

[C22] Comparing Distributions and Shapes Using the Kernel Distance.
Sarang Joshi, Raj Varma Kommaraju, Jeff M. Phillips, and Suresh Venkatasubramanain.
ACM Symposium on Computational Geometry (SoCG), [39%] June 2011.

[C23] Spatially-Aware Comparison and Consensus for Clusterings.
Jeff M. Phillips, Parasaran Raman, and Suresh Venkatasubramanain.
SIAM International Conference on Data Mining (SDM), [25%] April 2011.

[C24] (Approximate) Uncertain Skylines.
Peyman Afshani, Pankaj K. Agarwal, Lars Arge, Kasper Dalgaard Larsen, and Jeff M. Phillips.
14th International Conference on Database Theory (ICDT), [41%] March 2011. Theory of Computing Systems (TOCS)
52:342–366, 2013. (Special Issue: ICDT 2011)

Students
Current Students Supervising

Yan Zheng (PhD). (entered 2012)
Mina Ghashami (PhD). (entered 2012)
Jian Ying (PhD). (part time, entered 2013)
Pingfan Tang (PhD). (entered 2014)
Michael Matheny (PhD). (entered 2014)
WaiMing Tai (PhD). (entered 2015)
Kaiqiang Wang (MS Project). (expected Spring 2016)
Sierra Allred (Bachelors in Undergraduate Studies in Data Science) (expected Spring 2016)

Graduated Students
Liang Zhang (MS Project). - first job : Microsoft. (Fall 2015)
Raghvendra Singh (MS Thesis). - first job : InsideSales. (2015)

“Scalable Spatial Scan Statistics”
Jamie Iong (BS Thesis). - first job : EMC. (2015)

“Solving K-depth Coverage problem using Sweep Line Algorithm and Red Black Tree”
Tami Y. Porter-Jones (BS Thesis). - first job : Myriad Genetics. (2015)

“Detecting Large DNA Rearrangements Using NGS Data"
Amey Desai (MS Thesis) - first job: UrbanEngines (Bay Area startup). (2014)

“Streaming Algorithms for Matrix Approximation”
Sitaram Gautum (Bachelors in Undergraduate Studies in Data Science) (2014)
Shashank Krishnaswamy (MS Project) - first job: Amazon. (2013)

“Quality Control in Weather Data with Quantiles”
Alex Clemmer (BS Thesis) - first job: Microsoft. (2013)

“Streaming LDA”

Funding
Total: $1,792,996 (roughly)
• Algorithmic Problems in Geometric Statistical Problems on Spatial Datasets. NSF Computing Innovations Postdoctoral

Fellow (Sep. 2009-Aug 2011) $246,250.
• NSF 0937060 to CRA, subaward CIF-32 to the University of Utah (Sep 2009 - Aug 2010) $140,000
• NSF 1019343 to CRA, subaward CIF-A-32 to the University of Utah (Sep 2010 - Aug 2011) $106,250

• Synopsis Data Structures for Data Analysis in Shape Space. (senior personnel)
NSF-CCF 1115677 (Sep. 2011-Aug 2014) $127,673 (out of $347,716).

• Building a Mergeable and Interactive Distributed Data Layer for Big Data Summarization Systems. (co-PI)
NSF-BIGDATA 1251019 (Sep 2013 - Aug 2016). about $308,421 (out of $685,380).

• CAREER: Foundations for Geometric Analysis of Noisy Data. (PI)
NSF-CCF CAREER 1350888: (May 2014 - May 2019). $521,156

• STORM: Spatio-Temporal Online Reasoning and Management of Large Data. (co-PI)
NSF-ACI 1443046 (CIF21 DIBBs) (Sep 2014 - Aug 2018). about $289,493 (out of $1,157,975).

• Seal: Secure Engine for AnaLytics - From Secure Similarity Search to Secure Data Analytics. (co-PI)
NSF-TWC 1514520 (Medium: Collaborative Research): (July 2015 - June 2019). about $300,003 (out of $600,007).

255

Jeff M. Phillips 4

Teaching
Data Mining (cs5140/6140) [self-developed]

Spring 2015: 98 | 29 undergrad + 69 graduate students.
Spring 2014: 69 | 14 undergrad + 55 graduate students.
Spring 2013: 40 | 10 undergrad + 30 graduate students.
Spring 2012: 35 | 8 undergrad + 27 graduate students.

Probability and Statistics for Engineers (cs3130/ece3530)
Fall 2014: 93 undergrad students.

Models of Computation for Massive Data (cs7960) [self-developed]
Fall 2013: 27 students.
Fall 2011: 29 students.

Data Mining Seminar (cs7931)
Spring 2015: Matrix Sketching. 15 students [self-developed]
Fall 2012: Sampling. 16 students [self-developed]
Fall 2010: Modeling Data with Uncertainty. (taught while a postdoc at the U) [self-developed]

Data Reading Group (cs7941)
Fall 2014: Data Group Meeting. 6 students.
Spring 2014: Data Group Meeting. 5 students.
Spring 2012: Data Group Meeting. 11 students.

External Service
Editorial Board
Associate Editor for IEEE Transactions on Knowledge and Data Engineering (TKDE). (2016)
SIAM Journal of Scientific Computing, Special Section for CSE15 on CSE Software and Big Data in CSE. (2015-16)

Program Committees
ACM Symposium on Principles of Database Systems (PODS). (2015,2017)
International Conference on Database Theory (ICDT). (2017)
International Symposium on Computational Geometry (SOCG). (2016)
IEEE International Conference on Data Engineering (ICDE). (2014,2016)
ACM-SIAM Symposium on Discrete Algorithms (SODA). (2015)
Workshop on Massive Data Algorithmics (MASSIVE). (2014,2015)
Fall Workshop in Computational Geometry (FWCG). (2012,2014)
International Conference on Database Systems for Advanced Applications. (2014)
ACM IKDD Conference on Data Science. (2014)
ACM International Conference on Information and Knowledge Management (CIKM). (2013)
European Symposium on Algorithms (ESA). (2013)
International Workshop on Big Dynamic Distributed Data, a VLDB Workshop. (2013)
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). (2012)
Robotics: Science and Systems (RSS). (2006)

Journal Reviewing

Computational Geometry: Theory and Applications (CGTA), Computational Statistics and Data Analysis (CSDA), Com-
putational Statistics (COST), Discrete and Computational Geometry (DCG), Distributed and Parallel Databases (DaPD),
International Journal of Computational Geometry (IJCGA), Journal of Computational Geometry (JoCG), Journal of Dis-
crete Algorithms (JDA), The London Mathematical Society (LMS), Wiley Journal on Statistical Analysis and Data Mining
(SADM), SIAM Journal of Computing (SICOMP), SIAM Journal of Discrete Mathematics (SIDMA), SIAM Journal of Scien-
tific Computing (SISC), ACM Transactions on Algorithms (TALG), ACM Transactions on Database Systems (TODS), IEEE
Transactions on Knowledge Discovery and Data Engineering (TKDE), The Visual Computer (VisComp), IEEE Transactions
on Multimedia, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), IEEE Signal Processing Letters,
BMC Systems Biology.

Workshop/Conference Organization

Workshop on Geometric Algorithms for Machine Learning at jointly ACM STOC and SOCG. (2016)
SIAM CSE co-organized and served on panel on “Data Science: What is It and How to Teach It." (2015)
ACM SIGMOD demo and workshop chair / ACM PODS local arrangements chair. (2014)
ACM Symposium on Computational Geometry, Workshop on Computational Geometry, program committee. (2014)
Workshop on Computational Geometry in the Field (8F-CG) at SoCG 2012, organizer. (2012)
Symposium on Computational Geometry (SoCG), local arrangements. (2010)

256

Zvonimir Rakamarić March, 2016

CONTACT
INFORMATION

Address: School of Computing, 50 South Central Campus Drive, Rm 3424
University of Utah, Salt Lake City, UT 84112-9205, USA

Phone: +1 (801) 581-6139
E-mail: zvonimir@cs.utah.edu
WWW: www.zvonimir.info, www.soarlab.org

EDUCATION University of British Columbia, Vancouver, BC, Canada

Ph.D. in Computer Science, Mar 2011

• Thesis: Modular Verification of Shared-Memory Concurrent System Software
• Supervisor: Alan J. Hu

M.Sc. in Computer Science, Aug 2006

• Thesis: A Logic and Decision Procedure for Verification of Heap-Manipulating Programs
• Supervisor: Alan J. Hu

Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

Dipl. ing. (5-year degree) in Computer Science, Jun 2002

• Thesis: Java Assembler
• Supervisor: Danko Basch

HONORS AND
AWARDS

SMACK+Corral verifier combo wins 2 silver and 2 bronze medals in the 5th International Com-
petition on Software Verification (SV-COMP), 2016

SMACK+Corral verifier combo wins 2 gold, 1 silver, and 1 bronze medal in the 4th International
Competition on Software Verification (SV-COMP), 2015

NSF/TCPP CDER Center Early Adopter Award, 2013

Microsoft Research Software Engineering Innovation Foundation (SEIF) Award, 2012

TEACHING
EXPERIENCE

University of Utah, Salt Lake City, UT, USA

• CS 5959 — Writing Solid Code, Fall 2015 (students: 20, instructor: 5.35, course: 4.83)
• CS 6110 — Formal Methods in System Design, Spring 2015 (students: 9, instructor: 5.64,

course: 5.36). Received top teaching award from the College of Engineering.
• CS 2100 — Discrete Structures, Fall 2014 (students: 142, instructor: 5.36, course: 5.24)
• CS 2100 — Discrete Structures, Spring 2014 (students: 92, instructor: 5.06, course: 4.73)
• CS 5100/6100 — Foundations of Computer Science, Spring 2013 (students: 7, instructor:

5.54, course: 5.69). Received top teaching award from the College of Engineering.
• CS 6962 — Software Verification, Fall 2012 (students: 21, instructor: 5.40, course: 5.00)

FUNDING National Science Foundation, “TWC:Small: Deker: Decomposing Commodity OS Kernels for
Verification”, CNS-1527526, PI Z. Rakamarić, co-PI A. Burtsev, Jul 2015–Jun 2018. [Award total:
$499,999; Utah share: $499,999; My share: $250,000]

National Science Foundation, “SHF:Small:Collaborative Research: Compositional Verification
of Heterogeneous Software Protocol Stacks”, CCF-1421678, PIs Z. Rakamarić and F. Howar
(CMU), co-PI T. K. Azene (CMU), Jul 2014–Jun 2017. [Award total: $499,954; Utah share:
$252,996; My share: $252,996]

Lawrence Livermore National Laboratory (LLNL), Laboratory Directed Research and Devel-
opment (LDRD), “PRUNER: Providing Reproducibility on Ubiquitously Non-deterministic En-

257

vironments and Runs”, PI D. H. Ahn (LLNL), co-PIs M. Schulz (LLNL), G. Gopalakrishnan,
Z. Rakamarić, Jan 2014–Dec 2014. [Award total: $61,798; Utah share: $61,798; My share: $30,899]

National Science Foundation, “EAGER: Memory Models: Specification and Verification in a
Concurrency Intermediate Verification Language (CIVL) Framework”, CCF-1346756, PI Z. Raka-
marić, co-PI G. Gopalakrishnan, Sep 2013–Aug 2015. [Award total: $299,998; Utah share: $299,998;
My share: $149,999]

National Science Foundation and Semiconductor Research Corporation, “CCF: Localized, Lay-
ered Formal Hardware/Software Resilience Methods”, CCF-1255776, PIs G. Gopalakrishnan
and P. C. Diniz (USC), co-PI Z. Rakamarić, Apr 2013–Mar 2016. [Award total: $363,200; Utah
share: $192,500; My share: $96,250]

NASA/Carnegie Mellon University, “Improving Coverage of Testing Complex Software Com-
ponents”, PI Z. Rakamarić, Oct 2012–Jan 2014. [Award total: $97,381; Utah share: $97,381; My
share: $97,381]

Microsoft Research SEIF Award Gift, “Analysis of Heterogeneous Concurrent Programs”, PI
Z. Rakamarić. [Award total: $25,000; Utah share: $25,000; My share: $25,000]

PEER-REVIEWED
JOURNAL
PUBLICATIONS

A. Humphrey, Q. Meng, M. Berzins, D. C. B. de Oliveira, Z. Rakamarić, G. Gopalakrishnan,
“Systematic Debugging Methods for Large Scale HPC Computational Frameworks”, Computing
in Science and Engineering (CiSE), 16(3), IEEE, May 2014, pp 48–56.

D. Babić, B. Cook, A. J. Hu, Z. Rakamarić, “Proving Termination of Nonlinear Command Se-
quences”, Formal Aspects of Computing (FAC), 25(3), Springer, May 2013, pp 389–403. Invited
paper.

PEER-REVIEWED
CONFERENCE
PUBLICATIONS

M. Carter, S. He, J. Whitaker, Z. Rakamarić, M. Emmi, “SMACK Software Verification Toolchain”,
Proceedings of the 38th IEEE/ACM International Conference on Software Engineering (ICSE), 2016, to
appear. Demonstrations Track. [Acceptance rate: 18/56 = 32%; Pages: 4]

K. Luckow, M. Dimjašević, D. Giannakopoulou, F. Howar, M. Isberner, T. Kahsai, Z. Rakamarić,
V. Raman, “JDart: A Dynamic Symbolic Analysis Framework”, Proceedings of the 22nd Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2016,
to appear. [Acceptance rate: unknown; Pages: 17]

P. Deligiannis, A. F. Donaldson, Z. Rakamarić, “Fast and Precise Symbolic Analysis of Con-
currency Bugs in Device Drivers”, Proceedings of the 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), IEEE, 2015, pp 166–177. [Acceptance rate: 60/289 = 21%;
Pages: 12]

A. Solovyev, C. Jacobsen, Z. Rakamarić, G. Gopalakrishnan, “Rigorous Estimation of Floating-
Point Round-off Errors with Symbolic Taylor Expansions”, Proceedings of the 20th International
Symposium on Formal Methods (FM), Lecture Notes in Computer Science, Springer, Vol. 9109,
2015, pp 532–550. [Acceptance rate: 32/124 = 26%; Pages: 19]

D. Giannakopoulou, F. Howar, M. Isberner, T. Lauderdale, Z. Rakamarić, V. Raman, “Taming
Test Inputs for Separation Assurance”, Proceedings of the 29th IEEE/ACM International Conference
on Automated Software Engineering (ASE), ACM, 2014, pp 373–384. [Acceptance rate: 55/276 =
20%; Pages: 12]

Z. Rakamarić, M. Emmi, “SMACK: Decoupling Source Language Details from Verifier Imple-
mentations”, Proceedings of the 26th International Conference on Computer Aided Verification (CAV),
Lecture Notes in Computer Science, Springer, Vol. 8559, 2014, pp 106–113. Short paper. [Ac-
ceptance rate: 11/54 = 20%; Pages: 7]

W. Chiang, G. Gopalakrishnan, Z. Rakamarić, A. Solovyev, “Efficient Search for Inputs Causing
High Floating-point Errors”, Proceedings of the ACM SIGPLAN Symposium on Principles and Prac-

258

tice of Parallel Programming (PPoPP), ACM, 2014, pp 43–52. [Acceptance rate: 28/184 = 15%;
Pages: 10]

V. C. Sharma, A. Haran, Z. Rakamarić, G. Gopalakrishnan, “Towards Formal Approaches to
System Resilience”, Proceedings of the 19th IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC), 2013, pp 41–50. [Acceptance rate: 33/71 = 47%; Pages: 10]

F. Howar, D. Giannakopoulou, Z. Rakamarić, “Hybrid Learning: Interface Generation through
Static, Dynamic, and Symbolic Analysis”, Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), ACM, 2013, pp 268–279. [Acceptance rate: 32/124 = 26%; Pages:
12]

D. Babić, Z. Rakamarić, “Asynchronously Communicating Visibly Pushdown Systems”, Pro-
ceedings of the 2013 IFIP Joint International Conference on Formal Techniques for Distributed Systems
(33rd FORTE/15th FMOODS), Lecture Notes in Computer Science, Springer, Vol. 7892, 2013, pp
225–241. [Acceptance rate: 20/49 = 41%; Pages: 17]

W. Chiang, G. Gopalakrishnan, G. Li, Z. Rakamarić, “Formal Analysis of GPU Programs with
Atomics via Conflict-Directed Delay-Bounding”, Proceedings of the 5th NASA Formal Methods
Symposium (NFM), Lecture Notes in Computer Science, Springer, Vol. 7871, 2013, pp 213–228.
[Acceptance rate: 28/75 = 37%; Pages: 16]

D. Giannakopoulou, Z. Rakamarić, V. Raman, “Symbolic Learning of Component Interfaces”,
Proceedings of the 19th International Static Analysis Symposium (SAS), Lecture Notes in Computer
Science, Springer, Vol. 7460, 2012, pp 248–264. [Acceptance rate: 25/62 = 40%; Pages: 17]

M. Emmi, S. Qadeer, Z. Rakamarić, “Delay-Bounded Scheduling”, Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), ACM, 2011, pp
411–422. [Acceptance rate: 49/209 = 24%; Pages: 12]

PEER-REVIEWED
WORKSHOP
PUBLICATIONS

M. Dimjašević, S. Atzeni, I. Ugrina, Z. Rakamarić, “Evaluation of Android Malware Detection
Based on System Calls”, Proceedings of the 2nd ACM International Workshop on Security and Privacy
Analytics (IWSPA), ACM, 2016, pp 1–8. [Acceptance rate: 6/20 = 30%; Pages: 8]

W. Chiang, G. Gopalakrishnan, Z. Rakamarić, “Practical Floating-point Divergence Detection”,
Proceedings of the 28th International Workshop on Languages and Compilers for Parallel Computing
(LCPC), Lecture Notes in Computer Science, Springer, Vol. 9519, 2015, pp 271–286. [Acceptance
rate: 19/37 = 51%; Pages: 15]

S. Atzeni, G. Gopalakrishnan, Z. Rakamarić, D. H. Ahn, I. Laguna, M. Schulz, G. L. Lee, J. Protze,
M. S. Müller, “Archer: Effectively Spotting Data Races in Large OpenMP Applications”, Infor-
mal Proceedings of the 8th International Workshop on Exploiting Concurrency Efficiently and Correctly
(EC2), 2015. Position paper. [Acceptance rate: 3/3 = 100%; Pages: 6]

S. Lahiri, Z. Rakamarić, “Towards Automated Differential Program Verification for Approxi-
mate Computing”, Informal Proceedings of the Workshop on Approximate Computing Across the Stack
(WAX), 2015. Position paper. [Acceptance rate: unknown; Pages: 3]

W. Chiang, G. Gopalakrishnan, Z. Rakamarić, “Unsafe Floating-point to Unsigned Integer Cast-
ing Check for GPU Programs”, Proceedings of the 8th International Workshop on Numerical Software
Verification (NSV), Electronic Notes in Theoretical Computer Science, Elsevier, Vol. 317, 2015, pp
33–45. [Acceptance rate: unknown; Pages: 12]

J. Protze, S. Atzeni, D. H. Ahn, M. Schulz, G. Gopalakrishnan, M. S. Müller, I. Laguna, Z. Raka-
marić, G. L. Lee, “Towards Providing Low-Overhead Data Race Detection for Large OpenMP
Applications”, Proceedings of the LLVM Compiler Infrastructure in HPC Workshop (LLVM-HPC),
IEEE, 2014, pp 40–47. [Acceptance rate: 5/6 = 83%; Pages: 8]

D. C. B. de Oliveira, Z. Rakamarić, G. Gopalakrishnan, A. Humphrey, Q. Meng, M. Berzins,

259

“Systematic Debugging of Concurrent Systems Using Coalesced Stack Trace Graphs”, Proceed-
ings of the 27th International Workshop on Languages and Compilers for Parallel Computing (LCPC),
Lecture Notes in Computer Science, Springer, Vol. 8967, 2014, pp 317–331. [Acceptance rate:
25/39 = 64%; Pages: 15]

M. Dimjašević, D. Giannakopoulou, F. Howar, M. Isberner, Z. Rakamarić, V. Raman, “The Dart,
the Psyco, and the Doop: Concolic Execution in Java PathFinder and its Applications”, Proceed-
ings of the 2014 Java Pathfinder Workshop (JPF), ACM SIGSOFT Software Engineering Notes, 40(1),
ACM, Jan 2015, pp 1–5. [Acceptance rate: 10/11 = 91%; Pages: 5]

D. H. Ahn, G. L. Lee, G. Gopalakrishnan, Z. Rakamarić, M. Schulz, I. Laguna, “Overcoming
Extreme-Scale Reproducibility Challenges Through a Unified, Targeted, and Multilevel Toolset”,
Proceedings of the 1st International Workshop on Software Engineering for High Performance Comput-
ing in Computational Science and Engineering (SE-HPCCSE), ACM, 2013, pp 41–44. [Acceptance
rate: 7/12 = 58%; Pages: 4]

M. Dimjašević, Z. Rakamarić, “JPF-Doop: Combining Concolic and Random Testing for Java”,
Java Pathfinder Workshop, 2013. Extended abstract. [Acceptance rate: unknown; Pages: 4]

D. C. B. de Oliveira, Z. Rakamarić, G. Gopalakrishnan, A. Humphrey, Q. Meng, M. Berzins,
“Practical Formal Correctness Checking of Million-core Problem Solving Environments for HPC”,
Proceedings of the 5th International Workshop on Software Engineering for Computational Science and
Engineering (SE-CSE), ACM, 2013, pp 75–83. [Acceptance rate: 10/15 = 67%; Pages: 9]

N. Ghafari, A. J. Hu, Z. Rakamarić, “Context-Bounded Translations for Concurrent Software:
An Empirical Evaluation”, Proceedings of the 17th International SPIN Workshop on Model Check-
ing Software (SPIN), Lecture Notes in Computer Science, Springer, Vol. 6349, 2010, pp 227–244.
[Acceptance rate: 13/29 = 45%; Pages: 18]

BOOKS D. Babić, Z. Rakamarić, J. Lorincz, “Guidebook for Graduate Studies Abroad” (in Croatian), 2nd
edition, P.O.I.N.T., ISBN: 978-953-99805-3-3, Croatia, 2012.

INVITED TALKS “Automated SMT-Based Verification for Reasoning About Approximations”, Microsoft Research,
Redmond, WA, USA, Oct 14, 2015

“SMACK: Decoupling Source Language Details from Verifier Implementations”, New York Uni-
versity (NYU), New York, NY, USA, Sep 24, 2014

“SMACK: Decoupling Source Language Details from Verifier Implementations”, Yale Univer-
sity, New Haven, CT, USA, Sep 23, 2014

“SMACK: Decoupling Source Language Details from Verifier Implementations”, University of
Texas at Austin, Austin, TX, USA, Sep 9, 2014

“Efficient Estimation of Floating-point Errors”, University of Delaware, Newark, DE, USA,
May 13, 2014

“Formal Analysis of GPU Programs with Atomics via Conflict-Directed Delay-Bounding”, Cor-
rect and Efficient Accelerator Programming, Schloss Dagstuhl Seminar (by-invitation-only interna-
tional seminar), Wadern, Germany, Apr 3, 2013

“Learning Symbolic Interfaces of Software Components”, Brigham Young University, Provo,
UT, USA, Mar 21, 2013

“Learning Symbolic Interfaces of Software Components”, University of British Columbia, Van-
couver, BC, Canada, Mar 13, 2013

“SMT at Utah”, Z3 Special Interest Group Meeting, Microsoft Research, Redmond, WA, USA,
Oct 22, 2012

260

October 2016

JOHN REGEHR

School of Computing
50 South Central Campus Drive, Rm 3190

University of Utah
Salt Lake City, UT 84112–9205

regehr@cs.utah.edu
http://www.cs.utah.edu/~regehr

Education

PhD, Computer Science, University of Virginia. Charlottesville, VA. Advisor: Prof. John A.
Stankovic. Thesis title: “Using Hierarchical Scheduling to Support Soft Real-Time
Applications on General-Purpose Operating Systems.” May 2001.

Masters of Computer Science, University of Virginia. Charlottesville, VA. Advisor: Prof. Paul
F. Reynolds. Project title: “An Isotach Implementation for Myrinet.” May 1997.

BS, Computer Science, Kansas State University. Manhattan, KS. May 1995.

BS, Mathematics, Kansas State University. Manhattan, KS. May 1995.

Academic Positions

Professor, School of Computing, University of Utah, July 2015–present.

Associate Professor, School of Computing, University of Utah, July 2009–June 2015.

Assistant Professor, School of Computing, University of Utah, August 2003–June 2009.

Adjunct Assistant Professor, School of Computing, University of Utah. September 2002–May
2003.

Postdoctoral Fellow, School of Computing, University of Utah. Supervisor: Prof. Jay Lepreau.
April 2001–July 2003.

Teaching since 2010

CS 6960, Advanced Compilers, Fall 2016. 18 students enrolled. 3 credit hours.

CS 5460/6460, Operating Systems, Spring 2015. 106 students enrolled. 4 credit hours.

CS/ECE 5785/6785, Advanced Embedded Software, Fall 2014. 38 students enrolled. 3 credit
hours.

1

261

http://www.cs.utah.edu/~regehr

CS 5959, Writing Solid Code, Spring 2014. 21 students enrolled. 3 credit hours. I received the
School of Computing Outstanding Teaching Award for this course.

CS 5962, Advanced Operating Systems, Spring 2014. 7 students enrolled. 3 credit hours.

CS 4400, Computer Systems, Fall 2013. 157 students enrolled. 4 credit hours.

CS 5460/6460, Operating Systems, Spring 2013. 55 students enrolled. 4 credit hours.

CS/ECE 5785/6785, Advanced Embedded Software, Fall 2012. 28 students enrolled. 3 credit
hours.

CS 5460/6460, Operating Systems, Spring 2012. 77 students enrolled. 4 credit hours.

CS 7942, Seminar on System Support for Data Centers, Spring 2012, 3 students enrolled. 1–3

credit hours.

CS 5957, Android Projects, Fall 2011. 13 students enrolled. 3 credit hours.

CS 5460/6460, Operating Systems, Fall 2010. 56 students enrolled. 4 credit hours.

CS/ECE 5785/6785, Advanced Embedded Systems, Fall 2010. 29 students enrolled. 3 credit
hours.

Conference and Journal Publications since 2010

Abstractions for Practical Virtual Machine Replay.
Anton Burtsev, David Johnson, Mike Hibler, Eric Eide, and John Regehr.
To appear in Proceedings of the 12th International Conference on Virtual Execution Environments
(VEE’16), Atlanta, GA, USA, April 2016.
https://www.cs.utah.edu/~regehr/papers/vee16-xentt.pdf

Alex Groce, Mohammad Amin Alipour, Chaoqiang Zhang, Yang Chen, and John Regehr.
Cause reduction: delta debugging, even without bugs.
In Software Testing, Verification and Reliability, Volume 26 Issue 1, January 2016.
http://www.cs.utah.edu/~regehr/papers/mintest.pdf

Understanding Integer Overflow in C/C++.
Will Dietz, Peng Li, John Regehr, and Vikram Adve.
In ACM Transactions on Software Engineering and Methodology (TOSEM), Volume 25, Issue
1, November 2015.
http://www.cs.utah.edu/~regehr/papers/tosem15.pdf

Deniable Backdoors Using Compiler Bugs.
Scotty Bauer, Pascal Cuoq, and John Regehr.
International Journal of PoC||GTFO 0x08, June 2015.
https://www.alchemistowl.org/pocorgtfo/pocorgtfo08.pdf#page=7

Nuno Lopes, David Menendez, Santosh Nagarakatte, and John Regehr.

2

262

https://www.cs.utah.edu/~regehr/papers/vee16-xentt.pdf
http://www.cs.utah.edu/~regehr/papers/mintest.pdf
http://www.cs.utah.edu/~regehr/papers/tosem15.pdf
https://www.alchemistowl.org/pocorgtfo/pocorgtfo08.pdf#page=7

Provably Correct Peephole Optimizations with Alive.
In Proceedings of 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2015), Portland, OR, USA, June 2015.
http://www.cs.utah.edu/~regehr/papers/pldi15.pdf

Alex Groce, Amin Alipour, Chaoqiang Zhang, Yang Chen, and John Regehr.
Cause Reduction for Quick Testing.
In Proceedings of the IEEE International Conference on Software Testing, Verification and Validation
(ICST), Cleveland, Ohio, USA, March-April 2014.
This paper received the ICST 2014 Best Paper Award.
http://www.cs.utah.edu/~regehr/papers/icst14.pdf

Alex Groce, Chaoqiang Zhang, Mohammad Amin Alipour, Eric Eide, Yang Chen, John Regehr.
Help, help, I’m being suppressed! The significance of suppressors in software testing.
In Proceedings of the 24th International Symposium on Software Reliability Engineering (ISSRE),
Pasadena, CA, USA, November 2013.
http://www.cs.utah.edu/~regehr/papers/issre13.pdf

Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric Eide, and John
Regehr.
Taming Compiler Fuzzers.
In Proceedings of 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2013), Seattle, WA, USA, June 2013.
http://www.cs.utah.edu/~regehr/papers/pldi13.pdf

Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr.
Swarm Testing.
In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA 2012),
Minneapolis, MN, USA, July 2012.
http://www.cs.utah.edu/~regehr/papers/swarm12.pdf

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang.
Test-Case Reduction for C Compiler Bugs.
In Proceedings of 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2012), Beijing, China, June 2012.
http://www.cs.utah.edu/~regehr/papers/pldi12-preprint.pdf

Will Dietz, Peng Li, John Regehr, and Vikram Adve.
Understanding Integer Overflow in C/C++.
In Proceedings of the 34th International Conference on Software Engineering (ICSE 2012). Zurich,
Switzerland, June 2012.
This paper received the ACM SIGSOFT Distinguished Paper Award.
http://www.cs.utah.edu/~regehr/papers/overflow12.pdf

Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto, John Regehr, Boris
Yakobowski, and Xuejun Yang.
Testing static analyzers with randomly generated programs.

3

263

http://www.cs.utah.edu/~regehr/papers/pldi15.pdf
http://www.cs.utah.edu/~regehr/papers/icst14.pdf
http://www.cs.utah.edu/~regehr/papers/issre13.pdf
http://www.cs.utah.edu/~regehr/papers/pldi13.pdf
http://www.cs.utah.edu/~regehr/papers/swarm12.pdf
http://www.cs.utah.edu/~regehr/papers/pldi12-preprint.pdf
http://www.cs.utah.edu/~regehr/papers/overflow12.pdf

Short paper in Proceedings of the 4th NASA Formal Methods Symposium (NFM 2012). Norfolk,
Virginia, USA, April 2012.
http://www.cs.utah.edu/~regehr/papers/nfm12.pdf

Lu Zhao, Guodong Li, and John Regehr.
ARMor: Fully Verified Software Fault Isolation.
In Proceedings of the International Conference on Embedded Software (EMSOFT), Taipei, Taiwan,
October 2011.
http://www.cs.utah.edu/~regehr/papers/emsoft11.pdf

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and Understanding Bugs in C Compilers.
In Proceedings of 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2011), San Jose, CA, USA, June 2011.
http://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf

Peng Li and John Regehr.
T-Check: Bug Finding for Sensor Networks.
In Proceedings of the International Conference on Information Processing in Sensor Networks (IPSN),
SPOTS track, Stockholm, Sweden, April 2010.
http://www.cs.utah.edu/~regehr/papers/ipsn553s-li.pdf

Graduated Students

Xuejun Yang, PhD, May 2014

Yang Chen, PhD, December 2013

Jianjun Duan, PhD, July 2013

Anton Burtsev, PhD, December 2012

Lu Zhao, PhD, May 2012

Rohit Pagariya, MS, December 2010

Venkat Chakravarthy, MS, May 2009

Nathan Cooprider, PhD, August 2008

Usit Duongsaa, MS, May 2006

4

264

http://www.cs.utah.edu/~regehr/papers/nfm12.pdf
http://www.cs.utah.edu/~regehr/papers/emsoft11.pdf
http://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf
http://www.cs.utah.edu/~regehr/papers/ipsn553s-li.pdf

Robert Ricci
Research Assistant Professor

School of Computing, University of Utah

 50 South Central Campus Drive, Room 3190, Salt Lake City, Utah 84112
 ricci@cs.utah.edu +1-801-581-8354 www.flux.utah.edu/users/ricci

Research Interests
My research interests are in the elds of systems and networking. Because experimenta-
tion is central to both systems and networking research, much of my energy has gone into
creating top-quality experimental environments. Designing these environments raises a
number of different research problems, and I have worked in a diverse set of areas includ-
ing distributed systems, combinatorial optimization, security, networking, simulation, and
embedded systems. Much of my research has been done in the context of the widely-used
Emulab testbed and its successors—I have been a primary architect and implementor of
Emulab since 2000.

Education
2010 Ph.D., University of Utah

Advised by Jay Lepreau until his passing in 2008, then by Sneha Kasera.
Dissertation: Enhancing Realism and Scalability in Network Testbeds

2001 Honors B.S., University of Utah
Thesis: Agile Protocols, an Application of Active Networking to
Censor–Resistant Publishing Networks

Academic Appointments
2010–present Research Assistant Professor, University of Utah School of Computing

Co-director of the Flux Research Group, which has more two dozen
members, including faculty, research staff, postdocs, and students
(Ph.D., Masters, and undergraduate).

2007, 2009 Adjunct Professor, Westminster College, Salt Lake City, Utah
Taught undergraduate Computer Science classes as an adjunct at a
small liberal-arts college.

2001–2010 Research Staff, University of Utah
Member of the Flux Research Group, founded by Jay Lepreau.

2000–2001 Undergraduate Research Assistant, University of Utah
I began my research career with the Flux Group while an undergraduate.

Last updated: April 11, 2016 1/20

265

https://goo.gl/maps/tsbbg
mailto:ricci@cs.utah.edu
tel:+1-801-581-8354
http://www.flux.utah.edu/users/ricci
http://www.emulab.net
http://www.flux.utah.edu/paper/ricci-dissertation
http://www.flux.utah.edu/paper/ricci-ugradthesis

Testbeds
I have been one of the primary designers and implementors of the Emulab testbed since
2000, and am leading the development of some of it successors, such asCloudLab. These
testbeds are central resources in the networking, operating systems, and distributed sys-
tems communities. Collectively, they have well over 10,000 users from nearly every US
state and dozens of countries throughout the world, spanning every inhabited continent.
These users have run more than half a million experiments and hundreds of papers have
been published based on research conducted on these testbeds. The software base that
runs these testbeds is open-source, and more than fty organizations worldwide, ranging
from academic institutions to private companies, have built their own testbeds based on
it. This software has played a critical role in subsequent testbeds with a variety of focuses:
NSF’s CloudLab (cloud computing), GENI (federation), PhantomNet (mobile network-
ing), PRObE (scale) and Apt (adaptability); DARPA’s National Cyber Range (security),
and DHS’s DETERLAB (security). (I have been directly involved in the development of
all of these except DETERLAB.) The Emulab facility and codebase are key parts of the na-
tionwideGENI infrastructure and several international federations in Europe, Brazil, Japan,
and South Korea.

These testbeds (particularly CloudLab) have received signi cant attention in the press, in-
cluding the Boston Globe, the Chronicle of Higher Education, local TV and radio stations,
Slashdot, The Register, HPCWire, and numerous other publications.

Publications

Most Cited Works

Citations according to Google Scholar as of February 24, 2016

1,435 White, et al., OSDI 2002
“An Integrated Experimental Environment for Distributed Systems and
Networks”

236 Ricci, et al., SIGCOMM CCR 2003
“A Solver For the Network Testbed Mapping Problem”

206 Johnson, et al., INFOCOM 2006
“Mobile Emulab: A Robotic Wireless and Sensor Network Testbed”

193 Hibler, et al., USENIX ATC 2008
“Large-scale Virtualization in the Emulab Network Testbed”

125 Berman, et al., COMNETS 2014
“GENI: A Federated Testbed For Innovative Network Experiments”

Conference and Workshop Proceedings
1. “Introducing Con guration Management Capabilities into CloudLab

Experiments”. Dmitry Duplyakin and Robert Ricci. In Proceedings of
the International Workshop on Computer and Networking
Experimental Research Using Testbeds (CNERT), April 2016.

Last updated: April 11, 2016 2/20

266

https://cloudlab.us/press.php
http://scholar.google.com/citations?user=zHHD40YAAAAJ&hl=en

Awarded best paper.

2. “OpenEdge: A Dynamic and Secure Open Service Edge Network”.
Josh Kunz, Christopher Becker, Mohamed Jamshidy, Sneha Kasera,
Robert Ricci, and Jacobus Van der Merwe. In Proecceings of the Ninth
IEEE/IFIP Network Operations and Management Symposium (NOMS),
April 2016. To appear

3. “KnowNet: Towards a Knowledge Plane for Enterprise Network
Management”. Ren Quinn, Josh Kunz, Aisha Syed, Joe Breen, Sneha
Kasera, Robert Ricci, and Jacobus Van der Merwe. In Proecceings of
the Ninth IEEE/IFIP Network Operations and Management
Symposium (NOMS), April 2016. To appear

4. v “Realistic Packet Reordering for Network Emulation and
Simulation”. Aisha Syed and Robert Ricci. In Proceedings of the
Eleventh ACM International Conference on Emerging Networking
EXperiments and Technologies (CoNEXT), December 2015. Short
paper.

5. “POTASSIUM: Penetration Testing as a Service”. Richard Li, Dallin
Abendroth, Xing Lin, Yuankai Guo, Hyun wook Baek, Eric Eide, Robert
Ricci, and Jacobus Van der Merwe. In Proceedings of the Sixth ACM
Symposium on Cloud Computing (SOCC), August 2015.

6. “Trust as the Foundation of Resource Exchange in GENI”. Marshall
Brinn, Nicholas Bastin, Andrew Bavier, Mark Berman, Jeffrey Chase,
and Robert Ricci. In Proceedings of the 10th International Conference
on Testbeds and Research Infrastructures for the Development of
Networks and Communities (Tridentcom), June 2015.

7. “Metadata Considered Harmful ... to Deduplication”. Xing Lin, Fred
Douglis, Jim Li, Xudong Li, Robert Ricci, Stephen Smaldone, and Grant
Wallace. In Proceedings of the 7th USENIX Workshop on Hot Topics in
Storage and File Systems, June 2015.

8. “Using Deduplicating Storage for Ef cient Disk Image Deployment”.
Xing Lin, Mike Hibler, Eric Eide, and Robert Ricci. In Proceedings of the
10th International Conference on Testbeds and Research
Infrastructures for the Development of Networks and Communities
(Tridentcom), June 2015.

9. “SMORE: Software-De ned Networking Mobile Of oading
Architecture”. Junguk Cho, Binh Nguyen, Arijit Banerjee, Robert Ricci,
Jacobus Van der Merwe, and Kirk Webb. In Proceedings of the 4th
Workshop on All Things Cellular: Operations, Applications and
Challenges, August 2014.

Last updated: April 11, 2016 3/20

267

http://www.flux.utah.edu/paper/duplyakin-cnert16
http://www.flux.utah.edu/paper/syed-conext2015
https://www.flux.utah.edu/paper/li-socc15
https://www.flux.utah.edu/paper/brinn-tridentcom15
https://www.flux.utah.edu/paper/lin-hotstorage15
http://www.flux.utah.edu/paper/lin-tridentcom15
http://www.flux.utah.edu/paper/cho-allthingscellular14

10. “Secret Key Extraction using Bluetooth Wireless Signal Strength
Measurements”. Sriram Nandha Premnath, Prarthana Lakshmane
Gowda, Sneha Kumar Kasera, Neal Patwari, and Robert Ricci. In IEEE
International Conference on Sensing, Communications and Networking
(SECON), June 2014.

11. v “Operational Experiences with Disk Imaging in a Multi-Tenant
Datacenter”. Kevin Atkinson, Gary Wong, and Robert Ricci. In
Proceedings of the Eleventh USENIX Symposium on Networked
Systems Design and Implementation (NSDI), April 2014.

12. “Weir: A Streaming Language for Performance Analysis”. Anton
Burtsev, Nikhil Mishrikoti, Eric Eide, and Robert Ricci. In Proceedings
of the 7th Workshop on Programming Languages and Operating
Systems (PLOS), November 2013.

13. v “Fast and Flexible: Parallel Packet Processing with GPUs and Click”.
Weibin Sun and Robert Ricci. In Proceedings of the ACM/IEEE
Symposium on Architectures for Networking and Communications
Systems (ANCS), October 2013.

14. v “How To Build a Better Testbed: Lessons From a Decade of
Network Experiments on Emulab”. Fabien Hermenier and Robert Ricci.
In Proceedings of the 8th International ICST Conference on Testbeds
and Research Infrastructures for the Development of Networks and
Communities (Tridentcom), June 2012. Awarded best paper.

15. “Towards Fair Sharing of Block Storage in a Multi-tenant Cloud”. Xing
Lin, Yun Mao, Feifei Li, and Robert Ricci. In Proceedings of the 4th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud),
June 2012.

16. “Designing a Federated Testbed as a Distributed System”. Robert Ricci,
Jonathon Duerig, Leigh Stoller, Gary Wong, Srikanth Chikkulapelly, and
Woojin Seok. In Proceedings of the 8th International ICST Conference
on Testbeds and Research Infrastructures for the Development of
Networks and Communities (Tridentcom), June 2012.

17. “Harnessing GPU Computing for Storage Systems in the OS Kernel”.
Weibin Sun, Robert Ricci, and Matthew J. Curry. In Proceedings of the
Fifth International Systems and Storage Conference (SYSTOR), June
2012.

18. “Partitioning Trust in Network Testbeds”. Gary Wong, Robert Ricci,
Jonathon Duerig, Leigh Stoller, Srikanth Chikkulapelly, and Woojin
Seok. In Proceedings of the Software Testing and Internet Testbeds
Mini-Track, HICSS 45, January 2012.

Last updated: April 11, 2016 4/20

268

http://www.flux.utah.edu/paper/premnath-secon14
http://www.flux.utah.edu/paper/atkinson-nsdi14
http://www.flux.utah.edu/paper/burtsev-plos13
http://www.flux.utah.edu/paper/sun-ancs13
http://www.flux.utah.edu/paper/hermenier-tridentcom12
http://www.flux.utah.edu/paper/lin-hotcloud12
http://www.flux.utah.edu/paper/ricci-tridentcom12
http://www.flux.utah.edu/paper/sun-systor12
http://www.flux.utah.edu/paper/wong-hicss12

19. “Emergency Service in Wi-Fi Networks Without Access Point
Association”. Manav Seth, Sneha Kasera, and Robert Ricci. In
Proccedings of the First International Conference on Wireless
Technologies for Humanitarian Relief (ACWR), December 2011.

20. “Trusted Disk Loading in the Emulab Network Testbed”. Cody Cutler,
Mike Hibler, Eric Eide, and Robert Ricci. In Proceedings of the Third
Workshop on Cyber Security Experimentation and Test (CSET), August
2010.

21. v “Modeling and Emulation of Internet Paths”. Pramod Sanaga,
Jonathon Duerig, Robert Ricci, and Jay Lepreau. In Proceedings of the
Sixth USENIX Symposium on Networked Systems Design and
Implementation (NSDI), April 2009.

22. “Securing the Frisbee Multicast Disk Loader”. Robert Ricci and
Jonathon Duerig. In Proceedings of the First Workshop on Cyber
Security and Test (CSET), July 2008.

23. v “Large-scale Virtualization in the Emulab Network Testbed”. Mike
Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi
Guruprasad, Tim Stack, Kirk Webb, and Jay Lepreau. In Proceedings of
the USENIX Annual Technical Conference, June 2008.

24. v “The Flexlab Approach to Realistic Evaluation of Networked
Systems”. Robert Ricci, Jonathon Duerig, Pramod Sanaga, Daniel
Gebhardt, Mike Hibler, Kevin Atkinson, Junxing Zhang, Sneha Kasera,
and Jay Lepreau. In Proceedings of the Fourth USENIX Symposium on
Networked Systems Design and Implementation (NSDI), April
2007.

25. “Flexlab: A Realistic, Controlled, and Friendly Environment for
Evaluating Networked Systems”. Jonathon Duerig, Robert Ricci,
Junxing Zhang, Daniel Gebhardt, Sneha Kasera, and Jay Lepreau. In
Proceedings of HotNets-V. ACM SIGCOMM, June 2006.

26. “Leveraging Bloom Filters For Smart Search Within NUCA Caches”.
Robert Ricci, Steve Barrus, Dan Gebhardt, and Rajeev
Balasubramonian. In Proceedings of the Sixth Workshop on
Complexity-Effective Design (WCED), June 2006.

27. “Mobile Emulab: A Robotic Wireless and Sensor Network Testbed”.
David Johnson, Tim Stack, Russ Fish, Daniel Flickinger, Leigh Stoller,
Robert Ricci, and Jay Lepreau. In Proceedings of IEEE INFOCOM,
April 2006.

28. “Integrated Network Experimentation using Simulation and
Emulation”. Shashi Guruprasad, Robert Ricci, and Jay Lepreau. In
Proceedings of the First International Conference on Testbeds and

Last updated: April 11, 2016 5/20

269

http://www.flux.utah.edu/paper/seth-acwr11
http://www.flux.utah.edu/paper/cutler-cset10
http://www.flux.utah.edu/paper/sanaga-nsdi09
http://www.flux.utah.edu/paper/ricci-cset08
http://www.flux.utah.edu/paper/hibler-atc08
http://www.flux.utah.edu/paper/ricci-nsdi07
http://www.flux.utah.edu/paper/duerig-hotnets06
http://www.flux.utah.edu/paper/ricci-wced06
http://www.flux.utah.edu/paper/johnson-infocom06

Research Infrastructures for the Development of Networks and
Communities (TridentCom), February 2005.

29. “Implementing the Emulab-PlanetLab Portal: Experiences and Lessons
Learned”. Kirk Webb, Mike Hibler, Robert Ricci, Austin Clements, and
Jay Lepreau. In Proceedings of the First Workshop on Real, Large
Distributed Systems (WORLDS). USENIX, December 2004.

30. v “Fast, Scalable Disk Imaging with Frisbee”. Mike Hibler, Leigh
Stoller, Jay Lepreau, Robert Ricci, and Chad Barb. In Proceedings of
the USENIX Annual Technical Conference. USENIX, June 2003.

31. v “An Integrated Experimental Environment for Distributed Systems
and Networks”. Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci,
Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad Barb, and
Abhijeet Joglekar. In Proceedings of the USENIX Symposium on
Operating System Design and Implementation (OSDI). USENIX,
December 2002.

32. “Active Protocols for Agile Censor-Resistant Networks”. Robert Ricci
and Jay Lepreau. In Proceedings of HotOS-VIII. USENIX, May
2001.

Journal and Magazine Articles
1. “PhantomNet: Research Infrastructure for Mobile Networking, Cloud

Computing and Software-De ned Networking”. Arijit Banerjee,
Junguk Cho, Eric Eide, Jonathon Duerig, Binh Nguyen, Robert Ricci,
Jacobus Van der Merwe, Kirk Webb, and Gary Wong. ACM GetMobile,
19(2), April 2015.

2. v “Apt: A Platform for Repeatable Research in Computer Science”.
Robert Ricci, Gary Wong, Leigh Stoller, Kirk Webb, Jonathon Duerig,
Keith Downie, and Mike Hibler. ACM SIGOPS Operating Systems
Review, 49(1), January 2015.

3. v “Introducing CloudLab: Scienti c Infrastructure for Advancing
Cloud Architectures and Applications”. Robert Ricci, Eric Eide, and The
CloudLab Team. USENIX ;login:, 39(6), December 2014.

4. “The InstaGENI Initiative: An Architecture for Distributed Systems
and Advanced Programmable Networks”. Nicholas Bastin, Andy Bavier,
Jessica Blaine, Jim Chen, Narayan Krishnan, Joe Mambretti, Rick
McGeer, Robert Ricci, and Nicki Watts. Computer Networks,
61(0):24–38, March 2014.

5. v “GENI: A Federated Testbed For Innovative Network Experiments”.
Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao,
Max Ott, Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar.
Computer Networks, 61(0):5–23, March 2014.

Last updated: April 11, 2016 6/20

270

http://www.flux.utah.edu/paper/guruprasad-tridentcom05
http://www.flux.utah.edu/paper/webb-worlds04
http://www.flux.utah.edu/paper/hibler-atc03
http://www.flux.utah.edu/paper/white-osdi02
http://www.flux.utah.edu/paper/ricci-hotos01
https://www.flux.utah.edu/paper/banerjee-getmobile15
https://www.flux.utah.edu/paper/ricci-osr15
https://www.usenix.org/publications/login/dec14/ricci
https://www.flux.utah.edu/paper/bastin-comnets14
https://www.flux.utah.edu/paper/berman-comnets14

6. “An Architecture For International Federation of Network Testbeds”.
Robert Ricci, Gary Wong, Leigh Stoller, and Jonathon Duerig. IEICE
Transactions, E96-B(1), January 2013. Invited paper.

7. “Getting Started with GENI: A User Tutorial”. Jonathon Duerig,
Robert Ricci, Leigh Stoller, Matt Strum, Gary Wong, Charles
Carpenter, Zongming Fei, James Grif oen, Hussamuddin Nasir, Jeremy
Reed, and Xiongqi Wu. ACM SIGCOMM Computer Communication
Review (CCR), 42(1):72–77, January 2012. Invited paper.

8. “Lessons From Resource Allocators for Large-Scale Multiuser
Testbeds”. Robert Ricci, David Oppenheimer, Jay Lepreau, and Amin
Vahdat. ACM SIGOPS Operating Systems Review, January 2006.

9. v “A Solver for the Network Testbed Mapping Problem”. Robert Ricci,
Chris Alfeld, and Jay Lepreau. ACM SIGCOMM Computer
Communications Review, 33(2):65–81, April 2003.

Books and Book Chapters
1. v Rick McGeer, Mark Berman, Chip Elliott, and Robert Ricci, editors.

GENI: Prototype of the Next Internet. Springer-Verlag, New York,
2016. In production for publication July 2016

2. “The InstaGENI Project”. Rick McGeer and Robert Ricci. In Rick
McGeer, Mark Berman, Chip Elliott, and Robert Ricci, editors, GENI:
Prototype of the Next Internet, chapter 14. Springer-Verlag, New York,
2016. Invited chapter; in production for publication July 2016

3. “Emulab”. Robert Ricci. In Rick McGeer, Mark Berman, Chip Elliott,
and Robert Ricci, editors, GENI: Prototype of the Next Internet,
chapter 2. Springer-Verlag, New York, 2016. Invited chapter; in
production for publication July 2016

4. “The Need for Flexible Mid-scale Computing Infrastructure”. Robert
Ricci. In Rick McGeer, Mark Berman, Chip Elliott, and Robert Ricci,
editors, GENI: Prototype of the Next Internet, chapter 6.
Springer-Verlag, New York, 2016. Invited chapter; in production for
publication July 2016

Tech Reports and Online Articles
1. v Robert Ricci and Nick Feamster, editors. Report of the NSF

Workshop on Software De ned Infrastructures and Software De ned
Exchanges, Washington, DC, February 2016

2. “Rethinking Abstractions in Big Data: Why, Where, How, and What”.
Mary Hall, Robert M. Kirby, Feifei Li, Miriah Meyer, Valerio Pascucci,
Jeff M. Phillips, Robert Ricci, Jacobus Van der Merwe, and Suresh

Last updated: April 11, 2016 7/20

271

http://www.flux.utah.edu/paper/ricci-ieice13
http://www.flux.utah.edu/paper/duerig-ccr12
http://www.flux.utah.edu/paper/ricci-osr06
http://www.flux.utah.edu/paper/ricci-ccr03

Venkatasubramanian. Technical Report UUCS-13-002, University of
Utah, June 2013. arXiv:1306.3295.

3. “Augmenting Operating Systems With the GPU”. Weibin Sun and
Robert Ricci. Technical Report FTN-2011-02, University of Utah,
2011. arXiv:1305.3345.

4. “Optimizing IP Address Assignment on Network Topologies”.
Jonathon Duerig, Robert Ricci, John Byers, and Jay Lepreau. Technical
Report FTN-2006-02, University of Utah, February 2006.

Teaching

Courses

Spring 2015 CS 6963: Evaluating Networked Systems, University of Utah
I taught this course, which I designed in Spring 2014, for a second time.
It was taken by a mix of eight PhD, MS, and BS students. Materials for
this class were used as part of a networking class at NYU Poly.

Spring 2014 CS 6963: Evaluating Networked Systems, University of Utah
Developed a new graduate-level course to acquaint students with the
theory and practice of evaluating systems that have a network as a
major component, with the goal of preparing students to conduct
rigorous evaluations as part of their own research as well as looking
with a critical eye at evaluations they nd in the literature. Ten students
(MS and PhD) took the initial offering of the course. All course
materials are available online.

Spring 2009 CMPT 355: Compilers, Westminster College
Taught a four credit-hour class of 5 junior and senior Computer Science
majors, covering compilers and related technologies. Took over the
class mid-semester when the primary instructor took maternity leave.

Fall 2007 CMPT 251: Computer Organization, Westminster College
Taught a four credit-hour class of 13 second-year Computer Science
majors, introducing a range of fundamental topics in operating systems
and computer architecture. The course received excellent reviews.

Other

2010–2013 Hands-on tutorials, GENI Engineering Conferences
I have presented eight tutorials at GENI Engineering Conferences.
These hands-on events covered the user of the GENI facility and
various experimenter tools, and have typically lasted 2–3 hours with
20–60 attendees.

Fall 2013 Guest lectures in CS 6480: Advanced Computer Networks, Utah
Gave guest lectures on networked systems evaluation in general and
the Emulab and GENI testbeds in particular.

Last updated: April 11, 2016 8/20

272

http://arxiv.org/abs/1306.3295
http://arxiv.org/abs/1305.3345
http://www.cs.utah.edu/flux/papers/ipassign-ftn2005-04-base.html
http://www.flux.utah.edu/users/ricci/ens/

Spring 2007 Guest lectures in CS 6490: Network Security, University of Utah
Gave guest lectures, with accompanying homework assignment, on
systems and programming aspects of security, including buffer
over ows and low-level network attacks such as ARP poisoning and
DNS attacks.

August 2002 Hands-on Tutorial, SIGCOMM Conference
Part of a team of three that prepared and presented a well-received
full-day tutorial at the premier networking conference. Taught
attendees how to use the Emulab testbed for research and classwork,
including a hands-on component.

Summer 1999 Teaching Assistant for CP SC 2020: Computer Science II, Utah
TA for an entry-level computer science class. Responsibilities included
teaching two discussion sections per week, of about two dozen students
each.

Spring 1999 Teaching Assistant for CP SC 2010: Computer Science I, Utah
TA for an entry-level computer science class. Responsibilities included
teaching two discussion sections per week, of about two dozen students
each.

Advising

Postdocs

2011 Fabien Hermenier Faculty, Université Nice Sophia Antipolis

Ph.D. Students

2015–present Dmitry Duplyakin
Student at University of Colorado Boulder; informally co-advising with
Jed Brown of CU-Boulder

2014–present Aisha Syed
Co-advised with Kobus Van der Merwe

2013–present Junguk Cho
Co-advised with Kobus Van der Merwe

2013–present Stephen “Ren” Quinn
Co-advised with Kobus Van der Merwe

2009–2015 Xing Lin NetApp Advanced Technology Group
Thesis: “Using Similarity in Content and Access Patterns to Improve
Space Ef ciency and Performance in Storage Systems”

2009–2014 Weibin Sun Google
Thesis: “Harnessing GPU Computing in System Level Software”

M.S. Students

2015–present Aniraj Kesavan
2015–present Anil Kumar

Last updated: April 11, 2016 9/20

273

http://www.flux.utah.edu/paper/sun-dissertation

2014–2015 Anil Mallapur LinkedIn

2012–2014 Aisha Syed Ph.D. Student, Utah
Thesis: “Realistic Traf c Shaping in Dummynet Link Emulator”

2010–2014 Srikanth Manikarnike
Project: “Enhancing Dummynet to Reproduce Real Link
Characteristics”

2012–2013 Nikhil Mishrikoti Cisco Systems
Project: “Performance Analysis of Virtual Environments”

2011–2013 Srikanth Raju Coverity
Project: “Image Import and SSH Security in Emulab”

2011–2013 Yathindra Dev Naik NetApp
Project: “Xen-Cap: A Capability Framework for Xen”

2010–2011 Srikanth Chikkulapelly Amazon AWS
Thesis: “A Scalable and Flexible Node Con guration Service in an
Advanced Network Testbed”

2009–2011 Raghuveer Pullankandam Adobe Systems
Thesis: “EmuStore: Large Scale Disk Image Storage and Deployment in
the Emulab Network Testbed”

B.S./M.S. Students

2015–present Keith Downie

2009–2013 Matt Strum Amazon Silk Browser Team
Thesis: “FlowOps: Open Access Network Management and
Operation”. Co-advised with Kobus Van der Merwe.

2012–2013 Jared Rose
Project: “Anonymous File Transfer Network”

B.S. Students

2013–2015 Keith Downie B.S./M.S. Student, Utah

2009–2012 Cody Cutler Ph.D. Student, MIT
Thesis: “Trusted Disk Loading in the Emulab Network Testbed”

Interns

2015 Dmitry Duplyakin
PhD student at the University of Colorado, Boulder

2015 Brenda Lamwaka
International exchange student from Mbarara University of Science and
Technology, Uganda

Last updated: April 11, 2016 10/20

274

http://www.flux.utah.edu/paper/syed-thesis
http://www.flux.utah.edu/paper/mishrikoti-tr13
http://www.flux.utah.edu/paper/raju-tr13
http://www.flux.utah.edu/paper/naik-tr13
http://www.flux.utah.edu/paper/chikkulapelly-thesis
http://www.flux.utah.edu/paper/pullakandam-thesis
http://www.flux.utah.edu/paper/strum-thesis
http://www.flux.utah.edu/paper/cutler-cset10

Professional Activities and Service

External Service

2015–2016 Workshop Co-Chair, NSF “Beyond the Internet” planning workshop
Co-chair, with Nick Feamster of Princeton, of a workshop to inform
future NSF planning on research programs looking “beyond the
Internet.”

2015–present Science Board, PIK Journal
Member of the scienti c board for German journal Praxis der
Informationsverarbeitung und Kommunikation (articles are in English).

2014 Workshop Co-Chair, NSFCloud Workshop on Experimental Support for
Cloud Computing
Co-organizer (with Kate Keahey of the University of Chicago/Argonne)
of a workshop to bring together the community of potential users of
the NSFCloud infrastructure.

2014 Workshop Co-Chair, Workshop on the Development of a Next-
Generation Cyberinfrastructure
Co-organizer (with Victor Hazlewood of the University of Tennessee
Knoxville) of a workshop that brought together several large
NSF-funded infrastructure communities (XSEDE, Grid, GENI,
NSFCloud) and federal government attendees to talk about federation
and collaboration between these communities.

2013–present Advisory Board, Fed4FIRE
On the advisory board of Fed4FIRE, a¤10M European project
consisting of 17 partner organizations from 8 countries.

2011–present Co-chair, GENI Architecture Group
Co-chair, with Marshall Brinn of BBN Technologies, of the group
tasksed with de ning the architecture of the NSF GENI project.

2008–present Technical lead, GENI “Cluster C”
As leader of the ProtoGENI project at the University of Utah, acting as
head of a large collaborative effort involving over 20 projects from over
15 institutions. This position involves providing architectural vision for
the collaboration, coordinating among groups, and planning and leading
frequent meetings.

2014 Workshop Organizer, Workshop on the Development of a Next-
Generation Cyberinfrastructure
Co-organizer, with Victor Hazelwood of UTK, of an NSF-sponsored
workshop on the development of next-generation cyberinfrastructures;
it has a special emphasis on interoperation and federation.

2013 Local arrangements chair, GENI Engineering Conference
Handled local arrangements for the sixteenth GENI Engineering
Conference, held on the University of Utah campus.

Last updated: April 11, 2016 11/20

275

2010 Workshop organizing committee, QUILT GENI Workshop
Participated in the planning of a workshop to engage campus and
regional networks in the NSF GENI project.

2009–2011 Co-chair, GENI Control Framework Working Group
Co-chair, with Jeff Chase of Duke, of the GENI Control Framework
Working group.

2009 Local arrangements chair, GENI Engineering Conference
Handled local arrangements for the sixth GENI Engineering
Conference, held in part on the University of Utah campus. The
conference had approximately 200 attendees.

2009 Network Research Strategic Planning Team, Internet2
Helped to set network research priorities for the Internet2 national
research and education network.

2007–2009 Active participant, GENI Control Framework Working Group
Continuation of the work of the GENI Facility Architecture Working
group under the guidance of the new GENI Project Of ce.

2006–2007 Active participant, GENI Facility Architecture Working Group
Designed facility architecture for GENI, the NSF’s effort to create a
tested for next-generation Internet designs.

1999–2007 Organizer and judge, ACM High School Programming Contest
Assisted with the annual High School Programming contest sponsored
by the ACM and the University of Utah. I have helped with all aspects
of the competition, from judging submissions and designing
programming problems to acting as chief judge.

Departmental Service

2014–2015 Hiring subcommittee, Architecture

2013–present Track committee, Networked Systems

2013–2014 Hiring subcommittee, Operating Systems

2010–2014,
2016

Graduate admissions committee

2013 Assisted with revision of the Graduate Handbook

2012–2013 Hiring subcommittee, Security

2011–2012 Auxiliary faculty review committee

2008–2011 Hiring subcommittee, Lepreau Professorship

Program Committees

2016 ACM SIGCOMMWorkshop on Distributed Cloud Computing

2016 Workshop on Reproducibility in Parallel Computing, held in conjunction
with EuroPar

2014 SIGCOMMConference on emergingNetworking EXperiments and Tech-
nologies (CoNEXT)

Last updated: April 11, 2016 12/20

276

2014 SIGCOMMWorkshop on Distributed Cloud Computing (DCC)

2014 Experimental Evaluation and Testbeds track of IEEE International Con-
ference on Mobile Ad hoc and Sensor Systems (MASS)

2013 IEEE International Workshop on Future Internet Technology (IWFIT)

2012 Steering committee for a shadow PC for the USENIX Symposium on
Networked Systems Design and Implementation (NSDI)

2012 International Conference on Computer Communication Networks (IC-
CCN), Network Architectures and Clean-Slate Designs track

2011 IEEE International Conference on Network Protocols (ICNP)

2010 ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and
Architectures (VISA)

2009 International Conference on Testbeds and Research Infrastructures (Tri-
dentCom)

2009 Workshop on Cyber Security Experimentation and Test (CSET)

2009 ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and
Architectures (VISA)

2008 Workshop on Cyber Security Experimentation and Test (CSET)

Funding

Current

NSF, $2.2M “CI-EN: Revitalizing Emulab for Modern Networking and Systems Re-
search”, 2015–2018, PI: Eric Eide, co-PI: Robert Ricci

NSF, $10M “CloudLab: Flexible Scienti c Infrastructure to Support Fundamental
Advances in Cloud Architectures and Applications”, 2014–2017, PI:
Robert Ricci, co-PIs: Aditya Akella (Wisconsin), KC Wang (Clemson),
Chip Elliott (BBN), Mike Zink (UMass), Glenn Ricart (US Ignite)

NSF, $3.4M “MRI: Development of Apt, a Testbed Instrument With Adaptable Pro-
les for Network and Computational Science”, 2013–2016, PI: Robert

Ricci, co-PIs: Kobus Van der Merwe, Eric Eide, Julio Facelli, and Steve
Corbató. Includes 30% University of Utah cost-sharing.

NSF, $2M “CI-ADDO-NEW: PhantomNet: An End-to-End Mobile Network
Testbed”, 2013–2016, PI: Kobus Van der Merwe, co-PI: Robert Ricci

NSF, $1.15M “NeTS: Medium: KnowOps - Making Network Management and Opera-
tions Software De ned”, 2013–2016, PI: Kobus Van der Merwe, co-PIs:
Robert Ricci, Sneha Kumar Kasera, and Suresh Venkatasubramanian

NSF, $1M “TWC: Medium: Collaborative: TCloud: A Self-Defending, Self-
Evolving and Self-Accounting Trustworthy Cloud Platform”, 2013–
2016, Grant from the National Science Foundation, PI: Kobus Van der
Merwe, co-PIs: Robert Ricci, Eric Eide and Fefei Li

Last updated: April 11, 2016 13/20

277

Prior

GPO, $497K “Experimenter Tools and Training for a More User-Friendly and Sustain-
able GENI”, 2013–2015, PI: Robert Ricci, Contract from GENI Project
Of ce (BBN Technologies)

GPO, $199K “Adopt-A-GENI: Bringing users into the GENI Community“, 2013–
2015, PI: Kobus Van der Merwe, co-PI: Robert Ricci, Sub-contract via
the University of Kentucky from from the GENI Project Of ce

NSF, $1M “CC-NIE Integration: Science Slices Converting Network Research In-
novation into Enhanced Capability for Computational Science and En-
gineering at the University of Utah”, 2013–2015, PI: Steve Corbató,
co-PIs: Kobus Van der Merwe, Robert Ricci, Adam Bolton, and Thomas
Cheatham

Corp., $150K “Network Management and Operation for Open Access Networks”,
2013–2014, PI: Kobus van der Merwe, co-PIs: Robert Ricci and Sneha
Kasera, Grant from Entrypoint LLC

GPO, $272K “InstaGENI Meso-Scale Prototype”, 2012–2014, PI: Robert Ricci, Sub-
contract from HP via GENI Project Of ce

GPO, $254K “Education and Support For GENI Experimenters”, 2011–2014, PI:
Robert Ricci, Contract from GENI Project Of ce (BBN Technologies)

NSF, $50K “The Sixteenth GENI Engineering Conference”, 2013, PI: Robert Ricci

NSF, $1.0M “CI-ADDO-EN: Enhancing Emulab for Virtualization and Clouds”,
2011–2013, PI: Robert Ricci, co-PIs: Eric Eide and Mike Hibler

Corp., $25K “AugmentingOperating Systemswith theGPU”,2011–2012, PI: Robert
Ricci, Fellowship awarded to Weibin Sun by NVIDIA

NSF, $475K “Collaborative Research: PRObE - The NSF Parallel Recon gurable Ob-
servational Environment for Data Intensive Super-Computing and High
End Computing”, 2010–2015, PI: Robert Ricci, Subcontract from New
Mexico Consortium (via NSF)

GPO, $534K “Experiment Work ow Tools and Services for GENI”, 2010–2012, PI:
Robert Ricci, Contract from GENI Project Of ce (BBN Technologies)

GPO, $459K “Integrating New Projects into the ProtoGENI Control Framework”,
2010–2012, PI: Robert Ricci, Contract fromGENI Project Of ce (BBN
Technologies)

GPO, $760K “End-To-End ProtoGENI”, 2008–2012, PI: Robert Ricci, Contract from
GENI Project Of ce (BBN Technologies)

NSF, $1.7M “MRI: Evolutionary Development of an Advanced Distributed Testbed”,
2007–2013, PI: John Regehr, co-PIs: Robert Ricci and Steve Corbató

NSF, $1.0M ‘NeTS-ProWin: Software Radio Testbeds: One Large, Many Small”,
2005–2011, PI: Sneha Kasera, co-PI: Robert Ricci

NSF, $1.2M “NeTS-ProWin: An Open, Low Cost, High Quality Software Radio Plat-
form and Testbed”, 2004–2010, PI: Sneha Kasera, co-PI, Robert Ricci

Last updated: April 11, 2016 14/20

278

Talks

2016

March vCloud Research With CloudLab, Invited talk, Texas Tech, Lubbock,
Texas
Invited to give a talk at the Department of Computer Science and
Cloud and Autonomic Computing Center at Texas Tech University.

2015

December v Infrastructure for Computer Systems Experimentation, Invited talk,
TU Darmstadt, Darmstadt, Germany
Invited to give a talk giving a history of the Flux Group’s development
of research infrastructure over the last 15 years.

November vBuilding Community Around Testbeds, Invited talk, NSF Workshop
on Accessible Remote Testbeds, Washington, DC
Invited to address a meeting of prospective testbed builders from the
NSF ENG and CISE directorates

September Federated Monitoring, GENI-Fed4FIRE Meeting, Washington, DC
Invited talk at a meeting between the US GENI project and EU
Fed4FIRE project.

September Federation Strategy, GENI-Fed4FIRE Meeting, Washington, DC
Invited talk at a meeting between the US GENI project and EU
Fed4FIRE project.

September CloudLab Updates and Federation, GENI-Fed4FIRE Meeting, Washing-
ton, DC
Invited talk at a meeting between the US GENI project and EU
Fed4FIRE project.

August Cloud Computing in HPC, Invited talk, RMACC, Boulder, CO
Invited to lead a session on cloud computing in HPC

July vCloudLab, Plenary panel, XSEDE 15, St. Louis, MO
Invited to participate as a panelist in a session discussing new and
upcoming NSF-funded infrastructure

July Federation in CloudLab, XSEDE 15, St. Louis, MO
Invited talk about the internal and external federation aspects of
CloudLab.

June Getting started with CloudLab and OpenStack, Tutorial, GEC #23,
Champaign, IL
2 hour hands-on tutorial presented at GEC #23 on the basics of
creating a cloud in CloudLab. Approximately 30 attendees.

May vCloudLab Train-the-Trainers session, Workshop, Salt Lake City, UT
2 day workshop for ACI-REF facilitators and University of Utah CHPC
staff. Included a hands-on tutorial, and several presentations on the
details of an intended use of CloudLab.

Last updated: April 11, 2016 15/20

279

April CloudLab, Cyber-physical Systems Week, Seattle, WA
Remote presentation to a meeting of researchers and industrial
practitioners involved in Cyber-physical Systems about how CloudLab
can be used for CPS research.

March vGetting started with CloudLab and OpenStack, Tutorial, GEC #22,
Arlington, VA
1.5 hour hands-on tutorial presented at GEC #22 on the basics of
creating a cloud in CloudLab. Approximately 60 attendees.

February CloudLab, NITRD MAGIC meeting, Washington, DC
Remote presentation to a meeting of the Middleware And Grid
Interagency Coordination (MAGIC) group of the federal Networking
and Information Technology Research and Development (NITRD)
project.

2014

November vCloudLab, NSFCloud Workshop, Arlington, VA
Co-organized a community workshop on the NSFCloud facilities; gave
a talk describing and demonstrating CloudLab.

November vCloudLab, GENI-Fed4FIRE Meeting, Paris, France
Invited talk at a meeting between the US GENI project and EU
Fed4FIRE project.

November Cloud Research in the US, GENI-Fed4FIRE Meeting, Paris, France
Invited talk at a meeting between the US GENI project and EU
Fed4FIRE project.

November Workshop on the Development of a Next-Generation Cyberinfrastruc-
ture, GENI-Fed4FIRE Meeting, Paris, France
Invited talk at a meeting between the US GENI project and EU
Fed4FIRE project.

October vCloudLab, GEC #21, Bloomington, IN

October UsingGENI in “EvaluatingNetworked Systems, GEC#21, Bloomington,
IN

October vCloudLab, Workshop, Washington, D.C.
Invited talk at the Workshop for the Development of a
Next-Generation Cyberinfrastructure

June InstaGENI Administration, GEC #20, Davis, CA

June ProtoGENI Developer Topics, GEC #20, Davis, CA

June vApt: The Adaptable Pro le-Driven Testbed, GEC #20, Davis, CA

May SDN in Software, GENI-Fed4FIRE Meeting, Cambridge, MA
Invited talk at the second meeting between the US GENI project and
EU Fed4FIRE project.

May vUser Tool Lessons, GENI-Fed4FIRE Meeting, Cambridge, MA
Invited talk at the second meeting between the US GENI project and
EU Fed4FIRE project.

Last updated: April 11, 2016 16/20

280

April vOperational Experiences with Disk Imaging in a Multi-Tenant Data-
center, Paper talk, Seattle, WA
Paper talk at the Symposium on Networked Systems Design and
Implementation (NSDI)

March PhantomNet: An End-to-End Mobile Wireless Testbed, GEC #19, At-
lanta, GA

2013

October Getting Started with GENI: Part II, Tutorial, GEC #18, Brooklyn, NY
2.5 hour hands-on tutorial presented at GEC #18 with Vic Thomas of
the GENI Project Of ce

October GENI Rack Operations Going Forward, GEC #18, Brooklyn, NY

October Flack Evolved: Jacks, GEC #18, Brooklyn, NY

October vOverview of Federation, GENI-Fed4FIRE Meeting, Leuven, Belgium
Invited talk at the rst meeting between the US GENI project and EU
Fed4FIRE project.

October GENI Tools, GENI-Fed4FIRE Meeting, Leuven, Belgium
Invited talk at the rst meeting between the US GENI project and EU
Fed4FIRE project.

October Setting Testbed Policies, GENI-Fed4FIRE Meeting, Leuven, Belgium
Invited talk at the rst meeting between the US GENI project and EU
Fed4FIRE project.

July InstaGENI Overview, GEC #17, Madison, WI

October Experimentation and Instrumentation using InstaGENI Racks and GEM-
INI, Tutorial, GEC #16, Salt Lake City, UT
2.5 hour hands-on tutorial presented at GEC #16 with Jim Grif oen of
the University of Kentucky and Ezra Kissel of Indiana University

March New Features in Flack, GEC #16, Salt Lake City, UT

March Speaks-For, GEC #16, Salt Lake City, UT

March InstaGENI Overview, GEC #16, Salt Lake City, UT

2012

October Introduction to GENI and the Experiment Lifecycle, Tutorial, GEC #15,
Houston, TX
2.5 hour hands-on tutorial presented at GEC #15

July InstaGENI Tutorial, Tutorial, GEC #14, Boston, MA
2 hour hands-on tutorial presented at GEC #14 with Gary Wong

July v InstaGENI Rack Update and Demo, GEC #14, Boston, MA
Demonstration presented with Rick McGeer of HP Labs

March ProtoGENI and Experimenters, Workshop, Los Angeles, CA
Invited talk at the GENI Experimenters’ workshop

Last updated: April 11, 2016 17/20

281

March ProtoGENI and ABAC, GEC #13, Los Angeles, CA

March v PRObE: Parallel Recon gurable Observable Environment, GEC #13,
Los Angeles, CA

2011

July Introduction to GENI using Flack and the Instrumentation Portal, Tuto-
rial, GEC #12, Kansas City, MO
2 hour hands-on tutorial presented at GEC #12 with Jim Grif oen of
the University of Kentucky

November Education and Support for GENI Experimenters, GEC #12, Kansas City,
MO

November Tickets, GEC #12, Kansas City, MO

October vManaging Trust in Federated Testbeds, Symposium, University of
Tokyo, Tokyo, Japan
Invited talk at the Network Virtualization Symposium

October v Emulab and ProtoGENI: Enabling Network Research and Education,
Invited talk, KDDI, Tokyo, Japan
Invited talk at the R&D organization of a Japanese telecommunications
provider

July Introduction to GENI using Flack and the Instrumentation Portal, Tuto-
rial, GEC #11, Denver, CO
2 hour hands-on tutorial presented at GEC #11 with Jim Grif oen of
the University of Kentucky

July ProtoGENI Control Framework Update, GEC #11, Denver, CO

March ProtoGENI Stitching, GEC #10, San Juan, PR

March ProtoGENI RSpec, GEC #10, San Juan, PR

March ProtoGENI Identity Management, GEC #10, San Juan, PR

March ProtoGENI Authorization, GEC #10, San Juan, PR

March ProtoGENI Control Framework Update, GEC #10, San Juan, PR

2010

July ProtoGENI Tutorial, Tutorial, GEC #9, Washington, D.C.
3 hour hands-on tutorial presented at GEC #9 with Jim Grif oen of the
University of Kentucky

November ProtoGENI Status and Priorities, GEC #9, Washington, D.C.

September Evaluating Networked Systems, Colloquium, Salt Lake City, UT
Invited talk in the University of Utah School of Computing Research
Buffet

July ProtoGENI and Emulab: Campus Connection Case Study, Workshop,
San Diego, CA
Invited talk at the QUILT GENI Workshop

Last updated: April 11, 2016 18/20

282

July ProtoGENI Tutorial, Tutorial, GEC #8, San Diego, CA
3 hour hands-on tutorial presented at GEC #9 with Jim Grif oen of the
University of Kentucky

July Supporting ProtoGENI Users, GEC #8, San Diego, CA

March The ProtoGENI Vision for GENI Resource Representation, Workshop,
Durham, NC
Invited talk at the Workshop on Future of Resource Representations in
GENI

March Credentials in ProtoGENI, GEC #7, Durham, NC

February ProtoGENI and Emulab: Enabling Network Research and Education,
Meeting, Salt Lake City, UT
Invited talk at Internet2/ESNet Joint Techs Meeting

January ProtoGENI and Emulab: Enabling Network Research and Education,
Meeting, Salt Lake City, UT
Invited talk at WestNet Meeting

2009

November v ProtoGENI Integrated Backbone Demonstration, Talk and demonstra-
tion at GEC #6, Salt Lake City, UT

November ProtoGENI Spirals 1 and 2, GEC #6, Salt Lake City, UT

October v ProtoGENI and Emulab: Enabling Network Research and Education,
Meeting, San Antonio, TX
Invited talk at the Internet2 Fall Member Meeting

July Federation in ProtoGENI, Workshop, Seattle, WA
Invited talk at the Second GENI-FIRE Workshop

July ProtoGENI Experimenter Tools, GEC #5, Seattle, WA

July ProtoGENI Backbone Plans and Status, GEC #5, Seattle, WA

July Cross-Aggregate Coordination, GEC #5, Seattle, WA

June Measurement and Experiment Speci cation, Workshop, Madison, WI
Workshop talk at the GENI Measurement Workshop

June The ProtoGENI RSpec, Workshop, Chicago, IL
Talk at the GENI RSpec Workshop

April ProtoGENI and the QUILT, Meeting
Invited talk to the QUILT GENI Working Group

April ProtoGENI Security Model, GEC #4, Miami, FL

April Vertical Integration in Emulab and ProtoGENI, GEC #4, Miami, FL

2008

October v ProtoGENI, GEC #3, Palo Alto, CA

Last updated: April 11, 2016 19/20

283

June v Large-scale Virtualization in the Emulab Network Testbed, Paper talk,
Boston, MA
Paper talk at the USENIX Annual Technical Conference

March Beyond Experiment Control: Experiment Work ow, GEC #2, Arlington,
VA

2007

October RSpec: Resource Speci cation in GENI, GEC #1, Minneapolis, MN

April vThe Flexlab Approach To Realistic Evaluation of Networked Systems,
Paper talk, Cambridge, MA
Paper talk at the Symposium on Networked Systems Design and
Implementation (NSDI)

2006

June Leveraging Bloom Filters for Smart SearchWithin NUCACaches, Paper
talk, Boston, MA
Paper talk at the Workshop on Complexity-Effective Design (WCED)

May Running PlanetLab in Emulab, Meeting, Palo Alto, CA
Invited talk at a PlanetLab meeting at HP Labs

2005

November A Mapper for Managing Shared, Virtualized Computing and Network
Resources, San Francisco, CA
Invited talk at INFORMS, an Operations Research and Management
Science conference

2004

May vResource Mapping With assign, Colloquium at Boston University,
Boston, MA

2003

June v Fast, Scalable Disk Imaging with Frisbee, Paper talk, San Antonio, TX
Paper talk at the USENIX Annual Technical Conference

August vHow toUse the Emulab PublicNetwork Testbeds, Tutorial, Pittsburgh,
PA
Full-day tutorial at SIGCOMM, presented with Jay Lepreau, Mac
Newbold, and Chris Alfeld

Last updated: April 11, 2016 20/20

284

Ellen Riloff

School of Computing Phone: 801-581-7544
University of Utah Email: riloff@cs.utah.edu
Salt Lake City, UT 84112 URL: www.cs.utah.edu/˜riloff

Current Research Areas: natural language processing, information extraction, sentiment analy-
sis, semantic lexicon induction, biomedical NLP, bootstrapped learning methods for NLP.

Education

Ph.D. University of Massachusetts at Amherst, Computer Science, 1994.
M.S. University of Massachusetts at Amherst, Computer Science, 1989.
B.S. Carnegie Mellon University, Applied Mathematics (Computer Science),

with University Honors, 1987.

Professional Experience

2014-present University of Utah, School of Computing, Professor.
2014-2015 University of California at Santa Cruz, Visiting Research Computer Scientist.
2000-2014 University of Utah, School of Computing, Associate Professor.
2007-2008 USC Information Sciences Institute, Visiting Scholar.
2000-2001 The Johns Hopkins University, Department of Computer Science,

Visiting Associate Professor.
1994-2000 University of Utah, Department of Computer Science, Asst. Professor.

Selected Publications

1. Qadir, A., Riloff, E., and Walker, M. A., “Automatically Inferring Implicit Properties in
Similes”, to appear in Proceedings of the 15th Annual Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL HLT), 2016.

2. Ding, H. and Riloff, E., “Acquiring Knowledge of Affective Events from Blogs using Label
Propagation”, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-
16), 2016.

3. Wagstaff, K., Riloff, E., Lanza, N., Mattmann, C., and Ramirez, P., “Creating a Mars Target
Encyclopedia by Extracting Information from the Planetary Science Literature”, AAAI-16
Workshop on Knowledge Extraction from Text (KET), 2016.

4. Qadir, A., Riloff, E., and Walker, M. A., “Learning to Recognize Affective Polarity in Simi-
les”, Proceedings of the 2015 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2015.

5. Kim, Y., Riloff, E., and Hurdle, J., “A Study of Concept Extraction Across Different Types
of Clinical Notes”, Proceedings of the American Medical Informatics Association (AMIA)
2015 Annual Symposium, 2015.

1

285

6. Ding, H. and Riloff, E., “Extracting Information about Medication Use from Veterinary Dis-
cussions”, Proceedings of the 2015 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics - Human Language Technologies (NAACL HLT), Short
Paper, 2015.

7. Qadir, A. and Riloff, E., “Learning Emotion Indicators from Tweets: Hashtags, Hashtag
Patterns, and Phrases”, Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Short Paper, 2014.

8. De Silva, L. and Riloff, E., “User Type Classification of Tweets with Implications for Event
Recognition”, ACL 2014 Joint Workshop on Social Dynamics and Personal Attributes in
Social Media, 2014.

9. Goyal, A., Riloff, E., Daumé III, H., “A Computational Model for Plot Units”, Computational
Intelligence, 2013, Vol. 29, Issue 3, pp. 466-488.

10. Riloff, E., Qadir, A., Surve, P., De Silva, L., Gilbert, N., and Huang, R., “Sarcasm as Contrast
between a Positive Sentiment and Negative Situation”, Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2013.

11. Huang, R. and Riloff, E., “Multi-faceted Event Recognition with Bootstrapped Dictionaries”,
Proceedings of the 2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL), 2013.

12. Gilbert, N. and Riloff, E., “Domain-Specific Coreference Resolution with Lexicalized Fea-
tures”, Proceedings of the 51st Annual Meeting of the Association for Computational Lin-
guistics (ACL), Short Paper, 2013.

13. Huang, R. and Riloff, E., “Classifying Message Board Posts with an Extracted Lexicon of
Patient Attributes”, Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Short Paper, 2013.

14. Huang, R. and Riloff, E., “Modeling Textual Cohesion for Event Extraction”, Proceedings
of the 26th Conference on Artificial Intelligence (AAAI), 2012.

15. Qadir, A. and Riloff, E., “Ensemble-based Semantic Lexicon Induction for Semantic Tag-
ging”, Proceedings of the First Joint Conference on Lexical and Computational Semantics
(*SEM), 2012, Best Long Paper Award.

16. Huang, R. and Riloff, E., “Bootstrapped Training of Event Extraction Classifiers”, Proceed-
ings of the 13th Conference of the European Chapter of the Association for Computational
Linguistics (EACL), 2012.

17. Wiebe, J. and Riloff, E., “Finding Mutual Benefit between Subjectivity Analysis and Infor-
mation Extraction”, IEEE Transactions on Affective Computing, 2011, Vol. 2, No. 4, pp.
175-191.

18. Huang, R. and Riloff, E., “Peeling Back the Layers: Detecting Event Role Fillers in Sec-
ondary Contexts”, Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies (ACL), 2011.

2

286

19. Qadir, A. and Riloff, E., “Classifying Sentences as Speech Acts in Message Board Posts”,
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2011.

20. Kim, Y., Riloff, E., and Meystre, S. M., “Improving Classification of Medical Assertions in
Clinical Notes”, Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies (ACL), Short Paper, 2011.

21. Goyal, A., Riloff, E., Daumé III, H., “Automatically Producing Plot Unit Representations
for Narrative Text”, Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2010.

22. Huang, R. and Riloff, E. “Inducing Domain-specific Semantic Class Taggers from (Almost)
Nothing”, Proceedings of The 48th Annual Meeting of the Association for Computational
Linguistics (ACL), 2010.

23. Stoyanov, V., Cardie, C., Gilbert, N., Riloff, E., Buttler, D., and Hysom, D., “Coreference
Resolution with Reconcile”, Proceedings of The 48th Annual Meeting of the Association for
Computational Linguistics (ACL), Short Paper, 2010.

24. Patwardhan, S. and Riloff, E., “A Unified Model of Phrasal and Sentential Evidence for In-
formation Extraction”, Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2009.

25. Hovy, E., and Kozareva, Z., and Riloff, E., “Toward Completeness in Concept Extraction
and Classification”, Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2009.

Recent Research Funding

“Identifying Affective Events and Situations in Text”, National Science Foundation (NSF) award,
PI, IIS-1450527, $149,991, 9/1/14-8/31/16.

“Open Source Indicators (OSI) Program”, subcontract to Virginia Polytechnic Institute and State
University (IARPA award), PI, $120,000 (4/9/15-7/30/16), $250,000 (6/13/14-4/8/15).

“Open Source Indicators (OSI) Program”, subcontract to HRL Laboratories (IARPA award), PI,
$657,789, 4/13/12-6/8/14.

“RI:Small:Acquiring Domain Knowledge from Text through Cooperative Bootstrapping”, Na-
tional Science Foundation (NSF) award, PI, IIS-1018314, $383,845, 7/1/10-6/30/15.

“Text Mining Infrastructure for the Entire Biological Literature”, subcontract to USC/ISI (NSF
award), PI, $119,917, 10/1/09-8/31/2013.

“RACR: Reader and Contextual Reasoner”, subcontract to IBM (DARPA award), PI, $472,112,
8/1/09-12/31/12.

3

287

“Information Extraction of Events and Beliefs from Text,” subcontract to University of Pittsburgh
(Department of Homeland Security (DHS) award), PI, ONR # N0014-07-1-0152, $498,200,
10/16/06-5/31/10.

Selected Invited Talks

Bootstrapped Learning of Affective Indicators in Social Media Text
- Distinguished Speaker Seminar Series, University of North Texas, 2015.

Sarcasm as Contrast between a Positive Sentiment and Negative Situation
- Invited Speaker, COGSCI 2014 Workshop: Can Cognitive Scientists Help Computers Rec-
ognize Irony?, 2014.

An NLP Voyage: Explorations with Information Extraction for Biocuration
- SciKnowMine 2013 Workshop: Bridging BioNLP and Biocuration, USC/ISI, 2013.

Finding Event Information: Multi-faceted Event Recognition and Discourse-Guided Extraction
- University of Illinios at Urbana-Champaign, 2013.

Automatically Generating Plot Unit Representations for Narrative Text
- University of California at Santa Cruz, 2013.

Adventures in Bootstrapping: Acquiring Lexical Knowledge for NLP
- Carnegie Mellon University, 2011 ; University of Texas at Austin, 2011.

Recent Awards

*SEM Best Long Paper Award, 2012: Qadir, A. and Riloff, E., “Ensemble-based Semantic
Lexicon Induction for Semantic Tagging”.

Honorable Mention: 2012 AAAI Classic Paper Award for AAAI 1993 paper: Riloff, E.,
“Automatically Constructing a Dictionary for Information Extraction Tasks”.

Recent Major External Service Activities

Editorial Board, Transactions of the Association for Computational Linguistics, 2012-2014
Editorial Board, Computational Linguistics, January 2007-December 2009.
Program Co-Chair for the NAACL-HLT 2012 Conference, 2012.
Program Co-Chair for CoNLL-04 Conference, 2004.
Area Chair for Semantics, EMNLP Conference, 2011
Area Chair for Information Extraction, ACL Conference, 2009

Recent Courses Taught
Information Extraction from Text (CS 6961,6390) 2014,2016
NLP Seminar (CS 7935) 2016 (co-taught with Prof. Srikumar)
Natural Language Processing (CS 5340/6340) 2008-2013, 2015
Software Engineering Laboratory (CS 4500) 2011 (co-taught with Prof. de St. Germain)
Topics in Information Retrieval (CS 7961) 2010
Introduction to Computer Science II (CS 2420) 2009

4

288

Vivek Srikumar
School of Computing, University of Utah
50 S Central Campus Drive, Rm. 3126
Salt Lake City, Utah, 84112

Email: svivek@cs.utah.edu
Website: http://svivek.com
Phone: +1 (217) 766-2085

Experience

• Assistant Professor, School of Computing, University of Utah. 2014 – Present

• Postdoctoral Scholar, Stanford NLP group, Stanford University. 2013 – 2014

• Postdoctoral Scholar, Cognitive Computation Group, UIUC. 2013

• Research Intern, Microsoft Research. 2008 – 2008

• Research Assistant, UIUC. 2005 – 2013.

My research focuses on several areas in machine learning and its applications, primarily in the
context of natural language processing. Some highlights include:

• Machine learning: (a) Learning discrete and continuous representations of unstructured
data. (b) Learning to speed up structured predictors. (c) Developing machine learning frame-
works for learning concepts with limited supervision.

• Natural Language Understanding: (a) Automatically answering reading comprehension
questions by extracting entities, events and their relationships from the text. (b) Analyzing
sentences for different linguistic phenomena, leading to a unified approach for predicting a
semantic representation of text. (c) Applying machine learning techniques for recognizing
textual entailment. (d) Detecting events and extracting their participants and attributes from
news text.

• Software for machine learning and natural language processing: Designing program-
ming interfaces for machine learning and NLP.

Education

Ph.D., Computer Science University of Illinois, Urbana-Champaign. 2013

Thesis: The Semantics of Role Labeling.

Doctoral Advisor: Prof. Dan Roth.

Certificate in Foundations of Teaching Center for Teaching Excellence, UIUC. 2011

Master of Science, Computer Science University of Illinois, Urbana-Champaign. 2007

Thesis: Masquerader detection through interactions.

Bachelor of Engineering, Computer Science Anna University, Chennai, India. 2005
First Class with Distinction.

1
289

http://svivek.com

Vivek Srikumar

Awards

• Selected as an outstanding reviewer at the annual conference of the North American Chapter
of the ACL (NAACL), 2016.

• Best paper award: Conference on Empirical Methods in Natural Language Processing (EMNLP),
2014. Title: Modeling Biological Processes for Reading Comprehension

• Student travel scholarship, International Conference on Machine Learning (ICML), 2010.

Selected Publications

(Full list available at http://svivek.com.)

1. Tao Li and Vivek Srikumar. “Exploiting Sentence Similarities for Better Alignments”. In: Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).
2016.

2. Xingyuan Pan and Vivek Srikumar. “Expressiveness of Rectifier Networks”. In: Proceedings of
the International Conference on Machine Learning (ICML). 2016.

3. Michael Tanana, Kevin A. Hallgren, Zac E. Imel, David C. Atkins, and Vivek Srikumar. “A
Comparison of Natural Language Processing Methods for Automated Coding of Motivational
Interviewing”. In: Journal of Substance Abuse Treatment (2016).

4. Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby Vander Linden, Brittany Harding,
Brad Huang Peter Clark, and Christopher D. Manning. “Modeling Biological Processes for
Reading Comprehension”. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP). 2014.

5. Vivek Srikumar and Christopher D Manning. “Learning Distributed Representations for Struc-
tured Output Prediction”. In: Advances in Neural Information Processing Systems (NIPS).
2014.

6. Gourab Kundu, Vivek Srikumar, and Dan Roth. “Margin-based Decomposed Amortized In-
ference”. In: Annual meeting of the Association of Computational Linguistics (ACL). 2013.

7. Vivek Srikumar and Dan Roth. “Modeling Semantic Relations Expressed by Prepositions”. In:
Transactions of the Association for Computational Linguistics vol. 1 (2013).

8. Ming-Wei Chang, Dan Goldwasser, Dan Roth, and Vivek Srikumar. “Discriminative Learn-
ing over Constrained Latent Representations”. In: Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for Computational Lin-
guistics. 2010.

9. Ming-Wei Chang, Vivek Srikumar, Dan Goldwasser, and Dan Roth. “Structured Output
Learning with Indirect Supervision”. In: Proceedings of the International Conference on Ma-
chine Learning (ICML). 2010.

10. Ming-Wei Chang, Lev Ratinov, Dan Roth, and Vivek Srikumar. “Importance of Semantic Rep-
resenation: Dataless Classification”. In: Proceedings of the National Conference on Artificial
Intelligence (AAAI). 2008.

2
290

http://svivek.com

Vivek Srikumar

Tutorials

1. Kai-Wei Chang, Gourab Kundu, Dan Roth, and Vivek Srikumar. “Learning and Inference in
Structured Prediction Models”. In: AAAI-16 Tutorial Forum. Feb. 2016.

2. Dan Goldwasser, Vivek Srikumar, and Dan Roth. “Predicting Structures in NLP: Constrained
Conditional Models and Integer Linear Programming in NLP”. In: NAACL HLT 2012 Tutorial
Abstracts. June 2012.

3. Vivek Srikumar. “Incorporating Machine Learning into your Application: Text Classification”.
In: Data Sciences Summer Institute, UIUC. 2012.

4. Vivek Srikumar. “An Introduction to Machine Learning and Natural Language Processing
Tools”. In: Data Sciences Summer Institute, UIUC. 2011.

Teaching

1. CS 5350/6350: Machine Learning, University of Utah. Fall 2016
35 undergraduate students, 90 graduate students and streamed live for professional masters
students.

2. CS 7935: NLP Seminar, University of Utah Spring 2016
Co-taught with Ellen Riloff.

3. CS 5350/6350: Machine Learning, University of Utah. Fall 2015
12 undergraduate students, 87 graduate students and streamed live for professional masters
students.

4. CS 7931: Machine Learning Seminar (Deep Learning), University of Utah. Fall 2015
10 students. Co-taught with Dustin Webb.

5. CS 5350/6350: Machine Learning, University of Utah. Spring 2015
Newly designed course with 66 graduate and 21 undergraduate students

6. CS 6961: Structured Prediction, University of Utah. Fall 2014
Newly designed course with 20 graduate students and 1 undergraduate student

Students and Mentoring

Graduate Students Supervised (a) Xingyuan Pan, PhD, started Fall 2014. (b) Tao Li, MS
thesis, expected Fall 2016, starting PhD in Fall 2016. (c) Jie Cao, PhD, started Fall 2015. (d) Nicolas
Bertagnolli, MS, Spring 2016.

Undergraduate Research and Special Projects (a) Maks Cegielski-Johnson, Undergraduate
honors thesis mentor, expected 2017. (b) Oliver Richardson, Undergraduate honors thesis mentor,
expected 2017. (c) Tobin Yehle, Undergraduate honors thesis mentor, 2015-16. Tobin’s research
was supported by an award from the University’s Undergraduate Research Opportunities Program.

3
291

Vivek Srikumar

Other Student Mentoring (a) Annie Cherkaev, 2015-16, former undergraduate, then non-
matriculating student, and currently a graduate student at the University of Utah, (b) Kallie
Bracken, 2015-16, former undergraduate student at the University of Utah, (c) William Guss, Sum-
mer 2015, then high school student at West High School, currently at University of California,
Berkeley.

Service

External Service

• Editorial Board: Journal of Artificial Intelligence Research. July, 2016 – June, 2019.

• Journal reviewer: (a) Computational Linguistics (b) Language Resources and Evaluation
(c) IEEE/ACM Transactions on Audio, Speech, and Language Processing (d) IEEE Transac-
tions on Neural Networks and Learning Systems

• Senior program committee member: International Joint Conferences on Artificial Intel-
ligence (IJCAI), 2015.

• Program Committee Member: (a) Twenty-Sixth, Twenty-Eighth and Twenty-Ninth, Thir-
tieth conference of the Association for the Advancement of Artificial Intelligence (AAAI),
2012, 2014, 2015, 2016; (b) Annual meeting of the Association of Computational Linguistics
(ACL), 2013, 2014, 2015, 2016; (c) Conference on Computational Natural Language Learning
(CoNLL), 2014, 2015; (d) International Conference on Computational Linguistics (COLING),
2016; (e) Conference of the European Chapter of the ACL (EACL), 2012; (f) Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2012, 2014, 2015; (g) North
American Chapter of the ACL (NAACL), 2010, 2012, 2013, 2015, 2016; (h) International Con-
ference on Machine Learning (ICML), 2013,2014,2015; (i) International Joint Conferences on
Artificial Intelligence (IJCAI), 2011, 2016; (j) Neural Information Processing Systems (NIPS),
2015, (k) The first AHA! Workshop on Information Discovery in Text, COLING 2014.

Workshop Organization

• Structured Prediction for Natural Language Processing, EMNLP 2016.

• Workshop on Declarative Learning Based Programming (DeLBP), AAAI 2016.

Proposal Panelist

• NSF (2016).

University of Utah Service

• School of Computing data czar: A newly created SoC position that focuses on unifying,
managing and analyzing graduate student data, 2015-.

• School of Computing faculty hiring committee, 2015, 2016.

• School of Computing graduate recruitment visit coordinator, 2015, 2016.

• School of Computing admissions committee (NLP and machine learning), 2013, 2014, 2015.

Updated on October 16, 2016

4
292

Ryan Stutsman
Curriculum Vitæ

50 S. Central Campus Drive, School of Computing
Salt Lake City, UT, 84112 USA

Phone: 801.585.0913 Email: stutsman@cs.utah.edu Website: http://www.cs.utah.edu/~stutsman/

Research Interests

Large-scale software systems and database systems, low-latency in-memory database systems.

Education
Purdue University West Lafayette, IN, USA Computer Science B.S. 2007
Stanford University Stanford, CA, USA Computer Science M.S. 2010
Stanford University Stanford, CA, USA Computer Science Ph.D. 2014
Microsoft Research Redmond, WA, USA Database Group Postdoctoral Researcher 2013 - 2015

Professional Experience

Jul. 15 – Assistant Professor, School of Computing, University of Utah.
Dec. 13 – Jul. 15 Postdoctoral Researcher, Database Group, Microsoft Research.
Jun. 11 – Sep. 11 Summer Intern, Memcache Group, Facebook.
Jun. 08 – Sep. 08 Summer Intern, Lawrence Livermore National Laboratory.
May 07 – Sep. 07 Summer Intern, Platforms Group, Google.

Awards

• 2013 Best Student Paper, USENIX ATC ’13.

• 2007–2010 Department of Homeland Security Graduate Fellow

• 2007 Purdue University Dept. of Computer Science Outstanding Undergraduate Research Effort.

• 2007 National Science Foundation Graduate Research Fellowship Honorable Mention.

• 2007 Purdue University CERIAS Diamond Award for Outstanding Academic Achievement.

• 2007 Computing Research Assoc. Outstanding Undergraduate Award Honorable Mention.

• 2006 Outstanding Purdue College of Science Junior.

• 2006 Harry Morrison Scholarship.

• 2006 Verizon Academic Scholarship.

• 2005 Ruzika Undergraduate Summer Research. Award

• 2005 Purdue Summer Undergraduate Research Fellowship.

Grants

1. “CRII:CSR:Large-scale Systems Software Atop Scale-out In-memory Storage,” sole PI, NSF, 05/2016
- 05/2018, $174,949.

Refereed Conference and Journal Publications
[1] Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman, and Rui Wang.

Multi-version Range Concurrency Control in Deuteronomy. Proceedings of the VLDB
Endowment, 8(13):2146–2157, September 2015.

293

http://www.cs.utah.edu/~stutsman/

Ryan Stutsman 2

[2] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee, Behnam
Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum, Stephen Rum-
ble, Ryan Stutsman, and Stephen Yang. The RAMCloud Storage System. ACM Trans-
actions on Computer Systems, 33(3):7:1–7:55, August 2015.

[3] Ryan Stutsman, Collin Lee, and John Ousterhout. Experience with Rules-Based Pro-
gramming for Distributed, Concurrent, Fault-Tolerant Code. In USENIX ATC, Santa
Clara, CA, July 2015.
Presented at conference.

[4] Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman, and Rui Wang.
High Performance Transactions in Deuteronomy. In Conference on Innovative Data Sys-
tems Research (CIDR 2015), 2015.
Presented at conference.

[5] Asaf Cidon, Stephen M. Rumble, Ryan Stutsman, Sachin Katti, John Ousterhout, and
Mendel Rosenblum. Copysets: Reducing the Frequency of Data Loss in Cloud Storage.
In Proceedings of the 2013 USENIX Conference on Annual Technical Conference, USENIX
ATC’13, pages 37–48, Berkeley, CA, USA, 2013. USENIX Association.
Best Student Paper Award.

[6] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel
Rosenblum. Fast Crash Recovery in RAMCloud. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP ’11, pages 29–41, New York,
NY, USA, 2011. ACM.
Presented at conference.

[7] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Leverich,
David Mazières, Subhasish Mitra, Aravind Narayanan, Diego Ongaro, Guru Parulkar,
Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann, and Ryan Stutsman. The
Case for RAMCloud. Communications of the ACM, 54(7):121–130, July 2011.

[8] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières, and
Nickolai Zeldovich. Energy Management in Mobile Devices with the Cinder Operating
System. In Proceedings of the Sixth conference on Computer Systems, EuroSys ’11, pages
139–152, New York, NY, USA, 2011. ACM.
Presented at conference.

[9] Ryan Stutsman, Mikhail Atallah, Christian Grothoff, and Krista Grothoff. Lost in Just
the Translation. In Proceedings of the 2006 ACM Symposium on Applied Computing, pages
338–345. ACM, April 2006.
Presented at conference.

Refereed Workshop Publications
[10] Mohammed Al-Mahfoudh, Ganesh Gopalakrishnan, and Ryan Stutsman. Toward Rig-

orous Design of Domain-Specific Distributed Systems. In 4th IEEE/ACM FME Workshop
on Formal Methods in Software Engineering, FormaliSE 2016, Austin, Texas, May 15, 2016.
To appear.

[11] Ryan Stutsman and John Ousterhout. Toward Common Patterns for Distributed, Con-
current, Fault-Tolerant Code. In Proceedings of the 13th USENIX Conference on Hot Topics
in Operating Systems, HotOS’13, Berkeley, CA, USA, 2013. USENIX Association.
Presented at workshop.

[12] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and John K.
Ousterhout. It’s Time for Low Latency. In Proceedings of the 13th USENIX Conference
on Hot Topics in Operating Systems, HotOS’11, pages 11–15, Berkeley, CA, USA, 2011.
USENIX Association.

294

Ryan Stutsman 3

[13] Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières, and Nickolai Zel-
dovich. Apprehending Joule Thieves with Cinder. In MobiHeld ’09: Proceedings of the
1st ACM Workshop on Networking, Systems, and Applications for Mobile Handhelds, pages
49–54, 2009.

[14] Jad Naous, Ryan Stutsman, David Mazières, Nick McKeown, and Nickolai Zeldovich.
Delegating Network Security with More Information. In Proceedings of the 1st ACM
Workshop on Research on Enterprise Networking, WREN ’09, pages 19–26, 2009.

[15] Christian Grothoff, Krista Grothoff, Ludmila Alkhutova, Ryan Stutsman, and Mikhail
Atallah. Translation-Based Steganography. In Proceedings of Information Hiding Work-
shop, IH 2005, pages 213–233. Springer-Verlag, 2005.

Other Publications
[16] Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières, and Nickolai Zel-

dovich. Apprehending Joule Thieves with Cinder. SIGCOMM Computer Communication
Review, 40(1):106–111, 2010.

[17] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Leverich,
David Mazières, Subhasish Mitra, Aravind Narayanan, Guru Parulkar, Mendel Rosen-
blum, Stephen M. Rumble, Eric Stratmann, and Ryan Stutsman. The Case for RAM-
Clouds: Scalable High-Performance Storage Entirely in DRAM. SIGOPS Operating
Systems Review, 43(4):92–105, December 2009.

[18] Christian Grothoff, Krista Grothoff, Ryan Stutsman, Ludmila Alkhutova, and Mikhail J.
Atallah. Translation-based Steganography. Journal of Computer Security, 17(3):269–303,
2009.

Service

• Department

– School of Computing Ph.D. Admissions Committee 2014, 2015.

– School of Computing Undergraduate Advisory Committee (UGSAC) Faculty Advisor 2015-.

• Academic Community

– Program Committee Memberships: ACM SIGMETRICS ’15, ACM SIGOPS OSR Jan. 2015,
IMDM ’14, IMDM ’15, IMDM ’16, IEEE ICDE ’16, SIGMOD ’16 Demo Committee, SIGMOD ’17.

Open Source Software and Libraries

• RAMCloud large-scale, low-latency key-value store:
http://ramcloud.stanford.edu/.

• Cinder from-scratch OS for mobile phones with first class energy management:
http://www.scs.stanford.edu/cinder/.

• Rose source-to-source compiler for automated program transforms:
http://www.rosecompiler.org/.

• Autotest release-driven distributed regression testing for the Linux kernel:
http://autotest.github.io/.

295

http://ramcloud.stanford.edu/
http://www.scs.stanford.edu/cinder/
http://www.rosecompiler.org/
http://autotest.github.io/

Ryan Stutsman 4

Teaching

1/16–5/16 Instructor, CS5460/6460 Operating Systems. University of Utah. 130 students; combined un-
dergraduate/graduates.

8/15–12/15 Instructor, CS6963 Distributed Systems. University of Utah. 19 gradudate students.

1/12–3/12 Teaching Assistant, CS244B Distributed Systems. Stanford University. 45 students.

1/08–3/08 Teaching Assistant, CS240 Advanced Operating Systems. Stanford University. 30 students.

1/07–5/07 Teaching Assistant, CS180 An Introduction to Computer Science. Purdue University. 30 stu-
dents in section.

Research Advising

Doctoral Advising

Mohammed Al-Mahfoudh (Co-advised with Ganesh Gopalakrishnan), June 2015 - present.

Ph.D. Thesis Qualifying Exam Committee Member

Simone Atzeni, 2015.

Masters Thesis and Project Examining Committee Member

Charles Jabcobsen, 2016.

External Presentations

• Experience with Rules-Based Programming for Distributed, Concurrent, Fault-Tolerant Code. USENIX
ATC’15.

• High Performance Transactions in Deuteronomy. CIDR 2015.

• Toward Common Patterns for Distributed, Concurrent, Fault-Tolerant Code. HotOS’13.

• Fast Crash Recovery in RAMCloud. SOSP ’11.

• Energy Management in Mobile Devices with the Cinder Operating System. EuroSys ’11.

• Lost in Just the Translation. ACM SAC ’06.

Patents

• High Performance Transactions in Database Management Systems, 12/2014 (pending).

Media Exposure

11/11 Ars Technica, Can DRAM replace hard drives and SSDs? RAMCloud creators say yes.

10/11 HPC Wire, RAMCloud: When Disks and Flash Memory are Just Too Slow.

10/11 ZDNet, RAMCloud puts everything in DRAM.

March 15, 2016

296

Hari Sundar

Assistant Professor
School of Computing, University of Utah

S Central Campus Dr, Room
Salt Lake City, UT 84112

Phone: 801-585-9913
email: hari@cs.utah.edu

: http://www.cs.utah.edu/~hari

Research Focus

The central focus of my research is the development of computationally optimal parallel,
high-performance algorithms, both discrete and continuous, that are efficient and scalable
on state-of-the-art architectures. It is driven by applications in biosciences and geophysics,
such as cardiovascular mechanics, medical image analysis, and seismic wave propagation.
My research has resulted in the development of state-of-the-art distributed algorithms for
adaptive mesh refinement, geometric multigrid, fast Gauss transform and sorting.

Education

P D, Bioengineering University of Pennsylvania
Thesis: Spatio-Temporal Deformation Analysis of Cardiac MR Images.
Advisors: Christos Davatzikos George Biros

B.E ., Control Systems University of Delhi

Experience

- Assistant Professor School of Computing, University of Utah
parallel and distributed algorithms, energy efficient algorithms, computational general rel-
ativity, seismic wave propagation, inverse problems, cardiac electrophysiology

- Research Associate ICES, University of Texas
multigridmethods, parallel and distributed algorithms, seismicwave propagation, distributed
sorting, inverse problems

- Research Scientist Siemens Corporate Research
image registration, computer assisted surgery, image segmentation, gaze tracking, biome-
chanics, surgical simulation, augmented reality

- Research Assistant University of Pennsylvania
large-scale PDE constrained optimization, adaptivemesh refinement, parallel and distributed

297

mailto:hari@cs.utah.edu
http://www.cs.utah.edu/~hari

computing, cardiac biomechanics, image registration

- Research Associate Siemens Corporate Research
point cloud matching, image-based guidance for electrophysiological procedures

- Graduate Assistant Rutgers University
Shape Matching, Graph Matching, Skeletal Shape Representaion

Teaching

Parallel Algorithms High Performance Computing, Spring ,
School of Computing, University of Utah.

Big Data Computer Systems, Fall ,
School of Computing, University of Utah.

Distributed Linear Algebra, Seminar, Fall ,
School of Computing, University of Utah.

Distributed Algorithms, Seminar, Spring
School of Computing, University of Utah.

Parallel Algorithms for Scientific Computing, Spring , Spring
University of Texas at Austin. Co-Instructed with George Biros.

Grants

. Sponsor: NSF
Role: co-PI
EAGER: Application-driven Data Precision Selection Methods
Award amount: $,
Project Period: / / - / /

. Sponsor: NSF
Role: PI
Scalable Multigrid Algorithms for solving elliptic PDEs on power-efficient Clusters
Grant# :
Award amount: $,
Project Period: / / - / /

Gifts

Gift of two Jetson Tegra-K development boards from NVIDIA Cordporation, worth $.

298

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1464244

Selected Refereed Publications

Full list of publications available at Google Scholar

. H S , O G , A Nested Partitioning Algorithm for Adaptive Meshes
onHeterogeneousClusters, ACM International Conference on Supercomputing, ICS’ ,
Newport Beach, CA, .

. H S , G S , G B , Comparison of Multigrid Algorithms
for High-order Continuous Finite Element Discretizations, to appear Numerical Lin-
ear Algebra with Applications, .

. H S , D M , K S , Algorithms for High-throughput
Disk-to-Disk Sorting, Proceedings of Supercomputing (SC), ACM/IEEE Computer
Society, Denver.

. H S , D M , G B , HykSort: a new variant of hy-
percube quicksort on distributed memory architectures, Proceedings of ICS- , ACM
International Conference on Supercomputing, Eugene, OR.

. D R -H , H S , M C , Non-Rigid D/ D Reg-
istration of Coronary Artery Models with Live Fluoroscopy for Guidance of Cardiac
Interventions, IEEE Transactions on Medical Imaging, (), - .

. H S , G B , C B , J R , O G ,
G S , Parallel Geometric-Algebraic Multigrid on Unstructured Forests
of Octrees, Proceedings of Supercomputing (SC), ACM/IEEE Computer Society,
Salt Lake City.

. R S , H S , S V , Parallel Fast Gauss Trans-
form, Proceedings of Supercomputing (SC), ACM/IEEE Computer Society, New
Orleans. Best Paper Finalist.

. H S , H L , D S , Estimating Consistent Myocardial
Motion by D Image Warping, Pattern Recognition, () , pp - .

. H S , R S. S , G B ,Bottom-Up Construction and :
Balance Refinement of Linear Octrees in Parallel, SIAM Journal on Scientific Com-
puting, () .

. H S , C D , G B , Biomechanically-Constrained
D Estimation of Myocardial Motion, Springer Lecture Notes in Computer Science,
MICCAI, (): pp - .

. R S. S , S S. A , H S , I L , G B ,
Dendro: Parallel Algorithms for Multigrid and AMR Methods on : Balanced Oc-
trees, Proceedings of Supercomputing (SC), ACM/IEEEComputer Society, Austin,
Texas.

299

http://scholar.google.com/citations?user=equOxc0AAAAJ

. H S , D S , G B , C X , C D ,
Robust estimation of Mutual Information using Spatially Adaptive Meshes, Springer
Lecture Notes in Computer Science, MICCAI, (): pp - .

. H S , R S. S , S S. A , C D , G
B , Low-constant Parallel Algorithms for Finite Element Simulations using Lin-
ear Octrees, Proceedings of Supercomputing (SC), ACM/IEEE Computer Society,
Reno, Nevada, Best Student Paper Finalist.

Honors and Awards

- Multiple patents awarded and pending approval by the USPTO (filed by Siemens AG).
Please see here for a complete list of patents.

Best Paper finalist, ACM/IEEE SuperComputing . (Best paper in Math Library Paral-
lelization)

Best Student Paper finalist, ACM/IEEE SuperComputing . (Best paper in PDE Appli-
cations)

- Siemens-Penn Fellowship for Ph.D. studies.

Professional Activities

• Editorial Board member for Journal of Computational Science (-present).

• Program Committee member for the following Conferences: ACM/IEEE Super-
computing (SC’), IEEE Cluster , , ACM International Conference on Su-
percomputing (ICS’), IEEE International ParallelDistributed Processing Sympo-
sium (IPDPS’ , IPDPS’)

• Reviewer for the following journals: IEEE Transactions on Medical Imaging, IEEE
Transactions on Biomedical Engineering, IEEE Transactions on Image Processing,
ACM Transactions on Mathematical Software, Medical Image Analysis, The Visual
Computer, Signal, Image Video Processing, .

• Reviewer for the following Conferences: Supercomputing, ICCV, CVPR, IPDPS,
MICCAI, ISBI.

• Member on the Stampede User Advisory Committee at the Texas Advanced Comput-
ing Center (TACC), -.

Last updated: October ,

300

https://www.google.com/search?tbm=pts&q=ininventor:Hari+Sundar

James C. Sutherland
50 S. Central Campus Dr. 3290 MEB

Salt Lake City, UT 84112
James.Sutherland@utah.edu

www.che.utah.edu/∼sutherland

Academic Appointments & Affiliations

July, 2012 - Present Associate Professor of Chemical Engineering, The
University of Utah

October, 2006 - June,
2012

Assistant Professor of Chemical Engineering, The
University of Utah

May, 2011 - present Adjunct Assistant Professor, School of Computing, The
University of Utah

Fall, 2010 - Present Primary investigator, Center for Parallel Computing, The
University of Utah

Fall, 2006 - Present Primary investigator, Institute for Clean & Secure Energy,
The University of Utah

August, 2004 – October,
2006

Post-doctoral research assistant – Thermal/Fluids
Computational Engineering Sciences, Sandia National
Laboratories (Albuquerque, NM).

August 1999 - July 2004 Ph.D. Student & Student Intern – Combustion Research
Facility, Sandia National Laboratories (Livermore, CA) &
The University of Utah.

1998-1999 Research Assistant - University of Utah Advanced
Combustion Group.

Research Interests

• Multiscale modeling & simulation, including identification of controlling parameters from
which one can construct high-fidelity, scale-bridging models.

• Extreme-scale computing, including design and implementation of software and algorithms
suitable for petascale- and exascale-level computing.

• Turbulent reacting flows.

301

mailto:James.Sutherland@utah.edu
http://www.che.utah.edu/~sutherland
http://www.che.utah.edu
http://www.che.utah.edu
http://www.sci.utah.edu/
http://www.parallel.utah.edu/activities/index.shtml
http://www.icse.utah.edu/

James C. Sutherland November 11, 2013

Education

May, 2004 Doctor of Philosophy in Chemical Engineering, The University of Utah
GPA: 3.96
Dissertation: “Evaluation of Large-Eddy Simulation Mixing and Reaction
Models Nonpremixed Combustion using Direct Numerical Simulation”

June, 1999 Bachelor of Science in Chemical Engineering, The University of Utah
GPA: 3.88, Cum Laude
Thesis: “A Study of the Chemistry of NO Formation and Reduction Using
Methane, Carbon Monoxide, and Hydrogen as Reburning Fuels”

Peer Reviewed Publications

[1] Babak Goshayeshi and James C. Sutherland. A Comparison of Various Models in Predicting
Ignition Delay in Single-Particle Coal Combustion. Combustion and Flame, Revision in
progress.

[2] John Schmidt, Martin Berzins, Jeremy Thornock, Tony Saad, and James Sutherland. Large
Scale Parallel Solution of Incompressible Flow Problems using Uintah and hypre. In In-
ternational Symposium on Cluster, Cloud and Grid Computing, Delft, Netherlands, May
2013.

[3] Alessandro Parente and James C. Sutherland. Principal component analysis of turbulent
combustion data: Data pre-processing and manifold sensitivity. Combustion and Flame,
160(2):340–350, February 2013.

[4] Patrick K. Notz, Roger P. Pawlowski, and James C. Sutherland. Graph-Based Software
Design for Managing Complexity and Enabling Concurrency in Multiphysics PDE Software.
ACM Transactions on Mathematical Software, 39(1):1–21, November 2012.

[5] Amir Biglari and James C. Sutherland. A filter-independent model identification technique
for turbulent combustion modeling. Combustion and Flame, 159:1960–1970, January 2012.

[6] Martin Berzins, Qingyu Meng, John Schmidt, and James C. Sutherland. DAG-Based Soft-
ware Frameworks for PDEs. In 17th International European Conference on Parallel and
Distributed Computing, Bordeaux, FR, September 2011. Springer.

[7] James C. Sutherland and Tony Saad. The Discrete Operator Approach to the Numerical
Solution of Partial Differential Equations. In 20th AIAA Computational Fluid Dynamics
Conference, pages AIAA–2011–3377, Honolulu, Hawaii, June 2011.

[8] A. Parente, J. C. Sutherland, B. B. Dally, L. Tognotti, and P. J. Smith. Investigation
of the MILD combustion regime via Principal Component Analysis. Proc. Combust. Inst.,
33(2):3333–3341, 2011.

2
302

James C. Sutherland November 11, 2013

[9] N. Punati, J. C. Sutherland, A. R. Kerstein, E. R. Hawkes, and J. H. Chen. An Evaluation of
the One-Dimensional Turbulence Model: Comparison with Direct Numerical Simulations of
CO/H2 Jets with Extinction and Reignition. Proc. Combust. Inst., 33(1):1515–1522, 2011.

[10] J. C. Sutherland, N. Punati, and A. R. Kerstein. A Unified Approach to the Various Formu-
lations of the One-Dimensional Turbulence Model. Technical Report ICSE091201, Institute
for Clean and Secure Energy, The University of Utah, Salt Lake City, UT, 2010.

[11] A. Parente, J. C. Sutherland, B. B. Dally, L. Tognotti, and P. J. Smith. Investigation of
the MILD combustion regime via Principal Component Analysis. In Proceedings of the
Australian Combustion Symposium, pages 1–5, December 2009.

[12] A. Parente, J. C. Sutherland, P. J. Smith, and L. Tognotti. Identification of Low-Dimensional
Manifolds in Turbulent Flames. In Proc. Combust. Inst., volume 32, pages 1579–1586. The
Combustion Institute, 2009.

[13] J. Sutherland and A. Parente. Combustion modeling using principal component analysis.
Proc. Combust. Inst., 32(1):1563–1570, 2009.

[14] S. P. Domino, G. J. Wagner, A. R. Black, A. Luketa-Hanlin, and J. C. Sutherland. Solution
Verification for Turbulent Reacting CFD Codes. In 9th AIAA Non-Deterministic Methods
Conference, Hawaii, April 2007. AIAA.

[15] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen. Scalar Mixing in Direct Nu-
merical Simulations of Temporally-Evolving Plane Jet Flames with Detailed CO/H2 Kinetics.
In Proc. Combust. Inst., volume 31, pages 1633–1640, 2007.

[16] J. C. Sutherland, P. J. Smith, and J. H. Chen. A Quantitative Method for A Priori Evaluation
of Combustion Reaction Models. Combust. Theory Modelling, 11(2):287–303, 2007.

[17] J. C. Sutherland, P. J. Smith, and J. H. Chen. Quantification of Differential Diffusion in
Nonpremixed Systems. Combust. Theory Modelling, 9(2):365–383, May 2005.

[18] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen. Direct Numerical Simulation
of Turbulent Combustion - Fundamental Insights Towards Predictive Models. In Journal of
Physics: Conference Series, volume 16, pages 65–79, 2005.

[19] J. C. Sutherland and C. A. Kennedy. Improved Boundary Conditions for Viscous, Reacting,
Compressible Flows. J. Comp. Phys., 191(2):502–524, 2003.

Book Chapters

[1] T. Echekki, A. R. Kerstein, and J. C. Sutherland. The One-Dimensional Turbulence (ODT)
Model. In T. Echekki and E. Mastorakos, editors, Turbulent Combustion Modeling: Ad-
vances, New Trends and Perspectives., chapter 11, pages 249–276. Springer, 2011.

3
303

James C. Sutherland November 11, 2013

Invited Talks

[1] James C. Sutherland. High Fidelity Models for Tractable Simulation of Turbulent Reacting
Flows. Sandia National Laboratories, Livermore, CA, September 2013.

[2] James C. Sutherland. Scalable Multiphysics Software Design for Emerging HPC Architec-
tures. Sandia National Laboratories, Livermore, CA, September 2013.

[3] James C Sutherland. Low-Dimensional Techniques for Modeling Turbulent Reacting Flow.
Sandia National Laboratories, Albuquerque, NM, July 2012.

[4] James C. Sutherland. Software Design Paradigms for Massively Parallel Multiphysics Appli-
cations Acknowledgments. Sandia National Laboratories, Albuquerque, NM, July 2011.

[5] James C. Sutherland. Dimension Reduction in Combustion Modeling. DOE BES Combustion
Contractor Meeting, Virginia, June 2011.

[6] James C Sutherland. Taming Complexity in Multiphysics Software Design Overview &
Motivation. Sandia National Laboratories, Albuquerque, July 2009.

[7] James C. Sutherland. Combustion Modeling & Simulation : Challenges and Opportunities
Challenges for Turbulent Combustion Modeling. In 23rd Annual ACERC Conference, Provo,
UT, 2009.

[8] James C. Sutherland and Alessandro Parente. Managing Thermochemical Complexity in
CFD. In Workshop on Fire Models & Validation, Salt Lake City, UT, September 2007.

[9] James C. Sutherland. DNS & its Role in Validation of Mixing & Reaction Models. In
Workshop on Heat Transfer in Pool Fires, Salt Lake City, UT, 2004.

4
304

WILLIAM B. THOMPSON

Present address: School of Computing
University of Utah
50 So. Central Campus Dr., room MEB-3190
Salt Lake City, UT 84112

phone: (801) 581-8224
email: thompson@cs.utah.edu
web: http://www.cs.utah.edu/∼thompson/

Education:

Ph.D., Computer Science, University of Southern California, Los Angeles, CA, January 1975.
M.S., Computer Science, University of Southern California, Los Angeles, CA, January 1972.
Sc.B., Physics, Brown University, Providence, RI, June 1970.

Professional experience:

Professor, Department of Computer Science, University of Utah, 1991 - .
Adjunct Professor, Department of Psychology, University of Utah, 2004 - .
Professor, Computer Science Department, University of Minnesota, 1990 - 1991.
Associate Professor, Department of Computer Science, University of Minnesota, 1982 - 1990.
Assistant Professor, Department of Computer Science, University of Minnesota, 1975 - 1982.

Principal areas of current research interest:

Computational models of perception, with an emphasis on spatial organization; Perception and
computer graphics; Virtual environments; Computer vision;

Research accomplishments:

Prof. Thompson’s current research lies at the intersection of computer graphics and visual per-
ception, with the dual aims of making computer graphics more effective at conveying infor-
mation and using computer graphics as an aid in investigating human perception. This is an
intrinsically multi-disciplinary effort involving aspects of computer science, perceptual psy-
chology, and computational vision. Prof. Thompson has also made contributions in the areas of
visual motion perception and in the integration of vision and maps for navigation.

Recent professional activities:

Associate Editor, ACM Transactions on Applied Perception, 2003 – .

Member, Scientific Advisory Board, Max-Planck Institute for Biological Cybernetics, 2014-
2019.

1

305

Chair, organizing commitee, CRA/CCC Workshop on Quantication, Communication, and In-
terpretation of Uncertainty in Simulation and Data Science, 2014.

Program Committee, ACM SIGGRAPH Symposium on Applied Perception 2014, 2013, 2012.

Program Committee, ACM SIGGRAPH Symposium on Applied Perception in Graphics and
Visualization, 2011, 2010, 2009, 2008, 2007, 2005, 2004.

Program Co-Chair, ACM SIGGRAPH Symposium on Applied Perception in Graphics and Vi-
sualization, 2006.

Recent courses taught

CS 5650/6650 – Visual Perception from a Computer Graphics and Visualization Perspective

CS 6030 – Technical Communications in Computer Science

CS 7010 – Writing Research Proposals

CS 2000 – Introduction to Programming in C

Recent publications:

I.T. Ruginski, A.P. Boone, L.M. Padilla, L. Liu, N. Heydari, H.S. Kramer, M. Hegarty, W.B. Thompson,
D.H. House, and S.H. Creem-Regehr, “Non-expert interpretations of hurricane forecast uncertainty visual-
izations,” Spatial Cognition & Computation, 16(2), 2016.

S.H. Creem-Regehr, J.K. Stefanucci, W.B. Thompson, N. Nash, and M. McCardell, “Egocentric Distance
Perception in the Oculus Rift (DK2),” Proc. ACM Symposium on Applied Perception, 2015.

M.N. Geuss, J.K. Stefanucci, S.H. Creem-Regehr, W.B. Thompson, and B.J. Mohler, “Effect of display
technology on perceived scale of space,” Human Factors, 57(7), 2015.

E. Jun, J.K. Stefanucci, S.H. Creem-Regehr, M. Geuss, and W.B. Thompson, “Big Foot: Using the size of a
virtual foot to scale gap width,” ACM Transactions on Applied Perception, 12(4). 2015.

G. Rauhoeft, M. Leyrer, W.B. Thompson, J.K. Stefanucci, R.L. Klatzky, and B.J. Mohler, “Evoking and
Assessing Vastness in Virtual Environments,” Proc. ACM Symposium on Applied Perception, 2015.

J.K. Stefanucci, S.H. Creem-Regehr, W.B. Thompson, D.A. Lessard, and M.N. Geuss , “Evaluating the
accuracy of size perception on screen-based displays: Displayed objects appear smaller than real objects,”
Journal of Experimental Psychology: Applied, 21(3), 2015.

B.R. Kunz, S.H. Creem-Regehr, and W.B. Thompson, “Testing the Mechanisms Underlying Improved Dis-
tance Judgments in Virtual Environments,” Perception, 44, 2015.

K.M. Rand, S.H. Creem-Regehr, and W.B. Thompson, “Spatial learning while navigating with severely
degraded viewing: The role of attention and mobility monitoring,” Journal of Experimental Psychology:
Human Perception and Performance, 2015.

L.M. Padilla, G. Hansen, I.T. Ruginski, H.S. Kramer, W.B Thompson, and S.H Creem-Regehr, “The influ-
ence of different graphical displays on non-expert decision making under uncertainty,” Journal of Experi-
mental Psychology: Applied, 2015

S.H. Creem-Regehr, J.K. Stefanucci, and W.B. Thompson, “Perceiving Absolute Scale in Virtual Environ-
ments: How theory and application have mutually informed the role of body-based perception,” in B. Ross
(ed.), The Psychology of Learning and Motivation, vol. 63, 2015.

2

306

S.K. Satyavolu, S.H. Creem-Regehr, J.K. Stefanucci, and W.B. Thompson, “Pointing from a third person
avatar location: does dynamic feedback help?” Proc. ACM Symposium on Applied Perception, 2014.

B.R. Kunz, S.H. Creem-Regehr, and W.B. Thompson, “Does perceptual-motor calibration generalize across
two different forms of locomotion? Investigations of walking and wheelchairs,” PLoS ONE, 8(2), 2013.

M.N. Geuss, J.K. Stefanucci, S.H. Creem-Regehr, and W.B. Thompson, “Effect of viewing plane on per-
ceived distances in real and virtual environments,” Journal of Experimental Psychology: Human Perception
and Performance, 38(5), 2012.

M. Raj, S.H. Creem-Regehr, K.M. Rand, J.K. Stefanucci, and W.B. Thompson, “Kinect based 3D Object
Manipulation on a desktop display,” Proc. ACM Symposium on Applied Perception, 2012.

J.K. Stefanucci, D.A. Lessard, M.N Geuss, S.H. Creem-Regehr, and W.B. Thompson, “Evaluating the ac-
curacy of size perception in real and virtual environments,” Proc. ACM Symposium on Applied Perception,
2012.

K. Rand, M.R. Tarampi, S.H. Creem-Regehr, and W.B. Thompson, “The influence of ground contact and
visible horizon on perception of distance and size under severely degraded vision,” Seeing and Perceiving,
25(5), 2012.

T. Ziemek, S.H. Creem-Regehr, W.B. Thompson, and R. Whitaker, “Evaluating the Effectiveness of Orien-
tation Indicators with an Awareness of Individual Differences,” ACM Transactions on Applied Perception,
9(2), 2012.

K. Rand, M.R. Tarampi, S.H Creem-Regehr, and W.B. Thompson, “The Importance of a Visual Horizon for
Distance Judgments under Severely Degraded Vision,” Perception, 40(2), 2011.

W.B. Thompson, R.W. Fleming, S.H. Creem-Regehr, and J.K. Stefanucci, Visual Perception from a Com-
puter Graphics Perspective, CRC Press, 2011.

M. Geuss, J. Stefanucci, S.H. Creem-Regehr, and W.B. Thompson, “Can I pass?: Using affordances to
measure perceived size in virtual environments,” Proc. Symposium on Applied Perception in Graphics and
Visualization, 2010.

B.R. Kunz, S.H. Creem-Regehr, and W.B. Thompson, “Visual capture influences body-based indications of
visual extent,” Experimental Brain Research, 207(3-4), 2010.

B.J Mohler, S.H Creem-Regehr, W.B. Thompson, and H.H. Bülthoff, “The Effect of Viewing a Self-Avatar
on Distance Judgments in an HMD-Based Virtual Environment,” Presence: Teleoperators and Virtual En-
vironments, 19(3), 2010.

M.R. Tarampi, S.H. Creem-Regehr, and W.B. Thompson, “Intact Spatial Updating with Severely Degraded
Vision,” Attention, Perception, & Psychophysics, 72(1), 2010.

W.B. Thompson and P. Shirley, “Computer Graphics and Perception,” in Encyclopedia of Perception, E.B.
Goldstein, ed., Sage, 2010.

W.B. Thompson, “Virtual Reality: Vision,” in Encyclopedia of Perception, E.B. Goldstein, ed., Sage, 2010.

M. Bratkova, P. Shirley, and W.B. Thompson, “Artistic Rendering of Mountainous Terrain,” ACM Transac-
tions on Graphics, 28(4), 2009.

S.A. Kuhl, W.B. Thompson, and S.H. Creem-Regehr, “HMD calibration and its effects on distance judg-
ments,” ACM Transactions on Applied Perception, 6(3), 2009.

3

307

B.R. Kunz, L. Wouters, D. Smith, W.B. Thompson, and and S.H. Creem-Regehr, “Revisiting the Effect of
Quality of Graphics on Distance Judgments in Virtual Environments: A Comparison of Verbal Reports and
Blind Walking, Attention, Perception, & Psychophysics, 71(6), 2009.

B.R. Kunz, and S.H. Creem-Regehr, and W.B. Thompson, “Evidence for Motor Simulation in Imagined
Locomotion,” Journal of Experimental Psychology: Human Perception and Performance, 35(5), 2009.

P. Willemsen, M.B. Colton, S.H. Creem-Regehr and W.B. Thompson, “The Effects of Head-Mounted
Display Mechanical Properties and Field-of-View on Distance Judgments in Virtual Environments,” ACM
Transactions on Applied Perception, 6(2), 2009.

M. Bratkova, W.B. Thompson, and P. Shirley, “Automatic Views of Natural Scenes,” Proc. International
Symposium on Computational Aesthetics in Graphics, Visualization, and Imaging, May 2009.

P. Shirley and S. Marshcner, with M. Ashikhmin, M. Gleicher, N. Hoffman, G. Johnson, T. Munzner, E.
Reinhard, K. Sung, W.B. Thompson, P. Willemsen, and B. Wyvill, Fundamentals of Computer Graphics,
third edition, A K Peters, 2009 (chapter on Visual Perception).

4

308

Jacobus (Kobus) Van der Merwe
University of Utah
School of Computing
50 South Central Campus Drive
Salt Lake City, UT, 84112

Phone: (801) 581-3012

Email: kobus@cs.utah.edu
Homepage: http://www.cs.utah.edu/~kobus

Education

PhD in Computer Science, 1998

University of Cambridge, United Kingdom
Dissertation: Open Service Support for ATM

M.Eng in Electronic Engineering (cum laude), 1990

University of Pretoria, South Africa
Dissertation: A study of the effect of out-of-plane rotation on the performance of smart spatial filters

B.Eng in Electronic Engineering (cum laude), 1988

University of Pretoria, South Africa

Recognition and honors

Received the USENIX Test of Time award for “developing a logically centralized BGP routing con-
troller, which was an important step towards the centralized routing controllers of Software-Defined
Networks”, 2015

Received AT&T Research Excellence award, 2001.

Received AT&T Science and Technology Medal, 2010, for work in Intelligent Route Control.

Recent Work Experience

August 2012 - Present Associate Professor University of Utah

October 2011 - July 2012 Lead Member Technical Staff AT&T Labs - Research

April 2001 - October 2011 Principal Member Technical Staff AT&T Labs - Research

January 1998 - March 2001 Senior Member Technical Staff AT&T Labs - Research

Teaching Experience

Fall 2016 CS 6480: Advanced Computer Networks

Spring 2016 CS7943: Networking Seminar

Spring 2016 CS 4480: Computer Networks

Fall 2015 CS 6480: Advanced Computer Networks

309

http://www.cs.utah.edu/~kobus

Jacobus (Kobus) Van der Merwe 2

Spring 2015 CS7943: Networking Seminar

Spring 2015 CS 4480: Computer Networks

Spring 2015 CS 3011: Undergraduate Industry Forum

Fall 2014 CS 6480: Advanced Computer Networks

Spring 2014 CS 4480: Computer Networks

Fall 2013 CS 6480: Advanced Computer Networks

Spring 2013 CS 4480: Computer Networks

Fall 2012 CS 7934: Computer Systems Seminar

Recent Publications

Student authors below underlined. University of Utah students underlined and italicized.

Book Chapters

1. H. A. Alzoubi, M. Rabinovich, S. Lee, J. Van Der Merwe, and O. Spatscheck, “Anycast Request
Routing for Content Delivery Networks”. An invited chapter in Mukaddim Pathan and Ramesh
Sitaraman (Eds.). “Advanced Content Delivery and Streaming in the Cloud”. Wiley Publishers,
2014.

2. Brian Rexroad and Jacobus Van der Merwe, “Network Security - A Service Provider View”, in
“Guide to Reliable Internet Services and Applications (Computer Communications and Networks) ”, Charles
R Kalmanek, Sudip Misra, and Y. Richard Yang (ed.), 2012.

Journal Papers

1. Timothy Wood, K.K. Ramakrishnan, Prashant Shenoy, Jacobus Van der Merwe, Jinho Hwang, Guyue Liu,
Lucas Chaufournier, “CloudNet: Dynamic Pooling of Cloud Resources by Live WAN Migration of
Virtual Machines”, IEEE/ACM Transactions on Networking, August 2014.

2. Elliott Karpilovsky, Matthew Caesar, Jennifer Rexford, Aman Shaikh, Jacobus van der Merwe, “Prac-
tical Network-Wide Compression of IP Routing Tables", IEEE Transactions on Network and Service
Management, November 2012

3. Timothy Wood, K.K. Ramakrishnan, Prashant Shenoy and Jacobus Van der Merwe, “Enterprise-
Ready Virtual Cloud Pools: Vision, Opportunities and Challenges", The Computer Journal, June
2012; doi: 10.1093/comjnl/bxs060

4. Hussein Alzoubi, Seungjoon Lee, Michael Rabinovich, Oliver Spatscheck, and Jacobus Van Der
Merwe, “A Practical Architecture for an Anycast CDN", ACM Transactions on Web, October 2011,
Volume 5, Number 4

310

Jacobus (Kobus) Van der Merwe 3

Peer Reviewed Conference and Workshop Papers

1. Josh Kunz, Christopher Becker, Mohamed Mehdi Jamshidy, Sneha Kumar Kasera, Robert Ricci, and Ja-
cobus Van der Merwe, “OpenEdge: A Dynamic and Secure Open Service Edge Network”, IEEE/IFIP
Network Operations and Management Symposium (NOMS), April, 2016.

2. Ren Quinn, Josh Kunz, Aisha Syed, Joe Breen, Sneha Kumar Kasera, Robert Ricci, and Jacobus Van der
Merwe, “KnowNet: Towards a Knowledge Plane for Enterprise Network Management”, IEEE/IFIP
Network Operations and Management Symposium (NOMS), April, 2016.

3. Ryan Saunders, Junguk Cho, Arijit Banerjee, Frederico Rocha, and Jacobus Van der Merwe, “P2P Offload-
ing in Mobile Networks using SDN”, Symposium on SDN Research (SOSR), March 2016.

4. Arijit Banerjee, Rajesh Mahindra, Karthik Sundaresan, Sneha Kumar Kasera, Jacobus Van der Merwe,
and Sampath Rangarajan, “Scaling the LTE Control-Plane for Future Mobile Access”, Proceedings of
the Eleventh ACM International Conference on Emerging Networking EXperiments and Technolo-
gies (CoNEXT), December 2015.

5. Binh Nguyen, Zihui Ge, Jacobus Van der Merwe, He Yan, and Jennifer Yates, “ABSENCE: Usage-
based Failure Detection in Mobile Networks”, Proceedings of the 21st Annual International Confer-
ence on Mobile Computing and Networking (MobiCom), September 2015.

6. Kaiqiang Wang, Minwei Shen, Junguk Cho, Arijit Banerjee, Jacobus Van der Merwe, and Kirk Webb,
“MobiScud: A Fast Moving Personal Cloud in the Mobile Network”, 5th Workshop on All Things
Cellular: Operations, Applications and Challenges, August 2015.

7. Cai (Richard) Li, Dallin Abendroth, Xing Lin, Yuankai Guo, Hyun-wook Baek, Eric Eide, Robert Ricci, and
Jacobus Van der Merwe, “Potassium: Penetration Testing as a Service”, ACM Symposium on Cloud
Computing (SoCC), August 2015.

8. Arijit Banerjee, Binh Nguyen, Vijay Gopalakrishnan, Sneha Kumar Kasera, Seungjoon Lee, and Ja-
cobus (Kobus) Van der Merwe, “Efficient, Adaptive and Scalable Device Activation for M2M Com-
munications”, IEEE International Conference on Sensing, Communication and Networking (SECON),
June 2015.

9. Junguk Cho, Binh Nguyen, Arijit Banerjee, Robert Ricci, Jacobus Van der Merwe, and Kirk Webb,“SMORE:
Software-Defined Networking Mobile Offloading Architecture”, SIGCOMM Workshop on All Things
Cellular: Operations, Applications and Challenges, August 2014.

10. Binh Nguyen, Arijit Banerjee, Vijay Gopalakrishnan, Sneha Kasera, Seungjoon Lee, Aman Shaikh, and
Jacobus Van der Merwe, “Towards understanding TCP performance on LTE/EPC mobile networks”,
SIGCOMM Workshop on All Things Cellular: Operations, Applications and Challenges, August
2014.

11. Hyun-wook Baek, Abhinav Srivastava and Jacobus Van der Merwe, “CloudVMI: Virtual Machine In-
trospection as a Cloud Service”, IEEE International Conference on Cloud Engineering (IC2E), March,
2014.

12. Arijit Banerjee, Xu Chen, Jeffrey Erman, Vijay Gopalakrishnan, Seungjoon Lee, and Jacobus Van
der Merwe, “MOCA: A Lightweight Mobile Cloud Offloading Architecture”, ACM Workshop on
Mobility in the Evolving Internet Architecture (MobiArch), October, 2013.

13. Chia-Chi Lin, Virajith Jalaparti, Matthew Caesar, and Jacobus Van der Merwe, “DEFINED: Deter-
ministic Execution for Interactive Control-Plane Debugging”, USENIX Annual Technical Conference
(ATC), June 2013.

311

Jacobus (Kobus) Van der Merwe 4

14. Xu Chen, Jeffrey Erman, Seungjoon Lee, Jacobus Van der Merwe, “Mercado: Using market principles
to drive alternative network service abstractions”, Capacity Sharing Workshop, ACM CoNEXT 2012,
December, 2012

15. Virajith Jalaparti, Matthew Caesar, Seungjoon Lee, Jeffrey Pang, Jacobus van der Merwe, “SMOG: A
Cloud Platform for Seamless Wide area Migration of Networked Games”, ACM/IEEE NetGames,
November 2012.

16. Changbin Liu, Yun Mao, Xu Chen, Mary F. Fernandez, Boon Thau Loo and Jacobus E. Van der
Merwe, "TROPIC: Transactional Resource Orchestration Platform In the Cloud", USENIX Annual
Technical Conference (ATC), June 2012

Recent Funding

Co-PI, $499,999 (50% share), NSF, CapNet: Secure Scientific Workloads with Capability Enabled Networks,
with Anton Burtsev, September 2015 - August 2018.

PI, $49,623 (100% share), NSF, PhantomNet Users’ Workshop, September 2014 - August 31 2016.

Co-PI, $3,400,000 (including $1,000,000 University cost share) (33% share), NSF, MRI: Development of
Apt, a Testbed Instrument With Adaptable Profiles for Network and Computational Science, with Robert Ricci
(PI), Eric Eide and Julio Facelli, October 2013 - September 2017.

Co-PI, $999,978 (20% share), NSF, CC-NIE Integration: Science Slices Converting Network Research Inno-
vation into Enhanced Capability for Computational Science and Engineering at the University of Utah, with
Steven Corbato (PI), Adam Bolton, Thomas Cheatham and Robert Ricci, September 2013 - August 2016.

PI, $298,716 (100% share), NSF, US Ignite EAGER: SeaCat: An SDN End-to-end Application Containment
ArchitecTure to enable Secure Role Based Network Access in Healthcare, September 2013 - August 2016.

PI, $1,140,747 (25% share), NSF, NeTS: Medium: KnowOps - Making Network Management and Operations
Software Defined, with Sneha Kasera, Robert Ricci and Suresh Venkatasubramanian, September 2013 -
August 2016. (Note: This was awarded by NSF as a “continuing grant” with $402,392, $364,187 and
$374,167 for each year of the award.)

PI, $999,991 (25% share), NSF, TWC: Medium: Collaborative: TCloud: A Self-Defending, Self-Evolving and
Self-Accounting Trustworthy Cloud Platform, with Eric Eide, Feifei Li and Robert Ricci, September 2013 -
August 2016.

PI, $1,998,482 (50% share), NSF, CI-ADDO-NEW: PhantomNet: An End-to-End Mobile Network Testbed,
with Robert Ricci, September 2013 - August 2016.

Last updated: October 25, 2016

312

Bei Wang

Assistant Professor

School of Computing, Scientific Computing and Imaging Institute

University of Utah

72 S Central Campus Drive, Salt Lake City, UT 84112

beiwang@sci.utah.edu

http://www.sci.utah.edu/~beiwang/

Education

2010 Ph.D. in Computer Science, Duke University
2010 Certificate in Computational Biology and Bioinformatics, Duke University
2003 B.S. in Computer Science and Mathematics, Minor in Psychology

Summa Cum Laude, University of Bridgeport

Professional Experience

2016 – Present Assistant Professor, School of Computing, Scientific Computing and Imaging Institute,
University of Utah, Salt Lake City, UT

2011 – 2016 Research Computer Scientist, Scientific Computing and Imaging Institute,
University of Utah, Salt Lake City, UT

2010 – 2011 Postdoctoral Fellow, Scientific Computing and Imaging Institute,
University of Utah, Salt Lake City, UT

2009 – 2010 Visiting Researcher, Institute of Science and Technology, Austria

Research1

Current Research Topics
• Data analysis and data visualization of large and complex data, in particular: stratification learning and

structural inference of point cloud data, robust feature extraction from vector field data, visual analytics
of high-dimensional data, large-scale network analysis and visualization, topology-inspired machine learning,
multivariate and uncertainty analysis via category theory.

Selected Journal Publications / Book Chapters
(J1) Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion. Primoz Skraba, Paul Rosen,

Bei Wang, Guoning Chen, Harsh Bhatia and Valerio Pascucci. IEEE Transactions on Visualization and
Computer Graphics (TVCG), 2016.

(J2) Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials.
Attila Gyulassy, Aaron Knoll, Peer-Timo Bremer, Bei Wang, Kah Chun Lau, Michael Papka, Larry Curtiss,
and Valerio Pascucci. IEEE Transactions on Visualization and Computer Graphics (TVCG), 22(1), pages
916 - 925, 2016.

(J3) Grassmannian Atlas: A General Framework for Exploring Linear Projections of High-Dimensional Data.
Shusen Liu, Peer-Timo Bremer, Jayaraman J. Thiagarajan, Bei Wang, Brian Summa and Valerio Pascucci.
Computer Graphics Forum (CGF), to appear, 2016.

(J4) Analyzing Simulation-Based PRA Data Through Traditional and Topological Clustering:
A BWR Station Blackout Case Study. Dan Maljovec, Shusen Liu, Bei Wang, Valerio Pascucci, Peer-Timo
Bremer, Diego Mandelli and Curtis Smith. Reliability Engineering & System Safety (RESS), 145, pages
262-276, 2016.

(J5) Robustness-Based Simplification of 2D Steady and Unsteady Vector Fields. Primoz Skraba, Bei Wang,
Guoning Chen and Paul Rosen. IEEE Transactions on Visualization and Computer Graphics (TVCG),
21(8), pages 930 - 944, 2015.

1Utah students underlined. Authors ordered alphabetically are marked with an a.

1313

(J6) Local, Smooth, and Consistent Jacobi Set Simplification. Harsh Bhatia, Bei Wang, Gregory Norgard, Valerio
Pascucci and Peer-Timo Bremer. Computational Geometry: Theory and Applications (CGTA), 48(4), Pages
311-332, 2015.

(J7) ND2AV: N-Dimensional Data Analysis and Visualization – Analysis for the National Ignition Campaign.
Peer-Timo Bremer, Dan Maljovec, Avishek Saha, Bei Wang, Jim Gaffney, Brian K. Spears and Valerio
Pascucci. Computing and Visualization in Science (CVS), 17(1), pages 1- 18, 2015.

(J8) Visual Exploration of High-Dimensional Data through Subspace Analysis and Dynamic Projections. Shusen
Liu, Bei Wang, Jayaraman J. Thiagarajan, Peer-Timo Bremer and Valerio Pascucci. Computer Graphics
Forum (CGF), 34(3), pages 271-280, 2015.

(J9) Distortion-Guided Structure-Driven Interactive Exploration of High-Dimensional Data. Shusen Liu, Bei
Wang, Peer-Timo Bremer and Valerio Pascucci. Computer Graphics Forum (CGF), 33(3), pages 101-110,
2014.

(J10) Interpreting Feature Tracking Through the Lens of Robustness.a Primoz Skraba and Bei Wang. Topological
Methods in Data Analysis and Visualization III: Theory, Algorithms, and Applications, pages 19-38, 2014.

(J11) Visualizing Robustness of Critical Points for 2D Time-Varying Vector Fields. Bei Wang, Paul Rosen, Primoz
Skraba, Harsh Bhatia and Valerio Pascucci. Computer Graphics Forum (CGF), 32(2), pages 221-230, 2013.

(J12) Adaptive Sampling with Topological Scores. Dan Maljovec, Bei Wang, Ana Kupresanin, Gardard Johannes-
son, Valerio Pascucci, Peer-Timo Bremer. International Journal for Uncertainty Quantification (IJUQ), 3(2),
pages 119-141, 2013.

(J13) Branching and Circular Features in High Dimensional Data. Bei Wang, Brian Summa, Valerio Pascucci and
Mikael Vejdemo-Johansson. IEEE Transactions on Visualization and Computer Graphics (TVCG), 17(12),
pages 1902-1911, 2011.

(J14) Computing Elevation Maxima by Searching the Gauss Sphere. Bei Wang, Herbert Edelsbrunner and Dmitriy
Morozov. ACM Journal of Experimental Algorithmics (JEA), 16, pages 1-13, 2011.

(J15) A Computational Screen for Site Selective A-to-I Editing Detects Novel Sites in Neuron Specific Hu Proteins.

Mats Ensterö, Örjan Åkerborg, Daniel Lundin, Bei Wang, Terrence S Furey, Marie Öhman and Jens Lager-
gren. BMC Bioinformatics, 11(6), 2010.

Selected Conference Publications
(C1) Convergence between Categorical Representations of Reeb Space and Mapper.a Elizabeth Munch and Bei

Wang. International Symposium on Computational Geometry (SOCG), 2016.

(C2) Kernel Partial Least Squares Regression for Relating Functional Brian Network Topology to Clinical Measures
of Behavior. Eleanor Wong, Sourabh Palande, Bei Wang, Brandon Zielinski, Jeffrey Anderson and P. Thomas
Fletcher. International Symposium on Biomedical Imaging (ISBI), 2016.

(C3) Exploring Persistent Local Homology in Topological Data Analysis.a Brittany T. Fasy and Bei Wang. Special
session on Topological Methods in Data Science and Analysis, IEEE International Conference on Acoustics,
Speech and Signal Process (ICASSP), 2016.

(C4) Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion. Primoz Skraba, Paul Rosen, Bei
Wang, Guoning Chen, Harsh Bhatia and Valerio Pascucci. Proceedings IEEE Pacific Visualization (Paci-
ficVis), 2016. Best Paper Award.

(C5) Topology-Inspired Partition-Based Sensitivity Analysis and Visualization of Nuclear Simulations. Daniel
Maljovec, Bei Wang, Paul Rosen, Andrea Alfonsi, Giovanni Pastore, Cristian Rabiti and Valerio Pascucci.
Proceedings IEEE Pacific Visualization (PacificVis), 2016.

(C6) Geometric Inference on Kernel Density Estimates.a Jeff M. Phillips, Bei Wang and Yan Zheng. International
Symposium on Computational Geometry (SOCG), 2015.

(C7) Visualizing High-Dimensional Data: Advances in the Past Decade. Shusen Liu, Dan Maljovec, Bei Wang,
Peer-Timo Bremer and Valerio Pascucci. Eurographics Conference on Visualization (EuroVis), State-of-the-
Art Report (STAR), 2015.

(C8) Approximating Local Homology from Samples.a Primoz Skraba and Bei Wang. Proceedings 25th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 174-192, 2014.

(C9) 2D Vector Field Simplification Based on Robustness. Primoz Skraba, Bei Wang, Guoning Chen and Paul
Rosen. IEEE Pacific Visualization (PacificVis), 2014. Best Paper Award.

2314

(C10) Multivariate Volume Visualization through Dynamic Projections. Shusen Liu, Bei Wang, Jayaraman J. Thia-
garajan, Peer-Timo Bremer and Valerio Pascucci. IEEE Symposium on Large Data Analysis and Visualization
(LDAV), 2014.

(C11) Adaptive Sampling Algorithms for Probabilistic Risk Assessment of Nuclear Simulations. Dan Maljovec, Bei
Wang, Diego Mandelli, Peer-Timo Bremer and Valerio Pascucci. International Topical Meeting on Proba-
bilistic Safety Assessment and Analysis (PSA), 2013. First runner-up for the Best Student Paper
Award.

(C12) Local Homology Transfer and Stratification Learning. Paul Bendich, Bei Wang and Sayan Mukherjee. Pro-
ceedings 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1355-1370, 2012.

(C13) Topological Analysis and Visualization of Cyclical Behavior in Memory Reference Traces. A.N.M. Imroz
Choudhury, Bei Wang, Paul Rosen and Valerio Pascucci. IEEE Pacific Visualization (PacificVis), 2012.

(C14) Computing Elevation Maxima by Searching the Gauss Sphere.∗ Bei Wang, Herbert Edelsbrunner and Dmitriy
Morozov. Proceedings 13th International Symposium on Experimental Algorithms (SEA), 2009. Lecture Notes
in Computer Science (LNCS), 5526, pages 281-292, 2009.

Funding

• NSF IIS-1513616 (2015-2019).
III: Medium: Collaborative Research: Topological Data Analysis for Large Network Visualization.
Role: Principal Investigator. Total award amount: $761,067.
The project investigates scalable, structure-preserving ways to sparsify networks making them suitable for
visual exploration. The proposed research will help in understanding large, complex network data sources,
which is highly relevant and important in application areas including brain connectomics, epidemiology,
communication, law enforcement, public policy and marketing.

• NSF and National Radio Astronomy Observatory (NRAO) (2016-2017)
Feature Extraction and Visualization of ALMA Data Cubes through Topological Data Analysis.
Role: Co-PI. Total award amount: $185,133.
The project focuses on designing effective visualizations for exploring the full range of complex features present
in large Atacama Large Millimeter Array (ALMA) data cubes. The proposed research aims to provide for
the first time, tools capable of simultaneously visualizing, comparing and analyzing the dozens to hundreds
of data cubes and to improve the analysis pipeline for NRAO scientists.

• Idaho National Lab (INL) LDRD Project, INL contract No. 00158804 (2015).
INL Reliability Analysis Using Topological Decomposition.
Role: Co-PI. Total award amount: $100,076.
The project focuses on developing topology-based sensitivity analysis tools for nuclear scientists.

Selected Invited Talks
• Topology, Geometry, and Data Analysis Conference at Ohio State University, 2016.

• Pacific Northwest National Laboratory, 2015.

• SAMSI workshop on Topological Data Analysis, 2014.

• Computer Science Department, Ohio State University, 2014.

• Computer Science Department Colloquium, University of Connecticut, 2013.

• Colloquium Series in School of Engineering, University of Bridgeport, 2013.

• IMA Workshop on Modern Applications of Homology and Cohomology, 2013.

• SIAM Conference on Applied Algebraic Geometry (AG), 2013.

• AMS-MAA Joint Mathematics Meeting (JMM), 2012.

• Theory Lunch, School of Computer Science, Carnegie Mellon University, 2012.

• Yaroslavl International Conference Discrete Geometry Dedicated to Centenary of A.D.Alexandrov, 2012.

• Summer school of the Delaunay Laboratory, Russia, 2012.

• ACM Symposium on Computational Geometry (SOCG) Workshop on Computational Topology, 2012.

• Fields Institute for Research in Mathematical Sciences, Thematic Program on Discrete Geometry and Appli-
cations, Workshop on Computational Topology, 2011.

3315

Selected Awards
• Best Paper Award at IEEE Pacific Visualization (PacificVis), 2016.

• Best Paper Award at IEEE Pacific Visualization (PacificVis), 2014.

• First runner-up for the Best Student Paper Award at International Topical Meeting on Probabilistic Safety
Assessment and Analysis (PSA), 2013.

Teaching
• Spring 2016: CS 1060 - Explorations in Computer Science (undergraduate level)

• Spring 2016: CS 4960 - Introduction to Computational Geometry (undergraduate level)

• Fall 2015: CS 6210 - Advanced Scientific Computing I (graduate level)

External Service

Program Committees
• IEEE Symposium on Large Data Analysis and Visualization (LDAV), 2016.

• EG/VGTC Conference on Visualization (EuroVis), Short Paper Track, 2016.

• Topology-Based Methods in Visualization (TopoInVis), 2015.

Journal/Conference Reviewing
• Discrete & Computational Geometry (DCG), Computational Geometry Theory and Applications (CGTA),

International Journal of Computational Geometry & Applications (IJCGA), Journal of Computational Ge-
ometry (JoCG), IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), IEEE
Transactions on Visualization and Computer Graphics (TVCG), Book chapter for AMS short course in Joint
Math Meetings (JMM). ACM Symposium on Theory of Computing (STOC), ACM-SIAM Symposium on
Discrete Algorithms (SODA), (ACM) Symposium on Computational Geometry (SOCG), European Sympo-
sium on Algorithms (ESA), SIAM Algorithm Engineering and Experiments (ALENEX), IEEE Conference
on Visualization (VIS), Eurographics Conference on Visualization (EuroVis), Topology-Based Methods in
Visualization (TopoInVis), IEEE Symposium on Large Data Analysis and Visualization (LDAV).

Other Synergistic Activities
• Founding member of Women in Visualization Mentoring Network, 2015.

• Member of Women in Computational Topology Network, 2015.

• Member and Speaker, Applied Algebraic Topology Research Network, 2014-2015.

• Workshop Organizer and Speaker: Topological Data Analysis and Visualization for Large-Scale and High-
Dimensional Science Discovery. International Topical Meeting on Probabilistic Safety Assessment and Anal-
ysis (PSA), 2013.

Students

Student Supervising
• Sourabh Palande (PhD).

Student Research Project Mentoring
• Brian Summa (PhD), Harsh Bhatia (PhD), Yan Zheng (PhD), Hoa Nguyen (PhD), Wathsala Widanaga-

maachchi (PhD), Liang He (MS), Soumya S. Mishra (MS), Sam Leventhal (PhD).

PhD Committee
• Shusen Liu (PhD), Dan Maljovec (PhD).

4316

 BIOGRAPHICAL SKETCH

NAME
Weiss, Jeffrey A.

POSITION TITLE
Professor, Department of Bioengineering
Adjunct Professor, Department of Orthopedics
 and School of Computing

eRA COMMONS USER NAME
jaweiss
EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, and include postdoctoral training.)

INSTITUTION AND LOCATION DEGREE
(if applicable)

YEAR(s) FIELD OF STUDY

University of California San Diego, La Jolla, CA B.S. 1989 Bioengineering
University of California San Diego, La Jolla, CA M.S. 1990 Bioengineering
University of Utah, Salt Lake City, UT Ph.D. 1994 Bioengineering
Lawrence Livermore National Laboratory,
Livermore, CA

Post-Doc 1994-
1996

Computational
Biomechanics

A. Personal Statement
I have been active as a scientist in the mechanics of musculoskeletal and cardiovascular soft tissues for nearly
25 years. The structure and function of normal and healing collagenous connective tissues has been a major
focus of my research program. I am an expert in experimental biomechanics, computational biomechanics and
nonlinear finite element analysis. I have a strong background in materials testing and characterization, multiple
imaging techniques including CT, MRI and multiphoton microscopy, and the histochemical, biochemical, and
molecular biological methods that will be applied in the proposed research. My laboratory develops and
maintains FEBio (Finite Elements for Biomechanics), an open-source finite element software suite for
computational analyses in biomechanics and biophysics with over 6,000 registered users (www.febio.org).
 Professor Yu and I began our current collaboration in 2014, shortly after Professor Yu joined the
Department of Bioengineering at the University of Utah. The proposed research is based on our collaborative
efforts to apply CHP targeting of collagen damage to the study of injury and disease in musculoskeletal soft
tissues. We have collected convincing preliminary data over the last two years to support the project. The
project brings together my expertise in the structure, function, injury and healing of musculoskeletal soft tissues
with Professor Yu’s expertise in bio-organic chemistry, polymer science and protein/peptide engineering.

+Zitnay JL, +Li Y, Qin Z, San B-H, Depalle B, Reese SP, Buehler MJ, *Yu SM, *Weiss JA: Molecular level
detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides.
Nature Communications, Revision 1 Submitted June 2016. + = co-first authors; * = co-corresponding
authors.

Henninger HB, Valdez WR, Scott SA, Weiss JA: Elastin governs the mechanical response of medial
collateral ligament under shear and transverse tensile loading. Acta Biomaterialia 24:304-312, 2015.
PMID: 26162584.

Reese SP, Ellis BJ, Weiss JA: Micromechanical model of a surrogate for collagenous soft tissues:
development, validation, and analysis of mesoscale size effects. Biomechanics and Modeling in
Mechanobiology 12(6):1195-1204, 2013. PMCID: 3676693.

Maas SA, Ellis BJ, Ateshian GA, Weiss JA: FEBio: Finite elements for biomechanics. Journal of
Biomechanical Engineering 134(1):011005, 2012. PMCID: 3705975.

B. Positions and Honors
Positions and Employment
10/1994 - 11/1996 Postdoctoral Scientist, Applied Mechanics Group, LLNL, Livermore, California
12/1994 - 10/1998 Research Assistant Professor, Department of Bioengineering, University of Utah
10/1997 - 10/1998 Institute Director, Orthopedic Biomechanics Institute, Salt lake City, Utah
10/1998 - 9/2000 Assistant Professor, Biomedical Engineering, University of Arizona
10/1998 - 9/2000 Assistant Professor, Mechanical Engineering, University of Arizona
9/2000 - 2003 Assistant Professor, Bioengineering, University of Utah
1/2001 - 5/2003 Adjunct Assistant Professor, Orthopedics, University of Utah
6/2003 - 6/2010 Adjunct Associate Professor, Orthopedics, University of Utah
3/2003 - 6/2010 Associate Professor, Bioengineering, University of Utah

317

7/2005 - 6/2010 Associate Chair, Department of Bioengineering, University of Utah
1/2004 - present Faculty Member, Scientific Computing and Imaging Institute, University of Utah
7/2010 - present Adjunct Professor, Orthopedics, University of Utah
7/2010 - present Professor, Bioengineering, University of Utah
7/2012 - present Adjunct Professor, School of Computing, University of Utah

Honors (selected)
ASME Van C. Mow Medal, 2013, “…for seminal contributions to research in biomechanics related to
fundamental structure-function relationships in musculoskeletal soft tissue, subject-specific modeling of joint
mechanics, image-based biomechanics, the mechanics of angiogenesis, and the development and distribution
of the FEBio software suite”.
2011 William H Harris Award from Orthopaedic Research Society, "in recognition of the outstanding quality
and scientific achievement of the paper: The capsule’s contribution to total hip construct stability”. Journal of
Orthopaedic Research, 29(11):1642-8, 2011.
2010 ASME Richard Skalak Award – co-author on “Best paper in Journal of Biomechanical Engineering”.
Elected as Fellow, American Institute for Medical and Biological Engineering, December 2006.
Honored by Mentor Recognition Program (UCSD) for outstanding training of BME Undergraduates, Nov 2005.
Winner of Taylor & Francis prize for “outstanding innovation in computer methods in biomechanics &
biomedical engineering”, 6th Int. Symposium on Computer Methods in Biomechanics and Biomedical
Engineering, Madrid, Spain, March 2004.
ASME Y-C. Fung Young Investigator Award Recipient - May 2002; NSF CAREER Award Recipient - Jan 2002;
Whitaker Foundation Grant Recipient - 3/1995; NIH/NIAMS National Research Service Award - 12/1994.
Invited Speaker on over 50 occasions; 5 Keynote Lectures and 11 Plenary Lectures.

Activities and Affiliations (selected)
Program Chair, Summer Biomechanics, Biotransport and Bioengineering Conference (www.sb3c.com), 2015.
Co-Chair, Orthopaedics and Rehabilitation Engineering Track, Biomedical Engineering Society Annual
Meeting, October 2014.
Conference Chair, 11th International Symposium on Computer Methods in Biomechanics and Biomedical
Engineering, April 2013 (cmbbe13.sci.utah.edu/).
Member of Biomechanics Working Group (part of the Multiscale Modeling Consortium at NIBIB)
Associate Editor, ASME Journal of Biomechanical Engineering, 1/2004 to 6/2010
Associate Editor, Computer Methods in Biomechanics and Biomedical Engineering, 11/2002 to present
Editorial Board, Journal of Applied Biomechanics, 11/1996 to present
Regular ad-hoc reviewer for NIH study sections including MABS, SBSR (previously ORTH), MOSS-A, MIM.
Reviewer for NSF including CAREER Awards and BME/RAPD
ASME Bioengineering Solid Mechanics Committee, 1993 - present

C. Contributions to the Field

Ligament and tendon mechanics, injury, healing and structure-function relationships
 My research career began in 1988 with the study of the structure, function, injury and healing of
ligaments and tendons, and I continue this line of research to date. I demonstrated that injuries to ligament
insertion sites healing much more slowly than injuries to the tissue substance due to osteoclast resorption at
the mineralization front. As part of my research contributions in this area, research team determined the
origins of the large Poisson’s ratios in ligaments and tendons, and its implications for viscoelastic material
behavior. More recently, we established the mechanical role of noncollagenous components of the
extracellular matrix (decorin and other proteoglycans, elastin) in the multiaxial mechanical behavior of
ligaments and tendons.

Weiss JA, Woo SL-Y, Ohland KJ, Horibe S, Newton PO: Evaluation of a new injury model to study medial
collateral ligament healing: Primary repair vs nonoperative treatment. Journal of Orthopaedic
Research, 9:516-528, 1991. PMID: 2045978.

Lujan TJ, Underwood CJ, Henninger HB, Thompson BM, Weiss JA: Effect of dermatan sulfate
glycosaminoglycans on the quasi-static material properties of the human medial collateral ligament.
Journal of Orthopaedic Research, 25(7):894-903, 2007. PMID: 17343278.

318

Reese SP, Maas SA, Weiss JA: Micromechanical models of helical superstructures in ligament and
tendon fibers predict large Poisson’s ratios. Journal of Biomechanics, 43(7):1394-1400, 2010. PMCID:
2881222.

Henninger HB, Valdez WR, Scott SA, Weiss JA: Elastin governs the mechanical response of medial
collateral ligament under shear and transverse tensile loading. Acta Biomaterialia, 25:304–312, 2015.
PMID: 26162584.

Computational Biomechanics
 I have been involved in computational modeling applied to biomechanics since the early 1990s. My
contributions have included the development and implementation of new anisotropic constitutive models for
fibrous soft tissues, robust approaches for deformable image registration based on hyperelastic regularization,
the adoption and promotion of a structured approach to verification and validation of models in our field,
patient-specific modeling and validation of joint biomechanics, and a general framework for application of
prestrain to computational models of biological materials. In collaboration with Professor Gerard Ateshian of
Columbia University, I lead the development, support and distribution of FEBio (Finite Elements for
Biomechanics and Biophysics (www.febio.org). My research in this area is highly cited, and the FEBio
software suite is extremely popular among biomedical scientists, with over 6,000 registered users.

Weiss JA, Maker BN, Govindjee S: Finite element implementation of incompressible, transversely
isotropic hyperelasticity. Computer methods in applied mechanics and engineering 135 (1), 107-
128, 1996. http://mrl.sci.utah.edu/papers/fe.pdf

Maas SA, Ellis BJ, Ateshian GA, Weiss JA: FEBio: Finite elements for biomechanics. Journal of
Biomechanical Engineering, 134(1), 2012. PMCID: PMC3705975.

Ateshian GA, Nims RJ, Maas S, Weiss JA: Computational modeling of chemical reactions and
interstitial growth and remodeling involving charged solutes and solid-bound molecules.
Biomechanics and Modeling in Mechanobiology, 13(5):1105-20, 2014. PMID: 24558059.

Maas SA, Erdemir A, Halloran JP, Weiss JA: A general framework for application of prestrain to
computational models of biological materials. Journal of the Mechanical Behavior of Biomedical
Materials, 61:499-510, 2016.

Subject-specific Modeling of Joint Biomechanics
 My laboratory has developed and applied techniques to enable subject- and patient-specific modeling
of soft tissue mechanics. Two major areas of study have been the ligaments of the knee and the articular
cartilage of the hip. Among our many significant discoveries using these techniques, we determined that
overload of the labrum in the hip is the likely cause of early osteoarthritis in patients with developmental
dysplasia. This result was an important finding as previously it was thought that chronic stress overload of the
articular surface led to joint degeneration in these patients.

Gardiner JC and Weiss JA: Subject-specific finite element models can predict strain in the human medial
collateral ligament during valgus knee loading. Journal of Orthopaedic Research, 21:1098-1106, 2003.
PMID: 14554224.

Anderson AE, Ellis BJ, Maas SA, Peters CL, Weiss JA: Validation of finite element predictions of cartilage
contact pressure in the human hip joint. Journal of Biomechanical Engineering, 130(5):051008, 2010.

Henak CR, Anderson AE, Weiss JA: Subject-specific analysis of joint contact mechanics: application to the
study of osteoarthritis and surgical planning. Journal of Biomechanical Engineering, 135(2):021003,
2013. PMID: 23404548.

Henak CR, Abraham CL, Anderson AE, Maas SA, Ellis BJ, Peters CL, *Weiss JA: Patient-specific analysis
of cartilage and labrum mechanics in human hips with acetabular dysplasia. Osteoarthritis and
Cartilage, 22(2):210-217, 2014. http://dx.doi.org/10.1016/j.joca.2013.11.003

Mechanics of Angiogenesis and Interaction with the Extracellular Matrix
 In collaboration with Professor Jay Hoying at U. Louisville, we demonstrated that matrix strain induced
by angiogenic microvessels, the effective stiffness of the matrix (influenced by both matrix density and
mechanical boundary conditions), and the effects of matrix strain on collagen fibril alignment modulate the
direction, rate and alignment of a growing vasculature. We have designed, implemented, and validated a
coupled computational framework to study these processes, AngioFE, in which a discrete microvessel growth
model interacts with a continuous finite element mesh through the application of local remodeling sprout
stresses. The result of our in silico investigations demonstrate how mechanical boundary conditions, matrix

319

density, and matrix heterogeneity affect neovascularization and matrix deformation and provides a platform for
studying angiogenesis in complicated and multi-faceted mechanical environments that microvessels
experience in vivo.

Krishnan L, Underwood CJ, Maas S, Ellis BJ, Kode TC, Hoying JB, Weiss JA: Effect of mechanical
boundary conditions on orientation of angiogenic microvessels. Cardiovascular Research, 78(2):324-
32, 2008. PMCID: 2840993.

Underwood CJ, Edgar LT, Hoying JB, Weiss JA. Cell-generated traction forces and the resulting matrix
deformation modulate microvascular alignment and growth during angiogenesis. American Journal of
Physiology: Heart and Circulation Physiology, 307(2):H152-64, 2014. PMID: 24816262

Utzinger U, Baggett B, Weiss JA, Hoying JB, Edgar LT: Large-scale time series microscopy of neovessel
growth during angiogenesis. Angiogenesis, 18(3):219-232, 2015. PMID: 2579217.

Edgar LT, Maas SA, Guilkey JE, Weiss JA. A coupled model of neovessel growth and matrix mechanics
describes and predicts angiogenesis in vitro. Biomechanics and Modeling in Mechanobiology,
14(4):767-782, 2015. PMID: 25429840.

Complete List of Published Work in MyBibliography:
http://www.ncbi.nlm.nih.gov/sites/myncbi/jeffrey.weiss.1/bibliography/40735009/public/?sort=date&direction
=ascending

D. Research Support
Ongoing Research Support

1R01EB015133 (Weiss) 9/30/12 - 9/01/17
National Institutes of Health (NIBIB)
Multiscale Mechanics of Connective Tissues
 The specific aims are: 1) Develop a FE-based algorithmic and software framework for analysis of
nonlinear, multiscale models in biomechanics; 2) Construct idealized, multiscale physical surrogates with
well-defined nano- and microstructure, consisting of extruded collagen fibers embedded within a collagen
gel matrix; 3) Develop and validate parametric, multiscale FE models of the physical surrogates. Perform
simulations using 1st- and 2nd-order homogenization algorithms with the software developed in Aim 1.
Validate the computational models and investigate the issues of scale separation and size effects using the
experimental results from Aim 2.

1R01AR069297 (Guldberg) 4/1/16 - 3/31/21
National Institutes of Health (NIAMS)
Mechanical Regulation of Vascular Growth and Remodeling
Co-Investigator(s): Jeffrey Weiss, Thomas Barker, Mark Allen
 We will examine how the biomechanical environment affects bone micro-vascularity during bone
healing. The first two Aims will obtain in vitro, and then in vivo data on the ability of fibrin-based hydrogels to
control angiogenesis. In parallel, in silico studies, based on an already well-established computational
framework for modeling microvascular growth, will be modified to reflect the needs of the current approach.
The validated computational model will then allow examination of these mechanical interactions with
vascular growth and remodeling in greater detail and more importantly establish a predictive framework
based on this relationship that may ultimately guide post-traumatic rehabilitation programs or even the
design of engineered vascularized scaffolds.

2R01GM083925 (Weiss and Ateshian) 9/1/12 - 8/31/16 (renewed for 9/1/16 – 8/31/20)
National Institutes of Health (NIGMS)
FEBio: Finite Elements for Biomechanics
 The aims for the current period are: Aim 1: Implement chemical reactions between the constituents
of a mixture that includes deformable porous solids under finite deformation, to model phenomena such as
binding kinetics, nutrient-dependent interstitial growth mechanics, scaffold dissolution, and evolution of solid
matrix properties with alterations in mass content. Aim 2: Develop and test porous shell elements that allow
passive and active solute transport to model biological membranes. Aim 3: Redesign FEBio to
accommodate a “plugin” framework to facilitate extension and integration with other applications. Aim 4:
Extend parallelization of FEBio to include stiffness matrix and load vector assembly operations.

320

Ross T. Whitaker
937 E. 2nd Avenue, Salt Lake City, UT 84103

(W) 801/587-9549, (H) 801/524-0866
whitaker@cs.utah.edu — http://www.cs.utah.edu/˜whitaker

EDUCATION
1/89 to 10/93 The University of North Carolina Chapel Hill, NC

Department of Computer Science: Ph.D. 1993, M.S. 1991.
• Course work emphasized computer vision, graphics, visualization, and parallel

systems.
• Dissertation in nonuniform diffusion for image segmentation (advisor: S.M.

Pizer).
• University of North Carolina Alumni Fellowship 1992-93.

9/82 to 6/86 Princeton University Princeton, NJ
Electrical Engineering and Computer Science/Engineering Physics, B.S. June 1986.
• G.P.A. 3.8/4.0.
• Summa cum laude, Phi Beta Kappa, Tau Beta Pi.

WORK
EXPERIENCE

8/00–present University of Utah Salt Lake City, UT
8/07: Professor, School of Computing; Adjunct Professor, Bioengineering
8/03: Associate Professor, School of Computing; Adjunct Associate Professor, Bioengineering
8/00: Assistant Professor, School of Computing

3/96 to 7/00 University of Tennessee Knoxville, TN
Assistant Professor—Department of Electrical Engineering.

1/94 to 3/96 European Computer-Industry Research Centre (ECRC) Munich, Germany
Research Scientist—User Interaction and Visualization Group
• Developed new modeling methods for 3d segmentation and reconstruction.
• Built an object-oriented image processing platform.
• Researched and developed technologies for augmented reality.
• Led a small group of researchers and developed funded European research col-

laborations in excess of 2M DM.

HONORS AND AWARDS
• Best Paper of Journal Award, Medical Image Analysis 2010 (MICCAI 2009),

“Manifold modeling for brain population analysis”.
• Best Paper Award, Int. Meshing Roundtable 2010, “Particle systems for adap-

tive, isotropic meshing of CAD models”.
• NSF CAREER Award (Signal Processing Systems Program, 2000)
• University of Tennessee 1997, College of Engineering/Allied Signal Award for

Outstanding Research and Teaching.
• University of North Carolina, Alumni Fellowship, 1993.
• Princeton University 1986: Summa Cum Laude, Phi Beta Kappa, Tau Beta Pi.
• University of Utah, College of Engineering Dean’s list for outstanding teaching:

2011, 2013
• IEEE Fellow.
• AIMBE Fellow.

321

http://www.cs.utah.edu/~whitaker

PUBLICATIONS (truncated by year)

Refereed Journals

1. A. Anderson, P. Atkins, P. Agrawal, S. Elhabian, R. Whitaker, J. Weiss, C. Peters, S. Aoki, “Which
Radiographic Measurements Best Identify Anatomical Variation in Femoral Head Anatomy? Analysis
Using 3D Computed Tomography and Statistical Shape Modeling”, J. of Hip Preservation Surgery, 3(1),
pp. 30–45, 2016.

2. I. Oguz, J. Cates, M. Datar, B. Paniagua, P.T. Fletcher, C. Vachet, M. Styner, R. Whitaker, “Entropy-
based particle correspondence for shape populations,”, Int. J. of Comp. Assisted Radiology and Surgery,
11(7), pp. 1221–1232, 2016.

3. “Evaluating Alignment of Shapes by Ensemble Visualization”, M. Raj, M. Mirzargar, R.M. Kirby, R.T.
Whitaker, J.S. Preston, IEEE Computer Graphics and Applications, 36(3), pp. 60–71, 2016.

4. S. Pujol et al., “The DTI Challenge: Toward Standardized Evaluation of Diffusion Tensor Imaging
Tractography for Neurosurgery”, Journal of Neuroimaging, To appear, 2015.

5. L. Liu, M. Mirzangar, R.M. Kirby, R. Whitaker, D. House, “Visualizing Time-Specific Hurricane Predic-
tions, with Uncertainty, from Storm Path Ensembles” Computer Graphics Forum, 34(3), pp. 371–380,
2015.

6. Z. Fu, S. Yakovlev, R.M. Kirby, R. Whitaker, “Fast parallel solver for the levelset equations on un-
structured meshes”, Concurrency and Computation: Practice and Experience, 27(7), pp. 1639–1657,
2015.

7. J. Bronson, S. Sastry, J. Levine, R. Whitaker, “Adaptive and Unstructured Mesh Cleaving”, Procedia
Engineering 82, pp. 266–278, 2014.

8. S. Awate and R. Whitaker, “Multiatlas Segmentation as Nonparametric Regression”, IEEE Trans. on
Medical Imaging, 33(9), pp. 1803–1817, 2014.

9. J. Bronson, J. Levine, R. Whitaker, “Lattice cleaving: A multimaterial tetrahedral meshing algorithm
with guarantees”, IEEE Trans. on Visualization and Comp. Graphics, 20(2), pp. 223–237, 2014.

10. Z. Fu, T.J. Lewis, R.M. Kirby, R. Whitaker “Architecting the finite element method pipeline for the
GPU” J of Comp. and Applied Mathematics, 257, pp. 195–211, 2014.

11. X. Hao, K. Zygmunt, R. Whitaker, P. Fletcher “Improved Segmentation of White Matter Tracts with
Adaptive Riemannian Metrics” Medical Image Analysis, 18(1), pp. 161–175, 2014.

12. L. Luo et al. “Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate
and murine macular degeneration”, ACS Nano, 7(4), pp. 3264–3275, 2013.

13. P. Tóth, J. Lighty, A. Palos, R. Whitaker, E. Eddings, “A novel framework for the quantitative anal-
ysis of high resolution transmission electron micrographs of soot II. Robust multiscale nanostructure
quantification Combustion and Flame”, J. of Combustion and Flame, to appear.

14. P. Tóth, J. Lighty, A. Palos, R. Whitaker, E. Eddings, “A novel framework for the quantitative anal-
ysis of high resolution transmission electron micrographs of soot I. Robust multiscale nanostructure
quantification Combustion and Flame”, J. of Combustion and Flame, to appear.

15. Z. Fu, R.M. Kirby, R. Whitaker, “A Fast Iterative Method for Solving the Eikonal Equation on Tetrahe-
dral Domains”, SIAM J. Scientific Computing 35(5), C473-C494, 2013.

16. M. Harris, M. Datar, R. Whitaker, E. Jurrus, C. Peters, A. Anderson, “Statistical shape modeling of cam
femoroacetabular impingement” J of Orthopaedic Research, 31(10), pp. 1620–1626, 2013.

17. R. Whitaker, M. Mirzargar, R.M. Kirby “Contour Boxplots: A Method for Characterizing Uncertainty
in Feature Sets from Simulation Ensembles” IEEE Trans. on Visualization and Computer Graphics,
19(12), pp. 2713–2722, 2013.

18. K.B. Jones, M. Datar, S. Ravichandran, H. Jin, E. Jurrus, R.T. Whitaker, M.R. Capecchi, “Toward an
understanding of the short bone phenotype associated with multiple osteochondromas”, J. of Orthopedic
Research, 31(4), pages 651–657, 2013

322

19. S. Gerber, R. Whitaker, “Regularization Free Princpal Curve Estimation”, J. of Machine Learning Re-
search, 14, 1285–1302, 2013.

20. S. Gerber, O. Ruebel, P.-T. Bremer, V. Pascucci, R. Whitaker, Morse-Smale Regression, J. of Computa-
tional and Graphical Statistics, Spring, 2012.

Conference Proceedings—Full Paper Review

1. D. Perry, R. Whitaker, “Augmented Leverage Score Sampling with Bounds”, Proc. European Conf. on
Machine Learning and Knowledge Discovery in Databases, pp. 543–558, 2016.

2. J. Lewis, S. Sastry, R.M. Kirby, R. Whitaker, “A GPU-Based MIS Aggregation Strategy: Algorithms,
Comparisons, and Applications Within AMG”, Proc. IEEE 22nd Int. Conf. on High Performance
Computing, pp. 214–223, 2015.

3. G. Veni, S. Elhabian, R. Whitaker, “A Bayesian formulation of graph-cut surface estimation with global
shape priors”, IEEE 12th Int. Sym. on Biomedical Imaging (ISBI), pp. 368–371, 2015.

4. J. S. Preston, S. Joshi, R. Whitaker, “Multiscale MRF optimization for robust registration of 2D biolog-
ical data”, IEEE 12th Int. Sym. on Biomedical Imaging (ISBI), pp. 302–305, 2015.

5. M. Datar, I. Lyu, S. Kim, J. Cates, M. Styner, R. Whitaker, “Geodesic Distances to Landmarks for Dense
Correspondence on Ensembles of Complex Shapes” Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pp. 19–26, 2013.

6. J. Preston, C. Rottman, A. Cheryauka, L. Anderton, R. Whitaker, S. Joshi, “Multi-layer deformation
estimation for fluoroscopic imaging”, Proc. Information Processing in Medical Imaging (IPMI), pp.
123–134, 2013.

7. G. Veni, Z. Fu, S. Awate, R. Whitaker, “Bayesian segmentation of atrium wall using globally-optimal
graph cuts on 3D meshes” Proc. Information Processing in Medical Imaging (IPMI), pp. 656–667,
2013.

8. G. Veni, Z. Fu, S. Awate, R. Whitaker, “Proper ordered meshing of complex shapes and optimal
graph cuts applied to atrial-wall segmentation from DE-MRI”, IEEE 10th International Symposium
on Biomedical Imaging (ISBI), pp. 1296–1299, 2013.

9. S.P. Awate, P. Zhu, R.T. Whitaker, “How Many Templates Does It Take for a Good Segmentation?: Error
Analysis in Multiatlas Segmentation as a Function of Database Size”, Proc. Int. Workshop Multimodal
Brain Image Analysis (MBIA, at MICCAI), Lecture Notes in Computer Science (LNCS), Vol. 2, pp.
103–114, 2012.

10. M. Datar, P. Muralidharan, A. Kumar, S. Gouttard, J. Piven, G. Gerig, R. Whitaker, P. T. Fletcher,
“Mixed-Effects Shape Models for Estimating Longitudinal Changes in Anatomy”, Proc. 2nd Int.
MICCAI Workshop on Spatiotemporal Image Analysis for Longitudinal and Time-Series Image Data
(STIA’12), 2012.

11. D.J. Swenson, J.A. Levine, J.D. Tate, R.T. Whitaker, R.S. MacLeod, “Impacts of Boundary Conforming
Meshes on Electrical Cardiac Simulation”, Proc 21st Int. Meshing Roundtable, pp. 585-602, 2012.

12. Bronson, J., Levine, J. Whitaker R., “Lattice Cleaving: Conforming Tetrahedral Meshes of Multima-
terial Domains with Bounded Quality”. Proc. of the 21st Int. Meshing Roundtable, pp. 191–209,
2012.

13. B. Paniagua, L. Bompard, J. Cates, R. Whitaker, M. Datar, C. Vachet, M. Styner, “Combined SPHARM-
PDM and entropy-based particle systems shape analysis framework”, Soc. of Photo-Optical Instrumen-
tation Engineers (SPIE) Conf. Series, 8317, pp. 20, 2012.

323

PROFESSIONAL SERVICE (truncated)

Conference Organization

• General Cochair, IEEE Visualization, 2010 Salt Lake City, 2011 Providence.

• Organizing Committee (Workshops Chair), IEEE Int. Symposium on Biomedical Imaging, 2009, Boston.

• Cochair (Cofounder), Microscopic Image Analysis with Applications in Biology, 2006, Copenhagen.

• Cochair, SIAM Imaging Science, 2005, Salt Lake City.

Committees/Other

• Member Computing Community Consortium Council, 2013–2016.

Editorial Boards

• Associate Editor, IEEE Transactions on Medical Imaging, 2015–present.

• Associate Editor, IEEE Transactions on Visualization and Computer Graphics, 2006–2011.

• Guest Editor, Medical Image Analysis, Special Issue on “Microscopy Image Analysis”, Jan, 2009.

WORKSHOPS AND PROFESSIONAL COURSES

• “MeshMed”, MICCAI 2011, (www.imm.dtu.dk/MeshMed)

• “Workshop on Computational Diffusion MRI”, MICCAI, 2008.

• “Image Processing for Volume Graphics”, SIGGRAPH, 2002.

• “Beyond Blobs”, SIGGRAPH, 2002.

• “PDEs for Graphics and Image Processing”, SIGGRAPH, 2002.

• “Image Processing for Volume Graphics”, IEEE Visualization, 2002.

• “Image Processing for Volume Graphics”, SIGGRAPH 2001.

• “Image Processing for Volume Graphics”, IEEE Visualization, 2001.

• “Multiscale Geometric Image Analysis—Diffusion and Cores”, Visualization in Biomedical Computing
(VBC), 1994.

324

Jason Wiese Curriculum Vitae p. 1 of 4

Jason Wiese

Assistant Professor
School of Computing
University of Utah
50 S. Central Campus Drive #3190
Salt Lake City, UT 84112

Mobile: +1 919 995 0334
Email: wiese@cs.utah.edu

http://www.cs.utah.edu/~wiese

Research Interests
My research seeks to achieve a unified, expressive and actionable representation of users that can
empower future systems. I design and build systems to address the challenges of dealing with
unified personal data. To inform the design of my systems and to demonstrate their utility, I develop
approaches for interpreting personal data, create applications that leverage personal data, and
conduct user studies to understand the perspectives of users and application developers. Rooted in
my immediate background in computer science, I employ knowledge and methods from multiple
domains in my research, including: machine learning, user-centered design, real-world data
collection, and user study design.

Education
Ph.D., Human-Computer Interaction, September 2015
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
Advised By: Prof. Jason Hong and Prof. John Zimmerman

B.S., Computer Science, Cum Laude, June 2008
University of California at San Diego, La Jolla, CA
Revelle College Provost’s Honor List
Minor: Cognitive Science

Honors and Awards
2014 Yahoo Fellow

 Ubicomp Student Travel Grant
2012 Stu Card Fellowship Recipient

 Microsoft Research Student Travel Grant
2011 Facebook Ph.D. Fellowship Award Finalist

 Carnegie Mellon Usable Privacy and Security Fellowship
 Yahoo! Key Scientific Challenges Award Winner
 Facebook Ph.D. Fellowship Award Finalist

Refereed Conference Publications
P14 Das, S., Wiese, J., and Hong, J.. 2016. Epistenet: facilitating programmatic access &

processing of semantically related mobile personal data. In Proceedings of the 18th

325

Jason Wiese Curriculum Vitae p. 2 of 4

International Conference on Human-Computer Interaction with Mobile Devices and
Services (MobileHCI '16).

P13 Kratz, S. and Wiese, J.. 2016. GestureSeg: developing a gesture segmentation system using
gesture execution phase labeling by crowd workers. In Proceedings of the 8th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems (EICS '16).

P12 Gerritsen, D., Tasse, D., Olsen, J., Vlahovic, T., Gulotta, R., Odom, W., Wiese, J., and
Zimmerman, J.. 2016. Mailing Archived Emails as Postcards: Probing the Value of Virtual
Collections. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (CHI '16).

P11 Laput, G., Lasecki, W., Wiese, J., Xiao, R., Bigham, J., Harrison, C. 2015. Zensors: Adaptive,
Rapidly Deployable, Human-Intelligent Sensor Feeds. In Proceedings of the 33nd Annual
SIGCHI Conference on Human Factors in Computing Systems, 2015.

P10 Wiese, J., Min, J.K., Hong, J. and Zimmerman, J. 2015. “You Never Call, You Never Write”:
Call and SMS Logs Do Not Always Indicate Tie Strength. In Proceedings of the 2015
conference on Computer supported cooperative work (CSCW '15).

P9 Wiese, J., Hong, J. and Zimmerman, J. 2014. Challenges and opportunities in data mining
contact lists for inferring relationships. In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp '14). ACM, New York, NY,
USA, 643-647.

P8 Min, J.K., Doryab, A., Wiese, J., Amini, S., Zimmerman, J., Hong, J. 2014. Toss 'n' turn:
smartphone as sleep and sleep quality detector. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI '14). ACM, New York, NY, USA, 477-486.

P7 Wiese, J., Saponas, T.S., Brush, A.J.Phoneprioception: enabling mobile phones to infer
where they are kept. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '13). ACM, New York, NY, USA, 2157-2166.

P6 Oney, S., Harrison, C., Ogan, A., Wiese, J. ZoomBoard: a diminutive qwerty soft keyboard
using iterative zooming for ultra-small devices. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI '13). ACM, New York, NY, USA, 2799-2802.

P5 Min, J .K., Wiese, J., Hong, J . , Zimmerman, J . 2013. Mining smartphone data to
classify life-facets of social relationships. In Proceedings of the 2013 conference on
Computer supported cooperative work (CSCW '13). ACM, New York, NY, USA, 285-294.

P4 Sleeper, M., Balebako, R., Das, S., McConahy, A., Wiese, J., Cranor, L . 2013. The post that
wasn't: exploring self-censorship on facebook. In Proceedings of the 2013 conference on
Computer supported cooperative work (CSCW '13). ACM, New York, NY, USA, 793-802.

P3 Wiese, J., Kelley, P., Cranor, L., Dabbish, L., Hong, J., Zimmerman, J. 2011. Are you close with
me? are you nearby?: investigating social groups, closeness, and willingness to share. In
Proceedings of the 13th international conference on Ubiquitous computing (UbiComp '11).
ACM, New York, NY, USA, 197-206.

P2 Wiese, J., Biehl, J., Turner, T., van Melle, B., Girgensohn, A . 2011. Beyond 'yesterday's
tomorrow': towards the design of awareness technologies for the contemporary worker.
In Proceedings of the 13th International Conference on Human Computer Interaction with
Mobile Devices and Services (MobileHCI '11). ACM, New York, NY, USA, 455-464.

326

Jason Wiese Curriculum Vitae p. 3 of 4

P1 Lindqvist, J., Cranshaw, J., Wiese, J., Hong, J. and Zimmerman, J. 2011. I'm the mayor of
my house: examining why people use foursquare - a social-driven location sharing
application. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI '11). ACM, New York, NY, USA, 2409-2418.

Invited Talks
2015 Enabling and Ecosystem of Personal Behavioral Data, Invited Talk

Bosch Research, May.
 Enabling and Ecosystem of Personal Behavioral Data, Tech Talk

Google, May.
 Enabling and Ecosystem of Personal Behavioral Data, Invited Talk

University of North Carolina at Charlotte, April.
 Enabling and Ecosystem of Personal Behavioral Data, Colloquium

University of Utah, March.
 Enabling and Ecosystem of Personal Behavioral Data, Invited Talk

FX Palo Alto Laboratory, February.
 Enabling and Ecosystem of Personal Behavioral Data, Colloquium

University of Virginia, February.
 Enabling and Ecosystem of Personal Behavioral Data, Colloquium

Worcester Polytechnic Institute, February.
2014 Context Awareness, Guest Lecture, Designing Human-Centered Systems,

Carnegie Mellon University, February.
2013 Uncovering New Dimensions of Context-Awareness, Invited Talk

FX Palo Alto Laboratory, June.
2012 Mobile Social Systems, Guest Lecture, The Social Web: Content, Communities and Context

Carnegie Mellon University, December.
 Understanding Social Relationships Within Interactive Systems, Invited Talk,

DUB Seminar Series, University of Washington, August.

Professional Experience
2016 to
Present

University of Utah
Salt Lake City, UT. Assistant Professor.

2015 to
2016

FX Palo Alto Laboratory
Palo Alto, CA. Research Scientist.
Research on unauthenticated personalization, gestural interfaces, social cues in video.

2012 Microsoft Research
Redmond, WA. Research Intern.
Worked with A.J. Brush and Scott Saponas to develop and evaluate Phoneprioception.

2011 Yahoo! Labs
Santa Clara, CA. Research Intern.

327

Jason Wiese Curriculum Vitae p. 4 of 4

Developed an experimental system for social location sharing.
2010 FX Palo Alto Laboratory

Palo Alto, CA. Research Intern.
Developed and deployed an mobile social awareness system.

2007 to
2008

Qualcomm, Inc.
San Diego, CA. Human Factors Engineering Intern.
Worked on a variety of projects in the Advanced Technology group.

Teaching
2016 Instructor, CS5540 Human Computer Interaction

Introduction to user-centered design, including user research, design, prototyping, testing,
and communicating process. 49 students.

2011 Instructor, Structures of Software User Interfaces Mobile Lab
Prepared and delivered weekly lectures, created and graded assignments, and held weekly
office hours.

2010 Teaching Assistant, Human-Computer Interaction Methods
Advised project groups, held weekly office hours, created and graded assignments
and exams

Selected Press
2015 Wired (2015). “Human Smarts Plus AI Could Unlock Computer Vision.” April 29.

 PCWorld (2015). “Zensors app lets you crowdsource live camera monitoring” April 24.
 Engadget (2015). “Scientists turn old smartphones into all-seeing eyes” April 22.
 Gizmodo (2015). “One Old Android Phone Could Make All Your Dumb Things Smart”

April 21.
2014 World Economic Forum Blog (2014) “Top 10 Emerging Technologies for 2014.” September 1.
2013 Wired (2013). "Researchers Figure Out How You Can Type on a Smartwatch." May 1.

 Slashdot (2013). “Carnegie Mellon Offers Wee QWERTY Texting Tech For Impossibly Tiny
Devices.” May 1.

 Gizmodo (2013). "How Typing on a Smart Watch Might Actually Make Sense." April 29.
 MIT Technology Review (2013). “A QWERTY Keyboard for Your Wrist.” April 27.

2010 MIT Technology Review (2010). “Someone’s Watching You.” October 28.

328

Curriculum Vitae

Cem Yuksel

Address

Warnock Engineering Building
72 South Campus Central Dr., Room 2686
University of Utah
Salt Lake City, Utah 84112

Email: cem@cemyuksel.com
Web: www.cemyuksel.com
Phone: (801) 581-4439

Education

Work Experience

Publications

Peer Reviewed Journal Papers:

1. Cem Yuksel, "Sample Elimination for Generating Poisson Disk Sample Sets," Computer Graphics Forum (Proceedings of
EUROGRAPHICS 2015), 37, 2, 2015.

2. Cem Yuksel, Jonathan M. Kaldor, Doug L. James, Steve Marschner, "Stitch Meshes for Modeling Knitted Clothing with Yarn-
level Detail," ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012), 31, 3, 2012.

3. Cem Yuksel, Scott Schaefer, John Keyser, "Parameterization and Applications of Catmull-Rom Curves," Computer Aided Design,

PhD in Computer Science, Texas A&M University2006 - 2010

Visualization Sciences, Texas A&M University2004 - 2006

Visual Arts & Communication Design, Sabanci University, Turkey2003 - 2004

MS in Computer Engineering, Bogazici University, Turkey2000 - 2003

BS in Physics, Bogazici University, Turkey1995 - 2000

Assistant Professor School of Computing, University of Utah
Working on computer graphics research projects.

2012 - present

Founder of Cyber Radiance LLC.
Working on Hair Farm, a leading hair plugin for 3ds Max.

2009 - present

Postdoctoral Fellow in Computer Science, Cornell University
Worked with Dr. Doug James on graphics research projects.

2010 - 2012

Research Assistant in Computer Science, Texas A&M University
Worked on several different research projects in graphics.

2006 - 2010

Research Assistant in Visualization Sciences, Texas A&M University
Worked on hair rendering with global illumination.

2004 - 2006

Teaching & Research Assistant in Sabanci University, Turkey
Taught graduate and undergraduate level courses, worked on computer vision based research projects.

2002 - 2004

Teaching & Research Assistant in Bogazici University, Turkey
Taught several graduate & undergraduate level classes, worked on global illumination and rendering algorithms.

1998 - 2003

Research Assistant in Bogazici University Pattern Analysis & Machine Vision Lab, Turkey
Worked on several graphics & vision research projects.

1999 - 2003

329

http://www.cemyuksel.com/research/sampleelimination
http://www.cemyuksel.com/research/stitchmeshes
http://www.cemyuksel.com/research/catmullrom_param
http://www.cs.tamu.edu/
http://www.tamu.edu/
http://www-viz.tamu.edu/
http://www.tamu.edu/
http://www.sabanciuniv.edu/ssbf/vacd/eng/
http://www.sabanciuniv.edu/eng/
http://www.cmpe.boun.edu.tr/
http://www.boun.edu.tr/index_eng.html
http://www.phys.boun.edu.tr/
http://www.boun.edu.tr/index_eng.html
http://www.cs.utah.edu/
http://www.utah.edu/
http://www.cyberradiance.com/
http://www.hair-farm.com/
http://www.cs.cornell.edu/
http://www.cornell.edu/
http://www.cs.cornell.edu/~djames/
http://www.cs.tamu.edu/
http://www.tamu.edu/
http://www-viz.tamu.edu/
http://www.tamu.edu/
http://www.sabanciuniv.edu/eng/
http://www.boun.edu.tr/index_eng.html
http://www.bupam.boun.edu.tr/

3. Cem Yuksel, Scott Schaefer, John Keyser, "Parameterization and Applications of Catmull-Rom Curves," Computer Aided Design,
43, 7, 2011.

4. Cem Yuksel, John Keyser, Donald H. House, "Mesh colors," ACM Transactions on Graphics, 29, 2, 2010.

5. Cem Yuksel, Scott Schaefer, John Keyser, "Hair Meshes," ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2009), 28,
5, 2009.

6. Cem Yuksel, John Keyser, "Fast Real-time Caustics from Height Fields," The Visual Computer (Proceedings of CGI 2009), 25, 5-7,
2009.

7. Arno Zinke, Cem Yuksel, Andreas Weber, John Keyser, "Dual Scattering Approximation for Fast Multiple Scattering in Hair,"
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2008), 27, 3, 2008.

8. Cem Yuksel, John Keyser, "Deep Opacity Maps," Computer Graphics Forum (Proceedings of EUROGRAPHICS 2008), 27, 2, 2008.

9. Cem Yuksel, Donald H. House, John Keyser, "Wave Particles," ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007),
26, 3, 2007.

10. Zeki Melek, David Mayerich, Cem Yuksel, John Keyser, "Visualization of Fibrous and Thread-like Data," IEEE Transactions on
Visualization and Computer Graphics, 12, 5, 2006.

Peer Reviewed Conference Papers (excluding papers listed above):

1. Kui Wu, Cem Yuksel, "Real-time Hair Mesh Simulation," ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D
2016), 2016.

2. Cem Yuksel, Scott Schaefer, John Keyser, "On the Parameterization of Catmull-Rom Curves," 2009 SIAM/ACM Joint Conference
on Geometric and Physical Modeling, 2009.

3. Mayank Singh, Cem Yuksel, Donald House, "Fast Occlusion Sweeping," Advances in Visual Computing (Proceedings of ISVC 2009),
2009.

4. Cem Yuksel, "Gradient Space Projection," Computer Graphics International 2008, 2008.

5. Cem Yuksel, Ergun Akleman, John Keyser, "Practical Global Illumination for Hair Rendering," Proceedings of Pacific Graphics 2007,
2007.

6. Bei Xu, Cem Yuksel, Ali Abur, Ergun Akleman, "3D Visualization of Power System State Estimation," Electrotechnical Conference,
2006. MELECON 2006. IEEE Mediterranean, 2006.

7. Ergun Akleman, Cem Yuksel, "On a Family of Symmetric, Connected and High Genus Sculptures," Bridges London: Mathematics,
Music, Art, Architecture, Culture, 2006.

Other Publications (limited peer review from abstract):

1. Ian Mallett, Cem Yuksel, Amit Prakash, "Adaptive Deferred Shading," Proceedings of the 20th ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, 2016.

2. Cem Yuksel, "Hardware Accelerated Mesh Colors," Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, 2016.

3. Cem Yuksel, Sarah Tariq, "Advanced techniques in real-time hair rendering and simulation," ACM SIGGRAPH 2010 Courses, 2010.

4. Cem Yuksel, Donald H. House, John Keyser, "Implementing Wave Particles for Real-time Water Waves with Object Interaction,"
ACM SIGGRAPH 2007 Sketches, 2007.

5. Cem Yuksel, Donald H. House, John Keyser, "Implementing Wave Particles for Real-time Water Waves with Object Interaction,"
ACM SIGGRAPH 2007 Research Posters, 2007.

6. Cem Yuksel, Ergun Akleman, "Rendering hair with global illumination," ACM SIGGRAPH 2006 Research Posters, 2006.

7. Cem Yuksel, Ergun Akleman, "Rendering hair-like objects with indirect illumination," ACM SIGGRAPH 2005 Sketches, 2005.

Videos (refereed):

1. Cem Yuksel, "Dual Scattering for Real-Time Multiple Scattering in Hair," ACM SIGGRAPH 2008 Computer Animation Festival,
2008.

2. Cem Yuksel, "Wave Particles," ACM SIGGRAPH 2007 Computer Animation Festival, 2007.
Patents:

330

http://www.cemyuksel.com/research/catmullrom_param
http://www.cemyuksel.com/research/meshcolors
http://www.cemyuksel.com/research/hairmeshes
http://www.cemyuksel.com/research/heightfield_caustics
http://www.cemyuksel.com/research/dualscattering
http://www.cemyuksel.com/research/deepopacity
http://www.cemyuksel.com/research/waveparticles
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.197
http://www.cemyuksel.com/research/hairmeshsim
http://www.cemyuksel.com/research/catmullrom_param
http://dx.doi.org/10.1007/978-3-642-10331-5_16
http://www.cemyuksel.com/research/gsp
http://www.cemyuksel.com/research/gihair
http://dx.doi.org.ezproxy.lib.utah.edu/10.1109/MELCON.2006.1653254
http://archive.bridgesmathart.org/2006/bridges2006-145.html
http://doi.acm.org/10.1145/2856400.2876007
http://www.cemyuksel.com/research/meshcolors
http://www.cemyuksel.com/courses/conferences/siggraph2010-hair
http://www.cemyuksel.com/research/waveparticles
http://www.cemyuksel.com/research/waveparticles
http://www.cemyuksel.com/research/gihair
http://www.cemyuksel.com/research/gihair
http://www.cemyuksel.com/research/dualscattering
http://www.cemyuksel.com/research/waveparticles

2. Cem Yuksel, "Wave Particles," ACM SIGGRAPH 2007 Computer Animation Festival, 2007.
Patents:

1. Cem Yuksel, "Hair Meshes," US and International Patent, 2011.

Thesis:

1. Cem Yuksel, "Real-time Water Waves with Wave Particles," PhD. Thesis, Texas A&M University, 2010.

2. Cem Yuksel, "Gradient Space Projection," M.S. Thesis, Bogazici University, 2003.

Research Grants

1. NSF ESD: Computer Aided Design for 3D Fabrication Using Knitted Structures, NSF Grant #1538593. PI: Cem Yuksel,
$150,000 over 2 years, 2015-2017.

2. NSF CSR: III: CGV: Medium: Architectures for Energy Efficient Ray Tracing. NSF Grant #1409129. PI: Erik Brunvand, Co-
PIs: Cem Yuksel, Alan Davis, $899,991 over 4 years, 2014-2018.

Service

Conference Organization

1. General co-Chair, Interactive 3D Graphics and Games (I3D 2016) with Chris Wyman

Program Committee

1. ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2015)

2. International Conference on Computer Animation and Social Agents (CASA 2015)

3. Computer-Aided Design and Computer Graphics (CAD/Graphics 2015)

4. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D 2015)

5. ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2014)

6. Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2014)

7. ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2013)

8. International Conference on Computer Animation and Social Agents (CASA 2013)

Journal and Conference Reviews

1. ACM SIGGRAPH Conference

2. ACM SIGGRAPH Asia Conference

3. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D)

4. ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA)

5. ACM Transactions on Graphics Journal

6. ACM Journal on Computing and Cultural Heritage

7. Eurographics Computer Graphics Forum Journal

8. Springer The Visual Computer Journal

9. IEEE Transactions on Visualization and Computer Graphics Journal

10. Elsevier Graphical Models Journal

11. Hindawi International Journal of Computer Games Technology Journal

12. International Journal of Humanities and Arts Computing

331

http://www.cemyuksel.com/research/waveparticles
http://www.cemyuksel.com/research/hairmeshes
http://www.cemyuksel.com/research/waveparticles
http://www.cemyuksel.com/research/gsp
http://chriswyman.org/

12. International Journal of Humanities and Arts Computing

13. MDPI Fibers Journal

14. International Conference on Computer Animation and Social Agents (CASA)

15. Pacific Conference on Computer Graphics and Applications (Pacific Graphics)

University of Utah Service

1. Director of SoC BS/MS program, 2014-present.

2. SoC Faculty Search Committees, 2013-2014, 2014-2015.

3. SoC Graduate Admissions Committee, 2011-2012, 2012-2013, 2013-2014.

4. SoC Graduate Visit, 2013, 2014, 2015, 2016.

Other University Service

1. Texas A&M University Graphics 2008 Contest committee.

2. Texas A&M University Games 2007 Contest committee.

Awards

2010 CIFellows Award for Post-doctoral Research in Computer Science
Sponsored by the CRA and NSF, given to 60 recipients Nationwide.

2010 Graduate Research Excellence Award
Texas A&M University Department of Computer Science and Engineering, given to one graduate student each year.

1995 Exceptional Success in Nationwide University Entrance Examination
The Scientific and Technical Research Council of Turkey, a scholarship given to new undergraduate students studying natural sciences, who
ranked in the top 0.0001 bracket in the nationwide university entrance examination.

Teaching at the University of Utah

CS 6620 - Ray Tracing for GraphicsFall 2015

CS 4150 - AlgorithmsSpring 2015

CS 6620 - Ray Tracing for GraphicsFall 2014

CS 4150 - AlgorithmsSpring 2014

CS 7933 - Graphics SeminarSpring 2014

CS 6620 - Advanced Computer Graphics II (Ray Tracing for Graphics)Fall 2013

CS 6958 - Special Topics in Physically Based GraphicsSpring 2013

CS 7933 - Graphics SeminarSpring 2013

CS 6620 - Advanced Computer Graphics II (Ray Tracing for Graphics)Fall 2012

332

http://www.cifellows.org/
http://www.cra.org/
http://www.nsf.gov/
http://www.tamu.edu/
http://www.cse.tamu.edu/

Joseph L. Zachary
October 25, 2016

50 S Central Campus Drive, RM 3190
School of Computing
Salt Lake City, UT 84112

(801) 581-7079 (voice)
(801) 581-5843 (fax)
zachary@cs.utah.edu

http://www.cs.utah.edu/∼zachary

Education

Ph.D., Computer Science, Massachusetts Institute of Technology, September 1987.
S.M., Computer Science, Massachusetts Institute of Technology, June 1983.
S.B., Computer Science and Engineering, Massachusetts Institute of Technology, June 1979.

Professional Employment

July 1999 to present, Professor (Lecturing) of Computer Science, University of Utah, Salt Lake City, UT.
July 1997 to June 2000, Associate Chair for Academics, University of Utah, Salt Lake City, UT.
July 1993 to June 1999, Assoc. Professor (Lecturing) of Computer Science, University of Utah, SLC, UT.
August 1987 to June 1993, Assistant Professor of Computer Science, University of Utah, SLC, UT.
September 1980 to July 1987, Graduate Research and Teaching Assistant, MIT, Cambridge, MA.
August 1979 to August 1980, Software Engineer, Digital Equipment Corporation, Merrimack, NH.

Honors

2015 College of Engineering Outstanding Service Award, University of Utah.
2010 School of Computing Outstanding Teaching Award, University of Utah.
1999 IEEE Computer Society Computer Science & Engineering Undergraduate Teaching Award.
1998 College of Engineering Outstanding Service Award, University of Utah.
1997 University of Utah Distinguished Teaching Award.
1996 Department of Energy Undergraduate Computational Science Education Award.
1995 University of Utah Presidential Teaching Scholar.
1990 College of Engineering Outstanding Teaching Award, University of Utah.
1988–2016. Recognized by Dean of Engineering for outstanding teaching evaluations in 40 courses taught.

Professional Activities

Charter member of the DOE’s working group on Undergraduate Computational Engineering and Science.
Referee for numerous journals, conferences, publishers.
Panelist for NSF.

333

Publications

Books

J. Zachary. Introduction to Scientific Programming: Computational Problem Solving using Mathematica
and C. TELOS/Springer-Verlag, 1998. 433 pages.

J. Zachary. Introduction to Scientific Programming: Computational Problem Solving using Maple and C.
TELOS/Springer-Verlag, 1996. 371 pages.

Computer-Based Educational Material

J. Zachary and P. Jensen. HTML/JavaScript courseware. Interactive course material for a 100% online
course on HTML and JavaScript programming, 2000.

Journals

Fraughton, T., Sansone, C., Butner, J., Zachary, J. (2011). Interest and performance when learning online:
Providing utility value information can be important for both novice and experienced students. International
Journal of Cyber Behavior, Psychology and Learning, 1(2), 1-15.

Sansone, C., Fraughton, T., Zachary, J., Butner, J., and Heiner, C. (2011). Self-regulation of Motivation
when Learning Online: The Importance of Who, Why and How. Eductional Technology Research and
Development, 59 (2), 199-212.

Refereed Conferences

Fraughton, T., Sansone, C., Butner, J., & Zachary, J. (January, 2012). Interest And Performance When
Learning Online: Providing Utility Value Information Can Be Important For Both Novice And Experienced
Students. Presented at the annual meeting of the Society for Personality and Social Psychology, San Diego,
CA.

Sansone, C., Fraughton, T., Butner, J., Zachary, J. & Sinclair, S. (2011, September). Self-regulating Learn-
ing: The Relationships of Utility Value, Competence Value and Lesson Value to Interest and Learning. In
K.A. Renninger (chair), Competence, Value, Achievement, and Interest: How Are They Related in Aca-
demic Motivation? Symposium at the biannual meeting of the European Association for Research in Learn-
ing and Instruction, Exeter, UK.

Sansone, C., Butner, J., Zachary, J., Fraughton, T., & Ripley, S. (2011, September). Regulating the interest
experience over time: The role of utility value, on-task, and off-task behaviors. In B. Spinath (chair), What
Explains the Development of Interest and Intrinsic Motivation for Learning? Symposium presented at the
biannual meeting of the European Association for Research in Learning and Instruction, Exeter, UK.

Sansone, C., Butner, J., Fraughton, T.B., & Zachary, J.L. (2011, April). Self-regulatory Trade-offs When
Learning Online: Interested Engagement Can Hurt AND Help. In P. O’Keefe & I. Plante (chairs), Develop-
ments in Interest Theory and Research. Symposium to be presented at the annual meeting of the American
Educational Research Association, New Orleans, LA.

Fraughton, T., Sansone, C., Butner, J. & Zachary, J. (2011, January). Fully engaged: Creating an interesting
experience for those with low efficacy. Presented at the annual meeting of the Society for Personality and
Social Psychology, San Antonio, TX.

2

334

Sansone, C., Fraughton, T.B., Zachary, J.L., Heiner, C., & Butner, J. (2010, May). Interest, engagement and
learning over time: Making it personal. In K. Ann Renninger (chair), Interest, Engagement, and Learning:
Implications for STEM. Symposium at the annual meeting of the American Educational Research Associa-
tion, Denver, CO.

Sansone, C., Zachary, J.L., Fraughton, T.B., Heiner, C., & Butner, J. (2010, May). Initial orientations,
interest and online learning: What students do is as important as why. In K. Ann Renninger (chair), Study-
ing Motivation and Learning Online: Prospects and Challenges. Symposium at the annual meeting of the
American Educational Research Association, Denver, CO.

Fraughton, T.B., Sansone, C., Thoman, D.B., Butner, J., Zachary, J., & Thompson, W. (2010, January).
Differences in task engagement as a function of self-control: Why those higher in self control might be
better at regulating potential trade-offs between interest and performance. Presented at the annual meeting
of the Society for Personality and Social Psychology, Las Vegas, NV.

Recent Research Support

“Increasing Student Motivation Without Compromising Student Performance in Online Classes,” $499,370,
National Science Foundation. 9/15/08–8/31/13. (Co-PI with Carol Sansone and William Thompson.)

Teaching

The term, number, title, text, and enrollment of recent courses taught at the University of Utah follow.

F16 CS 1040 Creating Interactive Web 0Content Zachary 33
CS 3100 Models of Computation Garland 117
CS 4150 Algorithms das Gupta 95

S16 CS 1040 Creating Interactive Web Content Zachary 41
CS 3500 Software Practice 119
CS 4150 Algoithms das Gupta 180

F15 CS 1040 Creating Interactive Web Content Zachary 42
CS 1410 Introduction to Object-Oriented Programming Eck 201
CS 3100 Models of Computation Garland 152

S15 CS 1040 Creating Interactive Web Content Zachary 47
CS 1410 Introduction to Object-Oriented Programming Eck 189
CS 3500 Software Practice 69

F14 CS 1040 Creating Interactive Web Content Zachary 32
CS 1410 Introduction to Object-Oriented Programming Eck 179
CS 3100 Models of Computation Garland 93

S14 On leave

F13 On leave

3

335

S13 CS 1040 Creating Interactive Web Content Zachary 71
CS 4150 Algorithms Dasgupta 118
CS 4540 Web Software Architecture Hall 71

F12 CS 1040 Creating Interactive Web Content Zachary 65
CS 1410 Introduction to Object-Oriented Programming 163
CS 3500 Software Practice 196
CS 5040 Teaching Introductory Computer Science 28

S12 CS 1040 Creating Interactive Web Content Zachary 84
CS 4150 Algorithms Dasgupta 116
CS 4540 Web Software Architecture Hall 71

F11 CS 1040 Creating Interactive Web Content Zachary 58
CS 1410 Introduction to Object-Oriented Programming 147
CS 3500/5010 Software Practice 208
CS 5040 Teaching Introductory Computer Science 18

S11 CS 1010 Introduction to Unix Zachary 190
CS 1040 Creating Interactive Web Content Zachary 72
CS 4150 Algorithms Dasgupta 122
CS 4540 Web Software Architecture Hall 66

Chairman of Dissertation and Thesis Committees

Brian Rague, (Ph.D., 2010, University of Utah).

Cecily Heiner (Ph.D., 2010, University of Utah), “Towards a Virtual Teaching Assistant to Answer Ques-
tions asked by Students in Introductory Computer Science.”

Peter Jensen (Ph.D., March 2008, University of Utah).

David Price (M.S., 2007, University of Utah). (Co-chair with Ellen Riloff.)

Elizabeth Odekirk (M.S., 2001, University of Utah), “Providing Hints to Novice Programmers by Examining
Their Program’s Text and Output.”

Joseph Turner (M.S., Nov. 2000, University of Utah), “Javiva: A Compiler for Visualizing and Validating
Java Classes.”

Tom Tolman (M.S., July 1994, University of Utah), “Improving the Fortran Electronic Classroom.”

Wen-Yan Kuo (Ph.D., Sept. 1992, University of Utah), “A Processing-in-Memory Computer for the Parallel
Evaluation of Functional Programs.”

Laurie Hannon (M.S., July 1992, University of Utah), “A Hierarchical, Polymorphic Type System for Pro-
log.”

Arthur Lee (Ph.D., June 1992, University of Utah), “The Persistent Object System MetaStore: Persistence
via Metaprogramming.”

4

336

Appendix E: Policy 6-400: Code of Student Rights and
Responsibilities (“Student Code”)

337

Policy 6-400: Code of Student Rights and
Responsibilities (“Student Code”)

1. Section I: General Provisions and Definitions

A. General Provisions

1. The Code of Student Rights and Responsibilities has seven
parts: General Provisions and Definitions, Student Bill of Rights,
Student Behavior, Student Academic Performance, Student
Academic Conduct, Student Professional and Ethical Conduct,
and Student Records.

2. The mission of the University of Utah is to educate the individual
and to discover, refine and disseminate knowledge. The
University supports the intellectual, personal, social and ethical
development of members of the University community. These
goals can best be achieved in an open and supportive
environment that encourages reasoned discourse, honesty, and
respect for the rights of all individuals. Students at the University
of Utah are encouraged to exercise personal responsibility and
self-discipline and engage in the rigors of discovery and
scholarship.

3. Students at the University of Utah are members of an academic
community committed to basic and broadly shared ethical
principles and concepts of civility. Integrity, autonomy, justice,
respect and responsibility represent the basis for the rights and
responsibilities that follow. Participation in the University of Utah
community obligates each member to follow a code of civilized
behavior.

4. The purposes of the Code of Student Rights and Responsibilities
are to set forth the specific authority and responsibility of the
University to maintain social discipline, to establish guidelines
that facilitate a just and civil campus community, and to outline
the educational process for determining student and student
organization responsibility for alleged violations of University
regulations. University policies have been designed to protect
individuals and the campus community and create an
environment conducive to achieving the academic mission of the
institution. The University encourages informal resolution of
problems, and students are urged to discuss their concerns with
the involved faculty member, department chair, dean of the
college or dean of students. Informal resolution of problems by

338

mutual consent of all parties is highly desired and is appropriate
at any time.

5. In cases where a more formal resolution of problems is needed,
distinct administrative procedures and time lines have been
established for proceedings under the Standards of Behavior
(Section III), the Standards of Academic Performance (Section
IV), the Standards of Academic Conduct (Section V) and the
Standards of Professional Conduct (Section VI). Certain conduct
by students may fall within more than one section of the Student
Code. When this is the case, an appropriate University
administrator shall determine which section of the code is the
appropriate section under which to proceed. In special
circumstances, the appropriate University administrator may
extend time lines in the interest of fairness to parties or to avoid
injury to one of the parties or to a member of the University
community.

6. The University, the Committees and all participants shall take
reasonable steps to protect the rights and, to the extent
appropriate, the confidentiality of all parties involved in any
proceedings under the Student Code.

7. At the sole discretion of the University, proceedings under the
Student Code may be postponed when acts or conduct involving
possible violations of the Standards of Behavior, the Standards
of Academic Conduct or the Standards of Professional Conduct
are also the subject of ongoing criminal or civil enforcement
proceedings brought by federal, state, or local authorities and
when postponing the proceedings will serve the best interests of
the University or will better facilitate the administration of justice
by such authorities. The vice president for student affairs, or
designee, shall make the decision regarding proceedings under
the Standards of Behavior. The senior vice president for
academic affairs or the senior vice president for health sciences,
or their designees, shall make the decision regarding
proceedings under the Standards of Academic Conduct and the
Standards of Professional Conduct.

8. The dean of students, or the senior vice president for academic
affairs, or the senior vice president for health sciences, or their
designees, may place a hold on the student's records and/or
registration pending the resolution of proceedings under the
Student Code.

B. Definitions

1. As used in the Student Code:

339

1. “Academic action” means the recording of a final grade
(including credit/no credit and pass/fail) in a course, on a
comprehensive or qualifying examination, on a
culminating project, or on a dissertation or thesis. It also
includes a decision by the appropriate department or
college committee to place a student on academic
probation, or to suspend or dismiss a student from an
academic program because the student failed to meet the
relevant academic standards of the discipline or program.
The term “academic action” does not include the decision
by a department or program to refuse admission of a
student into an academic program. Academic action also
does not include academic sanctions imposed for
academic misconduct or for professional misconduct.

2. “Academic misconduct” includes, but is not limited to,
cheating, misrepresenting one's work, inappropriately
collaborating, plagiarism, and fabrication or falsification of
information, as defined further below. It also includes
facilitating academic misconduct by intentionally helping
or attempting to help another to commit an act of
academic misconduct.

a. “Cheating” involves the unauthorized possession
or use of information, materials, notes, study aids,
or other devices in any academic exercise, or the
unauthorized communication with another person
during such an exercise. Common examples of
cheating include, but are not limited to, copying
from another student's examination, submitting
work for an in-class exam that has been prepared
in advance, violating rules governing the
administration of exams, having another person
take an exam, altering one's work after the work
has been returned and before resubmitting it, or
violating any rules relating to academic conduct of
a course or program.

b. Misrepresenting one's work includes, but is not
limited to, representing material prepared by
another as one's own work, or submitting the same
work in more than one course without prior
permission of both faculty members.

c. “Plagiarism” means the intentional
unacknowledged use or incorporation of any other
person's work in, or as a basis for, one's own work
offered for academic consideration or credit or for

340

public presentation. Plagiarism includes, but is not
limited to, representing as one's own, without
attribution, any other individual's words, phrasing,
ideas, sequence of ideas, information or any other
mode or content of expression.

d. “Fabrication” or “falsification” includes reporting
experiments or measurements or statistical
analyses never performed; manipulating or altering
data or other manifestations of research to achieve
a desired result; falsifying or misrepresenting
background information, credentials or other
academically relevant information; or selective
reporting, including the deliberate suppression of
conflicting or unwanted data. It does not include
honest error or honest differences in
interpretations or judgments of data and/or results.

3. “Academic sanction” means a sanction imposed on a
student for engaging in academic or professional
misconduct. It may include, but is not limited to, requiring
a student to retake an exam(s) or rewrite a paper(s), a
grade reduction, a failing grade, probation, suspension or
dismissal from a program or the University, or revocation
of a student's degree or certificate. It may also include
community service, a written reprimand, and/or a written
statement of misconduct that can be put into an
appropriate record maintained for purposes of the
profession or discipline for which the student is preparing.

4. “Arbitrary and capricious” means that there was no
principled basis for the academic action or sanction.

5. “Behavioral misconduct” includes acts of misconduct as
further defined in Section III A.

6. “Behavioral sanction” means a sanction imposed on a
student for engaging in behavioral misconduct. It may
include, but is not limited to, a written reprimand, the
imposition of a fine or payment of restitution, community
service, probation, or suspension or dismissal from the
University.

7. “Business day” is every day that the University is open for
business, excluding weekends and University-recognized
holidays. The official calendar is maintained by the
University registrar's office.

341

8. “Department” means an academic unit, program,
department, division, college or school, whichever is the
appropriate academic unit of organization.

9. “Disciplinary records” are all records relating to the
imposition of an academic sanction or a behavioral
sanction.

10. “Faculty” or “faculty member” refers to an individual who
teaches or conducts research at or under the auspices of
the University and includes students with teaching
responsibilities and other instructional personnel. It also
refers to the chair of a faculty committee that has
assessed an academic action.

11. “Notice” or “Notification” refers to the date of delivery if
notification is delivered personally or ten (10) business
days after the time of postmark if the notification is mailed
by U.S. mail. In the case of grades, notification refers to
the date the grades are available on the World Wide Web.

12. “Professional misconduct” means the violation of
professional or ethical standards for the profession or
discipline for which a student is preparing as adopted or
recognized as authoritative by the relevant academic
program. The term also includes specific misconduct that
demonstrates the student's unfitness for such profession
or discipline.

13. “Program” refers to any set of courses that may be a
degree, major, minor, certificate, or related course of
study.

14. “Sexual harassment” is defined in Policy and Procedures
5-107.

15. “Staff” or “Staff member” refers to a person other than a
faculty member who receives compensation for work or
services from funds controlled by the University,
regardless of the source of funds, the duties of the
position, or the amount of compensation paid.

16. “Student” refers to a person who is currently, or was at the
time of the offense, matriculated and/or registered in any
class or program of instruction or training offered by the
University at any level, whether or not for credit.

17. “University” means the University of Utah and all of its
undergraduate, graduate and professional schools,
divisions and programs.

342

18. “University activities” are teaching, research, service,
administrative functions, ceremonies, or programs
conducted under the auspices of the University.

19. “University premises” means the University campus and
any other property, building or facility, that is owned,
operated or controlled by the University.

2. Section II: Student Bill of Rights

1. Students have certain rights as members of the University community in
addition to those constitutional and statutory rights and privileges
inherent from the State of Utah and the United States of America.
Nothing in this document shall be construed so as to limit or abridge
students' constitutional rights. Students have the responsibility not to
deny these rights to other members of the University community.
Students have the additional legal rights and privileges described below
and they will not be subject to discipline for the exercise of such rights
and privileges.

A. Learning Environment. Students have a right to support and
assistance from the University in maintaining a climate conducive
to thinking and learning. University teaching should reflect
consideration for the dignity of students and their rights as
persons. Students are entitled to academic freedom and
autonomy in their intellectual pursuits and development. Students
have a right to be treated with courtesy and respect.

B. Rights in the Classroom. Students have a right to reasonable
notice of the general content of the course, what will be required
of them, and the criteria upon which their performance will be
evaluated. Students have a right to have their performance
evaluated promptly, conscientiously, without prejudice or
favoritism, and consistently with the criteria stated at the
beginning of the course.

C. Role in Governance of the University. Students have a right to
participate in the formulation and application of University policy
affecting academic and student affairs through clearly defined
means, including membership on appropriate committees and
administrative bodies. Students have a right to perform student
evaluations of faculty members, to examine and publish the
numerical results of those evaluations, and to have those
evaluations considered in the retention, promotion, tenure and
post-tenure reviews of faculty members.

D. Due Process. Students have a right to due process in any
proceeding involving the possibility of substantial sanctions. This

343

includes a right to be heard, a right to decision and review by
impartial persons or bodies, and a right to adequate notice.

E. Freedom from Discrimination and Sexual Harassment. Students
have a right to be free from illegal discrimination and sexual
harassment. University policy prohibits discrimination,
harassment or prejudicial treatment of a student because of
his/her race, color, religion, national origin, sex, sexual
orientation, gender identity/expression, age, or status as an
individual with a disability, or as a protected veteran.

F. Freedom of Expression. Students have a right to examine and
communicate ideas by any lawful means. Students will not be
subject to academic or behavioral sanctions because of their
constitutionally protected exercise of freedom of association,
assembly, expression and the press.

G. Privacy and Confidentiality. Students have a right to privacy and
confidentiality subject to reasonable University rules and
regulations. Matters shared in confidence (including, but not
limited to, information about a student's views, beliefs and
political associations) must not be revealed by faculty members
or University administrators except to persons entitled to such
information by law or University policies. Students have a right to
be free from unreasonable search and seizures.

H. Student Records. Students have a right to protection against
unauthorized disclosures of confidential information contained in
their educational records. Students have a right to examine and
challenge information contained in their educational records. For
detailed information regarding confidentiality of educational
records, and student access to records, students should refer to
Part VII, Student Records.

I. I. Student Government and Student Organizations. Students
have a right to participate in elections for the Associated
Students of the University of Utah. Students have a right to form
student organizations for any lawful purpose.

3. Section III: Student Behavior

 . Standards of Behavior

0. In order to promote personal development, to protect the
University community, and to maintain order and stability on
campus, students who engage in any of the following acts of
behavioral misconduct may be subject to behavioral sanctions:

1. Acts of dishonesty, including but not limited to the
following:

344

a. Furnishing false or misleading information to any
University official.

b. Forgery, alteration or misuse of any University
document, record, fund or identification.

2. Intentional disruption or obstruction of teaching, research,
administration, disciplinary proceedings or other
University activities.

3. Physical or verbal assault, sexual harassment(1), hazing,
threats, intimidation, coercion or any other behavior which
threatens or endangers the health or safety of any
member of the University community or any other person
while on University premises, at University activities, or on
premises over which the University has supervisory
responsibility pursuant to state statute or local ordinance.

4. Attempted or actual theft, damage or misuse of University
property or resources.

5. Sale or distribution of information representing the work
product of a faculty member to a commercial entity for
financial gain without the express written permission of
the faculty member responsible for the course. (“Work
product” means original works of authorship that have
been fixed in a tangible medium and any works based
upon and derived from the original work of authorship.)

6. Unauthorized or improper use of any University property,
equipment, facilities, or resources, including unauthorized
entry into any University room, building or premises.

7. Possession or use on University premises or at University
activities of any firearm or other dangerous weapon,
incendiary device, explosive or chemical, unless such
possession or use has been authorized by the University.

8. Use, possession or distribution of any narcotic or other
controlled substance on University premises, at University
activities, or on premises over which the University has
supervisory responsibility pursuant to state statute or local
ordinance, except as permitted by law and University
regulations.

9. Use, possession or distribution of alcoholic beverages of
any type on University premises except as permitted by
law and University regulations.

345

10. Violation of published University policies, rules or
regulations.

11. Violation of federal, state or local civil or criminal laws on
University premises, while participating in University
activities, or on premises over which the University has
supervisory responsibility pursuant to state statute or local
ordinance.

A. Initial Oral or Written Complaint

0. Any person directly aggrieved by an alleged violation of the
Standards of Behavior or any faculty member, student, or staff
member may submit an oral(2) or written complaint to the dean of
students, or designee, within forty-five (45) business days of the
date of discovery of the alleged violation.

1. A complaint that is frivolous, that fails to state facts that
constitute a violation of the Standards of Behavior, or that is not
timely, may be dismissed by the dean of students, or designee,
after an initial review. A person who knowingly and intentionally
files a false complaint may be referred to the appropriate
committee or office within the University for possible disciplinary
action as described in Policy 5-111 (staff), Policy 6-316 (faculty)
or this code (students).

B. Initial Inquiry and Informal Resolution

0. After an oral or written complaint has been submitted, the dean
of students, or designee, shall, within ten (10) business days,
give written notice to the student against whom the complaint
was lodged (the responding student) of the allegations of the
complaint and the procedures under the Student Code to resolve
the issue.

1. Within twenty (20) business days of receipt of the complaint, the
dean of students, or designee, shall begin an initial inquiry to
determine whether there is a reasonable basis for believing that
the responding student violated the Standards of Behavior. The
dean of students, or designee, shall interview the complaining
party, the responding student and any other persons believed to
have pertinent factual knowledge of the allegations. The dean of
students, or designee, may also review any other relevant
evidence, including documentary material.

2. At the conclusion of the initial inquiry the dean of students, or
designee, shall determine whether there is a reasonable basis for
believing that the responding student violated the Standards of
Behavior. The dean of students, or designee, shall notify the

346

student and the complaining party in writing of his or her
decision.

3. If the dean of students, or designee, determines that there is a
reasonable basis for believing that the responding student
violated the Standards of Behavior, he/she shall determine
whether efforts at informal resolution are appropriate and, if so,
shall take whatever steps are useful to that end. Efforts to
informally resolve the dispute shall occur within ten (10) business
days of the conclusion of the initial inquiry or within thirty days
(30) business days of receipt of the initial complaint (whichever is
later). If an informal resolution is reached and the responding
student complies with the terms and conditions, if any, of the
resolution, no further action against the responding student will
be taken and the matter will be closed.

C. Formal Written Complaint and Referral to Student Behavior Committee

0. If informal resolution is inappropriate, or if efforts at informal
resolution are not successful within the allowed time period, the
dean of students, or designee, shall determine whether the initial
written complaint (if any) is sufficiently detailed to submit to the
Student Behavior Committee. If the initial complaint was oral, or
was not sufficiently detailed, the dean of students shall instruct
the complaining party to prepare and submit, within five (5)
business days of this instruction, a detailed formal written
complaint of the circumstances giving rise to the complaint.

1. If a complaining party elects not to pursue a matter before the
Student Behavior Committee, the dean of students, or designee,
or another University official, may submit a formal written
complaint against the responding student and pursue the matter
before the Student Behavior Committee.

2. The dean of students, or designee, shall provide the responding
student with a copy of the formal written complaint.

3. Within five (5) business days of receiving the formal written
complaint, the responding student may submit a written response
to the complaint to the dean of students, or designee.

4. The dean of students, or designee, shall refer the formal written
complaint and any written response from the responding student
to the Student Behavior Committee.

D. Proceedings Before the Student Behavior Committee

0. Makeup of the Committee. The Student Behavior Committee
shall be composed of seven (7) members. Two members shall
be faculty appointed by the president of the University upon

347

nomination by the Personnel and Elections Committee of the
Academic Senate. Two members shall be staff appointed by the
president upon nomination by the vice president for student
affairs. Three members shall be students appointed by the
president upon nomination by the vice president for student
affairs, in consultation with the president of ASUU. At least one of
the students shall be a graduate student. The president shall
appoint three alternates to the Committee: one student, one
faculty member, and one staff member. Student members shall
serve staggered two-year terms. Faculty and staff members shall
serve staggered three-year terms. The Committee chair shall be
appointed by the president. The Committee shall establish
internal procedures consistent with the Student Code.

1. Conflict of Interest. Upon written request of one of the parties or
Committee members, the dean of students may excuse any
member of the Committee if the dean determines that the
member has a conflict of interest. The dean shall notify the
appropriate alternate member (i.e., student, faculty member, or
staff member) to replace the excused member.

2. Proceedings Before the Committee. When a timely complaint
and response are filed, the Committee chair shall schedule a
hearing date if:

a. The documents raise material issues of disputed fact;

b. The Committee chair determines that a hearing is
necessary or otherwise desirable to aid in the resolution
of the issues; or

c. The possible sanctions against the responding student
may include dismissal from the University, suspension
from the University for longer than ten (10) business days,
or revocation of the student's degree or certificate.

1. If the Committee chair determines that no
circumstances exist that require a hearing, as
provided above, the chair shall notify the
complaining party and the student in writing of this
determination and convene a closed meeting of
the Committee to consider the documentation
submitted by the complaining party and the
student. The Committee chair shall prepare a
written report of the Committee's findings and
recommendations and present it to the vice
president for student affairs, or designee, within
ten (10) business days after the Committee
meeting.

348

3. Notice of Hearings Before Committee. If the Committee chair
determines that a hearing is required, the chair shall schedule a
hearing date and notify the parties(3) in writing of the date of the
hearing, the names of the Committee members, and the
procedures outlined below at least fifteen (15) business days
prior to the hearing.

4. Hearing Procedures. Hearings shall be conducted according to
the following procedures:

a. Hearings shall be conducted within a reasonable time
after the Committee's receipt of the complaint.

b. At least five (5) business days prior to the date of the
hearing, the parties shall make available to each other
and to the Committee a list of their witnesses and a list of
the documents to be offered at the hearing. In exceptional
circumstances, the Committee may allow a party to call
witnesses not listed or submit additional documents at the
hearing.

c. The parties have a right to be accompanied by any
person as advisor, including legal counsel, who will be
permitted to attend, but not directly participate in, the
proceedings.

d. Hearings shall be closed to the public.

e. The hearing, except for Committee deliberations and
voting, shall be recorded and a copy made available to
any party upon request. Committee deliberations and
voting shall take place in closed sessions.

f. The Committee must have a quorum present to hold a
hearing. A quorum consists of five (5) members, including
at least one (1) student. If there is more than one hearing
in a matter, or if the hearing continues over more than one
session, the same five members must be present for all
sessions. All findings and recommendations of the
Committee shall require a majority vote of the Committee
members present at the hearing.

g. At the hearing, the parties shall have the right to present
questions to witnesses through the Committee chair, to
present evidence and to call witnesses in their own
behalf, in accordance with the Committee's internal
procedures.

349

h. The Committee shall not be bound by strict rules of legal
evidence or procedure and may consider any evidence it
deems relevant.

i. University legal counsel shall serve as a resource to the
Committee and may be present at the hearing to provide
guidance on substantive law and procedural matters.

j. If a majority of the Committee members find, by a
preponderance of the evidence that the responding
student violated the Standards of Behavior, the
Committee may recommend any behavioral sanction it
deems appropriate given the entire circumstances of the
case, including but not limited to a written reprimand, the
imposition of a fine or payment of restitution, community
service, probation, suspension, or dismissal from the
University.

k. The Committee shall make its findings and
recommendations based only on evidence and testimony
presented by the parties at the hearing. Committee
members shall not conduct their own investigations, rely
on prior knowledge of the facts or develop their own
evidence.

l. If the complaining party or the responding student fails to
attend the hearing without good cause, the Committee
may proceed with the hearing and take testimony and
evidence and report its findings and recommendations to
the vice president for student affairs, or designee, on the
basis of such testimony and evidence.

m. The Committee chair shall prepare a written report of the
Committee's findings and recommendations and present it
to the vice president for student affairs, or designee,
within ten (10) business days after the conclusion of the
hearing.

E. Review and Decision by the Vice President for Student Affairs or
Designee

0. The vice president for student affairs, or designee, shall consider
the documentation submitted to the Committee and the findings
and recommendations of the Committee in making a decision.
Based upon such review, and without conducting further
hearings, the vice president, or designee, shall, within ten (10)
business days, take one of the following actions:

a. Accept the Committee's findings and recommendations;

350

b. Return the report to the Committee chair, requesting that
the Committee reconvene to reconsider or clarify specific
matters, materials, and issues, and forward to the vice
president, or designee, a second report of its findings and
recommendations relating to the specific matters referred
by the vice president, or designee, for further
consideration; or

c. Reject all or parts of the Committee's findings and
recommendations, stating reasons and actions to be
taken therefore. The vice president may impose a greater
or lesser sanction than recommended by the Committee.

1. Written notification of the vice president's, or designee's, decision
shall be communicated to the parties concerned within ten (10)
business days of receipt of the recommendation.

2. The vice president's, or designee's, decision is final unless
appealed to the president within ten (10) business days of receipt
of the decision.

F. Appeal to President

0. Within ten (10) business days of receipt of the vice president's or
designee's decision, any party may appeal the decision by filing
a written notice of appeal with the president and delivering a
copy to the other party. The other party may file a response to
the appeal with the president within five (5) business days of
receipt of the appeal. In the case of an appeal:

1. The president shall consider the appeal and the response
and may solicit whatever counsel and advice the
president deems appropriate to arrive at a final decision.
The president may also convene an ad hoc committee
composed of students and faculty members from outside
the Student Behavior Committee to determine if there
were substantial defects that denied basic fairness and
due process. After receiving the appeal, the president
shall, within ten (10) business days, or twenty (20)
business days if an ad hoc committee is formed, take one
of the following actions:

a. Accept the decision of the vice president for
student affairs or his/her designee;

b. Return the report to the vice president, or his/her
designee, requesting that he/she clarify specific
matters, materials, and issues, and forward to the
president a second report of his/her decision

351

relating to the specific matters referred by the
president for further explanation; or

c. Reject all or parts of the vice president's, or
designee's, decision, stating reasons and actions
for either imposing a greater or lesser sanction
than determined by the vice president.

2. Written notification of the president's decision and the
basis for that decision shall be communicated to the
parties concerned within ten (10) business days after
receipt of the appeal, or within twenty (20) business days
after receipt of the appeal if an ad hoc committee is
formed.

3. The decision of the president is final.

G. Suspension or Dismissal from the University for Behavioral Misconduct

0. The sanctions of suspension or dismissal from the University for
behavioral misconduct may be imposed: (1) if agreed upon in
informal resolution between the responding student and the dean
of students or designee; (2) if recommended by the Student
Behavior Committee to the vice president for student affairs or
designee; (3) by the vice president for student affairs or designee
notwithstanding the recommendation of the Committee; or (4) by
the president notwithstanding the decision of the vice president
for student affairs. A student who has been suspended or
dismissed from the University shall be denied all privileges
accorded to a student.

1. Suspension

a. Suspension from the University shall be for a
minimum time of one semester following the
semester the student is found responsible for the
behavioral misconduct.

b. The office of the dean of students shall notify the
student in writing of the suspension, conditions for
reinstatement, and of the obligation of the student
to petition for reinstatement. Notice of the
suspension shall also be provided to the student's
department chair.

c. Petitions for reinstatement shall be submitted to
the office of the dean of students and shall explain
how the conditions for reinstatement have been
met.

352

d. The office of the dean of students shall consider
the petition and shall issue a decision regarding
the student's reinstatement within fifteen (15)
business days of receipt of the petition.

e. The office of the dean of students may grant
conditional reinstatement contingent upon the
student meeting written requirements specified by
the office of the dean of students or by the chair of
the Student Behavior Committee in the original
sanction to the extent that such conditions pertain
to the original offense in the original sanction.

2. Dismissal

a. Dismissal from the University is final. A student
dismissed from the University for behavioral
misconduct may not petition for reinstatement.

b. Permanent records of dismissal shall be kept in the
office of the dean of students. Notice of the
dismissal shall be provided to the student's
department chair.

c. The dismissed student's transcript will reflect
his/her dismissal. [See Procedure 6-400-
Sec.VII#1]

d. Dismissal should be reserved for only the most
egregious of offenses.

H. Administrative Suspension to Protect the University Population

0. The vice president for student affairs (or designee) or the senior
vice president for academic affairs (or designee) or the senior
vice president for health sciences (or designee) may suspend a
student from the University prior to an initial inquiry and hearing
before the Student Behavior Committee if such action appears
necessary to protect the health or well-being of any member of
the University community, any member of the public, or to
prevent serious disruption of the academic process. Prior to,
contemporaneous with, or immediately after the suspension, the
vice president shall give the student written notice of the
suspension specifying the alleged misconduct and setting forth
briefly the relevant facts and supporting evidence. The vice
president shall then provide the student with an opportunity to
meet with him/her to present the student's views and object to
the suspension. This meeting shall take place prior to the
suspension taking effect or as soon as possible thereafter. The

353

vice president shall thereafter immediately refer the complaint to
the appropriate University administrator for proceedings under
the code, and the suspension will be in effect pending a final
determination of the matter. The vice president shall notify other
University administrators of the suspension as appropriate.

I. Other University Proceedings

0. If the filing of a complaint or an appeal concerning behavioral
misconduct under the Student Code raises issues of academic
misconduct or professional misconduct, the dean of students, or
designee, shall immediately notify the involved faculty member,
dean or cognizant senior vice president and these individuals
shall determine the appropriate procedure(s) for processing the
complaint or the appeal.

J. Retention of Records of Proceedings

0. Records of proceedings under the Student Code shall be
confidential to the extent permitted by law. Records of behavioral
misconduct shall be kept in the office of the dean of students,
and a copy may be retained in other academic departments as
appropriate.

4. Section IV: Student Academic Performance

 . Standards of Academic Performance

0. In order to ensure that the highest standards of academic
performance are promoted and supported at the University,
students must:

0. Meet the academic requirements of a course; and

1. Meet the academic requirements of the relevant discipline
or program.

0. Faculty members are qualified as professionals to
observe and judge all aspects of a student's
academic performance, including demonstrated
knowledge, technical and interpersonal skills,
attitudes and professional character, and ability to
master the required curriculum. An academic
action, as defined in Section I.B., may be
overturned on appeal only if the academic action
was arbitrary or capricious.

A. Appeals Process

0. A student who believes that an academic action taken in
connection with Subsection A above is arbitrary or capricious

354

should, within twenty (20) business days of notification of the
academic action, discuss the academic action with the involved
faculty member(4)and attempt to resolve the disagreement. If the
faculty member does not respond within ten (10) business days,
if the student and faculty member are unable to resolve the
disagreement, or if the faculty member fails to take the agreed
upon action within ten (10) business days, the student may
appeal the academic action in accordance with the following
procedures. It is understood that all appeals and proceedings
regarding academic actions will initiate with the faculty and
administrators in the college or program offering the course in
question. If the course is cross-listed, appeals and proceedings
shall take place with the faculty and administrators offering the
section for which the student is registered.

0. Appeal to Chair of the Department or Dean's Designee(5).
Within forty (40) business days of notification of the
academic action, the student shall appeal the academic
action in writing to, and consult with, the chair of the
relevant department regarding such academic action.
Within fifteen (15) business days of consulting with the
student, the chair shall notify the student and faculty
member, in writing, of his/her determination of whether the
academic action was arbitrary or capricious and of the
basis for that decision. If the chair determines that the
academic action was arbitrary or capricious, the chair
shall take appropriate action to implement his/her decision
unless the faculty member appeals the decision. If the
chair fails to respond in fifteen (15) business days, the
student may appeal to the Academic Appeals Committee.

1. Appeal to Academic Appeals Committee. If either party
disagrees with the chair's decision, that party may appeal
to the college's Academic Appeals Committee within
fifteen (15) business days of notification of the chair's
decision in accordance with the procedures set forth in
Subsection C, below.

B. Proceedings Before the Academic Appeals Committee

0. Written Appeal. The appeal to the Academic Appeals Committee
shall set forth in writing the reasons for the appeal, shall be
addressed to the Committee, and shall be delivered to the chair
of the Committee, with a copy to the other party.

1. Response to Appeal. The faculty member whose decision is
being appealed, or the student in the case of a faculty member's
appeal, may deliver a response to the appeal to the chair of the

355

Academic Appeals Committee, with a copy to the other party, no
later than five (5) business days after receipt of the complaint
and recommendations.

2. Makeup of the Committee. The dean of each college shall ensure
that an Academic Appeals Committee is constituted according to
college procedures, subject to the following parameters. Two
faculty members shall come from the college. The Personnel and
Elections Committee of the Academic Senate shall appoint one
faculty member from outside the college. The faculty members
shall be appointed to the Committee for staggered three-year
terms. The dean shall appoint two undergraduate student
members and two graduate student members who are either
from the relevant Student Advisory Committee or listed as a
major within the college. Undergraduate student and graduate
student members will be appointed for staggered two-year
terms(6). No more than one faculty member and two Committee
members in total may come from the same department in a multi-
department college. The members of the Committee who shall
hear the case are the three faculty members and the two
students from the appealing student's peer group (i.e.,
undergraduates or graduates). The dean shall designate one of
the faculty members to serve as chair of the Committee. The
Committee shall establish internal procedures consistent with the
Student Code.

3. Conflicts of Interest. Upon written request of one of the parties or
Committee members, the dean may excuse any member of the
Committee if the dean determines that the member has a conflict
of interest. The dean shall select an appropriate replacement for
the excused member (i.e., student or faculty member).

4. Proceedings Before the Committees. When an appeal and
response are filed in a timely manner, the Committee chair shall
schedule a hearing date if:

 . The documents raise material issues of disputed fact;

a. The Committee chair determines that a hearing is
necessary or otherwise desirable to aid in the resolution
of the issues; or

b. The academic action included dismissal from a program.

0. If the Committee chair determines that no
circumstances exist that require a hearing, as
provided above, the chair shall within a reasonable
time notify the student and the faculty member (the
parties) in writing of this determination and

356

convene a closed meeting of the Committee to
consider the documentation submitted by the
parties. The Committee chair shall prepare a
written report of the Committee's findings and
recommendations and present it to the dean of the
college, or designee, within ten (10) business days
after the Committee meeting.

5. Notice of Hearings Before Committees. If the Committee chair
determines that a hearing is required, the chair shall schedule a
hearing date and notify the parties in writing of the date of the
hearing, the names of the Committee members, and the
procedures outlined below at least fifteen (15) business days
prior to the hearing.

6. Hearing Procedures. Hearings shall be conducted according to
the following procedures:

 . Hearings shall be conducted within a reasonable time
after the Committee's receipt of the written appeal and
written response to the appeal.

a. At least five (5) business days prior to the date of the
hearing, the parties shall make available to each other
and to the Committee a list of their witnesses and a list of
the documents to be offered at the hearing. In exceptional
circumstances, the Committee may allow a party to call
witnesses not listed or submit additional documents at the
hearing.

b. The parties have a right to be accompanied by any
person as advisor, including legal counsel, who will be
permitted to attend, but not directly participate in, the
proceedings.

c. Hearings shall be closed to the public.

d. All hearings, except Committee deliberations and voting,
shall be recorded and a copy made available to any party
upon request. Committee deliberations and voting shall
take place in closed sessions.

e. The Committee must have a quorum present to hold a
hearing. A quorum consists of three (3) members,
including at least one (1) student and the faculty member
from outside the college. If there is more than one hearing
in a matter, or if the hearing continues over more than one
session, the same three members must be present for all
sessions. All findings and recommendations of the

357

Committee shall require a majority vote of the Committee
members present at the hearing.

f. At the hearing, the parties shall have the right to present
questions to witnesses through the Committee chair, to
present evidence and to call witnesses in their own
behalf, in accordance with the Committee's established
internal procedures.

g. The Committee shall not be bound by strict rules of legal
evidence or procedure and may consider any evidence it
deems relevant.

h. University legal counsel shall serve as a resource to the
Committee and may be present at the hearing to provide
guidance on substantive law and procedural matters.

i. To overturn the original academic action, the Committee
must find that the academic action was arbitrary or
capricious.

j. The Committee shall make its findings and
recommendations based only on evidence and testimony
presented by the parties at the hearing. Committee
members shall not conduct their own investigations, rely
on prior knowledge of the facts or develop their own
evidence.

k. If either party to the appeal fails to attend the hearing
without good cause, the Committee may proceed with the
hearing and take testimony and evidence and report its
findings and recommendations to the dean of the college,
or designee, on the basis of such testimony and evidence.

l. The Committee chair shall prepare a written report of the
Committee's findings and recommendations and present it
to the dean of the college, or designee, within ten (10)
business days after the conclusion of the hearing.

C. Review and Decision by the Dean or Designee

0. The dean of the college, or designee, shall consider the
documentation submitted to the Committee and the findings and
recommendations of the Committee in making a decision. Based
upon such review, and without conducting further hearings, the
dean of the college, or designee, shall, within ten (10) business
days, take one of the following actions:

 . Accept the Committee's findings and recommendations;

358

a. Return the report to the Committee chair, requesting that
the Committee reconvene to reconsider or clarify specific
matters, materials, and issues, and forward to the dean of
the college, or designee, a second report of its findings
and recommendations relating to the specific matters
referred by the dean of the college, or designee, for
further consideration; or

b. Reject all or parts of the Committee's findings and
recommendations, stating reasons and actions to be
taken therefore.

1. Written notification of the dean's, or designee's, decision shall be
communicated to the parties, to the chair of the Academic
Appeals Committee and to the cognizant vice president within
ten (10) business days after receipt of the recommendation.

2. The dean's, or designee's, decision is final unless appealed to
the cognizant vice president within ten (10) business days after
receipt of the decision.

D. Appeal to Cognizant Senior Vice President

0. Within ten (10) business days of receipt of the dean's, or
designee's, decision, any party may appeal the decision by filing
a written notice of appeal with the senior vice president for
academic affairs or the senior vice president for health sciences,
as appropriate, and delivering a copy to the other party. The
other party may file a response to the appeal with the vice
president within five (5) business days of receipt of the notice of
appeal. In the case of an appeal:

0. The vice president shall consider the appeal and
response to the appeal, and may solicit whatever counsel
and advice the vice president deems appropriate to arrive
at a final decision. The vice president may also convene
an ad hoc committee composed of students and faculty
members from outside the college or department to
determine if there were substantial defects that denied
basic fairness and due process. After receiving the
appeal, the vice president shall within ten (10) business
days, or within twenty (20) business days if an ad hoc
committee is formed, take one of the following actions:

 . Accept the decision of the dean of the college or
his/her designee;

a. Return the report to the dean of the college, or
his/her designee, requesting that he/she clarify

359

specific matters, materials, and issues, and
forward to the vice president a second report of
his/her decision relating to the specific matters
referred by the vice president for further
explanation; or

b. Reject all or parts of the dean's, or designee's,
decision, stating reasons and actions to be taken
therefore.

1. Written notification of the vice president's decision and the
basis for that decision shall be communicated to the
parties, to the chair of the Academic Appeals Committee
and to the dean within ten (10) business days after receipt
of the appeal, or within twenty (20) business days after
receipt of the appeal if an ad hoc committee is formed.

2. The decision of the vice president is final. At the
conclusion of the appeals process, the chair of the
department or dean of the college considering the
academic appeal shall take appropriate action to
implement the final decision.

E. Copies of Documents to Department Chair

0. During the appeals process and at the time they are submitted,
the following documents should be copied to the chair of the
department considering the academic appeal: the first written
appeal, all subsequent appeals, all responsive documents, and
all written recommendations or decisions made at each level of
the appeal.

F. Programs That Do Not Report to Academic Deans

0. In cases where a program does not report directly to an
academic dean, the program director will serve as department
chair, and the cognizant associate vice president will serve as
dean for purposes of these proceedings. Any ambiguity
concerning appeal procedures for courses offered in a program
(e.g., determination of the relevant Academic Appeals
Committee) shall be resolved by the program director, in
consultation with the cognizant associate vice president, and in a
manner that preserves the spirit and intent of this policy.

5. Section V: Student Academic Conduct

 . Standards of Academic Conduct

0. In order to ensure that the highest standards of academic
conduct are promoted and supported at the University, students

360

must adhere to generally accepted standards of academic
honesty, including but not limited to refraining from cheating,
plagiarizing, research misconduct(7) misrepresenting one's work,
and/or inappropriately collaborating.

A. Academic Misconduct

0. A student who engages in academic misconduct as defined in
Part I.B. may be subject to academic sanctions including but not
limited to a grade reduction, failing grade, probation, suspension
or dismissal from the program or the University, or revocation of
the student's degree or certificate. Sanctions may also include
community service, a written reprimand, and/or a written
statement of misconduct that can be put into an appropriate
record maintained for purposes of the profession or discipline for
which the student is preparing.

0. Any person who observes or discovers academic
misconduct by a student should file a written complaint
with the faculty member responsible for the pertinent
academic activity within thirty (30) business days of the
date of discovery of the alleged violation.

1. A faculty member who discovers or receives a complaint
of misconduct relating to an academic activity for which
the faculty member is responsible shall take action under
this code and impose an appropriate sanction for the
misconduct.

2. Upon receipt of a complaint or discovery of academic
misconduct, the faculty member shall make reasonable
efforts to discuss the alleged academic misconduct with
the accused student no later than twenty (20) business
days after receipt of the complaint, and give the student
an opportunity to respond. Within ten (10) business days
thereafter, the faculty member shall give the student
written notice of the academic sanction, if any, to be taken
and the student's right to appeal the academic sanction to
the Academic Appeals Committee for the college offering
the course. Such sanctions may include requiring the
student to rewrite a paper(s) or retake an exam(s), a
grade reduction, a failing grade for the exercise, or a
failing grade for the course(8). In no event shall the
academic sanction imposed by the faculty member be
more severe than a failing grade for the course.

3. If the faculty member imposes the sanction of a failing
grade for the course, the faculty member shall, within ten
(10) business days of imposing the sanction, notify in

361

writing, the chair(9)of the student's home department(10) and
the senior vice president for academic affairs or senior
vice president for health sciences, as appropriate, of the
academic misconduct and the circumstances which the
faculty member believes support the imposition of a failing
grade. If the sanction imposed by the faculty member is
less than a failing grade for the course, the faculty
member should report the misconduct to the dean or chair
of the student's home department or college.(11) Each
college shall develop a policy specifying the dean and/or
the chair as the appropriate person to receive notice of
sanctions less than a failing grade for the course.

4. A student who believes that the academic sanction given
by the faculty member is arbitrary or capricious should
discuss the academic sanction with the faculty member
and attempt to resolve the disagreement. If the student
and faculty member are unable to resolve the
disagreement, the student may appeal the academic
sanction to the Academic Appeals Committee for the
college offering the course within fifteen (15) business
days of receiving written notice of the academic sanction.

5. If the faculty member, chair or vice president believes that
the student's academic misconduct warrants an academic
sanction of probation, suspension or dismissal from a
program, suspension or dismissal from the University, or
revocation of a student's degree or certificate, he/she
may, within thirty (30) business days of receiving notice of
the misconduct, prepare a complaint with
recommendations, refer the matter to the chair or dean's
designee of the student's home department or
college,(12) and notify the student of the complaint and
recommendation. The chair and/or dean's designee of
the home department/college may undertake an
investigation of the allegations and recommendations set
forth in the complaint. Within ten (10) business days of
receipt of the complaint, the chair and/or dean's designee
shall forward the complaint and recommendation to the
Academic Appeals Committee of the home college for
proceedings in accordance with Section C, below, and so
notify the student in writing. The chair and/or dean may
accompany the complaint with his/her own
recommendation supporting or opposing the sanction
sought in the complaint. The person initiating the original
complaint continues as the complainant in the case
unless that person and the chair/dean's designee both

362

agree that the latter shall become the complainant. If the
student has appealed the academic sanction imposed by
the faculty member, the time periods set forth in this
paragraph may be extended until ten (10) business days
after the resolution of the student's appeal.

6. If a department chair, the dean, the senior vice president
for academic affairs and/or the senior vice president for
health sciences, become aware of multiple acts of
academic misconduct by a student, they or their
designees may, within thirty (30) business days after
receiving notice of the last act of misconduct,(13)prepare a
complaint with recommendations for probation,
suspension or dismissal from a program, suspension or
dismissal from the University, or revocation of a degree or
certificate, and refer the matter to the Academic Appeals
Committee of the student's home college(14) for
proceedings in accordance with Section C, below, and so
notify the student in writing.

B. Proceedings Before the Academic Appeals Committee

0. Written Complaint and Recommendations or Appeal. The written
complaint and recommendations or the written appeal shall be
delivered to the chair of the Committee, with a copy to the other
party.

1. Response to Complaint and Recommendations or Appeal. The
person responding to the complaint and recommendations or the
appeal may deliver his/her response to the chair of the Academic
Appeals Committee, with a copy to the other party, no later than
five (5) business days after receipt of the complaint and
recommendations.

2. Makeup of the Committee. The dean of each college shall ensure
that an Academic Appeals Committee is constituted according to
college procedures, subject to the following parameters. Two
faculty members shall come from the college. The Personnel and
Elections Committee of the Academic Senate shall appoint one
faculty member from outside the college. The faculty members
shall be appointed to the Committee for staggered three-year
terms. The dean shall appoint two undergraduate student
members and two graduate student members who are either
from the relevant Student Advisory Committee or listed as a
major within the college. Undergraduate student and graduate
student members will be appointed for staggered two-year
terms.(15) No more than one faculty member and two Committee
members in total may come from the same department in a multi-

363

department college. The members of the Committee who shall
hear the case are the three faculty members and the two
students from the peer group of the student accused of academic
misconduct (i.e., undergraduates or graduates). The dean shall
designate one of the faculty members to serve as chair of the
Committee. The Committee shall establish internal procedures
consistent with the Student Code.

3. Conflicts of Interest. Upon written request of one of the parties or
Committee members, the dean may excuse any member of the
Committee if the dean determines that the member has a conflict
of interest. The dean shall select an appropriate replacement for
the excused member (i.e., student or faculty member).

4. Scheduling Hearings Before the Committees. When a complaint
and recommendations or an appeal, together with a response,
are filed in a timely manner, the Committee chair shall schedule
a hearing date if:

 . The documents raise material issues of disputed fact;

a. The Committee chair determines that a hearing is
necessary or otherwise desirable to aid in the resolution
of the issues; or

b. The possible sanctions against the student may include
dismissal from the University, dismissal from a program,
suspension from either for longer than ten (10) business
days, or revocation of the student's degree or certificate.

0. If the Committee chair determines that no
circumstances exist that require a hearing, as
provided above, the chair shall notify the student
and the faculty member (the parties) in writing of
this determination and convene a closed meeting
of the Committee to consider the documentation
submitted by the parties. The Committee chair
shall prepare a written report of the Committee's
findings and recommendations and present it to
the dean of the college, or designee, within ten
(10) business days after the Committee meeting.

5. Notice of Hearings Before Committees. If the Committee chair
determines that a hearing is required, the chair shall schedule a
hearing date and notify the parties in writing of the date of the
hearing, the names of the Committee members, and the
procedures outlined below at least fifteen (15) business days
prior to the hearing.

364

6. Hearing Procedures. Hearings shall be conducted according to
the following procedures:

 . Hearings shall be conducted within a reasonable time
after the Committee's receipt of the written complaint and
recommendations or the written appeal, and the
response.

a. At least five (5) business days prior to the date of the
hearing, the parties shall make available to each other
and to the Committee a list of their witnesses and a list of
the documents to be offered at the hearing. In exceptional
circumstances, the Committee may allow a party to call
witnesses not listed or submit additional documents at the
hearing.

b. The parties have a right to be accompanied by any
person as advisor, including legal counsel, who will be
permitted to attend, but not directly participate in, the
proceedings.

c. Hearings shall be closed to the public.

d. All hearings, except Committee deliberations and voting,
shall be recorded and a copy made available to any party
upon request. Committee deliberations and voting shall
take place in closed sessions.

e. The Committee must have a quorum present to hold a
hearing. A quorum consists of three (3) members,
including at least one (1) student and the faculty member
from outside the college. If there is more than one hearing
in a matter, or if the hearing continues over more than one
session, the same three members must be present for all
sessions. All findings and recommendations of the
Committee shall require a majority vote of the Committee
members present at the hearing.

f. At the hearing, the parties shall have the right to present
questions to witnesses through the Committee chair, to
present evidence and to call witnesses in their own
behalf, in accordance with the Committee's established
internal procedures.

g. The Committee shall not be bound by strict rules of legal
evidence or procedure and may consider any evidence it
deems relevant.

365

h. University legal counsel shall serve as a resource to the
Committee and may be present at the hearing to provide
guidance on substantive law and procedural matters.

i. In the hearing, the Committee must determine, by a
preponderance of the evidence, whether the student
engaged in the alleged academic misconduct. If the
Committee answers this question in the affirmative, the
Committee may then recommend any academic sanction
it deems appropriate under the entire circumstances of
the case, including but not limited to suspension or
dismissal from the program or the University, or
revocation of a student's degree or certificate.

j. The Committee shall make its findings and
recommendations based only on evidence and testimony
presented by the parties at the hearing. Committee
members shall not conduct their own investigations, rely
on prior knowledge of the facts or develop their own
evidence.

k. If either party presenting to the Academic Appeals
Committee fails to attend the hearing without good cause,
the Committee may proceed with the hearing and take
testimony and evidence and report its findings and
recommendations to the dean of the college, or designee,
on the basis of such testimony and evidence.

l. The Committee chair shall prepare a written report of the
Committee's findings and recommendations and present it
to the dean of the college, or designee, within ten (10)
business days after the conclusion of the hearing. A
report that recommends sanctions no more serious than a
failing grad, shall be presented to the dean of the college
offering the course. Reports recommending sanctions
greater than a failing grade (e.g. suspension or dismissal)
shall be presented to the dean of the student's home
college.(16)

C. Review and Decision by the Dean or Designee

0. The dean of the college, or designee, shall consider the
documentation submitted to the Committee and the findings and
recommendations of the Committee in making a decision. Based
upon such review, and without conducting further hearings, the
dean of the college, or designee, shall, within ten (10) business
days, take one of the following actions:

366

 . For any recommendation other than dismissal or
suspension from the University or revocation of a degree
or certificate, accept the Committee's findings and
recommendations and impose the recommended
sanctions;

a. For a recommendation of dismissal or suspension from
the University or revocation of a degree or certificate,
concur with the Committee's findings and
recommendations and refer the matter with a confirming
recommendation to the cognizant vice president for a
decision;

b. Return the report to the Committee chair(17), requesting
that the Committee reconvene to reconsider or clarify
specific matters, materials, and issues, and forward to the
dean of the college, or designee, a second report of its
findings and recommendations relating to the specific
matters referred by the dean of the college, or designee,
for further consideration. (If a report to the dean
recommends sanctions greater than a failing grade and
has originated from a Committee outside of the dean's
college, the dean may refer the matter to the chair
of his/her own college Academic Appeals Committee for
further review and recommendations.); or

c. Reject all or parts of the Committee's findings and
recommendations, stating reasons and actions to be
taken therefore. The dean may impose (or recommend to
the cognizant vice president) a greater or lesser sanction
than recommended by the Committee.

1. Written notification of the dean's, or designee's, decision shall be
communicated to the parties, to the chair of the Academic
Appeals Committee and to the cognizant senior vice president
within ten (10) business days of receipt of the Committee's
findings and recommendations.

2. The dean's, or designee's, decision is final unless appealed to
the cognizant senior vice president within ten (10) business days.

D. Appeal to Cognizant Senior Vice President (or to the President when
appropriate)(18)

0. Within ten (10) business days of receipt of the dean's, or
designee's, decision, any party may appeal the decision by filing
a written notice of appeal with the senior vice president for
academic affairs or the senior vice president for health sciences,
as appropriate, and delivering a copy to the other party. The

367

other party may file a response to the appeal with the vice
president within five (5) business days of receipt of the appeal. In
the case of an appeal:

0. The vice president shall consider the appeal and
response to the appeal, and may solicit whatever counsel
and advice the vice president deems appropriate to arrive
at a final decision. The vice president may also convene
an ad hoc committee composed of students and faculty
members from outside the college or department to
determine if there were substantial defects that denied
basic fairness and due process. After receiving the
appeal, the vice president shall, within ten (10) business
days, or within twenty (20) business days if an ad hoc
committee is formed, take one of the following actions:

 . Accept the decision of the dean of the college or
his/her designee;

a. Return the report to the dean of the college, or
his/her designee, requesting that he/she clarify
specific matters, materials and issues, and forward
to the vice president a second report of his/her
decision relating to the specific matters referred by
the vice president for further explanation; or

b. Reject all or parts of the dean's, or designee's,
decision, stating reasons and actions for imposing
a greater or lesser sanction than determined by the
dean.

1. Written notification of the vice president's decision and the
basis for that decision shall be communicated to the
parties, to the chair of the Academic Appeals Committee
and to the dean within ten (10) business days after receipt
of the appeal, or within twenty (20) business days after
receipt of the appeal if an ad hoc committee is formed.

2. The decision of the vice president is final.

E. Suspension or Dismissal from a Program or from the University, or
Revocation of a Degree or Certificate

0. The sanctions of suspension and dismissal and revocation for
academic misconduct may be imposed: (1) if recommended by
the Academic Appeals Committee to the dean; (2) if deemed
appropriate by the dean notwithstanding the recommendation
from the committee; or (3) by the cognizant vice president
notwithstanding the decision (or recommendation) of the dean. A

368

student who has been suspended or dismissed from the
University shall be denied all privileges accorded to a student.

0. Suspension from a Program or from the University.

 . Suspension shall be for a minimum time of one
semester following the semester the student is
found responsible for academic misconduct.

a. The dean of the relevant college shall notify the
student in writing of the suspension, conditions for
reinstatement, and of the obligation of the student
to petition for reinstatement.

b. Petitions for reinstatement shall be submitted to
the relevant dean and shall explain how the
conditions for reinstatement have been met.

c. The relevant dean shall consider the petition and
shall issue a decision regarding the student's
reinstatement within fifteen (15) business days of
receipt of the petition.

d. The relevant dean may grant conditional
reinstatement contingent upon the student meeting
written requirements specified in the original
sanction (e.g., minimum grade point average
requirement, ineligibility to participate in specified
student activities or on specified student
committees).

e. The notice of the dates for which the student is
suspended will remain on his/her transcript until
he/she has been reinstated to the program or to
the University, or for five (5) years if he/she is not
reinstated to the program or to the University.
[SeeProcedure 6-400-Sec.VII #1]

1. Dismissal from a Program or from the University.

 . Dismissals from a program or from the University
are final. A student dismissed from a program or
from the University for academic misconduct may
not petition for reinstatement.

a. Permanent records of dismissal shall be kept in the
office of the registrar.

369

b. The dismissed student's transcript will reflect
his/her dismissal. [See Procedure 6-400-Sec.VII
#1]

c. Dismissal should be reserved for only the most
egregious of offenses.

2. Revocation of a Degree or Certificate.

 . Decisions to revoke a degree or certificate are
final.

a. Permanent records concerning the revocation of a
degree or certificate shall be kept in the office of
the registrar.

b. The revocation of a degree or certificate shall be
noted on the student's transcript. [See Procedure
6-400-Sec.VII #1]

c. Revocation of a degree or certificate should be
reserved for only the most egregious of offenses.

F. Copies of Documents to Department Chair

0. During the appeals process and at the time they are submitted,
the following documents should be copied to the chair of the
department considering the academic misconduct: the first
written complaint and recommendations, the first written appeal,
all subsequent appeals, all responsive documents, and all written
recommendations or decisions made at each level of the appeal.

G. Programs That Do Not Report to Academic Deans

0. In cases where a program does not report directly to an
academic dean, the program director will serve as department
chair, and the cognizant associate vice president will serve as
dean for purposes of these proceedings. Any ambiguity
concerning procedures set forth in this policy for courses offered
in a program (e.g. determination of the relevant Academic
Appeals Committee) shall be resolved by the program director, in
consultation with the cognizant associate vice president, and in a
manner that preserves the spirit and intent of this policy.

H. Implementation of Sanction for Academic Misconduct

0. At the conclusion of the appeals process, the chair of the
department or dean of the college considering the academic
misconduct shall take appropriate action to implement the final
decision. If the student is found responsible for academic
misconduct, the chair or dean shall notify, in writing, the student's

370

department or program of study of the violation, the proceedings,
and the final decision.(19) If the sanction involves suspension or
dismissal from a program or from the University or revocation of
a degree or certificate, the chair or dean shall also convey the
decision to the office of the registrar for notation on the transcript.
[SeeProcedure 6-400-Sec.VII #1]

I. Reporting of Academic Misconduct

0. No University employee shall provide information to a person or
entity concerning a student's academic misconduct without fully
complying with The Family Educational Rights and Privacy Act
(20 U.S.C.A. § 1232g) and the Government Records Access and
Management Act (Utah Code Title 63G - Chapter 2). In most
circumstances, such as requests from a licensing body or an
employer, information may only be provided with the prior written
consent of the student. In some circumstances, however, such
as requests from other institutions where the student seeks or
intends to enroll, information may be provided without the
consent of the student but only after following appropriate
procedures outlined in these statutes.

J. Other University Proceedings

0. If the filing of a complaint or an appeal relating to academic
misconduct raises other issues concerning behavioral or
professional misconduct, the cognizant senior vice president, or
designee, the dean of students, and the involved University
administrator shall determine the appropriate procedure(s) for
processing the complaint or the appeal.

K. Retention of Records of Proceedings

0. Records of proceedings under the Student Code shall be
confidential to the extent permitted by law. Records of academic
misconduct shall be kept in the office of the registrar, and a copy
may be retained in other academic departments as appropriate.

6. Section VI: Student Professional and Ethical Conduct

 . Standards of Professional Conduct

0. In order to ensure that the highest standards of professional and
ethical conduct are promoted and supported at the University,
students must adhere to the prescribed professional and ethical
standards of the profession or discipline for which the student is
preparing, as adopted or recognized as authoritative by the
relevant academic program.

A. Professional Misconduct

371

0. A student who engages in professional misconduct (see Section
I.B.) may be subject to academic sanctions including but not
limited to a grade reduction, failing grade, probation, suspension
or dismissal from the program or the University, revocation of a
student's degree or certificate, or comparable professional
credentialing sanctions. Sanctions may also include community
service, a written reprimand, and/or a written statement of
misconduct that can be put into an appropriate record maintained
for purposes of the profession or discipline for which the student
is preparing.

0. Any person who observes or discovers that a student has
engaged in professional misconduct should file a written
complaint with the office of the dean of the college within
forty-five (45) business days of the date of discovery of
the alleged violation.

1. Upon receipt of the complaint, the dean of the college
shall notify the department chair or program director, and
within a reasonable time discuss the alleged misconduct
with the accused student and give the student an
opportunity to respond. The dean of the college may
interview the complaining party and any other persons
believed to have pertinent factual knowledge of the
allegations. The dean of the college may also review any
other relevant evidence, including documentary evidence.
The dean may delegate the above responsibilities to a
designee, who will report his/her findings to the dean.

2. The dean of the college shall determine whether there is a
reasonable basis to believe that the student engaged in
professional misconduct.

3. If the dean of the college determines that there is no
reasonable basis to believe that the student engaged in
professional misconduct, the dean of the college, or
designee, shall, within twenty (20) business days of
receipt of the complaint, notify the student and the matter
will be dismissed.

4. If the dean of the college determines that there is a
reasonable basis for believing that the student engaged in
professional misconduct, he/she shall determine whether
efforts at informal resolution are appropriate and, if so,
shall take whatever steps are useful to that end within
twenty (20) business days of receipt of the complaint. If
an informal resolution is reached and the responding
student complies with the terms and conditions of the

372

resolution, no further action against the student will be
taken and the matter will be closed.

5. If informal resolution is inappropriate, or if efforts at
informal resolution are not successful, the dean of the
college shall, within twenty (20) business days of receipt
of the complaint, refer the complaint, including his/her
recommendation for academic sanctions, to the Academic
Appeals Committee for proceedings in accordance with
Section C, below, and so notify the student in writing.

B. Proceedings Before the Academic Appeals Committee

0. Written Complaint and Recommendations. The written complaint
and recommendations shall be delivered to the chair of the
Committee, with a copy to the student.

1. Response to Complaint and Recommendations. The student
responding to the complaint and recommendations may deliver
his/her response to the chair of the Academic Appeals
Committee, with a copy to the dean, no later than five (5)
business days after receipt of the complaint and
recommendations.

2. Makeup of the Committee. The dean of each college shall ensure
that an Academic Appeals Committee(19) is constituted according
to college procedures, subject to the following parameters. Two
faculty members shall come from the college. The Personnel and
Elections Committee of the Academic Senate shall appoint one
faculty member from outside the college. The faculty members
shall be appointed to the Committee for staggered three-year
terms. The dean shall appoint two undergraduate student
members and two graduate student members who are either
from the relevant Student Advisory Committee or listed as a
major within the college. Undergraduate student and graduate
student members will be appointed for staggered two-year
terms(20). No more than one faculty member and two Committee
members in total may come from the same department in a multi-
department college. The members of the Committee who shall
hear the case are the three faculty members and the two
students from the peer group of the student accused of
professional misconduct (i.e., undergraduates or graduates). The
dean shall designate one of the faculty members to serve as
chair of the Committee. The Committee shall establish internal
procedures consistent with the Student Code.

3. Conflicts of Interest. Upon written request of one of the parties or
Committee members, the dean may excuse any member of the
Committee if the dean determines that the member has a conflict

373

of interest. The dean shall select an appropriate replacement for
the excused member (i.e., student or faculty member).

4. Scheduling Hearings Before the Committees. When a complaint
and recommendations together with a response are filed in a
timely manner, the Committee chair shall schedule a hearing
date if:

 . The documents raise material issues of disputed fact;

a. The Committee chair determines that a hearing is
necessary or otherwise desirable to aid in the resolution
of the issues; or

b. The possible sanctions against the student may include
dismissal from the University, dismissal from a program,
suspension from either for longer than ten (10) business
days, or revocation of the student's degree or certificate.

0. If the Committee chair determines that no
circumstances exist that require a hearing, as
provided above, the chair shall notify the student
and the dean of the college (the parties) in writing
of this determination and within a reasonable time
convene a closed meeting of the Committee to
consider the documentation submitted by the
parties. The Committee chair shall prepare a
written report of the Committee's findings and
recommendations and present it to the cognizant
senior vice president, or designee, within ten (10)
business days after the Committee meeting.

5. Notice of Hearings Before Committees. If the Committee chair
determines that a hearing is required, the chair shall schedule a
hearing date and notify the parties in writing of the date of the
hearing, the names of the Committee members, and the
procedures outlined below at least fifteen (15) business days
prior to the hearing.

6. Hearing Procedures. Hearings shall be conducted according to
the following procedures:

 . Hearings shall be conducted within a reasonable time
after the Committee's receipt of the written complaint and
recommendations and the response.

a. At least five (5) business days prior to the date of the
hearing, the parties shall make available to each other
and to the Committee a list of their witnesses and a list of
the documents to be offered at the hearing. In exceptional

374

circumstances, the Committee may allow a party to call
witnesses not listed or submit additional documents at the
hearing.

b. The parties have a right to be accompanied by any
person as advisor, including legal counsel, who will be
permitted to attend, but not directly participate in, the
proceedings.

c. Hearings shall be closed to the public.

d. All hearings, except Committee deliberations and voting,
shall be recorded and a copy made available to any party
upon request. Committee deliberations and voting shall
take place in closed sessions.

e. The Committee must have a quorum present to hold a
hearing. A quorum consists of three (3) members,
including at least one (1) student and the faculty member
from outside the college. If there is more than one hearing
in a matter, or if the hearing continues over more than one
session, the same three members must be present for all
sessions. All findings and recommendations of the
Committee shall require a majority vote of the Committee
members present at the hearing.

f. At the hearing, the parties shall have the right to present
questions to witnesses through the Committee chair, to
present evidence and to call witnesses in their own
behalf, in accordance with the Committee's established
internal procedures.

g. The Committee shall not be bound by strict rules of legal
evidence or procedure and may consider any evidence it
deems relevant.

h. University legal counsel shall serve as a resource to the
Committee and may be present at the hearing to provide
guidance on substantive law and procedural matters.

i. In the hearing, the Committee must determine, by a
preponderance of the evidence, whether the student
engaged in the alleged professional misconduct. If the
Committee answers this question in the affirmative, the
Committee may then recommend any academic sanction
it deems appropriate under the entire circumstances of
the case.

j. The Committee shall make its findings and
recommendations based only on evidence and testimony

375

presented by the parties at the hearing. Committee
members shall not conduct their own investigations, rely
on prior knowledge of the facts or develop their own
evidence.

k. If either party presenting to the Academic Appeals
Committee fails to attend the hearing without good cause,
the Committee may proceed with the hearing and take
testimony and evidence and report its findings and
recommendations to either the senior vice president for
academic affairs, or senior vice president for health
sciences, as appropriate, on the basis of such testimony
and evidence.

l. The Committee chair shall prepare a written report of the
Committee's findings and recommendations and present it
to the cognizant senior vice president within ten (10)
business days after the conclusion of the hearing.

C. Review and Decision by the Cognizant Senior Vice President

0. The vice president shall consider the documentation submitted to
the Committee and the findings and recommendations of the
Committee in making a decision. Based upon such review, and
without conducting further hearings, the vice president shall,
within ten (10) business days, take one of the following actions:

 . Accept the Committee's findings and recommendations;

a. Return the report to the Committee chair, requesting that
the Committee reconvene to reconsider or clarify specific
matters, materials, and issues, and forward to the vice
president a second report of its findings and
recommendations relating to the specific matters referred
by the vice president for further consideration; or

b. Reject all or parts of the Committee's findings and
recommendations, stating reasons and actions to be
taken therefore. The vice president may impose greater or
lesser sanctions than recommended by the Committee.

1. Written notification of the vice president's decision shall be
communicated to the parties, to the chair of the Academic
Appeals Committee and to the president within ten (10) business
days of receipt of the Committee's findings and
recommendations.

2. The vice president's decision is final unless appealed to the
president within ten (10) business days of receipt of the decision.

376

D. Appeal to President

0. Within ten (10) business days of receipt of the vice president's
decision, any party may appeal the decision by filing a written
notice of appeal with the president and delivering a copy to the
other party. The other party may file a response to the appeal
with the president within five (5) business days of receipt of the
appeal. In the case of an appeal:

0. The president shall consider the appeal and response to
the appeal and may solicit whatever counsel and advice
the president deems appropriate to arrive at a final
decision. The president may also convene an ad hoc
committee composed of students and faculty members
from outside the college or department to determine if
there were substantial defects that denied basic fairness
and due process. After considering the appeal, the
president shall, within ten (10) business days, or within
twenty (20) business days if an ad hoc committee is
formed, take one of the following actions:

 . Accept the decision of the vice president;

a. Return the report to the vice president, requesting
that he/she clarify specific matters, materials, and
issues, and forward to the president a second
report of his/her decision relating to the specific
matters referred by the president for further
explanation; or

b. Reject all or parts of the vice president's decision,
stating reasons and actions for imposing a greater
or lesser sanction than determined by the vice
president.

1. Written notification of the president's decision and the
basis for that decision shall be communicated to the
student, to the academic dean or dean's designee, to the
vice president, and to the chair of the Academic Appeals
Committee within ten (10) business days after receipt of
the appeal, or within twenty (20) business days after
receipt of the appeal if an ad hoc committee is formed.

2. The decision of the president is final.

E. Suspension or Dismissal from a Program or from the University, and
Revocation of a Degree or Certificate

0. The sanctions of suspension, dismissal, and revocation for
professional misconduct may be imposed: (1) if agreed upon in

377

informal resolution between the responding student and the dean
of the college; (2) if recommended by the Academic Appeals
Committee to the cognizant vice president; (3) by the vice
president notwithstanding the recommendation from the
committee; or (4) by the president notwithstanding the decision of
the vice president. A student who has been suspended or
dismissed from the University shall be denied all privileges
accorded to a student.

0. Suspension from a Program or from the University.

 . Suspension shall be for a minimum time of one
semester following the semester the student is
found responsible for professional or academic
misconduct.

a. The dean of the relevant college shall notify the
student in writing of the suspension, conditions for
reinstatement, and of the obligation of the student
to petition for reinstatement.

b. Petitions for reinstatement shall be submitted to
the relevant dean and shall explain how the
conditions for reinstatement have been met.

c. The relevant dean shall consider the petition and
shall issue a decision regarding the student's
reinstatement within fifteen (15) business days of
receipt of the petition.

d. The relevant dean may grant conditional
reinstatement contingent upon the student meeting
written requirements specified in the original
sanction.

e. The notice of the dates for which the student is
suspended will remain on his/her transcript until
he/she has been reinstated to the program or to
the University, or for five (5) years if he/she is not
reinstated to the program or to the University.
[SeeProcedure 6-400-Sec.VII #1]

1. Dismissal from a Program or from the University.

 . Dismissals from a program or from the University
are final. A student dismissed from a program or
from the University for professional misconduct
may not petition for reinstatement.

378

a. Permanent records of dismissal shall be kept in the
office of the registrar.

b. The dismissed student's transcript will reflect
his/her dismissal. [See Procedure 6-400-Sec.VII
#1]

c. Dismissal should be reserved for only the most
egregious of offenses.

2. Revocation of a Degree or Certificate.

 . Decisions to revoke a degree or certificate are
final.

a. Permanent records concerning the revocation of a
degree or certificate shall be kept in the office of
the registrar.

b. The revocation of a degree or certificate shall be
noted on the student's transcript. [See Procedure
6-400-Sec.VII #1]

c. Revocation of a degree or certificate should be
reserved for only the most egregious of offenses.

F. Internal Reporting of Professional Misconduct

0. The dean shall take appropriate action to implement the final
decision. If the student is found responsible for professional
misconduct, the dean shall notify, in writing, the student's
department or program of study of the violation, the proceedings,
and the final decision. If the sanction involves suspension or
dismissal from a program or from the University or revocation of
a degree or certificate, the dean shall also convey the decision to
the office of the registrar for notation on the transcript.
[See Procedure 6-400-Sec.VII #1]

G. Administrative Suspension to Protect the University Community or the
Public

0. The senior vice president for academic affairs (or designee) or
the senior vice president for health sciences (or designee) may
suspend a student from the University prior to an initial inquiry
and hearing before the Academic Appeals Committee if such
action appears necessary to protect the health or well-being of
any member of the University community, any member of the
public or to prevent serious disruption of the academic process.
Prior to, contemporaneous with, or immediately after the
suspension, the vice president shall give the student written

379

notice of the suspension specifying the alleged misconduct and
setting forth briefly the relevant facts and supporting evidence.
The vice president shall then provide the student with an
opportunity to meet with him/her to present the student's views
and object to the suspension. This meeting shall take place prior
to the suspension taking effect or as soon as possible thereafter.
The vice president shall thereafter immediately refer the
complaint to the appropriate University administrator for
proceedings under the code, and the suspension will be in effect
pending a final determination of the matter. The vice president
shall notify other University administrators of the suspension as
appropriate.

H. Reporting of Professional Misconduct

0. No University employee shall provide information to a person or
entity concerning a student's professional misconduct without
fully complying with The Family Educational Rights and Privacy
Act (20 U.S.C.A. § 1232g) and the Government Records Access
and Management Act (Utah Code Title 63G - Chapter 2). In most
circumstances, such as requests from a licensing body or an
employer, information may only be provided with the prior written
consent of the student. In some circumstances, however, such
as requests from other institutions where the student seeks or
intends to enroll, information may be provided without the
consent of the student but only after following appropriate
procedures outlined in the statutes.

I. Other University Proceedings

0. If the filing of a complaint or an appeal relating to professional
misconduct under the Student Code raises other issues
concerning behavioral or academic misconduct, the cognizant
senior vice president, or designee, the dean of students, and the
involved University administrator shall determine the appropriate
procedure(s) for processing the complaint or the appeal.

J. Retention of Records of Proceedings

0. Records of proceedings under the Student Code shall be
confidential to the extent permitted by law. Records of
professional misconduct shall be kept in the office of the
registrar, and a copy may be maintained in other academic
departments as appropriate.

7. Section VII: Student Records

 . General

380

0. The privacy and confidentiality of all student records shall be
preserved as outlined in relevant federal and local laws (i.e. The
Family Educational Rights and Privacy Act (20 U.S.C.A. § 1232g)
and the Government Records Access Management Act (Utah
Code Title 63G - Chapter 2). University interpretation of the
Family Educational Rights and Privacy Act as it pertains to
University of Utah students is available from the office of the vice
president for student affairs.

1. Official student records shall be maintained only by members of
the University staff employed for that purpose. Separate record
files may be maintained under the following categories: (i)
academic, academic counseling, financial aid, and placement; (ii)
disciplinary; (iii) medical, psychiatric, and health counseling.
When justified by legitimate law enforcement needs, the campus
security agency may maintain confidential records relating
primarily to its investigative function.

A. Access and Challenge of Accuracy of Records

0. Access to the student's official records and files is guaranteed
every student subject to the limitations set forth in relevant
federal and local laws (i.e. The Family Educational Rights and
Privacy Act (20 U.S.C.A. § 1232g) and the Government Records
Access and Management Act (Utah Code Title 63G - Chapter 2).
Students with complaints, inquiries, or requests for review of
official records are directed to the vice president for student
affairs.

B. Matters Prohibited in Official Records

0. Except as required by law or governmental regulations or as
authorized by written consent of the student involved, official
student records will not contain information regarding a student's
race, religion, disability, political opinions, social opinions, or
membership in any organizations other than honorary and
professional organizations directly related to the educational
process. Except as required by law or applicable governmental
or University regulations, information regarding marital status
shall not be included in the official student records of any student
who has filed a written objection to the inclusion of that
information in his/her records and has not filed a subsequent
written revocation thereof.

C. Official Disciplinary Records

0. Records of behavioral or academic sanctions imposed by the
Student Behavior Committee, by the Academic Appeals
Committee, or by any authorized official of the University shall be

381

maintained in the office of the dean of students and/or the office
of the registrar. Records of behavioral, academic or professional
misconduct may also be maintained in the official files of a
department or program, and by the senior vice president for
academic affairs or senior vice president for health sciences. No
notation of behavioral or academic sanctions shall be entered or
made on the student's academic transcripts except in the
following circumstances: 1) when the student is suspended from
a program or from the University for academic or professional
misconduct; 2) when the student is dismissed from a program or
from the University for behavioral, academic or professional
misconduct; or 3) when the student's degree or certificate has
been revoked. In a case of dismissal, suspension, or revocation,
the entry on the transcripts of the student shall merely state:
"Dismissed from the University for Behavioral Misconduct” or
“Dismissed/Suspended from the [program]/University for
Academic/Professional Misconduct” or “Degree/Certificate
Revoked for Academic/Professional Misconduct” and the date of
such action. Notices of dismissal or revocation shall not be
removed from the student's academic transcripts. Notices of
suspension shall be entirely removed from the student's
academic transcripts after the student is reinstated in the
program or at the University. If the student is not reinstated due
to his/her failure to fulfill the conditions of the suspension, the
notice shall be removed five (5) years after the suspension is first
imposed. [See Procedure 6-400-Sec.VII #1]

D. Confidential Character of Student Records

0. The University must conform to the requirements of the statutes
referred to in Subsection A “General” and Subsection B “Access
to and Challenge of Accuracy of Records” forbidding the release
of personally identifiable student education records or files, or
personal information contained therein, without the written
consent of the student. Subject to applicable legal requirements,
it is the policy of the University that:

0. Members of the administration and the instructional staff
will have access to student records for legitimate
purposes such as student advising, administrative
planning and statistical reporting.

1. Directory information, such as the student's name,
address, telephone number, date and place of birth, major
field of study, participation in officially recognized activities
or sports, weight and height of members of athletic teams,
dates of attendance, degrees and awards received, the
most recent previous educational agency or institution

382

attended by the student, current semester class schedule,
and other similar information may be disclosed to an
inquirer unless the student specifically withholds
permission to do so.

2. Authorized representatives of federal and state
governments may have access to student records to the
extent necessary for audit and evaluation of federally
supported education programs or of compliance with
federal legal requirements relating to such programs, and
subject to the limitation that personally identifiable data
shall not be disclosed except to the extent specifically
authorized by federal law.

3. The right of access to a student's records without the
consent of the student is not extended to the parents of
the student unless the student has been established as a
“dependent” as defined in Section 152 of the Internal
Revenue Code of 1954.

4. Records created or maintained by a physician,
psychologist, or other recognized professional or para-
professional acting in that capacity, which are created,
maintained, and used only in connection with treatment of
a student are not available for review except by an
appropriate professional of the student's choice, or in
compliance with an order from a court of competent
jurisdiction.

E. Treatment of Official Records Following Graduation or Withdrawal

0. Upon graduation or withdrawal from the University, the official
records of former students shall continue to be subject to the
provisions of this code.

0.

1. [Note: Parts IV-VII of this Regulation (and all other
University Regulations) are Regulations Resource
Information – the contents of which are not approved by
the Academic Senate or Board of Trustees, and are to be
updated from time to time as determined appropriate by
the cognizant Policy Officer and the Institutional Policy
Committee, as per Policy 1-001 and Rule 1-001.]

8. Rules, Procedures, Guidelines, forms and other related resources.

0. Rules (reserved)

383

1. Procedures

0. University Procedure 6-400-Sec.VII #1

2. Guidelines (reserved)

3. Forms (reserved)

4. Other related resource materials (reserved)

9. Contacts

0. The designated contact officials for this Policy are:

 . Policy Owner (primary contact person for questions and advice):
Dean of Students.

A. Policy Officers: Sr. Vice President for Academic Affairs and the
Sr. Vice President for Health Sciences.

0. These officials are designated by the University President
or delegee, with assistance of the Institutional Policy
Committee, to have the following roles and authority, as
provided in University Rule 1-001:

1. "A 'Policy Officer' will be assigned by the President for
each University Policy, and will typically be someone at
the executive level of the University (i.e., the President
and his/her Cabinet Officers). The assigned Policy Officer
is authorized to allow exceptions to the Policy in
appropriate cases.... "

2. "The Policy Officer will identify an 'Owner' for each Policy.
The Policy Owner is an expert on the Policy topic who
may respond to questions about, and provide
interpretation of the Policy; and will typically be someone
reporting to an executive level position (as defined
above), but may be any other person to whom the
President or a Vice President has delegated such
authority for a specified area of University operations. The
Owner has primary responsibility for maintaining the
relevant portions of the Regulations Library... .[and] bears
the responsibility for determining -requirements of
particular Policies... ." University Rule 1-001-III-B & E

10. History:

0. Renumbering: Renumbered as Policy 6-400 effective 9/15/2008,
formerly known as PPM 8-10, and formerly as University Regulations
Chapter X.

384

1. Revision History:

0. Current version: Revision 8

0. Editorially revised: July 9, 2009

1. Earlier versions:

0. Revision 7:effective dates July 1, 2009 to July 8,
2009

1. Legislative History of Revision 7

Revision 6:
effective dates February 3, 2006 to July 1, 2009.

1. Revision 5: effective dates May 10, 2004 to February 2,
2006

2. Revision 4: effective dates February 10, 2003 to May 9,
2004

3. Revision 3: effective dates July 14, 1997 to February 9,
2003

1. Allegations of sexual harassment generally will be handled by OEO/AA in accordance with Policy
and Procedures 5-210. However, allegations of student to student sexual harassment may be handled
under the Student Code, rather than by the office of OEO/AA.
2. Oral complaints presented to the dean of students shall be recorded by the dean's office either
electronically or in transcribed form.
3. The parties to a complaint before the Student Behavior Committee are the responding student, the
complaining party, and the dean of students.
4. If the academic action results from a decision of a committee, e.g., the Promotions Committee of the
School of Medicine, the chair of the committee is the “faculty member” for purposes of these
procedures.
5. In colleges without departments, the student shall appeal in writing to the dean of the college. The
dean of the college shall appoint one or more faculty members from the college to serve as chair for
purposes of these procedures. In cases where the appeal occurs in a program that does not report
directly to an academic dean, but rather to an associate vice president, the cognizant program director
shall serve as department chair, and the cognizant associate vice president shall serve as dean for
purposes of these procedures.
6. Colleges or departments offering only graduate programs may appoint only graduate student
members.
7. Claims of misconduct in sponsored research will be handled in accordance with Policy and
Procedures 7-001. In addition, such claims may also be consider under this code.
8. If a student attempts to withdraw from a course after engaging in academic misconduct, withdrawal
may be denied by the University whether or not the attempt is made before the official withdrawal date
and a failing grade may be imposed for the course.
9. In colleges without departments, the faculty member shall notify the dean of the college.
10. If the student's home department is unknown or undecided, the faculty member should report the
academic misconduct to the senior vice president for academic affairs or the senior vice president for
health sciences and the Associate Dean for Advising, University College.
11. See FN 10.
12. If the student's home college is unknown or undecided, the person pursuing the complaint should
report the academic misconduct to the senior vice president for academic affairs, or the senior vice

385

president for health sciences. The action for misconduct may then be pursued through the Academic
Appeals Committee of the college offering the course.
13. If the student appeals a failing grade or other lesser sanction imposed for the last act of
misconduct, the dean or vice president for the student's home college may delay action under this
section until ten (10) business days following notice of the determination on the student's appeal.
14. If the student's home college is unknown or undecided, proceedings for misconduct should be
pursued through the Academic Appeals Committee of the college in which the last act of misconduct
occurred.
15. See FN 6.
16. See FN 10.
17. In cases where the dean recommends a sanction of suspension or dismissal from the University or
revocation of a degree or certificate, which sanction is implemented by the cognizant vice president,
the appeal shall be made directly to the president of the University.
18. See FN 10.
19. When necessary to comply with accreditation or licensing standards, a department may establish a
departmental Academic Appeals Committee in lieu of the college Academic Appeals Committee to
hear allegations of professional misconduct. The departmental committee shall be composed of two
faculty members and two students from the department (or professional program within the
department) and one faculty member from outside the department. Hearings by the departmental
committee shall be conducted in accordance with the procedures established in Part VI.C, for the
college Academic Appeals Committee.
20. See FN 6.
	

386

Appendix F: Computer Science Undergraduate Track Elective
Suggestions	

Denise Haynie
Typewritten Text
387

Computer Science Undergraduate Track Elective Suggestions 3/26/15

Robotics (Choose 3)
4300: Artificial Intelligence
5310: Robotics
5350: Machine Learning
*6320: 3D Computer Vision
*6330: Intro to Robot Control
*6370 Geometric Motion Planning

Artificial Intelligence (Choose 4)
4300: Artificial Intelligence
4640: Image Processing Basics
5100: Foundations of CS
5130: Computational Statistics
5140: Data Mining
5320: Computer Vision
5340: Natural Language Processing
5350: Machine Learning

Ar
tifi

cia
l I

nt
el

lig
en

ce Visual Computing (Choose 4)
3200: Intro Sci Comp
4600: Intro Computer Graphics
4640: Image Processing Basics
5320: Computer Vision
5350: Machine Learning
5610: Interactive Comp Graphics
5630: Scientific Visualization
5650: Perception for Graphics

Gr
ap

hi
csSoftware Development (Choose 5)

3470: Scripting Language/Design
4230: Parallel Programming
4480: Computer Networks
4540: Web Software Architecture
5140: Data Mining
5460: Operating Systems
5470: Compilers
5530: Database Systems
5540: Human Computer Interaction
5785: Adv. Embedded Software

Web/Mobile Development (Choose 4)
3470: Scripting Language/Design
4480: Computer Networks
4540: Web Software Architecture
4962: iPhone/Android Development
5530: Database Systems
5540: Human Computer Interaction

So
ft

w
ar

e

Computer Systems (Choose 3)
4230: Parallel Programming
4480: Computer Networks
5460: Operating Systems
5470: Compilers
5490: Network Security
5530: Database Systems

Programming Languages (Choose 3)
3470: Scripting Language/Design
5100: Foundations of CS
5470: Compilers
5510: Programming Languages

Co
m

pu
te

r S
ys

te
m

s

Da
ta

Theory (Choose 3)
3100: Models of Computation
5100: Foundations of CS
5130: Computational Statistics
5140: Data Mining
5350: Machine Learning
*6150: Adv. Algorithms

Th
eo

ry

Information (Choose 3)
4300: Artificial Intelligence
5140: Data Mining
5340: Natural Language Processing
5350: Machine Learning
5530: Database Systems
5630: Visualization
*6150: Adv. Algorithms

Computer Organization (Choose 4)
3700: Digital System Design
3710: Computer Design Lab
5460: Operating Systems
5710: Digital VLSI Design
5830: VLSI Architecture

Embedded Systems (Choose 4)
3710: Computer Design Lab
4480: Computer Networks
5470: Compilers
5780: Embedded System Design
5785: Adv. Embedded Software
5789: Embedded Sy/Kinetic Art

CAD for Digital Systems (Choose 4)
5710: Digital VLSI Design
5740: Computer-Aidied Design
5745: Testing/Verif. Digital Circuits
5750: Synthesis/Veri. VLSI Sys.
5830: VLSI Architecture

Ha
rd

w
ar

e

*Open to undergrads with instructor consent & permission code.

Undergraduate certificates awarded upon graduation if required number of courses are taken in a specific track area (optional).

Denise Haynie
Typewritten Text
388

Appendix G: Computer Science BS Degree Requirements

389

Student Name: __ uID: _____________________

COMPUTER SCIENCE 2016-2017 B.S. Degree Requirements
CS undergraduate advising: ugrad-help@cs.utah.edu or 801-581-8224

PRE-MAJOR REQUIREMENTS:_____
C- or better in each course, and a minimum 3.0 average GPA (overall
and within pre-major courses) required to apply for full major status.

1. CS 1030, Foundations of CS____________________________(3)
2. CS 1410, Object-Orient. Prog.__________________________(4)
3. CS 2420, Algrthms/Data Struct._________________________(4)
4. Math 1210, Calculus I (QR) ___________________________(4)
5. Math 1220, Calculus II (QR) __________________________(4)

GENERAL EDU. REQUIREMENTS:__
Honors options also accepted for WR2, CW, and AI requirements.

1. Wrtg 2010, Intermediate Writing (WR2) _________________(3)
2. Wrtg 3012 or 3014 or 3015 (CW) ____________________(3)
3. American Institutions (AI) __________________________(3)

SIX Intellectual Exploration (IE) courses required. TWO must be
upper division (3000-level or above), ONE must satisfy the Diversity
requirement and ONE must satisfy the International requirement.

4. Fine Arts (FF): ______________________________(3)
5. Fine Arts (FF): ______________________________(3)

6. Humanities (HF): ____________________________(3)
7. Humanities (HF): ____________________________(3)

8. Social/Behavioral Science (BF): __________________(3)
9. Social/Behavioral Science (BF): __________________(3)

• Upper Division (3000+ level IE) _____________
• Upper Division (3000+ level IE) _____________
• Diversity (DV) ___________________
• International (IR) ___________________

MATH / SCIENCE ELECTIVES:______
C- or better required in all math/ science courses. PHYS 2210
Required. CHOOSE 2 of 3: Math 2210-Calc III, Math 2270-Linear
Algebra, CS 3130-Eng. Prob. Stats.

TWO additional electives must be 3+ credits each, as follows:

Accepted: Math, science or engineering courses with Math 1220 as a
pre- or co-requisite (See DARS). Biol 1210, Chem 1210 also accepted.

NOT Accepted: CS courses (except CS 3130). Math 2200, Math 3010.
Math 2250 not accepted if Math 2270 and/ or Math 2280 are taken.
Math 5010 and/or 3070 not accepted if CS 3130/ ECE 3530 is taken.

1. Physics 2210, Physics I_______________________________(4)
2. Choose 1: Math 2210 (QR), Math 2270 (QR) or CS 3130_()
3. Choose 1: Math 2210 (QR), Math 2270 (QR) or CS 3130_()
4. __()
5. __()

The following requirements are restricted to FULL Majors:
C- or better required in all CS courses. CR/NC grading option not allowed for
any major requirement. 2.5 GPA (overall & CS courses) required to graduate.

MAJOR REQUIREMENTS:______________

1. CS 2100, Discrete Structures___________________________(3)
2. CS 3500, Software Practice I__________________________________(4)
3. CS 3505, Software Practice II___________________________(3)
4. CS 3810, Computer Organization (QI) __________________________(4)

5. CS 4150, Algorithms (QI) ____________________________________(3)
6. CS 4400, Computer Systems (QI) ______________________________(4)

CS ELECTIVES:________________________
Choose 7 total CS courses, 3000-level or above, 3-4 credits each. Seminars, CS
3992, CS 3130 not accepted.

1. CS ____________/______________/________________()
2. CS ____________/______________/________________()
3. CS ____________/______________/________________()
4. CS ____________/______________/________________()
5. CS ____________/______________/________________()
6. CS ____________/______________/________________()
7. CS ____________/______________/________________()

No more than 3 of the following may be accepted above as CS electives:

• (1) CS 4010, Internship
• (1) CS 4940, Research (if not used for capstone)
• (1) CS 4950, Independent Study
• (1) EAE course (3000+ level, 3+ credits)
• (1) Combination of 1-2 credit CS courses (3 credits total):

CS 3011, 3020, 4190, 5040 and 1-2 credit special topics courses

THEORY RESTRICTED ELECTIVE______
Choose ONE: (If both classes are taken, one will count as a CS elective above)

CS 3100, Models of Computation (QI) _____________________________(3)

or

CS 3200, Scientific Computing___________________________________(3)

CAPSTONE REQUIREMENT:____________
Choose ONE set: (Permission required from Undergraduate Director for thesis)

CS 4000, Senior Capstone Design __________________________(3)
CS 4500, Senior Capstone Project __________________________(3)

or

CS 4940, Undergraduate Research _________________________(3)

CS 4970, Bachelor’s Thesis ______________________________(3)

See the CS Undergraduate Handbook online for complete details, restrictions & requirements
Updated 5/10/16

390

Appendix H: Computer Science BS Degree Requirements EAE

391

COMPUTER SCIENCE 2016-2017 B.S. Degree Requirements
Entertainment Arts & Engineering (EAE) emphasis

CS undergraduate advising: ugrad-help@cs.utah.edu or 801-581-8224

PRE-MAJOR REQUIREMENTS:_____
C- or better required and a minimum 3.0 average GPA (overall and
within pre-major courses) required to apply for full major status.

1. EAE 1030, Foundations of CS__________________________(3)
2. EAE 1410, Object-Orient. Prog.________________________(4)
3. EAE 2420, Algrthm/Data Struct.________________________(4)

4. Math 1210, Calculus I (QR) ___________________________ (4)
5. Math 1220, Calculus II (QR)__________________________ (4)

GENERAL EDU. REQUIREMENTS:__
Honors options also accepted for WR2, CW, and AI requirements. See
minimum grade requirements in handbook.

1. Wrtg 2010, Intermediate Writing (WR2) _________________(3)
2. FA 3600, Writing for New Media (CW) _______________(3)
3. American Institutions (AI) _____________________(3)

Six Intellectual Exploration (IE) courses required. TWO must be
upper division (3000-level or above), ONE must satisfy the Diversity
requirement and ONE must satisfy the International requirement.

4. ART 1020, Basic Drawing (FF): __________________(3)
5. Fine Arts (FF): ______________________________(3)

6. Humanities (HF): ____________________________(3)
7. Humanities (HF): ____________________________(3)

8. Social/Behavioral Science (BF): __________________(3)
9. Social/Behavioral Science (BF): __________________(3)

• Upper Division (3000+ level IE) _____________
• Upper Division (3000+ level IE) _____________
• Diversity (DV) ___________________
• International (IR) ___________________

MATH / SCIENCE ELECTIVES:______
C- or better required in all math/ science courses.

ONE additional math/science elective is required (3+ credits). Choose
any non-CS, math or science class with Math 1220 (Calculus II) as a
pre- or co-requisite. Physics 2220 will also be accepted. Math 2200,
3010, 5010, 3070 not allowed. Math 2250 not accepted if Math 2270
is taken.

1. Physics 2210, Physics I_______________________________(4)
2. Choose 1: Math 2210 (QR) or Math 2270_________(3)
3. CS 3130, Eng Prob & Stats (QI) ___________________(3)
4. __()

FILM REQUIREMENTS:____________
C- or better required in all FILM courses.

1. FILM 2700, Intro to Video Games _________________(3)
2. FILM 3500, Film Production _____________________(4)

See the CS Undergraduate Handbook online for complete details 5/10/16

The following requirements are restricted to FULL Majors:
C- or better required in all CS, EAE & Film courses. CR/NC grades not allowed
for any major requirement. 2.5 GPA (overall & within CS) required to graduate.

MAJOR REQUIREMENTS:______________

1. CS 2100, Discrete Structures___________________________(3)
2. CS 3500, Software Practice I__________________________________(4)
3. CS 3505, Software Practice II___________________________(3)
4. CS 3810, Computer Organization (QI)___________________________(4)

5. CS 4150, Algorithms (QI)_____________________________________(3)
6. CS 4400, Computer Systems (QI)_______________________________(4)

EAE REQUIREMENTS:__________________

1. EAE 3600, 3D Modeling _____________________________ (3)
2. EAE 3660, Machinima _____________________________ (3)
3. CS 4300, Artificial Intelligence _________________________(3)
4. CS 5530, Databases ________________________________ (3)

5. Choose ONE: (If both classes are taken, one counts as a CS elective below)

 CS 5460, Operating Systems ___________________________(4)

 or

 CS 5470, Compilers ________________________________(4)

CS ELECTIVE_________________________
Choose TWO: 4000+ level CS courses (3-4 cr). Seminars and EAE courses not
accepted. (Suggested: CS 4480, 4540, 4600, 5350, 5630)

1. ___(3)
2. ___(3)

SERIES REQUIREMENT:________________
Choose ONE:

ANIMATION SERIES
 FILM 3610, Computer Animation I _____________________ (4)
 FILM 3620, Computer Animation II _____________________(4)

 or

GAME DESIGN SERIES
 FILM 3710, Traditional Game Development _______________ (4)
 FILM 3720, Alternative Game Development _______________(4)

THEORY RESTRICTED ELECTIVE______
Choose ONE:

CS 3100, Models of Computation (QI)_____________________________(3)

 or

CS 3200, Scientific Computing___________________________________(3)

CAPSTONE REQUIREMENT ____________

1. EAE 4500, Senior Project I ___________________________ (3)
2. EAE 4510, Senior Project II ___________________________ (3)

392

Appendix I: Sample for Computer Engineering Degree Program

393

Sample Computer Engineering Degree Program

2015-2016

First Year

 Fall Semester Spring Semester
ECE 1900 0.5 Freshman Seminar ECE 1250‡ 4.0 Electrical & Computer
 Engineering Design
CS 1410-030 4.0 Object Oriented Programming
 CS 2420† 4.0 Intro Alg & Data Structures
Math 1310*‡ 4.0 Engineering Calculus I Math 1320*‡ 4.0 Engineering Calculus II
Wrtg 2010‡ 3.0 Intermediate Writing
 or EAS 1060 Expository Writing for EAS
LEAP 1501 3.0 Ethical Implications of Engineering Phys 2210‡ 4.0 Physics for Scientists & Engineers I
 14.5 16.0

* Students must take Math 2210 Calculus III as a Math/Science technical elective if took Math 1210, and 1220.

Second Year

 Fall Semester Spring Semester
ECE 2240† 4.0 Introduction toElectric Circuits ECE 2280† 4.0 Fundamentals of Engineering Electronics
CS 3500† 4.0 Software Practice I CS/ECE 3700 4.0 Digital System Design
CS/ECE 3810† 4.0 Computer Organization Math 2250‡ 4.0 Differential Equat & Linear Algebra
Phys 2220‡ 4.0 Physics for Scientists & Engineers II Math/Science 3/4 Elective
 16.0 15/16

Third Year

 Fall Semester Spring Semester

CS/ECE 3710 3.0 Computer Design Laboratory CS/ECE 3992 3.0 Pre-Thesis/Pre-Project
CS/ECE 3991 1.0 CE Junior Seminar CS/ECE 5780 4.0 Embedded System Design
CS 2100† 3.0 Discrete Structures ECE 3530† 3.0 Eng Probability & Statistics
CS 4400 4.0 Computer Systems Gen Ed 3.0 Elective
ECE 3030† 3.0 Tech Comm & Wrtg for Engineers Gen Ed 3.0 Elective
Gen Ed 3.0 Elective 16.0
 17.0

Fourth Year

 Fall Semester Spring Semester
CS/ECE 4710 3.0 CE Senior Project CE 3.0 Technical Elective
CE 3.0 Technical Elective CE 3.0 Technical Elective
CE 3.0 Technical Elective CE 3.0 Technical Elective
Gen Ed 3.0 Elective CE 3.0 Technical Elective
Gen Ed 3.0 Elective 3.0 American Institutions
 15.0 15.0

This table gives an eight (8) semester example program leading to a B.S. in Computer Engineering. It is meant only as a guide, since the
scheduling of electives and General Education Classes depends upon which ones are selected. This schedule assumes adequate high
school preparation in mathematics.

Students may apply for major status during any semester in which all pre-major classes (highlighted above) are completed. The current
GPA for admission to major status is 2.5 for all University of Utah classes, and a 2.8 on for all pre-major classes. Students must also have
a minimum grade of “C-“ in all pre-major courses. Apply for the CE major at http://www.ece.utah.edu/forms .

†These classes are taught both fall and spring semesters.
‡These classes are taught all semesters. Summer classes will only be taught if minimum enrollment is met.

Visit the Computer Engineering website at www.ce.utah.edu
394

Appendix J: Minor in Computer Science Requirements

395

Minor in Computer Science
2016-2017

A minimum grade of C- or bet ter in each course and a 3 .0 GPA (overa l l and within the
pre -minor c lasses) i s required in order to apply to the CS minor. P lease note that the 3 .0
GPA is the minimum requirement to apply, and may not resul t in p lacement as a minor.

See the CS undergraduate handbook onl ine for fu l l deta i l s .

Pre-Minor Requirements
*CS 1030: Foundations of Computer Science (3 credits)
CS 1410: Object-Oriented Programming (4 credits)
CS 2420: Algorithms & Data Structures (4 credits)
Math 1210: Calculus 1 (4 credits)

CS Minor Requirements:
CS 2100: Discrete Structures (3 credits)
CS 3500: Software Practice (4 credits)
CS Elective Course 3000+ (3 credits)

Total ≈ 25 Credits

*CS 1030 may be waived by tes t -out i f s tudent has suf f ic ient , pr ior programming
exper ience. See www.cs .utah.edu/undergraduate for deta i l s .

A minimum of three CS required minor courses must be taken f rom the School o f
Computing a t the Univers i ty of Utah.

Computer Engineer ing (CE) majors are not e l ig ib le for a CS minor, and should ins tead
consider a double major with computer sc ience.

Appl icat ions to the minor accepted a f ter complet ion of the pre -minor requirements . The
appl icat ion is avai lab le on our Web s i te www.cs .utah.edu. Major dec larat ion is required
before adding a minor .

If you have questions, please email ugrad-help@cs.utah.edu

396

Appendix K: Computer Science Suggested Plan	

Denise Haynie
Typewritten Text
 397

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Track A: Students must test out of CS 1030 and be Calculus-ready forTrack A.

CS 141 0 Object Or Prog. 4
Math 1210 Calc I 4
General Ed 3

General Ed 3

cs 2420 Dara Str/ Algrthm 4
Math 1220 Calc ll 4
wrtg 2010 writing 3

General Ed 3

CS 3500 Software Prac. I 4
CS 3810 Comp. Org. 4
Math 2210 Calc lll 3

American Institutions (Al) 3

General Ed 3

CS 2100 Discrete 3

CS 3505 Software Prac. ll 3

C5 elective 3

CS elective 3

CS 4400 Comp. Systems 4
C5 elective 3

CS elective 3

Math 2270 or CS 31 30 4 or 3
(lR)/ Upper Division 3

CS Theory or CS elective 3

CS 4150 Algorithms 3

CS elective 3

wrtg 3012,3014 or 3015 3

Phys 221 0 Physics I 4

Junior
(33 credits)

CS 4000 or CS 4940
CS Theory or C5 elective
Math/ Science elective
General Ed/ Upper Division
(Free elective if needed)

3

3

4
3

3

CS4500 orCS4970 3

CS elective 3

Math/ Science elective 4
General Ed/ (DV) 3

(Free elective if needed) 3

Senior
(32 credits)

122 total credits

Track B: Students who test into CS 1030 and/ or may not be Calculus-ready in the fall will followTrack B.

*CS 1030 FoundationsofCS 3
*Math 1210 Calc I 4

CS 1410 Object Or Prog.

Math 1220 Calc ll
wrrg 2010 writing
General Ed

General Edl (DV)

4
4
3

3

3

Freshnran:
(30 credlts)

CS 3500 Software Prac. I 4
CS 3810 Comp. Org, 4
CS elective 3

Math/ Science elective 4
wrtg 301 2, 3014 or 301 5 3

cs2420 Data str/ Algrthm 4
Math 2210 Calculus lll 3

Phys 2210 Physics I 4
American lnstitutions (Al) 3

Sophom,ore
(32 credits)

CS 4150 Algorithms 3

CS elective 3

CS elective 3

Math/ Science elective 4
(Free elective if needed) 3

CS 2100 Discrete 3

CS 3505 Software Prac. ll ' 3

Math 2270 or CS 31 30 4 or 3
CS elective 3

Gen Ed/ (lR)/ Upper Division 3

Junior
(32 credits)

CS 4500 or CS 4970
CS Theory or CS elective
CS elective
General Ed/ Upper Division
(Free elective if needed)

3

3

3

3

3

CS 4000 or CS 4940
CS Theory or CS elective
CS 4400 Comp. Systems

CS elective

3

3

4
3

Senior
(28 credits)

122 total credits

* lf you test out of C5 1030, but are not Calculus-ready, followTrack B. Replace CS 1030 with another gen ed in

your first semester. Replace Calc I with your first level of math.

Choose CS 31 O0 (fall) or CS 3200 (spring) as the required theory course. Students are encouraged to take

summer courses to ease the fall & spring semester schedule. See advisor for alternative schedule'

FallSemester Sprinq Semester

Sophomore
(29 credits)

FallSemester

Denise Haynie
Typewritten Text
398

Appendix L: Computer Science EAE Plan

399

Track A: Students must test out of EAE 1030 and be Calculus-ready for Track A.

Freshman
(31 credits)

Sophomore
(26 credits)

Junior
(34 credits)

Senior
(33 credits)

124 total credits

Fall Semester Spring Semester

EAE 1410 Object Or Prog. 4
Math 1210 Calc I 4
Art 1020 Basic Drawing 3
General Ed 3

EAE 2420 Data Str/ Algrthm 4
Math 1220 Calc II 4
Wrtg 2010 Writing 3
Film 2700 Video Games 3
American Institutions (AI) 3

EAE 3600 3D Modeling 3
CS 3500 Software Prac. I 4
CS 3810 Comp. Org. 4
Math 2210 Calc III 3

EAE 3660 Machinima 3
CS 2100 Discrete 3
CS 3505 Software Prac. II 3
FA 3600 Wrtg New Media 3

CS Theory or CS elective 3
CS 4400 Comp. Systems 4
CS 3130 Eng Prob Stats 3
FILM 3500 Film Production 4
FILM 3610 or 3710 4

CS 4150 Algorithms 3
CS 5530 Database 3
CS elective 3
FILM 3620 or 3720 4
General Ed/ DV 3

EAE 4500 Senior Project I 3
CS 4300 Artif. Intelligence 3
Math/ Science elective 4
General Ed/ IR/ Upper Division 3
General Ed 3

EAE 4510 Senior Project II 3
CS Theory or CS elective 3
CS 5460 or CS 5470 4
Phys 2210 Physics I 4
General Ed/ Upper Division 3

Track B: Students who test into EAE 1030 and/ or may not be Calculus-ready in the fall will follow Track B.

Sophomore
(34 credits)

Junior
(33 credits)

Senior
(33 credits)

127 total credits

Freshman
(27 credits)

Fall Semester Spring Semester

EAE 2420 Data Str/ Algrthm 4
EAE 3600 3D Modeling 3
CS 2100 Discrete Structures 3
Math 2210 Calculus III 3
FILM 3500 Film Production 4

EAE 3660 Machinima 3
CS 3500 Software Prac. I 4
CS 3810 Comp. Org. 4
FA 3600 Wrtg New Media 3
General Ed/ IR/ Upper Division 3

CS 3505 Software Prac. II 3
CS 3130 Eng Prob Stats 3
CS Theory or CS elective 3
Math/ Science elective 4
FILM 3610 or 3710 4

CS 4150 Algorithms 3
CS 5530 Database 3
CS Theory or CS elective 3
FILM 3620 or 3720 4
General Ed 3

EAE 4500 Senior Project I 3
CS 4400 Comp. Systems 4
CS 4300 Artif. Intelligence 3
Phys 2210 Physics I 4
American Institutions (AI) 3

EAE 4510 Senior Project II 3
CS 5460 or CS 5470 4
CS elective 3
General Ed/ DV 3
General Ed/ Upper Division 3

*EAE 1030 Foundations of CS 3
*Math 1210 Calc I 4
Art 1020 Basic Drawing 3
General Ed 3

EAE 1410 Object Or Prog. 4
Math 1220 Calc II 4
Wrtg 2010 Writing 3
Film 2700 Video Games 3

Computer Science EAE Plan

* If you test out of EAE 1030, but are not Calculus-ready, follow Track B. Replace EAE 1030 with another gen
ed in your first semester. Replace Calc I with your first level of math.

Choose CS 3100 (fall) or CS 3200 (spring) as the required theory course. Students are encouraged to take
summer courses to ease the fall & spring semester schedule. See advisor for alternative schedule.

400

Appendix M: Program of Study Examples for MS

401

Pr
oQ

ue
st

 T
he

sis
 T

itl
e

- C
om

m
un

ity
-a

ffi
ni

ty
 M

ea
su

rin
g

st
re

ng
th

 o
f m

em
be

rs
hi

ps
 o

f n
od

es
 in

 n
et

w
or

k
co

m
m

un
iti

es

402

403

404

405

406

407

Appendix N: Program of Study Examples for PhD

408

409

410

Appendix O: Recent Qualifying Exams

411

Qualifier Examination

Sriram Aananthakrishnan

1

412

[Q1] MPI-aware Compiler Optimizations for Improving Computation-Communication
Overlap - Anthony Danalis, Lori Pollock, Martin Swany, John Cavazos

MPI is the dominant parallel programming paradigm for HPC applications. MPI communication operations
can be viewed as memory access operations incurring very high latency. To amortize this cost these operations
are overlapped with computations. Compilers typically perform various optimizing transformations that
hides processor memory latency. However, opportunities to hide communication latency is lost as compilers
treat MPI calls as black box functions. The goal of this paper is to hide the communication latency by
increasing the overlap between the computation and the communication.

for j = 1, 10 {

A[j] = j

MPI_Isend(A[j],.. r[j])

MPI_Wait(r[j]..)

B[j] = 2*j

}

for j = 1, 10 {

A[j] = j

MPI_Isend(A[j],.. r[j])

}

for j = 1, 10

B[j] = 2*j

for j = 1, 10

MPI_Wait(r[j]..)

Consider the code shown in the table.
The code on right side is the result of ap-
plying loop fission to the code on left side.
To perform such a transformation, com-
pilers should be aware of the side-effects
or dependencies of MPI operations.
Safety Analysis: For safety, the
dataflow analysis should interpret MPI
operations for their side-effects and es-
tablish that the dependencies between
those statements are not violated. This
paper associates side-effecting semantics
for MPI operations in two layers.
(i) Application-layer: Application level side-effects of MPI operations are captured using two sets DEF: set
of variables defined , USE: set of variables referenced by the operation. The table below shows the semantics
of MPI Irecv and MPI Wait.

MPI Irecv(buf, count, dtype, src, tag, com, req) DEF={buf, req}
USE={count, dtype, src, tag, com}

MPI Wait(req, stat) DEF={req, stat}, USE={req}

S1: MPI_IRecv(b,..r1)

S2: MPI_Wait(r1)

S3: a[i] = b[i]

(ii) Library-layer: Library level side-effects are described as array-to-array
copying. To motivate the need for this, consider the code shown on the left.
S2 and S3 cannot be interchanged as the buffer cannot be read until wait is
completed. Application level semantics (def-use) are not sufficient to capture
this as there is no dependence between S2 and S3. Such a transformation is
illegal and therefore array-to-array copy semantics are introduced to model these

effects. The semantics for MPI Irecv and MPI wait is shown in the table below. The array variables inMesg,
artificialVar, whichbuf do not exist in real code nor do the array-to-array copying assignments. They
simply model the effect of MPI Irecv operation. For Irecv, the first assignment to buf[0:N-1] copies N

MPI Irecv buf[0:N-1]=inMesg[src][tag][comm][0:N-1]+artificialVar

whichbuf[req]=buf

inMesg[src][tag][comm][0:N-1]=artificialVar

MPI wait whichbuf[req][0:N-1]-=artificialVal

elements from incoming message denoted by inMesg identified by src, tag, comm. N here is determined by
the send operation as count is not known on the receiver side. The artificialVar is added to the buf to
restrict it from being read before wait. The assignment whichbuf[req]=buf associates req and buf which is
later used in the semantics of MPI Wait that modifies buf by subtracting artificialVar enabling buf to be
read after wait. The third assignment to inMesg models the fact that the messages are read only once. Now,
if we substitute these semantics for statements S1, S2, an artificial true dependence is introduced between
S2 and S3 due to the write to buf by MPI Wait which rejects the illegal transformation of swapping them.
The paper also discusses rules for control-flow code motion and segmentation of MPI operations ie call to
a single MPI Send is broken into M operations where MPI Send = M× MPI Send. The MPI Recv is also

2

413

replaced by M receives with appropriate variable renaming of buffers and request handles. Note that for
segmentation, the matchings (send-receive pair) should be known as before.
Optimizations: The optimization algorithm takes as input (i) function of the MPI program (ii) set of
data transfers (matched send-receive pair) (iii) summarized inter-procedural analysis information. They do
not solve the message matching problem and they rely on external tool to provide this information. For
each send-receive pair they apply the following sequence of transformations (i) blocking to non-blocking (ii)
replace MPI calls with library calls optimized for communication (iii) insert dataflow independent compu-
tation inside the communication window to increase overlap (iv) variable cloning to eliminate dependencies
(v) loop fission to split loops into one that depends on communication and the other that is independent
(vi) communication and computation tiling and pipelining (CCTP) - combination of loop tiling, communi-
cation call segmentation, loop fusion, loop alignment, loop peeling transformations. The legality of these
transformations are determined by the safety analysis that interprets MPI operations for its side-effects as
discussed above. The transformations are chosen such that they do not reverse the results of the other. The
sequence of transformations are repeated until no more overlapping is possible. They have demonstrated the
efficiency of these optimizations by manually performing these transformations and show that the execution
time of real kernels can be decreased by 30%.

Compare the communication analysis you are developing with that described in
the paper in support of the optimizations

The analyses described in our work [1] can be classified as non-separable dataflow analyses ie data flow across
MPI communication is critical to the precision and correctness of the analysis. Reaching constants over MPI
operations is an example of a non-separable dataflow analysis. Program slicing is another example that re-
quires the knowledge of MPI matchings to reproduce a behavior involving communication. The optimizations
described in this paper [2] do not require non-separable dataflow analyses. The critical information needed
for these transformations are side-effects of MPI operations with respect to computation so as to facilitate
code motion to increase overlap window between computation and communication. However, their work
requires the knowledge of MPI communication or matchings which they do not solve and rely on another
tool to provide this information. For example, the library layer side-effecting semantics for MPI Irecv is
described as an array copy of N elements where N is determined by the corresponding send operation. In our
work, we provide a dataflow analysis to determine MPI communication and the results should enable their
analyses and transformations (MPI call segmentation which transforms send and its correponding receive
operation), although there are other ways to obtain these results (annotations, profiling).

Will your analysis support the set of proposed optimizations

Lets briefly review each transformation and the safety check required for its legality.
(i) Preliminary Transformations: The preliminary transformations proposed in this paper are loop
unrolling, constant propagation and folding, dead code elimination of redundant code introduced by loop
unrolling and redundant store elimination. These transformations are based on standard semantics and do
not require any analysis to interpret MPI semantics.
(ii) Communication Library Specific Transformation: In their work [3], they transform specific MPI
operations to Gravel library optimized for the underlying interconnect. The transformation assumes send-
receive matching in the form of pragma and our analysis can automatically enable this transformation
without the pragma directives.
(iii) Overlap Window Expansion: Each send-receive pair has two overlap windows on the sender side
and the receiver side. The goal of this transformation is to increase the temporal length of this overlap
window. It achieves this by moving computation that has dataflow such that it can be brought in safely
inside this window. The safety analysis performed is based on the side-effecting semantics described earlier
to compute the dependency information and the transformation is performed such that the resulting code
does not violate the dependencies due to the array-to-array-copy semantics introduced by safety analysis.
However, the array-to-array copy semantics require message matchings which can be provided by our work.
(iv) Variable Cloning: Variable cloning can remove data dependencies and enable further transformations.
The transformations they do are scalar renaming, array expansion and array renaming. These transforma-

3

414

tion are safe and do not require any analysis.
(v) Loop Fission: To expand the overlap window further, this transformation splits a computation loop
into two loops such that one dependes on the communication and other independent. The analysis needed
is the safety analysis with side-effecting semantics described above.
(vi) CCTP: Communication and Computation Tiling and Pipelining is a sequence of the following trans-
formations – loop tiling, MPI call segmentation, loop fusion, loop alignment and loop peeling.

MPI_Irecv(rB[1], N,.. rReq)

for i = 1, N

sB[i] =

MPI_Isend(sB[1], N,.. sReq)

MPI_Wait(sReq)

MPI_Wait(rReq)

for T=1, N with T=T+K {

MPI_Irecv(rB[T], K,.., rReq[T])

for i=T, T+K-1

sB[i] =

MPI_Isend(sB[T], K,.. sReq[T])

if(T>1) {

MPI_Wait(sReq[T-K])

MPI_Wait(rReq[T-K])

}

}

MPI_Wait(sReq[N-K])

MPI_Wait(rReq[N-K])

The main goal here is to
tile the outer loop result-
ing in message segmenta-
tion and overlap the seg-
mented messages with
tiled computations. The
code on the left is be-
fore the CCTP transfor-
mation and the code on
the right is after CCTP
transformation. The
correctness of this trans-
formation depends on
the correctness of loop
fusion which requires the
safety analysis with side-effecting semantics. Loop tiling is applied on single or the outermost loop and there-
fore its safe. MPI call segmentation is safe as long as the variable renamings and vectorization of resources
(MPI request) are correct. Loop alignment and peeling are trivial transformations where loop alignment
delays MPI Wait by one iteration and loop peeling accounts for MPI Wait in the final iteration.

To summarize, the transformations proposed in the paper do not require non-separable dataflow analysis
which is the primary focus of our work. This paper interprets MPI operations for its side-effects and in our
work we interpret MPI operations concretely. Our work therefore lacks the ability to see the side-effects and
cannot be used directly to check the legality of these transformations. However, our work can be extended
to account for side-effects. Another observation is that this paper applies the optimizing transformations for
all MPI operations which may or may not improve performance. With the help of non-separable dataflow
analysis that flows the message length across MPI operations, this framework can pick the operations to
apply the corresponding transformations.

References

[1] Sriram Aananthakrishnan, Greg Bronevetsky, Ganesh Gopalakrishnan, Hybrid Approach for Data-flow
Analysis of MPI Programs, ICS 2013 [Poster Paper]

[2] Anthony Danalis, Lori Pollock, Martin Swany, John Cavazos, MPI-aware Compiler Optimizations for
Improving Computation-Communication Overlap, ICS 2012

[3] Anthony Danalis, Lori Pollock, Martin Swany, John Cavazos, Implementing an Open64-based Tool for
Improving the Performance of MPI Programs, Open64 Workshop, CGO 2008.

4

415

http://www.cs.utah.edu/~sriram/Personal_Website/Publications_files/icsp307-aananthakrishnan.pdf
http://www.cs.utah.edu/~sriram/Personal_Website/Publications_files/icsp307-aananthakrishnan.pdf

[Q2] Direct Product vs Sequential Composition of Analyses:

To analyze real-world programs, composing program analyses is of paramount importance. There are two
popular approaches to combine program analyses.

• Sequential: The analyses are run one after the other in a sequence. This is a straight-forward way
to compose program analyses. The challenge here lies in communicating the results.

• Product: This method of combining analyses was first introduced by Cousot et al [1]. It is based
on the theory of abstract interpretation. The analyses are weaved together and executed in tandem
by computing (i) direct product of abstract domain and their operators (ii) direct product of their
transfer functions.

The two approaches have their advantages and disadvantages. Let’s compare the two approaches from the
following perspectives (i) Precision (ii) Complexity (iii) Implementation (iv) Ordering.

Precision:
The key to leverage precision of co-operating analyses lies in the efficient communication of their results. For
example, to perform constant propagation of pointer dereferences the constant propagation should be aware
of the points-to information.
Product Composition: The product combination of analyses has a clear advantage over sequential com-
bination when improving the precision results. The following diagram from [2] best illustrates the idea.

ς̂ ς̂ ′ ς̂ ′′ . . .

Π Π′ Π′′ . . .

Figure 1: Sequential Composition

ς̂ ς̂ ′ ς̂ ′′ . . .

Π Π′ Π′′ . . .

Figure 2: Product Composition

ς̂ is the abstraction domain of one abstract interpreter and Π is the other. As illustrated in Fig. 2, product
composition at every step of the transition communicates information between them leading to improved
precision. At every step of the transition, each abstract interpreter refines its domain based on the infor-
mation from the other. This is called domain refinement and the quality of the precision depends on the
product operator employed. [3] surveys different product operators employed in abstract interpretation. Lets
briefly look at various product composition techniques in abstract interpretation and their domain refinement
capabilities.

• Cartesian Product: Let A = (A,t,>,⊥),B = (B,t,>,⊥) be two abstract domains. The cartesian
product of A × B is given by direct product of the two domains where the domain operators (meet,
join) and the semantic operators (abstract semantics for programming language constructs in the
respective domain) are applied component wise. It does not employ any domain refinement operator.
For example, consider interval and parity domains (2..4, O), (2..3, O), (3..4, O), (3..4, O) represent the
same information (3, O). As pointed out by Cousot [1], the analyses do not learn much from each other
in this style of product composition.

• Reduced Product: The reduced product of the two domains A,B is given by the cartesian product
of the two domains A × B and an additional reduction operator ρ : A × B → A × B. The domain

5

416

operators and the semantic operators are applied component wise as before. After, each transition
the reduction operator refines the respective domains. The reduction operator is applied in iterative
manner (iterated reduced product) to compute minimal information. Reduced product is the popular
product composition method employed when combining two abstract interpreters. For example Logic
Flow Analysis (LFA) [2] combines two abstract interpreters (i) generic flow analysis on some arbitrary
domain ς (ii) theorem prover Π : set of predicates with implication relation as v. The syntactic rules
of the theorem prover Π describes the transitions in this domain. The semantic inference rules for
the theorem prover takes into account the abstract state of flow analysis ς̂ and describes the reduction
mechanisms to refine the set of predicates in this domain. The reduction operator in the other direction
(theorem prover to flow analysis) depends on the particular domain ς that a flow analysis operates on
such as parity or interval.

• Reduced Cardinal Power: The reduced cardinal power allows to track disjunctive information such
as when x is odd y is in interval [0..10]. The precision of this is better than the reduced product but
expensive to compute.

• Logical Product: Gulwani et al [4] proposed the construction of logical product (special case of
reduced product) where they restrict their domains to theories that are convex, disjoint and stably
infinite. The reduction operator defined for this composition is based on Nelson-Oppen procedure [7]
used to combine decision procedures in SMT solvers. The precision of this is better than the reduced
product.

Sequential Composition: The challenge to improve precision for this composition lies in communicating
the results. The straight-forward way to do this is code-rewriting. [6] uses code-rewriting in their sequen-
tial and tight composition (product style) of dataflow analyses. For example, a pointer analysis replaces
all pointer dereferences with the variables pointed by them. However, code-rewriting communicates only
must information and analyses cannot benefit from may information thereby limiting the precision. Fuse
[2] permits both sequential and product composition of analyses. In Fuse when composing the analyses
sequentially, the results of an analysis is represented as an Abstract Transition System (ATS) (abstract state
transition graph computed by dataflow analysis) and a query interface allows a second analysis to access
information computed by previous analyses. The query interface returns information in terms of abstract
objects which may denote sets of memory locations, sets of values and sets of control locations. The precision
is determined by these sets and the operations on them.

Complexity:
The complexity involved in combining the two analyses for product and sequential composition is discussed
below.
Product Composition: The complexity of running cartesian product of two abstract interpreters is the
sum of semantic operators in the respective domains. For reduced product, it is sum of the semantic op-
erators and in addition the reduction operator. Note that the reduction operator does not always compute
minimal information and has to be applied iteratively (iterated reduced product) to compute a fix point and
the complexity increases due to the reduction operator. For example consider interval and parity domain,
([1..1], E) can be reduced to (⊥I , E) which can be further reduced to (⊥I ,⊥P) For reduced cardinal power,
every time lattice or semantic operator is applied it has to update all the disjunctive information and there-
fore expensive. In Logical product the complexity grows quadratically on the input size (number of theories).
Sequential Composition: The complexity for this style of composition is the sum of the complexities of
the individual analyses. Considering the complexity involved in communicating the results (i) code-rewriting
is linear in the size of the program (ii) in Fuse, every transfer function invokes the query interface which is
also linear. Sequential composition is slightly better than reduced product with respect to complexity.

Implementation:
We will compare the implementation cost and issues in the two styles of composition.
Product Composition: Implementing the reduction operator is highly specific for the domains we are
refining and therefore composing two arbitrary abstractions involves design and implementation cost. This
requires tight co-ordination between different groups working on different abstractions. To add another

6

417

abstract interpreter to this composition would require defining the reduction operator pair-wise between all
existing domains which grows quadratically with the number of abstract interpreters in the composition.
As pointed out by [3] widening is not free in reduced product (cannot be applied component wise) which is
needed for termination when operating on lattices of infinite height. In Logical product the operators come
for free (automatic way to combine the operators is described) but its restrictive in communicating only
must equalities between abstract interpreters (convex theories only define must equal operator). The imple-
mentation costs of product composition can be ameliorated by executing the two interpreters in parallel.
Sequential Composition: This style of composition presents no additional implementation costs however
code-rewriting warrants the presence of transformation framework. Fuse permits composition of arbitrary
abstractions however there is an implementation cost involved in defining abstract objects based on analysis
information for the query interface. It is difficult to compare the effort involved to implement the abstract
objects against implementing the reduction operators.

Ordering:
Composing analyses in a sequence fixes an order in which the analyses are applied. The order affects the
precision of the composition. Currently there is no automatic way of determining the order and it is user
driven. Automating this would require demand-driven, incremental analysis capabilities with a fix-point
algorithm which adds more complexity and implementation costs. Product composition presents no such
issues however it is difficult to add new abstract interpreter to this composition as discussed before.

References

[1] Systematic Design of Program Analysis Frameworks, Patrick Cousot, Radhia Cousot, POPL 1979

[2] Logic-Flow Analysis of Higher-Order Programs, Matt Might, POPL 2007.

[3] A Survey on Product Operators in Abstract Interpretation, Agostino Cortesi, Giulia Costantini, Pietro
Ferrara, Festschrift for Dave Schmidt 2013

[4] Combining Abstract Interpreters, Sumit Gulwani, Ashish Tiwari, PLDI 2006

[5] Combining Program Analysis via Abstract Transition Systems, Greg Bronevetsky, Michael G Burke,
Jisheng Zhao, Sriram Aananthakrishnan, Vivek Sarkar, LLNL-TR 2013

[6] Composing Dataflow Analyses and Transformations, Sorin Lerner, David Grove, Craig Chambers, POPL
2002

[7] Simplification by Cooperating Decision Procedures, Greg Nelson, Derek Oppen, TOPLAS 1979.

7

418

[Q3] Monotone Dataflow Analysis Framework

Lattice: A Lattice is given by L = (L,v,t,u,>,⊥) where L is a set, v is a partial order relation on L, t
is the least upper bound operator, u is the greatest lower bound operator, > the greatest element and ⊥ the
lowest element. In a lattice L, for any pair of elements x, y ∈ L there exist a least upper bound written xt y
and a greatest lower bound written xu y. For dataflow analysis, we will typically work on cartesian product
of finite lattices (lattice of finite height) L1 × L2 × ..Ln = (x1, x2, ..xn)|xi ∈ Li. Note that the cartesian
product is also a lattice where the v,t,u are defined point-wise.

CFG: A control-flow graph is a directed graph G = (V,E) where V is set of program locations and E set
of edges that represent possible flow of control.

Monotonicity: A function f : L → L is monotone if ∀x, y ∈ L : x v y =⇒ f(x) v f(y).

Theorem: 1. In a Lattice L with finite height, every monotone function has a unique least fixed point

Fixed-point for System of Equations: Let L be a lattice of finite height. Consider the system
of equations,

x1 = F1(x1, x2, ..xn)

x2 = F2(x1, x2, ..xn)

...

xn = Fn(x1, x2, ..xn) (1)

where x1, x2, ..xn ∈ L and Fi : Ln → L is a collection of monotone functions. Every such system has a
unique least fixed point solution due to the monotonicity of Fi (Theorem 1) . Let F : Ln → Ln be the
function that computes the least fixed-point solution of the system and it is given by

F (x1, x2, ..xn) = (F1(x1, x2, ..xn), F2(x1, x2, ..xn), . . . , Fn(x1, x2, ..xn)) (2)

Monotone Dataflow Analysis Framework Dataflow analysis starts with a lattice L of finite
height and a CFG. For every node c in CFG, we will use the notation JcK to denote the dataflow value
at c where JcK ∈ L. The dataflow constraint or abstract semantics is defined for each construct of the
programming language. If the CFG has nodes V = {c1, c2, ..cn}, we work with the lattice Ln ie we associate
a lattice value for each ci ∈ V . The abstract semantics enables us to compute the dataflow value at each ci
given by JciK = Fi(c1, c2, ..cn) – our transfer functions. For each ci in CFG, JciK generates Fi giving rise to
system of equations similar to equation 1.

Jc1K = F1(Jc1K, Jc2K, ..JcnK)
Jc2K = F2Jc1K, Jc2K, ..JcnK)

...

JcnK = Fn(Jc1K, Jc2K, ..JcnK) (3)

As before we solve equation 3 using a procedure F : Ln → Ln – our worklist algorithm.

F (Jc1K, Jc2K, ..JcnK) = (F1(Jc1K, Jc2K, ..JcnK), F2(Jc1K, Jc2K, ..JcnK), . . . , Fn(Jc1K, Jc2K, ..JcnK)) (4)

Dataflow analysis captures the program behavior on some abstract domain (L). The dataflow analysis is
sound (any property that was verified to be hold by the analysis on abstract domain must hold for all con-
crete executions) provided the abstract semantics are correct. The analysis is conservative as the solutions
are over-approximate and therefore doesn’t guarantee completeness (some program behaviors as computed
by the analysis may not be possible – false-positives).

8

419

Algorithm 1 Naive

1: xn = (⊥,⊥, ..⊥)
2: repeat
3: tn = xn;
4: xn = F (xn);
5: until xn 6= tn

Fixed-point Algorithm for Dataflow Equations: A naive fixed point algorithm for the
dataflow equations (equation 3) is show in Algorithm 1. Clearly the algorithm is very inefficient as the
information for all nodes is recomputed in every iteration. Most often JciK depends only on few JcjK such
as its successors. Lets define succ(ci) = {cj |JcjK depends on JciK}. The worklist algorithm is shown in
Algorithm 2.

Algorithm 2 Worklist

1: Jc1K = ⊥ . . . JcnK = ⊥;
2: q = [c1 . . . cn];
3: while q 6= [] do
4: assume q = [ci . . .];
5: JyK = Fi(Jc1K . . . JcnK);
6: q = q.tail();
7: if JyK 6= JciK then
8: for c ∈ succ(ci) do
9: q.append(c);

10: end for
11: JciK = JyK
12: end if
13: end while

Constant Propagation Analysis: The constant propagation lattice C is shown in Fig 3.

>

−∞ −2 −1 0 1 2 +∞

⊥

Figure 3: Constant Propagation Lattice

Abstract Semantics (Dataflow Constraints) for Constant Propagation: The full
lattice for this analysis is the map lattice V ars 7→ C where V ars : set of variables and C : Constant
propagation lattice. We have

CP : V ars 7→ C = {[id1 7→ c1, id2 7→ c2 . . . , idn 7→ cn]|ci ∈ C}

The operator t is applied pointwise where we combine the values associated with respective variables and it
merges the information from different paths. We will use the notation A[op] to denote dataflow constraint
or abstract semantics for each construct of the programming language.
For variable declaration Cdecl, Let

A[Cdecl] = λ(e).e[id1 7→ ⊥, id2 7→ ⊥ . . . idn 7→ ⊥] JOIN(Cdecl)

9

420

where e is the map or the environment that maps each variable id to a value c ∈ C. Here it is bound to
JOIN(Cdecl). The operation e[id1 7→? . . .] is used to denote update to the map e. The semantics of Cdecl is
to set the variables id1, id2 . . . idn it declares to ⊥.

For assignment C=, we have

A[C=] = λ(e).e[id 7→ eval(e, expr)] JOIN(C=)

eval(σ, id) = σ(id)

eval(σ, const) = const

eval(σ, e1 + e2) = λe1, e2.(if e1 6= > ∧ e2 6= >)(eval(σ, e1) + eval(σ, e2)) else >
eval(σ, e1 − e2) = λe1, e2.(if e1 6= > ∧ e2 6= >)(eval(σ, e1)− eval(σ, e2)) else >
eval(σ, e1 ∗ e2) = λe1, e2.(if e1 6= > ∧ e2 6= >)(eval(σ, e1) ∗ eval(σ, e2)) else >
eval(σ, input) = λ()(>)

e is bound to JOIN(C=). eval evaluates the expression and returns a value from the lattice C. σ is the
current environment, σ(id) returns the current value, const is a constant value from C.

For entry node, the semantics is given by

A[entry] = []

For any other node C#, the semantics is defined as follows:

A[C#] = JOIN(C#)

Finally, the JOIN(C) is defined as

JOIN(C) =
⊔

w∈pred(C)

JwK

where pred(C) is the predecessors of C.

Simple Example:

var x,y,z;

x = 27;

y = input;

z = 2 * x + y;

if (x < 0)

y = z -3;

else

y = 12

print y;

The CFG for the example program is straight forward and is not shown here. The CP lattice is initialized

10

421

to [] for all the nodes in the control-flow graph. The semantics gives rise following equations

JentryK = []

Jvar x, y, zK = λ(e).e[x 7→ ⊥, y 7→ ⊥, z 7→ ⊥] Jvar x, y, zK t JentryK
Jx = 27K = λ(e).e[x 7→ eval(e, 27)] Jx = 27K t Jvar x, y, zK

Jy = inputK = λ(e).e[y 7→ eval(e, input)] Jy = inputK t Jx = 27K
Jz = 2 ∗ x+ yK = λ(e).e[z 7→ eval(e, 2 ∗ x+ y)] Jz = 2 ∗ x+ yK t Jx = 27K

Jif (x < 0)K = Jif (x < 0)K t Jz = 2 ∗ x+ yK
Jy = z − 3K = λ(e).e[y 7→ eval(e, z − 3] Jy = z − 3K t Jif (x < 0)K

Jy = 12K = λ(e).e[y 7→ eval(e, 12] Jy = 12K t Jif (x < 0)K
Jprint yK = Jprint yK t Jy = z − 3K t Jy = 12K

Note that JcK indicates the dataflow value at c. In this case, it is the map lattice. The worklist algorithm
begins with q = [JentryK, Jvar x, y, zK . . . Jprint yK] The corresponding transfer function Fi is applied for the
respective qi and qi is removed. The succ(qi) is determined by the edges of the control-flow graph. The
worklist algorithm leaves us with following least fixed point.

JentryK = []

Jvar x, y, zK = [x 7→ ⊥, y 7→ ⊥, z 7→ ⊥]

Jx = 27K = [x 7→ 27, y 7→ ⊥, z 7→ ⊥]

Jy = inputK = [x 7→ 27, y 7→ >, z 7→ ⊥]

Jz = 2 ∗ x+ yK = [x 7→ 27, y 7→ >, z 7→ >]

Jif (x < 0)K = [x 7→ 27, y 7→ >, z 7→ >]

Jy = z − 3K = [x 7→ 27, y 7→ >, z 7→ >]

Jy = 12K = [x 7→ 27, y 7→ 12, z 7→ >]

Jprint yK = [x 7→ 27, y 7→ >, z 7→ >]

Note that we did not track expressions in our CP lattice. Normally, expressions are also tracked. In SSA,
this is straightforward as every expression gets a new variable and the succ(qi) will also be fewer as SSA
directly encodes def − use relations.

11

422

[Q4] Asynchronously Communicating Visibly Pushdown Systems:

Problem: Programming in asynchronous message passing paradigm is hard and reasoning about these
systems is even more difficult due to the complexity of dealing with concurrency. Having a computationally
tractable formal model for these systems simplifies the reasoning and enables various tools to be devel-
oped using these models. One such model is Communicating Finite State Machines (CFSM) where each
process can be modeled as a FSM. Each FSM communicates through reliable unbounded queues. The
FSMs read symbol from the queue, make a transition and possibly write symbols to output queues (act
as a transducer). We can think of this model as a multi-tape automaton (n-tape). Let Σ be the al-
phabet and this multi-tape automaton operates on (Σ × . . . × Σ)∗, The head of each transducer (FSM)
reads a symbol at any state write symbols to their output queues. At any state, the snapshot of out-
put queues of each transducer contains words that belong to regular languages (Finite state transducers
produce regular languages). Lets define the queue configuration at any state of a multi-tape automaton
to be a tuple of these languages. Any reachability of global control state or configuration involves ex-
amining the queue configuration for various states. The problem is unfortunately undecidable for general
CFSMs. The decidability depends on relations between these queue languages. Pachl [3] observed that if
the relations between these queue languages is recognizable then the reachability is decidable. A relation
between tuple of regular languages is recognizable if concatenating all languages yield a regular language.

Consider the two finite state transducers shown in the figure on the left.
Let the input symbol e denote ε. Let !x indicate a symbol for send op-
eration and ?y indicate a symbol for receive operation. They have only
one state which is both initial and final. The first automata on ε move
keeps sending and writes the symbol !a to output queue for every send.
The second automata keeps receiving and writes the symbol ?b to out-
put queue. The words of their queues represent the following languages

L(Q1) = a+, L(Q2) = b+ which is a recognizable relation. Recognizable relations can model simple protocols
however they are limited in expressiveness and cannot express complex dependencies between queues. For
example, consider the relation (an, bn) – a client posts n request operations and server counts the requests
and acknowledges them later. It responds exactly to those n requests. Such a protocol requires counting
and the relation is not recognizable (no finite automaton accepts anbn which is a CFL). The expressiveness
of such recognizable relations are limited. Furthermore, finite state machines are very coarse abstractions of
real programs which have recursive structure.

Extensions: Babic et al in their paper [1] propose extensions in two directions. First, models for processes
are visibly pushdown automata that can mimic control-flow of real programs with possible recursion. Second,
for decidability of reachability queries they relax the recognizable relation constraint by allowing synchro-
nizable relations which are more expressive. The key insight is the following – Decidability of reachability
queries require language inclusion property between the queue languages. The language inclusion property
is decidable for recognizable and synchronizable relations. By allowing synchronizable relations they can
express more complex protocols. The two contributions are orthogonal. Lets briefly review Visibly Push-
down Automata (VPA) and synchronizable relations of regular languages relevant to the context of this work.

Visibly Pushdown Automata (VPA): Visibly Pushdown Automata introduced by Alur et al [4]
is a pushdown automaton that operates over an alphabet set that is partitioned into three disjoint sets of
calls, returns and local symbols. Reading a call symbol causes the automaton to push a symbol into the
stack. Similarly reading a return symbol causes the automaton to pop a symbol from stack and local symbols
cause no stack operations. VPA makes the actions of pushdown automaton explicit by controlling the input
alphabet. A language over partitioned alphabet set is a Visibly Pushdown Language (VPL) if there is a VPA
that accepts it. Formally a VPA on finite words over < Σc,Σr,Σl > is a tuple M = (Q,Qin,Γ, δ, QF) where
Q is set of finite states, Γ is finite set of stack alphabets, Qin set of initial states, QF set of final states. δ is
a set of transition relations defined based on symbol from Σc or Σr or Σl. VPL is a strict sub-class of CFL
and inherits all closure properties of regular languages. If L1, L2 are VPL, then L1

⋃
L2, L1

⋂
L2, L1.L2, L

∗
1

are also VPLs. The universality and inclusion problem are decidable for VPLs. Another useful property

12

423

shown by [4] is that VPL correspond to regular tree languages ie each word of a VPL correspond to a tree
from a regular tree set. [4] shows a construction of converting VPL words to stack-trees that is relevant
to this paper. For verification using VPLs, we can encode a boolean program P (predicate abstraction)
and its transitions using the alphabets < Σc,Σr,Σl >. P is now a generator of VPL. We can encode the
specification φ as another VPL and check if L(P) ⊆ φ.

Synchronizable Relations: A relation between tuple of regular languages is synchronizable if the
concatenation of the languages can be accepted by a synchronized n-tape automaton or synchronized au-
tomata. Let Σ be the alphabet and a synchronized automata operates over Σ× . . .×Σ)∗. The heads of the
automaton move in a synchronized lock-step fashion. For example (am, bm) form a synchronized relation
as two-tape automata can accept (am, bm) Additionally (am, bk) such that k ≥ m can also be recognized
by synchronized automata by padding the tape with additional symbols. Synchronizable relations have the
decidable language inclusion property and are strictly more expressive than recognizable relations. The rela-
tion am, bk can model protocols of arbitrary message passing programs. Resynchronizable relations are those
accepted by n-tape automaton whose tapes are not synchronized but the distance between the tape head is
apriori bounded. For example (bmaabk, cmck) is a resynchronizable relation. After reading (bm, cm), the first
tape head scans two extra symbols and the two tape heads can sync for the rest of the word. Resynchroniz-
able relations can be cast as synchronizable relations which is exploited in this work. N-tape automata which
are completely asynchronous give rise to rational relations whose language inclusion property is undecidable.

Communicating Visibly Pushdown Transducers (CVPT): Each process in an asyn-
chronous system receive words of input messages, process them and produces words of output messages.
The individual processes can be modeled as a transducer. Instead of FSMs, each process is modeled as a
VPA with finite state control, unbounded stack, finite set of reliable queues of unbounded length. The output
of each such machine produce is a VPL. A CVPT is defined as T = (Σrcv,Σsnd, Q, S, I, F,Γ,∆) where Σrcv

is disjoint union given by Σrcv = Σc ∪ Σr ∪ Σl, Σsnd is a set of output alphabet which is a disjoint union
given by Σsnd =

⋃
qi∈Q Σqi where each Σqi is a set of alphabet for a queue qi, Q is a finite set of unbounded

FIFO queues, S is set of states, I is set of initial states and F is set of final states. The transition relation is
classified into three (i) call (ii) return (iii) local. Call transitions pushes symbols into the stack, return pops
them and local does not modify stack. All transitions can remove a symbol ?mi (?x ∈ Σrcv) from a qi ∈ Q.
Similarly all transitions can add a symbol !m2 (!x ∈ Σsnd) from a qi ∈ Q. Each machine reads symbols from
Σrcv from a queue qi ∈ Q and outputs symbols from Σsnd to another queue qj ∈ Q. The state configuration C
is given as tuple C = (s, σ, ~ρ) where σ is the word on stack, let ρi be the content of qi ∈ Q and ~ρ = ρ1ρ2..ρ|Q|.

Asynchronous System of CVPTs: The CVPTs are composed into system of CVPTs given by
M = (T1, . . . Tn) where each Ti = (Σrcvi ,Σsndi , Qi, Si, Ii, Fi,Γi,∆i). The composite configuration is given

by ~C = (C1, C2 . . . Cn) where each Ci = (si, σi, ~ρi). Let the vectors ~s, ~σ, ~ρ denote the composite state config-
uration, stack configuration and queue configuration respectively where each si, σi, ρi is from respective Ti.
For a given state let Lq(~s) = ~s, let ~C.% denote full queue configuration and let Lqs(~s) = ~C.ς, ~C.% represent
the full stack-queue configuration. Each of these configurations Lq(~s), Lqs(~s) form a n-ary relation and note
that the words in the queue are from VPL.

Stack-Tree Relations: We know that the decidability of reachability queries require that relations
between regular languages be synchronizable to handle relations such as an, bn. The words produced by the
each transducer CVPT is a VPL. The result by Alur et al [4] show that VPL correspond to regular tree
languages which have all the properties of regular language. Each word in VPL can be translated into a
stack-tree based on the construction by [4]. Each VPL language in the queue configurations Lq, Lqs now
correspond to a regular (stack-) tree language. We have tuples of regular (stack-) tree languages in the con-
figurations which have a recognizable relation (concatenation all of regular language is a regular language).
Using a technique called overlap encoding, they extend the relation between regular tree languages to a
synchronizable tree relation denoted by SyncV .

Main Result: Reachability is shown to be decidable for a system of CVPTs that satisfy composition
and the synchronized configuration property (Lq, Lqs satisfy SyncV). CVPTs can generate CFLs as output.

13

424

To restrict this, composition property which restricts each CVPTs to produce only VPLs is introduced.
With the composition and synchronization property satisfied the reachability query on a system of CVPTs
is decidable. It is easy to see that a system of CVPTs can model message passing and asynchronous task
based systems by having each process/task modeled as a CVPT and the communication using queues of
unbounded length.

Applicability to HPC applications: To be applicable to HPC applications, the formal model
based on communicating visibly push down systems should handle full MPI semantics. Non-blocking opera-
tions can be modeled by counting on the stack ie push a symbol to stack when we see non-blocking operation
and pop them when we see a corresponding wait. VPAs can write to multiple queues at a transition and
therefore collectives can also be modeled. To handle non-determinism, two techniques (i) FIFO queues re-
placed with multi-set queues (bag-like) (ii) non-deterministic selection of queue to read from by a receiver are
proposed. Note that VPA also have determinization property. The only restrictions to apply these models
are the properties (i) composition (VPA should not generate CFL) (ii) synchronizable relation need to be
satisfied. The composition property can be visualized as follows: if G is a graph with nodes as CVPTs,
composition property requires a directed edge between Ti and Tj if they communicate. MPI applications
do not have complex control-flow and would always allow for satisfying this requirement. Synchronizable
relations are surprisingly expressive that can capture various communication protocols in HPC applications.
Consider the BSP model typically employed in which process frequently communicate between neighbors to
exchange ghost cells. The neighbors are fixed and protocol does not have any dependency with neighbors.
The techreport [2] demonstrate a non-trivial example in which a client send n requests for jobs, the server
postpones the request but it counts the number of requests and for each request the server responds with a
data which acknowledged again by a client. This example encodes typical client server model. MPI-Blast can
be modeled as a variant of this example. A study of various protocols of HPC applications may reveal if they
fall into synchronizable relations. However, computing if a relation is synchronizable is undecidable which
makes this even more difficult. Furthermore, while the reachability problem is decidable for this model, it is
computationally very expensive

Extension to Unbounded Actors: The communication between CVPT is through finite set of
FIFO queues of unbounded length. Arguably this set can be arbitrarily large. To handle infinite actors, each
CVPT must be associated with infinite set of FIFO queues. The consequence of this is that each CVPT
could generate words of infinite length. The VPL languages are now ω-VPL recognizable by a ω-VPA shown
by Alur et al [4] (similar to Buchi automata for ω-regular languages). It is not clear if ω-VPL correspond
to ω-regular tree languages. Furthermore, the foundations of this work depends on synchronizable relations
which is based on n-tape automaton. If each of these automaton of n-tape machine are buchi-automaton
to accept ω-regular stack-tree language, then the question is if the language inclusion property still holds.
Perhaps there are opportunities for this extension following the approach of pCFG. Each VPA now models
a set of processes and we have finite number of VPAs. Each queue now models communication between two
sets of processes. pCFG’s splitting and merging can be defined as operations over queues. It is however
worth investigating if such queue operations are possible and would also result in VPL.

References

[1] Asynchronously Communicating Visibly Pushdown Systems, Domagoj Babic, Zvonimir Rakamaric,
FORTE, 2013.

[2] Asynchronously Communicating Visibly Pushdown Systems, Domagoj Babic, Zvonimir Rakamaric, UCB-
TR, 2012.

[3] Protocol Description and Analysis Based on a State Transition Model with Channel Expressions, J.K.
Pachl, PSTV, 1987.

[4] Visibly Pushdown Languages, Rajeev Alur, P. Madhusudhan, STOC, 2004.

14

425

[Q5] Conditional Model Checking: A Technique to Pass Information between
Verifiers – Dirk Beyer, Thomas A Henzinger, M. Erkan Keremoglu, Philipp
Wendler

Model checking of software (an undecidable problem) is an automatic search based procedure to verify that
a given model for the program such as a labeled transition system satisfies a specification such as a tem-
poral logic property. The outcome of model checking algorithm is one of the following (i) program satisfies
the property (ii) program violates the property (iii) unknown – model checker runs out of resources (time,
memory). The key observation in this paper [1] is that significant resources are used before computing
unknown and yet no useful result is reported. The intuition is that if the state space that was already
proved safe is summarized a second tool can focus the search on unverified state space. The goal of this
paper is to summarize the result of a model checker for further verification efforts. For this purpose, this
paper proposes conditional model checking which reformulates model checking problem as follows: Given
a program, a property and an input condition the model checker emits an output condition Ψ such that
program satisfies the property under the condition Ψ. Ψ represents the state space that has been veri-
fied (reachable states that do not violate the property). The paper makes two contributions (i) defines
Conditional Model Checking (CMC) (ii) Sequential Combination of Model Checkers – applies the CMC
technique to the problem of sequentially composing several model checking techniques. CMC provides a
representation for model checker summary (Ψ) that enables information to be passed to other model checkers.

void main() {

if(*) {

for(int i = *; i < 1000000; i++);

assert(i >= 1000000);

} else {

int x = 5, y =6;

int r = x * y;

assert(r >= x);

}

To motivate need for CMC, consider the code shown on the
left. Model checking based on predicates rely on SMT solvers
and can only verify theories supported by them. In the ex-
ample, given predicate i ≥ 1000000 the predicate analysis
will be easily able to prove the assertion in the true branch.
However it cannot prove the assertion in the false branch as
it requires non-linear relations which are modeled as uninter-
preted functions and the model checker gives up. Consider
explicit-value analysis of integers. It will not be able to prove
the assertion in the true branch as it keeps unwinding and

gives up exhausting available resources. However it can easily verify assertion in the false branch. Predicate
analysis can restrict the state space for explicit-value analysis by providing condition Ψ that covers the first
assertion and therefore explicit-value analysis can easily verify the second assertion. The example demon-
strates that the combination of model checkers is beneficial and the experiments show that CMC improves
verification coverage and efficiency.
Conditional Model Checking: In CMC, a model checker needs to output a condition that summarizes its
work. This condition should be representable in a format that can be easily read by another model checker.
Model checking is typically performed on abstract domain which yields abstract reachability tree (ART).
In ART , nodes correspond to abstract states and edges correspond to transition relation. For the format of
output condition Ψ, CMC reduces the ART to produce an assumption automaton. Each transition of this
assumption automaton corresponds to a control-flow edge and is labeled with an assumption by the model
checker that processed this edge. An assumption is produced for a transition if the analysis decides to skip
certain path or if it failed to provide a full safety proof (output of the model checker is unknown). Subtrees
of ART for which all transitions are labeled true are folded into one sink node T . Naturally a path that
has been verified will be folded into a single edge to T in the assumption automaton. For all other parts
of ART , there is a one-one correspondence between ART nodes and states of assumption automaton. The
assumption automaton serves as input to a second model checker. This model checker is marched whenever
the assumption automaton can make a transition. The exploration of a path can be stopped when the
automaton reaches T . The second model checker only analyzes those paths in the assumption automaton
that contains at least one transition labeled not true as the verified paths transitions directly to T .

The experiments demonstrate practical benefits of conditional model checking applied to sequential com-
bination several model checkers with information passing. From the benchmark suite, CMC technique was
able to verify 8 additional programs that were not possible earlier. The performance numbers also demon-
strate significant improvement in efficiency. CMC techniques increases efficiency of model checking tools

15

426

and improves verification coverage.

Discuss how you may be able to benefit from their ideas in the context of FUSE
project

The key to compose analyses or model checkers is to find a common representation for results. CMC
summarizes the results of model checkers as assumption automaton. Fuse [2] summarizes the results of
dataflow analysis as an Abstract Transition System (ATS) and provides a query interface to access these
results. For comparing CMC and Fuse, the following two questions are useful.

• What is the difference between the two representation – assumption automaton and ATS?

• Can Fuse and CMC interact in both directions?

Difference between the two representation – assumption automaton and ATS: An assumption
automaton is a reduced representation of an Abstract Reachability Tree (ART). ART and ATS are closely
related as both of them are constructed on top of control-flow graph – their nodes have one-one correspon-
dence with the nodes of control-flow graph and their edges correspond to edges of the control-flow graph.
Each node of an ART is an abstract state defined by a predicate over some abstract domain D1 as computed
by the model checker. Furthermore, the edges of an ART are annotated with assumption predicates by the
model checker. Each node of an ATS denotes an equivalence class of sub-executions where two sub-executions
are in this equivalence class if they satisfy a predicate (computed by dataflow analysis) over some abstract
domain D2. The edges of an ATS are annotated with dataflow state which is accessible to other analysis
through query interface defined by Fuse. A Galois connection (D1, α, γ,D2) can be defined between the two
domains and a relation can be formulated between the nodes of ART and ATS. The key difference however
is that ART can potentially be an infinite tree where as ATS is a finite graph. It is due to the following –
ART is computed by model checking which is path-sensitive whereas ATS is computed by dataflow analysis
that merges information flowing from different paths (path-insensitive). However it is possible to define flow
analysis with no join operation in which case it would compute an ART . For assumption automaton, ART
is reduced by folding execution paths that are already proven correct (edges are labeled true on the entire
path). An assumption automaton prunes out the verified paths leaving only unverified paths for a subse-
quent model checker thereby communicating effectively what has been already verified. However, the lack of
query interface restricts the information that can be communicated such as abstractions computed by pre-
vious model checker where as Fuse’s communication mechanism with query interface is much more powerful.

Can Fuse and CMC interact in both directions: Having established the similarity between ART and
ATS, it is possible to encode an assumption automaton (reduced ART) as an ATS and vice-versa. Consider
the example shown earlier which required model checking with predicates and model checking with explicit-
value to co-operate. The second assertion in the example can be easily proved by a constant propagation
analysis. The assumption automaton can be encoded as an ATS on which constant propagation analysis
can be run to prove the second assertion. A dataflow analysis in Fuse can run on this ATS and focus only
on the unverified paths. The precision of the analysis can potentially improve as it has to focus only on
certain paths. Fuse can also produce an assumption automaton by reducing the ATS. If a path-sensitive
analysis can prove the safety of a path, Fuse can eliminate the path to produce an assumption automaton
on which CMC can focus on unverified paths. In the example, Fuse will be able to verify the second
assertion and reduce the ATS to an assumption automaton on which CMC can verify the first assertion.
For interprocedural, with path-sensitivity and context-sensitivity the ATS computed by Fuse resembles an
ART .

References

[1] Conditional Model Checking: A Technique to Pass Information between Verifiers, Dirk Beyer, Thomas
A Henzinger, M. Erkan Keremoglu, Philipp Wendler, FSE, 2012

[2] Combining Program Analysis via Abstract Transition Systems, Greg Bronevetsky, Michael G Burke,
Jisheng Zhao, Sriram Aananthakrishnan, Vivek Sarkar, LLNL-TR 2013

16

427

PhD Written Qualifier Exam

Examiners
Ganesh Gopalakrishnan

Ryan Stutsman
Zvonimir Rakamarić

Matthew Flatt

Examinee
Mohammed S. Al-Mahfoudh

mahfoudh@cs.utah.edu

May 2, 2016 – May 9, 2016

1

428

Contents

1 Ganesh Gopalakrishnan Questions 3
1.1 Describe its advantages vis-a-vis maintaining global state and propagating replicas. 3
1.2 What are the semantic clarity advantages claimed (describe in 1-2 pages with illustrations). . 3
1.3 What are the implementation overheads (half a page). 5
1.4 Where do you think it impacts your work on DS2? (one page). 6
1.5 Provide any other highlights, making your total answer 5 pages. 7

2 Ryan Stutsman Questions 8
2.1 In what ways does Orleans raise (or even lower) the level of abstraction beyond lower-level

frameworks like Akka? . 8
2.2 Would a higher-level model like Orleans be more or less appropriate for DS2? 9
2.3 In what ways might DS2 eventually help in reasoning about Orleans-like frameworks or

Orleans-like applications? . 9
2.4 Are there lessons from Orleans that might improve DS2? . 10

3 Zvonimir Rakamarić Questions 12
3.1 Summarize the paper. 12
3.2 Discuss its pros and cons in detail. 14
3.3 Comment on whether some of the presented ideas could be connected to your own work

(and how). 15

4 Matthew Flatt Questions 17
4.1 In what ways do the goals of Marketplace overlap with the goals of DS2 (for example, possibly,

turning programming patterns into language constructs)? . 17
4.2 Would it make sense to extend DS2 to support Marketplace-like subsets of actors? 17
4.3 If so, what would that extension look like? . 17

2

429

1 Ganesh Gopalakrishnan Questions

Read a paper on the “Global Sequence Protocol” by Burkhardt et al [3].

1.1 Describe its advantages vis-a-vis maintaining global state and propagating repli-
cas.

There are several advantages for GSP over global states propagating replicas:

1. Syntactic clarity, simplicity, and conciseness: Replicated data types can be declared as distributes in a
similar way to local objects (by declaring it using cloud keyword, that is after defining their data model.
Operations on them are called exactly the way they are called on local objects [3].

2. Replication and location transparency: Data objects that are declared distributed, get replicated automatically
and transparently for the client code. More over, if a read/update is issued for a certain data type, the
protocol handles reading/updating from/to local store or waiting for updates to take effect on the local
state (when strong consistency or synchronization is specified inside the abstract model operations
implementation) then returns the appropriate value [3, 5].

3. Network failure transparency: If a network connection fails, either on the server side or client side, data are
cached (updates and reads) in a buffer as well as local replica to preserve asynchrony and responsiveness,
respectively. When the connection is restored, those updates are propagated to the server to broadcast
them to clients, so they eventually converge to the same state [3, 5].

4. Communication transparency: A client code never communicates explicitly with any participating party.
Yet, its updates get delivered appropriately to others and others updates to it [3, 5].

5. Transaction handling transparency: When transactions are to be implemented, due to communication
transparency, clients completely ignore how the transaction is handled as long as they provide the right
data model and implementation of its higher-level abstract operations [3, 5].

6. Transactions never fail: If a partition happened that didn’t last forever between clients and the GSP server,
these transactions are resumed as if there was no interruptions. This is in main part due to the local
buffering, caching and total ordering of updates the protocol enforces [3].

7. Flexibility in data consistency model: It is completely up to the data model (defined by the developer as a
sequential-looking data object) to control the granularity of transactions as well as synchronization. For
example, operations of these models can be implemented using the transactional extension primitives
(pull,push, and flush) to encode as strong or as weak consistency model (linearizable, sequentially
consistent, causally consistent, eventually consistent, or quiescently consistent) [3, 5]. All of this, without
exposing client code to any explicit communication and/or concurrency interleaving/handling. Develop-
ers though need be careful how they design their data models operations to avoid surprises such as data
races [3, 5].

8. Complete abstraction of network and communication: If it was not emphasized enough already, client code
is unaware of any communications nor it needs to in order to participate in replication of shared state.
Everything is done by the protocol and the data model support implemented by the clients [3, 5].

The above list of advantages is at least impressive looking to how elegant the protocol is, and how composable
and extensible its data model is. However, it does come with some concurrency problems as mentioned.

1.2 What are the semantic clarity advantages claimed (describe in 1-2 pages with
illustrations).

The semantic clarity comes from few facts that will be apparent after giving an overview of GSP.

3

430

Overview of GSP. The inspiration of the GSP protocol is the Total Store Order (TSO) [3, 5]. The latter is
used by multi-core processors to model weak memory behaviors, i.e. cache coherence between individual
cores-caches and the main memory in shared memory systems [3, 5]. TSO has clear specification and many
developers can both reason about it informally [3, 5], and use it to reason about weak memory models. It
updates a local state, and buffers non-local updates but waits for other updates to arrive synchronously [5].
GSP only adds another buffer for incoming updates to accommodate asynchronous reading [5]. This is in
addition to reading-its-own-writes and merging updates from others to its writes using the total ordering of
updates the protocol provides [5]. Another fact is that GSP relies on Reliable Total Order Broadcast (RTOB)
protocol, which orders all updates and then broadcasts them its clients. In addition, GSP protocol builds on
abstract data types, that are abstractly descried and implemented by the developer, regardless of distribution
concerns 1. Only after using the abstract data model, and indicating (using a keyword) that the object is
a replicated data type (i.e. distributed shared state), the protocol can handle everything for them [3]. All
consistency models are determined using the implementation of those operations of the abstract data type,
using the Transactional GSP primitives pull, push, flush [3]. The first two (i.e. pull and push) are used to
batch read and batch updates, respectively. Together and the flush operation, that waits for confirmation of
updates [3, 5], provide transactional support to clients.

The semantic clarity advantages. It is for these four elements that GSP has the semantic clarity advantages
claims:
1. A unified abstract data types model: supporting all kinds of replicated data types by categorizing a data

type operations under Update and Read types, from which a binding for the rvalue:Read×Update∗ → Value
is determined, i.e. the returned value based on initial state read and a sequence of updates (updates are
data type abstract operations modifying its state, and reads are those that read but do not modify the
state) [3].

2. Total Order of Updates: GSP server orders updates, and clients keep track of pending updates by them or
other clients. Once clients receive confirmations it removes those pending operations and places them in
the same order they were done in its known state. Incoming updates conflicting with local updates are
also merged correctly using ordering [3].

3. Similarity in operation and buffering of TSO: This is the reason why it was clear to represent distributed
shared state as an initial state and a sequence of operations done on it, i.e. a Delta object specific to a
certain data type.

4. All leads to clean code: The code resulting from a GSP compliant application doesn’t contain any commu-
nication and faults handling, looking more like normal sequential code [3, 5]. That code is easy to reason
about, can use judicious synchronization, and constitutes a robust implementation of a distributed protocol
and consistency model(s) [3].

Figure 1: Total Order Store
(TSO).

Illustrated TSO. 2 TSO (shown on Figure 1 [5]) has the ability to syn-
chronously perform reads, from its local cache, and asynchronously (i.e. can
be delayed) to shared memory [5]. Synchronous reads take into consid-
erations the buffer content for the write operations, hence TSO reads its
own writes to keep its reads coherent with its writes [5].

Illustrated GSP. It is almost exactly like TSO, but now reads are
buffered [3, 5]. That is, updates coming from the RTOB protocol (the
cloud) are buffered, and then the read operation chooses weather to read
its own replica, or merges updates from the buffer then read [5]. This is
illustrated in Figure 2 [5]. An important detail is that now writes, also,
update local replicas. So the client can see its own writes and reads them
immediately (read-your-own-writes) [5]. In addition, the clients of GSP
have full replicas of the shared data.

1With the exception of data races that can be avoided by providing higher-level operations on those data types.
2Illustrations on both TSO and GSP are completely reproduced from GSP presentation on youtube [5]

4

431

Figure 2: GSP protocol

Subtle but significant differences between GSP and TSO. Two main
differences between GSP and TSO. First, TSO reads are synchronous (no
buffer) while GSP reads are asynchronous (there is a buffer for incom-
ing updates though it can read from local state if synchronization isn’t
needed) [5]. Second, while TSO relies on a processor’s clock to order up-
dates, GSP relies on a distributed protocol (RTOB) to order its updates [5].
These subtle differences is what makes GSP applicable to distributed se-
tups, flexible to any consistency model, and yet easy to reason about [5].

Examples illustrating GSP abstract data model. Many replicated ab-
stract data types can be developed, some examples of which follow:

• Register: whose Update3 set of operations is {wr(v)}, and Read set of operations is {rd} [3, 5].

• Counter: with Update = {add(v)|v ∈ Int}, Read = {rd} [3, 5].

• Key-Value store: with Update = {wr(k, v)|k, v ∈ Value} and Read = {rd(k)|k ∈ Value} [3, 5].

About examples and proofs. There are several examples in the detailed technical report [3] and animated
ones in the video presentation [5] that illustrates how easy to reason about a race condition in terms of
update operations. That illustrates some of the semantic clarity in GSP and its abstract data model. More
over, proofs at the end of the technical report seem to be readable 4 and intelligible, thanks in part to the
clarity of the protocol’s abstract model [3]. I is evident how semantically clear the global sequence protocol
is, even in the most complex activities such as proving properties.

1.3 What are the implementation overheads (half a page).

GSP comes with few overheads as it is implemented so far. The following is a set of taxonomized paragraphs
of what overheads are caused by which parts of the implementation.

Developer overheads. For data models that are not defined yet, developers need to provide their own
implementation for their abstract data models. Also, they need to make sure they correctly use synchronization
and transactional primitives provided by GSP, or their code may end up with data races [3]. It is this part
where our model exploration can help detecting failure situations.

Network bandwidth overhead. The state transferred is transferred in combination with the extra delta
objects (encoding the update sequences). That delta object is an extra bandwidth overhead on the already
limited network bandwidth. This is especially true since every update sequence is broadcast back and
fourth between the GSP server and clients [3].

Processing and storage overheads. Delta objects are the objects encoding and reducing the update se-
quences to transfer over network to other parties [3]. The reduction step of the update sequence needs be
processed and then stored till other participants acknowledge their receipt [3]. In addition, the participants
Keep track of the update sequences (known and pending). That is both an overhead on storage and processing
on the clients side of the protocol, and it grows worse for richer data models [3]. More over, keeping a copy
of the state object on all parties’ cache occupies possibly scarce storage [3].

Throughput overheads. The very same network and processing overheads above, cause reduced throughput
and performance of the whole distributed system.

3Capitalization is to emphasize the equivalence of these operations to the Update and Read set of operations, equivalent to the
abstraction of data model provided by GSP

4However, I did not have the luxury of time to go through all of the content, I only glimpsed to make sure of this fact.

5

432

Figure 3: DS2 Runtime: How each module contributes to the runtime services and guarantees

Response time overhead. Round trip to and from the GSP server for strongly consistent updates, and
when at worst the GSP server can stall for long times, affects responsiveness. However, in many cases this
can be mitigated with higher level operation for the data models [3]. In addition, reduced throughput leads
to longer response times.

1.4 Where do you think it impacts your work on DS2? (one page).

It impacts my work on DS2 in several areas:
1. Designing the runtime of DS2: By making GSP a baseline (complemented by the network calculus (NC)

publish/subscribe guarantees [4, 10]) for our synthesized code, we can ignore synthesizing code for
handling those cases already covered by GSP, such as consistency model. Instead, we provide facilities
in the DS2 language syntax to express what is express-able by GSP, and then rely on those expressions to
rule out kinds of consistency/fault concerns covered by GSP [3, 5].

2. Model checking/exploration of distributed system: GSP represents guarantees by design, so it serves as a
filter for large amount of error/faults sources in a distributed system. Assuming we would develop that
runtime to take benefit from the complementary GSP [3, 5] and NC [4, 10], then all that remains for the
model checking is to explore the remaining corner cases of GSP (and those not covered by NC). Then it
warns the user about them. Later, DS2 synthesizes best effort code that can handle those situations.

3. Higher level syntax expressing consistency: GSP is very expressive of all gradients of Strong Consistency
(i.e. Linearizability, and Sequential Consistency) 5 and Eventual Consistency that models asynchronous
update propagation (i.e. causal consistency, eventual consistency, and quiescent consistency) [5]. Hence,
providing similar syntax based on the transactional version of GSP primitives (i.e. push, pull, flush)
and the finer-grained primitives of Core-GSP (Read, Update) makes a great step forward abstract, yet
expressive, specification of distributed systems [3, 5]. That would provide the composability Concurrent
Replicated Data Types (CRDT) lack and makes DS2 intelligible by developers and easy to informally
reason about [3, 5]. However, even if it was also easier to reason about informally, still formal reasoning
is needed to assure stronger guarantees [3, 5].

4. Further simplifying syntax: If we chose to ignore DS2 and Orlean-like syntax [1] in favor of a completely
sequential-looking code, then we can do so by declaring distributed shared state as say “cloud” or
“distributed”, then we let GSP takes care of things, and the model exploration algorithm to explore
where the programmer failed to conform to GSP semantics, e.g. data race detection.

5. Introducing network/location transparency: Whether we opt for similar syntax shown in the GSP paper [3]
or not, GSP can provide network transparency for DS2 developers on the cheap.

6. Elevated from data consistency analysis: Since data consistency models can all be handled with GSP, DS2
need not re-invent the wheel. It can very much rely on the same protocol. Some concerns are stated in
the highlights section.
For an overview of a tentative stack of DS2 runtime incorporating GSP (as well as Orleans [1] and the

network as a construct [4]), please refer to Figure 3. Layer (1) provides syntax with multiple granularity of

5this is true as long as there is no network partition

6

433

communication control, GSP being the highest level, followed by Orleans-like (async RPC [8] and RMI [6]
like) syntax for finer control. Once the developer drops to Orleans syntax, data structures involved in the
communications are auto-removed from GSP support, if they were declared using cloud keyword. As a
result, they are subjected to more analysis by layer (5) and more code may need be generated by layer (4)
to take care of anticipated corner cases. Layer (3) provides guarantees relying on services from layers (6)
and (7). Layer (2) provides what layer (3) misses in guarantees and provides analysis. Layer (5) generates
code with help of layer(4) analyses results. All code generated is Akka code, layer (8), which is run on top
of Java Virtual Machine (JVM).

1.5 Provide any other highlights, making your total answer 5 pages.
Related work. Closest work to GSP is Bayou’s weakly consistent replication [9], yet it requires writing a
merge function provided by the user. GSP does this automatically by ordering updates [3]. CRDT’s provide
optimized distributed protocols as in GSP but they are not composable nor easily customize-able [3]. This
is due to the the protocols logic being not cleanly separated from the data model [3]. Protocols of CRDT’s
are also specialized to certain data type, as opposed to GSP’s generic composable formulation [3]. The
Jupiter system [7] provides similar streaming model as in GSP [3] but uses operational transformation (OT)
algorithm to transform conflicting updates. GSP simply orders updates sequentially [3]. The OT approach
is a powerful conflict resolution mechanism, however it is confusing, error-prone and not scalable [3]. The
paper mentions that this choice of avoiding OT may be revised in the future [3]. Other than that, GSP relies
on a protocol called Reliable Total Order Broadcast(RTOB) [2] in its operation and is highly inspired by
the Total Store Order (TSO) protocol [3, 5]. GSP, hence, is safely called the “the TSO of distributed systems”,
but they are clearly not equivalent.

Relation to DS2. Although GSP provides a great abstraction and reasoning model, it still does not com-
pletely cover the case of data races. For example, the developer is left alone to figure out if his/her code
is exhibiting data races or not. They are required to provide more abstract operations so that the protocol
can handle them. DS2 analysis infrastructure may play an important role detecting those. Another issue,
the use of GSP in embedded setups (those who have limited data storage, processing power, and network
bandwidth) brings some performance and responsiveness concerns. Such systems are to be addressed by DS2.
If DS2 is to use GSP to implement part of its runtime, optimizations may need to be figured out. This is
to make sure they stay performant and responsive, if at all possible. That can be avoided by dropping to
lower level syntax, e.g. RPC like as discussed in §1.4. However, even if the developer is to drop to lower
level abstractions, DS2 analysis module should be of great help.

References
[1] P. A. Bernstein et al. Orleans: Distributed Virtual Actors for Programmability and Scalability. Tech. rep. MSR-TR-2014-41. 2014. url:

http://research.microsoft.com/apps/pubs/default.aspx?id=210931.

[2] R. Boichat and R. Guerraoui. “Reliable and total order broadcast in the crash-recovery model”. In: J. Parallel Distrib. Comput. 65.4
(2005), pp. 397–413.

[3] S. Burckhardt et al. Global Sequence Protocol: A Robust Abstraction for Replicated Shared State (Extended version). Tech. rep. MSR-TR-
2015-11. Microsoft Research, 2015. url: http://research.microsoft.com/apps/pubs/default.aspx?id=240462.

[4] T. Garnock-Jones, S. Tobin-Hochstadt, and M. Felleisen. “The Network as a Language Construct”. In: ESOP. Vol. 8410. Lecture
Notes in Computer Science. Springer, 2014, pp. 473–492.

[5] Global Sequence Protocol: A Robust Abstraction for Replicated Shared State. https://www.youtube.com/watch?v=7rQ0Ul3iPmo,
Retrieved May 2, 2016.

[6] Java remote method invocation. https://en.wikipedia.org/wiki/Java_remote_method_invocation, Retrieved May 3, 2016.

[7] D. A. Nichols et al. “High-latency, Low-bandwidth Windowing in the Jupiter Collaboration System”. In: Proceedings of the 8th
Annual ACM Symposium on User Interface and Software Technology. UIST ’95. New York, NY, USA: ACM, 1995, pp. 111–120. isbn:
0-89791-709-X. doi: 10.1145/215585.215706. url: http://doi.acm.org/10.1145/215585.215706.

[8] Remote procedure call. https://en.wikipedia.org/wiki/Remote_procedure_call, Retrieved May 3, 2016.

[9] D. Terry et al. “Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System”. In: In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles. 1995, pp. 172–183.

[10] The Network as a Language Construct. http://www.ccs.neu.edu/home/tonyg/esop2014/, Retrieved May 2, 2016.

7

434

http://research.microsoft.com/apps/pubs/default.aspx?id=210931
http://research.microsoft.com/apps/pubs/default.aspx?id=240462
https://www.youtube.com/watch?v=7rQ0Ul3iPmo
https://en.wikipedia.org/wiki/Java_remote_method_invocation
http://dx.doi.org/10.1145/215585.215706
http://doi.acm.org/10.1145/215585.215706
https://en.wikipedia.org/wiki/Remote_procedure_call
http://www.ccs.neu.edu/home/tonyg/esop2014/

2 Ryan Stutsman Questions

Orleans [2] is an example of a high-level Actor framework deployed at Microsoft in the real world and at a
large scale. Read the paper and comment on the following.

2.1 In what ways does Orleans raise (or even lower) the level of abstraction beyond
lower-level frameworks like Akka?

Orleans mostly raises abstraction levels over actors frameworks such as Akka and the likes. It, however,
lowers abstractions for performance or efficiency (supporting scalability) reasons.

Ways it raises abstractions. Orleans raises abstraction over lower level frameworks such as Akka [1] [2,
7, 6] in several ways:

1. It leverages an intuitive and widely familiar OOP interface with asynchronous methods (returning
Task/Task<RsltT> to optionally block on till they are fulfilled), instead of messages sent around [2, 6,
8]. This allows complex modeling of distributed systems without the need for reasoning about them
using lower level primitives such as message passing, delivery guarantees, and such. These methods are
identical in semantics to Akka’s and DS2’s ask pattern [3][1].

2. Compiler checked method calls in Orleans, instead of runtime-checked messages passed in Akka-like
frameworks [2].

3. The concept of an ever existing virtual actors makes it possible to manage the physical actors backing
the runtime automatically and without much involvement of application code. All of this while the
application code assumes always existing virtual actors (called Grains) [2, 7, 6, 8].

4. Removing race conditions completely while running a single actor’s tasks but only when a non-reentrant
virtual actor is used for modeling concurrency.

5. The runtime takes full responsibility for handling failures and recovery of physical actors as well as
hardware [2] and does that automatically.

6. Abstracting away the management of actors lifecycle, i.e. creation, killing of actors removing the need for
that to bloat the application code, and avoiding hindrance of developers productivity.

7. Orleans provides placement of actors (and thus distributed resource management such as load balancing,
deactivation and reclamation of actor used resources, and recovery after failures). That, in turn, provides
perfect location transparency to application code [2]. Since actors are addressed by virtual references in
comparison to Akka, whose actors are addressed by a URL part of which specifies the host/port pairs
and actor identifier [1].

8. Bringing the stateful vs stateless distinction is a great way for avoiding consistency checks on stateless
actors, and to indicate that this is only a processor actor [2].

9. Automatic scaling through providing single activation mode (default) or stateless worker mode that utilizes
multiple activations (to a certain limit) to increase throughput (and hence performance) [2]. However,
similar features can be configured/enabled in Akka [1] using elastic clusters.

Orleans also lowers few abstractions in comparison to Akka. Some abstractions from frameworks such
as Akka and that are brought to lower level by Orleans, are mostly due to performance or scalability reasons:

1. Delivery guarantees provided by Orleans is at-least-once potentially causing duplication of messages
sent [2], while frameworks such as Akka have a higher level guarantee at-most-once [1][2].

2. Normally Akka [1] has a FIFO ordering on the receiver side, Orleans chose to lower that to be un-ordered
for efficiency/performance reasons. This is because FIFO ordering of delivered messages is rarely needed
in the application domains using Orleans [2]. In addition, maintaining a lot of actors all with FIFOs and
sequence numbers assigned by each actor to messages going out constitutes a O(n2) storage requirement
(by accounting for each pair of actors) [2]. This is too much to account for if Orleans is to stay performant
under millions or more of concurrently active entities/clients [2].

8

435

3. Akka provides an implementation for transitive transactions that can ensure invocation of a set of actors
on a single host is atomic, Orleans leaves that to the application [2].

4. Akka, also, can load new code into an actor during runtime, Orleans doesn’t support those features [2].
However, this is barely a feature instead of an abstraction level.

2.2 Would a higher-level model like Orleans be more or less appropriate for DS2?

First, let us define some terms. We have DS2 model which is the generic distributed systems analysis
infrastructure that is based on Akka [1]. In addition, we have DS2 language which is the higher level
language for synthesizing distributed systems, from higher level intent stated as rules. An implementation
of DS2 language is non existent yet and all we have for it is a subset of its specification, with operational
semantics explained in English [5, 4, 3]. The very feature that makes Orleans higher level, is the same that
hinders model checking/analysis capabilities. While Orleans runtime abstracts from details of lower level
frameworks, which is a feature desired by developers, it also hides these details from analyzing algorithms
who rely on them to do their job. These details are available only in the lower level actor frameworks such
as Akka [1] for example, what physical actor sent the message, what other physical actor is waiting for a
task to complete, is it waiting indefinitely or it would time out, . . . etc. Unfortunately, It would be less
appropriate for DS2 model to use a higher-level model such as Orleans, since it hides important details
needed by the analyzing algorithms. This will be clear in the next subsection/question.

2.3 In what ways might DS2 eventually help in reasoning about Orleans-like frame-
works or Orleans-like applications?

It will help but before that we need to have some grounds laid out. Let us have some background about
what entities are in Orleans applications and how they work in tandem with its runtime. This is to make
it easier to understand how DS2 would help in reasoning about Orleans-like applications, in the context of
Orleans itself.

Overview of how Orleans works. First, physical servers are represented by “Silos”, analogous to Akka’s
Actor systems [2][1]. This is the runtime, i.e. the container (Orleans runtime) in which virtual/physical
actors run, analogous to what Enterprise Java Beans container is to Enterprise Java Beans [2]. Inside these
containers, there are two layers: a physical actors layer, and a virtual actors layer [2]. The physical one
contains actual actors whose lifecycle (and other concerns specific to them) is managed by the runtime, i.e.
they get creates on demand if they are non existent yet (called activation), and deactivated to free resources
when they are not used [2]. The higher abstraction layer is represented by virtual actors, called “Grains”.
These virtual actors are immortal, i.e. they are ever existing and never die or experience a life cycle from
an application point of view [2]. Grains communicate only using an ask [3] pattern (but in the guise of
asynchronous OOP methods), and has only what is equivalent to a blocking get, no timed version that
may time out like in Akka and DS2 [3][1]. The runtime manages mapping and routing between virtual and
physical actors by maintaining a distributed map of which virtual actor represents which physical actor, and
the where abouts of physical actors [2]. The reason why the runtime needs to know the location for physical
actors is two fold: (1) to keep location transparency, and (2) so that if a server containing the physical actor
crashes (read physical actor crashes), it recreates it on demand [2]. Although the default task scheduling of
Orleans follow FIFO order in processing w.r.t. their scheduling from each actor by default [2]. That can be
overridden easily to provide better performance [2]. Grains can be declared as reentrant, that is their tasks
can be scheduled and processed out of order, which brings the potential of data races [2]. A grain may have
one task that modifies its local state and another trying to read that very same local state [2], the definition
of a race. Also, grains can be declared as remindable grains, that can receive scheduled events [2, 8]. This is
similar to normal actors timed actions (or scheduled events) [3][1]. Timed events may suffer time drift, which
may affect the outcome of processing them, leading to some problems such as whether the runtime restarts
a crashed physical actor (due to timed event addressed to it) before or after it received an update from
another actor (causing data loss) [2]. In addition, there are stateful grains and stateless ones [2, 8]. Stateless
grains are there to be created in more quantities (to a certain limit) to increase processing throughput, and

9

436

hence performance [2]. Stateful ones, however, are there for the rest of the work and they may be involved
in data races mentioned earlier [2]. One last bit, there is support for persistence to persist data, but that also
is done in different criteria specified by the user: on certain number of updates, periodically, or every single
time the state of an actor changes [2]. Worse, if a physical actor that partially processed a task, has done
some update to its and/or other actors state, crashes. The systems state is inconsistent (caught between lost
updates, stale data, and data corruption) and it may never converge back to a consistent state. This is a
major concern why we need to model check/verify distributed systems in the first place. That brings back
many distributed systems problems e.g. consistency, eventual consistency, linearizability, deadlocks (due
to blocking on a lost task being processed on a crashed actor) and so on.

What can go wrong, where and how. In virtual lands (i.e. Grains), data races may happen when a grain
is declared reentrant [2]. In physical lands, many more things can go wrong. In brief, anything that can
go wrong in normal actors model, can also go wrong in physical actors backing the runtime of Orleans.
Although, the runtime of Orleans tries its best to act as soon as something wrong happens [2]. That is, if a
physical actor crashes, then a timed event of the runtime detects it, it brings it back to life by creating it on the
same host or on another (depending on whether the host crashed or not and/or utilization level) [2]. That,
in turn, triggers an update to propagate and update the distributed map ASAP, so that cached versions of
that map (or a subset of it) also get updated. But what happens in between the time that crash and detecting
that crash? bad things happen, of course the usual things in lower-level abstractions of distributed systems
such as Akka [1], and other Actors frameworks. More over, what about that distributed map, that is cached
for performance, that keeps being updated on different physical actors? It is a pure distributed system
implemented in physical actors, inside the runtime. That makes it vulnerable to any Distributed Hash Table
(DHT), key-value stores, problems.

Some issues to be cleared. Our model is developed in Scala while theirs is in C# [2], which makes our
framework not applicable unless they port it to C#. After all, the methodology and the idea is what matters
and implementation details differ according to what language is used.

Mapping from Orleans to DS2 From now on, we will assume that: (1) Our DS2 framework was ported
to C#, (2) we have a front end parsing Orleans applications to our model, and (3) An implementation for
a scheduler aware of Orleans runtime is made available. This is in addition to including the distributed
map the runtime uses to be translated to DS2 model, reflecting the fact that the map is implemented using
physical stateful actors. So, explanation of how to map an Orleans application to our model follows:
• Grains are translated to agents with being marked, say in the local state of the agent, as stateful or stateless

and as virtual (to avoid simulating lifecycle on them) or physical (to treat them like normal actors). Also,
Grains method calls on other Grains or physical actors are translated by making the method name a
message in DS2 (sent by the ask pattern to the callee Grain - soon to be an agent). Further, the payload of
the message is set to the formal parameters values (a sequence) of that method call, making sure to treat
them as pass by-value. Otherwise, an error can be given as a violation of the runtime semantics, since
Orleans is a pass by value semantics [2]. Further, any Task/Task<RsltT> is replaced by the returned
Future returned by the ask pattern in DS2.

• Communications between Grains and Grains are translated to an ask pattern in DS2, between Grains
and physical actors as an ask pattern in DS2, and between physical actors to a normal asynchronous send
in DS2.

• The scheduler is aware of all the specifics of Orleans runtime, so it knows how to squeeze schedules that
are fruitful (i.e. find potential bugs) from any Orleans application.
It is clear from this point how things would proceed under the control of DS2 infrastructure (specifically

the Orleans-aware scheduler mentioned above) to reveal issues of interest.

2.4 Are there lessons from Orleans that might improve DS2?

For improving DS2 model, no. All required primitives that are available to Actors, on which Orleans
runtime is built are also available in DS2 model [2][3]. However, for improving the concept of DS2

10

437

language, yes indeed there are lessons learned from Orleans that can improve it significantly [2]. When
I first imagined synthesizing distributed systems using the actor model, I knew first hand that actors
can be created, destroyed/killed, migrated, and the whole system will be very dynamic and locations of
actors may vary during runtime [4, 5]. What didn’t cross my mind, however, is the elegant idea behind
Orleans virtual actors and how it is implemented on top of a distributed map (providing indirection), that
is cached for performance to benefit from locality [2]. It maps between virtual and physical actors, and
their physical locations [2, 7, 6]. In addition, Orleans ruling out several complexities (mentioned in § 2.1)
of actors programming makes it a definite wish for distributed systems developers. It is indeed higher
level than programming with bare actors. The lesson learned is that synthesis of distributed systems from
DS2 language need not be completely done by generating code. A better approach for DS2 language can be
obtained by accompanying it with an Orleans-like runtime that takes care of so many complexities from both
DS2 language synthesis subsystem, as well as its user-specified rules (with minimal performance hit) [2][3].
That, in turn, would make DS2 language a more productive and easier language to approach. Another
lesson learned is the distinction between stateless actors (i.e. contain no state or read-only state) and stateful
actors [2]. This distinction is an optimization for both analysis as well as runtime performance benefits. For
example, we don’t need to check if an update propagates to a stateless actor, for checking consistency for
example. Similarly, the runtime need not persist the stateless actors’ read-only data since they are given to
it, rather than accumulated in it during runtime. At the same time, DS2 language would be even better if
it provided guarantees about corner cases of Orleans runtime, those discussed in the previous subsection.
That is, if we decided to implement one. There are, however, some lessons learned from Orleans that raise
caution about performance, depending on some application patterns [2]:

1. Applications mixing frequent bulk operations on many entities with operations on individual entities
cause degradation in performance. The reason is that isolation of actors makes bulk operations more
expensive than on shared memory [2].

2. Due to lack of temporal locality, with presence of extremely large numbers of virtual actors (in billions),
performance degrades [2].

DS2 language needs to avoid such situations if we chose to implement a runtime similar to Orleans. An
additional lesson learned, that hiding details of distributed systems realities from developers point of view,
while it helps developers live a nice dream, makes it more difficult (if not impossible) for them to reason
about things when the underlying layers of a framework go hay-wire, making that dream a nightmare. An
all in one stack of reasoning and abstraction is absolutely needed to bring that awareness and reasoning ability
back to developers, while still keeping that level of abstraction. One last lesson, inspired by the concept of
function shipping paradime described in the paper [2] is that some times data are much bigger to ship over
shipping the whole physical actor with its state if its stateful (or a new instance of it call it delegate) to do the
job at the locality of that big data. That is determined dynamically by the runtime, and it achieves better
performance than the rigid how free is a host Orleans approach to just create physical actors [2]. I would
definitely keep this and other lessons in mind when designing the DS2 language.

References
[1] Akka. http://akka.io/, Retrieved May 3, 2016.

[2] P. A. Bernstein et al. Orleans: Distributed Virtual Actors for Programmability and Scalability. Tech. rep. MSR-TR-2014-41. 2014. url:
http://research.microsoft.com/apps/pubs/default.aspx?id=210931.

[3] Distributed Systems Abstract Model. http://formalverification.cs.utah.edu/ds2, Retrieved Jan 31, 2016. 2016.

[4] DS2 Hardware rules/spec. http://proof.cs.utah.edu:8080/index.php/Mohammed_ds_hw_rules, Retrieved May 3, 2016.

[5] DS2 Software rules/spec. http://proof.cs.utah.edu:8080/index.php/Mohammed_ds_sw_rules, Retrieved May 3, 2016.

[6] Microsoft Research project Orleans simplify development of scalable cloud services. https://channel9.msdn.com/Shows/Cloud+
Cover/Episode- 142- Microsoft- Research- project- Orleans- simplify- development- of- scalable- cloud- services,
Retrieved May 3, 2016.

[7] Orleans - Virtual Actors. http://research.microsoft.com/en-us/projects/orleans/default.aspx, Retrieved May 3, 2016.

[8] Project Orleans - Actor Model framework. http://www.slideshare.net/nmackenzie/project-orleans, Retrieved May 3, 2016.

11

438

http://akka.io/
http://research.microsoft.com/apps/pubs/default.aspx?id=210931
http://formalverification.cs.utah.edu/ds2
http://proof.cs.utah.edu:8080/index.php/Mohammed_ds_hw_rules
http://proof.cs.utah.edu:8080/index.php/Mohammed_ds_sw_rules
https://channel9.msdn.com/Shows/Cloud+Cover/Episode-142-Microsoft-Research-project-Orleans-simplify-development-of-scalable-cloud-services
https://channel9.msdn.com/Shows/Cloud+Cover/Episode-142-Microsoft-Research-project-Orleans-simplify-development-of-scalable-cloud-services
http://research.microsoft.com/en-us/projects/orleans/default.aspx
http://www.slideshare.net/nmackenzie/project-orleans

3 Zvonimir Rakamarić Questions

Read “Asynchronous Programming, Analysis and Testing with State Machines” paper [3].

3.1 Summarize the paper.

Overview. The paper [3] presents a programming language called P#, an extension to C# [2], for asyn-
chronous programming, inspired by P [4]. The language has a static data-race detection, relying on syntax and
semantics of the communicating state machines approach it uses. In addition, P# provides infrastructure
to facilitate systematic concurrency testing. The work continues describing the experience of writing several
distributed protocols, including an industrial scale system internal to their organization [3]. The driving
factors of this work are: static data race detection, increased reliability and responsiveness of asynchronous
programs generated, and better performing systematic testing exploration [3].

Motivation. The abundance in nowadays computational resources, specifically multi-core processors, re-
quire programmers to use concurrency and/or parallel programming techniques to utilize [3] said resources.
Traditional asynchronous programming models/frameworks, such as multi-threading that relies on locking
mechanisms, are prone to concurrency errors such as deadlocks and/or data races [3, 7, 2]. In addition,
other event driven frameworks based on the actors model e.g. Scala Actors, and Erlang allow declarative
complex asynchronous programming [2]. However, they do not provide the ability to analyze them [2].
The utilization of concurrency lies in breaking long running tasks into smaller and shorter running ones.
The sheer amount of interleavings between these shorter tasks, that can both modify and/or read shared
state, requires careful fine-grained coordination. This is a main source of concurrency bugs due to the fact
that it is hard to achieve correct coordination without automated reasoning, more with informal reasoning.
Pin pointing the root causes for such bugs is extremely challenging [7]. The main fruits intended from this
work is to address both correctness (i.e. high-reliability) , and responsiveness of asynchronous and concurrent
programming [3].

Solutions proposed by P#. P# tries to solve the said issues with three thrusts. First, it provides a framework
for communicating state machines, similar to actors, first class citizens of the language [2]. Second, the
language compiler is used to exploit the state machine structure, specific to P#, in static analysis in order
to detect data races [2, 3]. Third, data race-freedom guarantees established by the static analysis step are
further used to enhance performance of the systematic testing [2] step.

The P# language in some detail. Each program is composed of multiple communicating state machines [3].
They communicate using one primitive, asynchronous send, that sends events to other machines [3]. Each
machine has a marked start state, and one of the machines is marked as main that starts the whole P#
program [2, 3]. Events sent between machines, similar to messages, are handled by actions [3]. These
actions are sequential C# methods, containing no multi threading primitives e.g. spawning threads, or
using any synchronization primitives [3]. When an event that is mapped to an action is received by a state
machine, it executes that action [3]. The actions being executed are asynchronous tasks, i.e. can run in parallel,
and act on a shared state contained in the machine that scheduled these tasks [3]. This shared state, combined
with asynchrony of the tasks, and the fact that events payloads are allowed to reference objects of the shared
state is the potential data race source in P# [3]. P# static analysis leverages the state machine structure that
schedule these tasks as well as the absence of concurrency within actions to track ownership of objects. That
is what imposes the coordination [3]. Allowing events to reference shared state objects allows for efficient
event-passing and to avoid deep copying/marshaling events and their payloads [3]. There is another catch
to events payloads referencing shared state, however. That is, shared state references are only possible on
distributed systems running on a single machine (with a shared memory store), rather than on a purely
distributed (i.e. networked) system with multiple nodes that DS2 tries to address [5]. The way ownership
of objects is handled follows: (1) An action assumes ownership of any payload it receives with events in
addition to ownership of objects the action creates, and (2) An action gives up ownership of any payload
it sends as part of an event [3]. Hence, data race freedom is based on objects having a unique owner at

12

439

any given time, otherwise a data race is detected [3]. A race-free program still can suffer other concurrency
bugs, it is why testing is still needed [3]. P# runtime has an embedded systematic concurrency testing (SCT)
framework that allows for events to be controllably scheduled and explored [3]. That, in turn, allows for
deterministic replay of bugs using tests [3]. The optimization made here is that being done with data-race
detection during static time, fine-grained interleaving is left out during the testing phase [3]. Interleavings
that are left to be explored in the testing phase are comprised of coarse granularity events interleavings, and
this is where the performance benefits come from [3] in comparison with using CHESS alone. Syntax and
formal semantics of the language are provided in the paper, yet they omit some syntax details for brevity [3].

How to write a P# program I will give a brief description of what needs to be done to implement state
machines in a P# program, refer to Figure 1 in the paper [3] for examples. First, a user needs to inherit
from the base abstract class Machine, then implementation is provided inside the inheriting class [3].
Implementation includes the states, which is provided by creating inner classes inheriting from the base
abstract class State [3]. The wisdom behind inner classes to implement the state machine states is that
it prevents these states from being accessed externally [3]. Each state class, has a method called onEntry
that needs to be overridden by the user to provide the events-handling implementation(s) [3]. Actions are
sequential C# methods [3]. One of those actions could simply be sending another event to the same/other
machine(s) [3]. A single state transitions are defined using special syntax that maps from event-type to a state-
type at the state level [3]. For example, on EventType goto ProcessingState to encode a transition upon
receiving an event type, i.e EventType, that transitions the machine to an end state, e.g. ProcessingState
in the example. Local state (i.e. attributes) and actions (C# methods) of a state machine in P# are declared
in the regular way it is done in C# [3] in the top-most syntactic scope of that machine [3]. If a machine
needs to communicate with another machine, the first needs to have a reference to the other machine [2, 3].
However, static fields are strictly disallowed inside state machines [3]. Events can be bound to methods to
form action bindings for a specific state of a specific machine [3]. Start state must be indicated in the machine
level (using start keyword), the start state onEntry method is invoked right after the machine starts [3].
The main state machine, that starts the whole system, is indicated with the keyword main.

Data race detection. Two transitions in a P# program are said to race if they (1) originate from different
machine instances (2) Are not separated by any other transition, and (3) Access the same field with at least
one is a write [2, 3]. Direct or indirect references to objects in an event payload is considered for data race
detection using the ownership analysis, described earlier [3]. Further, any object fields whose ownership
was given up by all machines, get given up as well [2, 3]. Then, a give-up set 6 of fields is computed per
method in all machines, i.e. a set of formal parameters from which the raced-upon object can be reached
directly/indirectly [2, 3]. This is referred to as the gives-up analysis, formulated as a fixed point computation [2,
3] to avoid non-termination on recursive methods. After that, it is enough to data race freedom can be
established by checking:
1. a formal parameter f p is in the give-up set for method m′.

2. Another method m calls m′, setting f p to variable v.

3. After calling m′, m accesses a variable v′.
Finally, it suffices to check that there is no object o that can be accessed directly or indirectly from v and v′ at
the same time [2, 3]. The above is referred to as respects ownership analysis [2, 3], which is the algorithm that
detects potential data races, including false positives. Finally, cross-state analysis, that considers the transition
graph of state machines, is performed to discard the majority of false positives as shown by case studies [2,
3]. The way that is done is simply going through each machine transitions, and checking whether a field
(in the give-up set) is accessed by a later state after it was given up by a former one [2, 3].

Contributions.
• A new language, P#, co-designed with static data race analysis and testing [3].

6Give-up set definition: For each formal parameter fp of method m, if there exists an object o such that if
(i) o is reachable from fp
(ii) ownership of o is transferred by m, then fp is in the give-up set.

13

440

• Sound, scalable, and precise static analysis for proving data race freedom of P# programs [3].

• Systematic and randomized testing strategies that utilize results from static-analysis to exceed the per-
formance of state-of-the-art systematic concurrency testing (SCT) tool, namely CHESS [3].

• Results porting an industrial-scale system, internal to Microsoft [3].

Experiments and Conclusion. [3] The work shows numerous famous benchmarks ported using P# and
the performance of static and testing is stated for each. Some of those are Chord, Paxos, MultiPaxos, Raft, the
chain-replication protocol, and two-phase commit protocol. They compare precision of their analysis with
SOTER (an actor oriented data race checking based on ownership) and mention that theirs outperforms it in
precision. Finally, they state some numbers for variations of their scheduler implementation performance,
in Table2. Their future target is further improving the analysis to avoid more false positives from static
analysis.

3.2 Discuss its pros and cons in detail.

P# has many advantages and some disadvantages:

Advantages
• Increased productivity is shown by porting part of azure system fabric, dubbed “AsyncSystem”, using 14

P# state machines that generated approximately 6 thousands lines of code [2].

• Increased readability of P# programs due to the structuring of its programs in a declarative manner [3],
compared to programs written in other concurrency frameworks such as multi-threading.

• More coverage of concurrency bugs is exemplified while porting the “AsyncSystem”. The analysis and
testing infrastructure helped discover multiple bugs that were not discovered before, and were hard to
find in the original code of the azure subsystem. One of those bugs was undetected in multiple releases
of the same code [2].

• Extending and integrating with C# (i.e. P# as an embedded domain specific language in C#) allows for (1) the
integration of P# in existing projects written in C#, and (2) the use of sequential C# code inside any P#
program [2, 3]. In addition, this allows the use of the familiar tooling, IDE’s and object-orientation in the
design of these state machines, with the restriction that none of the C# code is allowed to spawn threads.
All concurrency must be modeled by using P#’s state machines communicating through events [3].

• Co-design of analysis and program development, forming a synergy, allow for automated analysis and testing
on unmodified programs written in P# [2, 3]. This is always a great advantage above model checkers
such as Spin [6] that requires manual modeling apart from the implementation. That model, also,
may not be a 100% implementation-representative model. This fact is due to the developer intent is to
understand their implementation in the first place, so how can they make a representative model port of
it at all. It takes several oscillations between model and implementation adjustments to converge on a
representative-model, which is by itself a laborious additional effort.

Disadvantages
• Lack of network distribution: P# programs are distributed but within one machine. It doesn’t address

communication between state machines over a faulty network [3]. In purely distributed systems, i.e.
involving faulty network and intermittent presence of communicating processes, more careful and more
featured design is needed, this will be discussed in § 3.3.

• Analysis and/or testing is limited to concurrency stated in P#’s asynchronous state machines. This limitation
comes from the fact that the compiler exploits the asynchronous state machine structure statically [2, 3],
and doesn’t address traditional multi-threading primitives such as threads, locks, . . . etc.

• Forced thinking model on programmers restricts their ability to use primitives and reasoning techniques they
are used to in other concurrency models, e.g. Actor models, multi-threading, . . . etc.

14

441

Figure 4: DS2 Architecture: DS2 Runtime data structures and their inter-relationship

3.3 Comment on whether some of the presented ideas could be connected to your own
work (and how).

Yes, there are two ideas presented and could be connected to my work. The first one is the systematic
concurrency testing and/or exploration, this has been a primary goal for DS2 since its inception. So I will
skip commenting on it since how that is done will be apparent from explaining DS2 model (soon), and from
Figure 4. The second idea is the data race detection using ownership static analysis in P#. I will elaborate on
this one more, assuming our DS2 will synthesize code for some agents to run on a single machine and then
they may pass messages using shared memory for efficiency reasons. Another assumption is that messages
passed will be mutable between a single-host agents.

DS2 model Before I can relate to our work, I need to summarize the architecture of our model, shown
in Figure 4. Our model offers key constructs and then builds upon a simple strategy OO design pattern. A
Scheduler encapsulates an algorithm (i.e. the strategy) to explore any realistic distributed system situation,
including fine grained interleaving e.g. enabling data race detection on shared state. In addition, we have
a Distributed System object (i.e. the context) that represents the global state of the distributed system.
It is essentially a set of agents, and implementation of our formal operational semantics. Agents are
autonomous communicating processes with an incoming queue of messages, a current behavior (i.e. a
map from messages received to actions to perform), a local state (i.e. a map from variables to values), and
life cycle user override-able hooks. Life cycle hooks include onStart, onJoin, onStop, and so on. They
are fixed in number, in contrast with P#’s states in a state machine that can grow big with many complex
transitions in between states. An agent substitutes a state machine in P# and is started by sending it the
Start special message. Behaviors are switch-able, stored in “enabled behaviors”, and remember-able to
backtrack to older behaviors. Behaviors are essentially event-action bindings, like in P# state machines
having different event-action bindings [3] based on the current state. There can be only one behavior that is
enabled at a time in an agent, called the “current behavior”. Actions are, essentially, a sequence of sequential
statements to execute, with other extra info to support blocking/pre-emption and such. Once an agent is
started, the scheduler starts to schedule actions (from current behavior) matched using messages popped
from its queue, setting that action formal parameter to the message that invoked it. After that, the action
(called task now) is enqueued to the scheduler task queue. A scheduler can decide to schedule more tasks
from other agents, consume a statement from already scheduled tasks, or to literally do anything else e.g.
dropping or re-ordering messages in an agent’s queue. The order at which statements are consumed from
one task or another determines the interleaving. Then, executing the statements one by one from the front of
the scheduler’s consume queue performing then removing them. Note that a scheduler need not execute
anything, statements have enough meta data to do targeted exploration without execution. In addition to
that, a scheduler may choose to execute statements to check their effect on the local state of the agent that
scheduled them, then back tracks to a whole runtime state at well; thanks to DS2’s snapshot-resume feature.

15

442

Key differences DS2 and P# models have key differences, these need to be cleared before I explain how
to apply P# data race analysis. P# assumes state machines can share data and claim ownership, so that the
static analysis guided by the strict state machine semantics can decide whether an object shared is uniquely
owned by a single state machine [3]. Our model, based on Akka actors [1], strictly prohibits sharing of
any local state to other agents and the constraint is that payload of messages sent are treated as immutable.
However, the constraint is not enforced in purpose so that data race checking and sharing of data between
agents can still be achieved. The reason behind the constraint in DS2 is that we need to address distributed
systems communicating through possibly faulty networks and with intermittently present processes, which
is not addressed by P# [3]. Sending data over a network, needs (de)marshaling/(ds)serialization using deep
copying, and passing references in payloads to share local data violates our model semantics. DS2 also has
the same asynchronous send like in P#, as well as a more advanced ask pattern, we will focus on send only.
Last, an action’s parameters in DS2 are the message received and the agent whose local state is on which
the action acts. Formal parameters of P#’s actions are formal parameters of the methods while in DS2 the
payload of the message are the formal parameters on which ownership analyses is done. The payload of the
message in DS2 is variable length sequence of values/references analyzed versus the local state content of
the agents that sent and those receiving them.

How can we achieve static data race analysis in our work There are two ways to achieve data race
detection presented in P#. Schedulers are aware of our strict semantics of agent’s, just like the case in P#’s
state machines. It is important to mention that statements have thorough meta data starting from static time,
i.e. the construction of the distributed system model out of an implementation. Meta data has information
about the following: the kind of a statement (send, modify state, ..etc), the formal parameters and their
values of that statement, and if values are determined during runtime it also knows where those values are
stored, what the effect of executing that statement would be even without executing it (with the exception for
control-flow statements conditions that may need some more calculation be determined during runtime).
The behaviors, also, provide additional information of what message received can cause exactly what in
the receiver agent. Actually, we can know when exactly an agent would change behaviors from static time
from statements meta data. So, one option is to completely implement the three analyses P# performs right
inside a scheduler that statically checks meta data in statements (along with the structure of an agent) and
builds both the the give-up set and the control flow graph (CFG). Later, it performs respects ownership analysis
in the same way it was explained in P#, but on information now present inside a scheduler as a give-up set
and CFG. The extension implemented in P# to reduce false positives can also be performed by the same,
or different scheduler passing the computed info in the first scheduler. Other approaches may choose to
implement everything in a front end parsing an implementation of Akka actors [1] (our primary target), or
split the analyses between a scheduler and a front end. Those who plan on parsing implementations written
in Akka [1], like our case, can add parts of the analyses in the front end. These approaches are possible
however the designer of the analysis algorithms chooses to. However, to keep things modular and cleanly
separated, the first choice I explained is considered the best.

References
[1] Akka. http://akka.io/, Retrieved May 3, 2016.

[2] Asynchronous Programming, Analysis and Testing with State Machines - slides. http://www.slideshare.net/akisdeligia/psharp-
pldi, Retrieved May 2, 2016. 2016.

[3] P. Deligiannis et al. “Asynchronous Programming, Analysis and Testing with State Machines”. In: Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation. PLDI 2015. Portland, OR, USA: ACM, 2015, pp. 154–
164. isbn: 978-1-4503-3468-6. doi: 10.1145/2737924.2737996. url: http://doi.acm.org/10.1145/2737924.2737996.

[4] A. Desai et al. “P: safe asynchronous event-driven programming”. In: PLDI. ACM, 2013, pp. 321–332.

[5] Distributed Systems Abstract Model. http://formalverification.cs.utah.edu/ds2, Retrieved Jan 31, 2016. 2016.

[6] G. J. Holzmann. “Logic Verification of ANSI-C Code with SPIN”. In: SPIN. Vol. 1885. Lecture Notes in Computer Science.
Springer, 2000, pp. 131–147.

[7] P# - Asynchronous Programming, Analysis and Testing with State Machines. https://www.youtube.com/watch?v=jj0wUM4Rl-w,
Retrieved May 2, 2016. 2016.

16

443

http://akka.io/
http://www.slideshare.net/akisdeligia/psharp-pldi
http://www.slideshare.net/akisdeligia/psharp-pldi
http://dx.doi.org/10.1145/2737924.2737996
http://doi.acm.org/10.1145/2737924.2737996
http://formalverification.cs.utah.edu/ds2
https://www.youtube.com/watch?v=jj0wUM4Rl-w

4 Matthew Flatt Questions

See Marketplace [6]. Marketplace builds on Erlang-style actors with additional language constructs for
managing subsets of actors.

4.1 In what ways do the goals of Marketplace overlap with the goals of DS2 (for
example, possibly, turning programming patterns into language constructs)?

They overlap in several ways [3, 5, 4] [6, 7]. A list of what overlaps follow:
1. The use of Actors model [1] as a corner stone for constructing distributed system that strictly do not share

data except through communication (using messages and/or events).

2. Structuring distributed systems into sub/nested ones. While DS2 takes the notion of a distributed system
with multiple behaviors based on roles they want to perform in a distributed system, the network calculus
organizes groups and layers of those communicating processes and what roles they want to participate
in.

3. The use of subsets/patterns of actors to address, and to manage delivery and reaction to messages/events
to for groups of these actors using a broadcast semantics.

4. Indeed as mentioned in the question, DS2 tries to force the developer into providing strategies (patterns)
in order to synthesize code to take care of data consistency and/or coordination forced by that pattern (e.g.
a primary backup strategy, paxos to converge to a common state,...etc). Market place uses the patterns
publish/subscribe, broadcast, and elevated roles (through the addition of more responsibilities to actors the
as they participate in more/higher layers).

5. Both try to raise the abstraction for developers to be more productive and to enable easier formal and
informal reasoning about their systems.

6. Both have semantics similar to that of publish/subscribe semantics. For example when DS2 needs to
address a subset of communicating and known to exist agents, it addresses them in either a regular-
expression to match a set or directly provide a set of agents and/or predicates in order to model some
kind of behavior and/or delivery pattern [3, 5], e.g. who is interested in receiving which messages,
who would react to which messages and in what occasion/role/behavior, and scoping the messages to
affect which level/parts of distributed system, . . . etc. Marketplace [6] has an intuitive approach that is
implementable by all languages and have basic support for few requirements, and paves the way to add
support for pattern matching on events, messages, and subscription status and level.

7. DS2 tries to synthesize code for taking care of coordination and consistency between actors/agents,
marketplace has that by-design especially for coordination and membership management (presence and
absence of actors in a certain layer/role) [6, 7].

4.2 Would it make sense to extend DS2 to support Marketplace-like subsets of actors?

Yes, it makes sense. An explanation of all details will be presented and discussed in the next section, § 4.3.
Implementing the network semantics in DS2 runtime would definitely simplify the process of synthesizing
the remaining code for data consistency patterns/algorithms. This is because the Network Semantics (NC)[6,
7] takes care of the portion of the code responsible for managing membership and presence of processes and
crash/disconnect fault tolerance, and provides a higher level route-by-content compared to route-by-address
semantics [6, 7]. That, in turn, removes a whole layer of complexity from the synthesis and filters a lot of
fault sources from our model checking efforts. Knowing about Marketplace, and its network calculus is
definitely a pleasant surprise.

4.3 If so, what would that extension look like?

To answer the question, I will need to first explain our model, how things fit together and a subset of DS2
syntax. After that, we show the changes to the syntax to support the added network semantics [6, 7].

17

444

Overview. We have DS2 model which is the generic distributed systems analysis infrastructure that is
based on Akka [2]. In addition, we have DS2 language which is the higher level language for synthesizing
distributed systems, from higher level intent stated as rules. An implementation of DS2 language is non
existent yet and all we have for it is a subset of its specification, with operational semantics explained in
English [5, 4, 3]. The extension can be done starting with the model then going up to the language. I
will sketch how I would change the model. The flow of the answer will be to: present our reduced model
details and its two communication primitives, how the extension to it would be, then will show some of
the language details (syntax, English semantics,...etc), and finally how I would change the language (an
example). Note that when we synthesize the final distributed system, it will be in Akka, but first we need
to populate the model before we can come up with Akka implementation (because we need to do further
analysis). I had to reduce the model to keep the page limit and not complicate the discussion in relation to
Marketplace’s network calculus(NC) [6]. There is a more detailed model in the technical reports section of
DS2 website [3].

DS2 model details. Distributed System is a tuple 〈A〉 with the set of agents in a distributed system A.
This is analogous to a configuration in Network Semantics [6]. We will first elaborate the primitives in our
model, and then return to the components of the distributed system (i.e. the agents).
Message is a tuple 〈s, p0, . . . , pn〉 where s is the sender agent, and p0, . . . , pn is the payload of the message.
The set of messages is symbolized byM.
Action is essentially the sequence of statements to execute. It has reference to which message invoked it,
and which destination agent of that message, to act on that agent’s local state if needed.
Timed Action is an action associated with two values of time. It is the tuple 〈t1, t2, γ〉 where the action γ is
to execute every t1 time with tolerance of t2 amount of time, usually used to model heart beat. The tolerance
time t2 is there because it cannot be predicted how long a message in flight is delayed, and hence it allows
some delay-tolerance.
Behavior its a tuple 〈nm, r〉 stating a map from message to actions r :M→ Γ, modeling reactions to messages
received. nm is the name of the behavior. Just like Agha’s actor model [1] behaviors are swappable using
become(behavior-name). The state, however, does not change with swapping behaviors. Behaviors know
how to act on an actor’s state (now called agent local state) once activated since they have a reference to it.
Agent is a communicating autonomous process. It is a tuple 〈q,R, τ,L,B〉 where q is its receive queue, R
is the reactions (the primary behavior), timed actions set τ = {〈t1, t2, γ〉}, L is the local state of an agent
L : Ids→ Vals. B is the enabled behaviors set (analogous to subscriptions in NC [6, 7], which indicates other
responsibilities assigned to this agent over its primary responsibilities in R). We called it agent, instead of
actor, to distinguish between the model and implementation.

Communication primitives and supported operations. While our model has two communication prim-
itives, ask (which returns a handle/future to block on) and send. I will focus the discussion on the send
primitive. In short, send is a point-to-point asynchronous message send, from source agent (set in the mes-
sage s field) to destination agent incoming messages queue q. In order to elevate our model to that of NC,
we will assume that we provide a broadcast primitive. Its signature would be broadcast(αsrc ∈ A,m ∈ M, b, l)
where:
• αsrc is the broadcasting agent.

• m is the message to be broadcasted

• b is the behaviors name intended to process this message.

• l is the behavior level, at which the sender (indicated inside the message s field) is operating.
We also have an agent creation primitive and it is almost identical to the one in NC [6, 7]. It creates an agent,
assigns it responsibilities inherited from its creator agent, and its queue is empty, then it is added to the
agents of the same layer/distributed-system 7, and finally the created agent announces its existence (part
of its init operation). No layer can create an agent at another layer except after: (1) Changing its current
reaction to be of that layer (2) It creates that agent (3) Finally, the Creator or created agent can move to any
layer accordingly by changing its primary behavior 8 to match the destination layer behavior.

7I call a nested distributed system a layer or vice versa
8Behavior of a layer, means the service that layer provides

18

445

How everything fits together. Initially, all agents queues are empty. When an agent is started, at least
one will receive the special Start message, and hence the distributed system is started. The agent, then,
de-queues that message, searches its reactions map for the action to execute (i.e. R(msgRecvd), and executes
it. Note that an action executed can do anything from sending messages, creating other agents, changing
the agent’s state, ...etc. This is exactly the same as in NC [6] except that if an agent is created, it inherits
everything from its creator (the parent agent) without the queue content and without local state. Although,
no parenthood is here like in Akka supervision [2]. This is done by all agents till they either exhaust all their
queues, and then there is nothing is left, or they keep doing this indefinitely. Meanwhile, timed actions of
each agent keep firing every t1, we can safely ignore t2 in this discussion.

DS2 model modifications. From the model, we can see that the distributed system configuration (call it
C) lacks the subscriptions status. If we are to extend it so it can handle the NC semantics [6], we would
have extended it in the following way: Distributed System will be 〈A, d,name〉where:
• A the set of agents comprising this distributed system/layer/service.

• d is the distributed system nesting level at which this distributed system resides i.e. 0 if this is the root
distributed system/layer, 1 if this is nested inside the root, 2 if it is nested inside the nested inside the root;
and so on. Multiple distributed systems can be nested inside any one.

• name the name of the service this layer provides, must be a a unique behavior name. It specifies that all
agents part of this layer or moving into it, must make their primary behavior R to be that behavior. Also,
all subscribers must have a behavior in their enabled set B that matches it.

Note that there is no other root in a distributed system, it has to be only one root. Otherwise distributed
systems all at the root level will be, again, reduced to a “soup of actors”. Agent will be extended to
have an additional cached routing table ρ, updates it on every message received.. It is a mutable map
ρ : N × Ids → Agent∗, stating which agents are still alive in which level. That is, it stores information about
what agent/actor is operating at which (level,behavior-name) pair. Behavior will be extended to be 〈nm, r, o〉
where every thing is the same as before, except the o which means the observation level. Observation level
encodes when to use (or ignore) this behavior on a received message from certain layer. Its a predicate over
positive integers. Basically, if it matches the level (i.e. l ∈ o) then it has to be used, otherwise the behavior
is not considered to handle the message. Messages will be extended to 〈s, l, d, p0, . . . , pn〉 where everything
stays the same except for:
• l indicates the level from which the sender sent (read broadcast from now on) this message.

• d indicates the observation level at which this should be handled. A predicate over positive integers.
In addition, we will have two more primitives that an agent executes if it wants to move across layers of a
distributed system. We have ascend which calls become to replace the primary behavior of that agent R,
to be of that destination layer’s behavior , indicated by name. After an agent ascends, it notifies everyone
(using broadcast) to update their routing table. The reverse of that operation is descend and it does the
opposite job of ascend. However, the notification message is sent with d equal or less (d ≤ lold) to that of the
old layer, so that agents of that layer and lower layers are notified to update their routing table. Notification
messages for routing information are handled in all behaviors (a synthesized entry in that behavior). When
an agent in a certain layer/distributed-system broadcasts a message, the message fields are set (i.e. s to the
sender agent, l to the level at which that agent is operating, and d to indicate the level at which this message
is to be handled). In the opposite direction, an agent that received that message, would first update its
routing table accordingly, handle the message, and then update the same message fields: s will be updated
to the receiver, l to the level at which it is operating when it received+processed the message, and d will
be updated to hold the older value of l. Then it will broadcast it back as an acknowledgment if and only
if the behavior observation level o corresponds to the old l. Otherwise, i.e. if o ∩ l = ε (older l), then the
message is ignored (i.e. dropped). One last important thing, now each distributed system is represented by
a set of Agents, that keep track of agents in the same layer or lower(i.e. their nested) layers (these are the
natives to that layer which are publishers). Agents on nested layers are interested in getting messages from
and sending acknowledgments to enclosing/containing layers’ agents. Any agent can create more agents
or ascend/descend to/from layers (if coded in the behavior corresponding to that layer). When an agent
ascends to a layer, it broadcasts a notification to all agents in that layer downward (covering all sub tree).

19

446

When it descends, it does the same but also notifies the layer from which it descended from. Due to that,
notified agents will adjust their routing table ρ, which keeps track of each layer’s subscriptions in that
subtree9. In other words, an agent routing table ρ keeps track of the subtree of nested distributed systems
it belongs to, including its own layer, and higher layers up to the root layer. This is maybe not the most
efficient implementation of the network semantics, but it does the job.

Some DS2 language details and example syntax with semantics. In this part, I will try to give a quick
example that explains the syntax and semantics of a subset DS2 language. The reason behind this is to show
how things used to be (before I know about the networks semantics) and next I show how I modify them.

1 machine: ds1, 1555 // communicating on port 1555

//the old style indicating which distributed system

3 //this one is nested in, left out when this one is root

world: world_name // Each label (e.g. election) states a behavior

5 agents: (6, computation), (1,master), (3, replication), (2, election)

// SAYHELLO is a message with payload "Mo", computation behavior

7 reactions[computation]:(SAYHELLO(name = "Mo"),{print("Hi",name)}, ...

// regular scala function calling out rule "send"

9 def ack(m:Message,a: Agent) = {m.s = this; m.l = locals(level) ; send[a][m]}

reactions[master]:(SUBSCRIBE , {updateSubscriptions(); ack(sender)}), ...

11 ...

machine // end of a distributed system declaration

13 // another distributed system nested in ds1 this one

machine: ds2, 1556

15 // lives inside ds1’s world

world: ds1

17 // one computation node, and 2 replication

agents: (1, computation), (2, replication)

19 reactions[computation]:(SAYHELLO(name = "Mo"),{print("whatever")}, ...

...

21 machine // end of a distributed system declaration

Listing 1: example DS2 distributed system with old syntax (pre NC [6])

Listing 1 shows a simple example in which a distributed system is declared and another one nested inside
of it. The listing shows the old-style DS2 before added network semantics [6]. The world declaration for
ds1 is totally ignored since there is no machine called world name, in which ds1 can be nested in. Hence, it
becomes the root distributed system in which all other collaborating systems should be nested. If there is
another distributed system declared at the same level of ds2, then they both are considered to have the same
level (layer). Except that by declaring two different distributed systems, we can scope certain behaviors, for
example by having a mutually exclusive set of behaviors with ds2 but overlapping behaviors with say ds1
or other distributed systems.

1 machine: ds1, 1555 // communicating on port 1555

//the old style indicating which distributed system

3 //this one is nested in, left out when this one is root

world: world_name // Each label (e.g. election) states a behavior

5 agents: (6, computation), (1,master), (3, replication), (2, election)

// SAYHELLO is a message with payload "Mo", computation behavior

7 // observation level 1 means observe communaction from the scope

// of level 1, even from other neighboring dustributed systems

9 reactions[computation][1]:(SAYHELLO(name = "Mo"),{print("Hi,"+name)}, ...

// regular scala function calling out rule "broadcast"

11 // "master" says all master-layer is notified (instead of just a single

9A subtree of a layer means: that layer, and all its nested layers, down to the leaf layers

20

447

// agent at a time or specifying a pattern of those agents-addresses)

13 // Also, note the ’_’ will lead to all layers-masters to try to handle the

// message. If we wanted a layer and lower ones to handle it, we would specify

15 // that layer depth ’d’ and message will carry that info to destination agents

↪→ ,

// and if they have "master" behavior with same observation level, they would

17 // handle it, and acknowledge it too.

def ack(m:Message,a: Agent) = {m.sender = this; m.level = this.level ;

↪→ broadcast[master][m][_]}

19 reactions[master][_]:(SUBSCRIBE , {updateSubscriptions(); ack(sender)}), ...

...

21 machine // end of a distributed system declaration

// another distributed system nested in ds1 this one

23 machine: ds2, 1556

// lives inside ds1’s world

25 world: ds1

// one computation node, and 2 replication

27 agents: (1, computation), (2, replication)

// handle whatever received from level 3 and down to 0, no negative levels

29 reactions[computation][_<=3]:(SAYHELLO(name = "Mo"),{print("whatever")}, ...

...

31 machine // end of a distributed system declaration

Listing 2: example DS2 distributed system with new syntax (post NC [6])
Listing 2 shows the same example after adding the networks semantics. The comments explain the semantics
in normal English. We still don’t have formal semantics for the language part of DS2 nor the complete syntax
ready, yet. This is why the scarcity of examples. Also, since the model is largely reduced, I had to ignore
all those rules that refer to other details of the extended model e.g. on-join, on-rejoin, on-demise, ...etc [5].
Notice that the change is as the following:
• send rules were replaced with broadcast rules.

• reactions rules were amended to have some more parameters to synthesize the behavior and the level at
which it should observe.

• Also, I amended the language syntax to have two more rules, namely ascend and descend, they don’t take
parameters as they are executed inside an agent/actor and hence will affect that agent/actor.
Note that extensions to specifying even a pattern and subsets of behavior names on reactions is also

supported.

Concluding remarks. DS2 will ultimately generate code based on Akka-provided facilities such as routers
and routees [2], we can model publish/subscribe with an additional number of actors. Using an elastic
cluster of actors would enable DS2 to provide more reliable, and higher throughput service to subscribers
actors. Given the flexibility of both the network calculus meta-model, our model, DS2 language syntax, and
Akka [2] implementation of the actor model, all changes are feasible without major changes.

References
[1] G. Agha. “Actors: A Model of Concurrent Computation in Distributed Systems”. PhD thesis. MIT, 1985.

[2] Akka. http://akka.io/, Retrieved May 3, 2016.

[3] Distributed Systems Abstract Model. http://formalverification.cs.utah.edu/ds2, Retrieved Jan 31, 2016. 2016.

[4] DS2 Hardware rules/spec. http://proof.cs.utah.edu:8080/index.php/Mohammed_ds_hw_rules, Retrieved May 3, 2016.

[5] DS2 Software rules/spec. http://proof.cs.utah.edu:8080/index.php/Mohammed_ds_sw_rules, Retrieved May 3, 2016.

[6] T. Garnock-Jones, S. Tobin-Hochstadt, and M. Felleisen. “The Network as a Language Construct”. In: ESOP. Vol. 8410. Lecture
Notes in Computer Science. Springer, 2014, pp. 473–492.

[7] The Network as a Language Construct. http://www.ccs.neu.edu/home/tonyg/esop2014/, Retrieved May 2, 2016.

21

448

http://akka.io/
http://formalverification.cs.utah.edu/ds2
http://proof.cs.utah.edu:8080/index.php/Mohammed_ds_hw_rules
http://proof.cs.utah.edu:8080/index.php/Mohammed_ds_sw_rules
http://www.ccs.neu.edu/home/tonyg/esop2014/

NAME: Wei-Fan Chiang

1 Brief Summary of the Paper: “Operator Dependant Compen-
sated Algorithms”

The authors explored how fused multiply and add operator (FMA) impacts the performance and the
numerical precision on compensated algorithms. A compensated algorithm performs the same task
as a certain numerical algorithm or operation. The compensated version has lower performance
but higher numerical precision as if using 2X bit-width floating-point numbers in the original
algorithm/operation. The authors’ contributions in this paper are concluded as follows:
• By using FMA, the authors propose a new compensated algorithm for floating-point multipli-

cation. Compare to the classic compensated multiplication (Veltkamp and Dekker [1]) which
requires 17 floating-point operations, the authors’ algorithm requires only 2. In this paper,
the authors didn’t show the comparison results between the classic and the new compensated
multiplication. However, on performance, the new algorithm will be theoretically faster. On
precision, the new compensated multiplication provides almost the same precision as the case
of using 2X bit-width floating-point numbers.
• The authors compare the performance and precision impacts of using FMA and compensated

algorithms. The authors apply FMA operation in two benchmarks: Horner algorithm and
dot product. FMA operation provides higher performance (A FMA fuses two operations into
one.) However, compare to compensated algorithms, FMA doesn’t shows improvement on
precision in practice. In fact, compensated algorithm show higher precision. (This comparison
is based on using the same floating-point bit-width.)
• The authors implemented two compensated versions of Horner algorithm and dot product.

(Each benchmark has two different implementations.) The two versions handle the case
“multiply-then-add” differently. One version uses compensated FMA. The another version
uses a combination of compensated multiplication and compensated addition. The authors
found that using FMA yields lower performance. However, it doesn’t provide higher preci-
sion than the combination operation version. The next section contains more details of this
comparison.

2 Details of Compensated Algorithms

2.1 Error-free Transformations of Compensated Algorithms/Operations

Error-free Transformation (EFT) is a property of compensated algorithms/operations. A compen-
sated algorithm/operation computes an EFT if it takes floating-point numbers as arguments and
produces a list of floating-point numbers as output. The exact summation of the output numbers
is the result calculated in exact arithmetic. Also, the first number in the list is the result calcu-
lated in finite precision arithmetic. For example, let CSUM(a,b) denotes the Knuth’s compensated
addition [3] which computes an EFT for addition. CSUM(a,b) returns two numbers, [x, y], which
satisfy the following condition:

(x = a⊕ b) ∧ (a+ b = x+ y)

(⊕ is the addition operation in floating-point arithmetic. ’+’ is the exact addition operation.)

1

449

CSUM(a,b) CMUL(a,b) CFMA(a,b,c)

of floating-point operations 6 2 17

Table 1: The Number of Floating-point Operations Required by the Three Compensated Operations

The authors’ compensated multiplication, CMUL(a,b), computes an EFT for multiplication.

[x, y] = CMUL(a,b) s.t.
(x = a⊗ b) ∧ (x+ y = a× b)

The authors’ approach of using FMA to implement CMUL(a,b) is shown as follows:

[x,y] = CMUL(a,b) {
x = a⊗ b
y = FMA(a,b,-x) }

(The function, FMA(a,b,c), denotes the “hardware FMA.”)
The compensated FMA [2] used in the paper, CFMA(a,b,c), computes an EFT for FMA.

[x, y, z] = CFMA(a,b,c) s.t.
(x = FMA(a,b,c)) ∧ ((x+ y + z) = (a× b+ c))

Table 1 shows the number of operations used in the above three compensated operations.

2.2 Compensated Horner Algorithm

The Horner algorithm evaluates a polynomial (with floating-point coefficients) at a floating-point
value. Let p is a polynomial:

∑n
i=0 ai ∗ xi. The following shows the Horner algorithm evaluates a

polynomial at a floating-point value x:

r = Horner(p,x) {
r = an
for i = n-1 to 0

r = (r ⊗ x)⊕ ai // A FMA can replace here. }

The authors firstly construct EFT for the Horner algorithm. They tried two possible EFTs: com-
pensated FMA version and compensated mul+add version. The compensated FMA version is
shown as follows:

[r, p1, p2] = HornerEFT FMA(p,x) {
r = an
for i = n-1 to 0 {

[r, α, β] = CFMA(r,x,ai)
Set α to p1’s ith coefficient.
Set β to p2’s ith coefficient. }}

2

450

The compensated mul+add version is shown as follows:

[r, p1, p2] = HornerEFT mul add(p,x) {
r = an
for i = n-1 to 0 {

[γ, α] = CMUL(r,x)
[r, β] = CSUM(γ,ai)
Set α to p1’s ith coefficient.
Set β to p2’s ith coefficient. }}

Note that both EFTs of Horner algorithm return a floating-point number (r) followed with two
polynomials (p1 and p2). These returned values are used in calculating the final answer. The
compensated Horner algorithm, CompHorner(p,x), calculates the final answer as shown follows:

CompHorner(p,x) = r ⊕Horner(p1,x)⊕Horner(p2,x) = r + Horner(p1 ⊕ p2,x)

(p1 ⊕ p2) is a polynomial.

In this paper, the authors compare the performance and precision between HornerEFT FMA
and HornerEFT mul add. They found that HornerEFT FMA doesn’t show higher precision than
HornerEFT mul add. However, its performance is lower than HornerEFT mul add. (Table 1 im-
plies the reason.)

2.3 Compensated Dot Product

The authors also implemented two versions of compensated dot product: by using CFMA and
CMUL+CSUM. Similar to the case in Horner algorithm, the CFMA version doesn’t show higher
precision but has slower performance.

3 Using Compensated Algorithm in Auto-tuning

The authors compared the performance between the 64-bit compensated Horner algorithm and
the double-double (128-bit) non-compensated version. The two versions show the similar precision
but the 64-bit compensated version has higher performance. Based on this result, it seems that
programmers could improve performance but still keep the same precision by using compensated
algorithms. However, double-double (128-bit) floating-point arithmetic should has very slow per-
formance. It is because double-double operations are not supported by hardware. On the other
hand, 64-bit arithmetic is supported. Therefore, I created my own Horner algorithm and dot prod-
uct benchmarks. In this section, I report the performance and precision on three versions of both
benchmarks. The three versions are described as follows:
• (horner/dot)-fma.32 is a 32-bit version of using FMA but not using compensated algorithms.
• (horner/dot)-comp.32 is a 32-bit version of using compensated algorithms. For “multiply-

then-add” situation, it uses combination of compensated multiplication and compensated
addition.

• (horner/dot)-fma.64 is a 64-bit version of using FMA but not using compensated algorithms.
• The exact arithmetic is approximated by the 128-bit versions.

3

451

The choice of these three benchmarks is based on a potential scenario of program tuning: A pro-
grammer has an implementation on 64-bit precision. However, using 64-bit floating-point numbers
may be expensive on power consumption or performance. Thus the programmer considers us-
ing 32-bit floating-point number. He/She also considers using compensated algorithm to improve
precision.

Some details of my benchmark implementation and setting are shown as follows:
• I currently can not find out a way to force using hardware FMA. Therefore, to approximate

the precision provided by FMA, I used 128-bit floating-point arithmetic. For a 32-bit FMA32,
my implementation is shown as follows:

FMA32(a, b, c) = (float)((float128 a)⊕ (float128 b)⊕ (float128 c))

Hardware FMA operation calculates the multiplication and addition in exact arithmetic,
then rounds only once to get the final answer. The exact arithmetic in FMA is approached
by 128-bit arithmetic. The rounding is approached by type casting from 128-bit to 32-bit
floating-point number.
• Each of my Horner algorithm benchmark evaluates a fixed size polynomial with 1001 random

coefficients at a random value. Each random value is in [−1.0, 1.0]. This is different from the
authors’ setting on Horner algorithm. The authors evaluated the polynomial (x − 1)n with
fixed x to 1.333. They changed n to test performance and precision on different polynomials.
• Each of my dot product benchmark generates two random fixed size vectors (1000 elements

each) and computes the dot product of them. Each element is in [−1.0, 1.0].
• The performance score of each benchmark is measured in its elapse time (105 runs) divided by

the elapse time of (horner/dot)-fma.64. For example, suppose the time of 105 runs of horner-
comp.32 is 15 seconds and the time of horner-fma.64 is 10 seconds, the performance score of
horner-comp.32 is 1.5. Thus, the higher the performance score, the lower the performance.

• The precision is measured in relative error with 10−8 as “padding.” The authors also calculate
relative error as the precision metric. However, they didn’t use padding. Instead, they cut
all errors greater than one to one.

3.1 Experimental Results and Discussions

Table 2 shows the performance and precision results of Horner algorithm benchmarks. Table 3
shows the performance and precision results of dot product benchmarks. From these two tables,
we can observe the following things:
• The performance of the three versions of both benchmarks are very close. The experiments

are run on a multi-core machine (multiple Intel Xeon CPUs). It could provide good hardware
support on 64-bit floating-point arithmetic. Of course, the performance results could be
changed if real hardware FMA applied.
• I measured the precision by two methods: unguided random testing (URT) and binary guided

random testing (BGRT). On both benchmarks, they all report (horner/dot)-fma.64 as the
most precise version. The 32-bit compensated versions are less precise than the 64-bit versions.
However, they are more precise than the 32-bit versions.
• One interesting thing in our results is that the precision of the compensated versions seems to

be “stable!” By changing the precision measurement algorithm from URT to BGRT, both the
32-bit and 64-bit non-compensated versions show higher errors. By using BGRT, the highest

4

452

horner-fma.32 horner-comp.32 horner-fma.64

Exp1
performance 1.0014 1.0818 1
precision (URT) 1.7056e-03 5.9422e-08 4.7789e-13
precision (BGRT) 7.3591e-01 5.9449e-08 3.7831e-09

Exp2
performance 1.0008 1.0777 1
precision (URT) 4.3984e-04 5.9446e-08 5.5271e-13
precision (BGRT) 1.1143e+00 5.9550e-08 3.8291e-08

Exp3
performance 0.9952 1.0751 1
precision (URT) 5.8907e-04 5.9516e-08 5.1078e-12
precision (BGRT) 2.4850e+00 5.9418e-08 5.4220e-09

Exp4
performance 0.9915 1.0839 1
precision (URT) 9.4963e-04 5.9524e-08 1.8255e-12
precision (BGRT) 3.1392e+00 5.9301e-08 9.3075e-09

Table 2: Performance and Precision Results of Horner Algorithm

dot-fma.32 dot-comp.32 dot-fma.64

Exp1
performance 1.0280 0.9919 1
precision (URT) 2.5636e-02 5.9368e-08 3.5511e-11
precision (BGRT) 4.3908e+02 5.9560e-08 1.6403e-08

Exp2
performance 1.0322 1.0035 1
precision (URT) 2.7600e-02 5.9454e-08 3.3922e-11
precision (BGRT) 3.4483e+01 5.9524e-08 5.5738e-08

Exp3
performance 1.0290 0.9988 1
precision (URT) 5.4019e-02 5.9455e-08 1.9420e-11
precision (BGRT) 8.2904e+01 5.9539e-08 4.9305e-07

Exp4
performance 1.0182 0.9925 1
precision (URT) 9.5832e-01 1.8044e-07 9.6020e-10
precision (BGRT) 8.6204e+01 5.9567e-08 4.3663e-10

Table 3: Performance and Precision Results of Dot Product

errors of 64-bit non-compensated version are reported to be close to 32-bit compensated
version. On the other hand, the precision results reported by both URT and BGRT don’t
show too much difference. Our results could give an empirical conclusion: it is possible that
compensated algorithms could eliminate many “corner inputs” that cause extraordinary high
errors.

Therefore, it is worthy to investigate more on compensated algorithms to check whether they
provide “stability” to numerical computations. If it is true, it could be a main motivation of using
compensated algorithm in auto-tuning.

References

[1] Dekker, Theodorus Jozef. ”A floating-point technique for extending the available precision.”
Numerische Mathematik 18.3 (1971): 224-242.

5

453

[2] Boldo, Sylvie, and J-M. Muller. ”Some functions computable with a fused-mac.” Computer
Arithmetic, 2005.

[3] Knuth, Donald E. ”The Art of Computer Programming, Vol. 2: Seminumerical Algorithms”
Addison-Wesley, Reading, MA, USA, third edition, (1998)

6

454

NAME: Wei-Fan Chiang

1 Summary of “Autotuning Multigrid with PetaBricks”

This paper proposes an auto-tuning method that synthesizes multigrid programs with considering
both performance and accuracy. A multigrid program (e.g. a 2D Poisson’s equation solver) could
be a combination of multiple underlying algorithms such as sequential, iterative, and recursive
algorithms. The program recursively divides an input data into partitions, and invokes different
underlying algorithms to deal with the partitions. Such algorithm selection is based on some
parameters such as partition size. Since the underlying algorithms provide different performance
and accuracy on different parameters, synthesizing the optimal program is searching the optimal
cutoffs (thresholds of switching underlying algorithms). Previous work only consider performance
as the only metric in tuning (or synthesizing) such combinative algorithms. However, this paper
consider both performance and accuracy as metrics.

The methodology proposed in this paper is a dynamic programming based synthesis. This
approach is based on the following assumption: finding the “optimal” (combinative) algorithms
for solving smaller-size problem is independent from finding the optimal algorithms for larger-size
problem. Thus, the method starts from finding the optimal algorithms under small input sizes. (An
algorithm C1 is optimal if the method doesn’t find another algorithm C2 such that C2 dominates
C1 on both performance and accuracy.) With synthesis results of small input sizes, the method
proceeds to search the optimal algorithms under a larger input size. When synthesizing a candidate
algorithm which recursively calls other algorithms to handle data partitions, the method tries out
all optimal algorithms previous found.

While increasing the input size, the number of optimal algorithms enumerated by the method
could be dramatically increased. The paper proposes two approaches to prune candidates. The
first approach is dividing the whole accuracy scale into (disjointed) ranges. For example, suppose
the accuracy scale is from 0 to 100 ([0, 100)), it can be divided into four ranges: [0, 25), [25, 50),
[50, 75), and [75, 100). For all optimal algorithms whose accuracies fall in the same range, only
the one with the highest performance will be chosen to synthesize other algorithms. The second
approach is to restrict the scales of some tuning (synthesizing) parameters. For example, from
several (underlying) iterative algorithms, the authors selected only one of them (SOR: Red-Black
Successive Over Relaxation) in the synthesis process. The number of iterations performed by the
iterative algorithm (SOR) can also be fixed to a constant. Such restrictions on tuning parameters
could be given by (offline) experimental results.

The authors implemented the auto-tuner (synthesizer) for a parallel programming language,
PetaBricks. To write a PetaBricks program, programmers need to explicitly specify transforms
and rules. Each transform converts an input or an intermediate result to an output or another
intermediate result. The whole program is a series of transforms from an input to an output.
Each transform contains several rules which specify different implementations of data process-
ing. PetaBricks compiler can reason the dependencies among transforms and generate code in two
modes. The first mode is opening the rule choices (algorithm choices) and parameters to external
configuration files. The second mode is to hard-wire a configuration into the code that improves
the performance. The algorithm synthesis method is starting from small input size (as described in
previous paragraphs) and seeded with single-algorithm implementations (applying only one under-
lying algorithm to whole computation). The generated program will has the highest performance

1

455

among optimals which meet the accuracy requirement.
The experimental results show that the methodology proposed in this paper could successfully

generates programs (of a 2D Poisson’s equation solver) that have higher performance than single-
algorithm implementations (with satisfying the accuracy requirement). Compare to two other
reference tuning methods, the generated programs also have higher performance.

2 Summary of “Language and Compiler Support for Auto-Tuning
Variable-Accuracy Algorithms”

This paper proposes a genetic algorithm for automatic tuning (synthesizing) of variable-accuracy
algorithms. The paper defines “variable-accuracy” algorithms as those who could earn performance
by paying some degree of accuracy as price. Such algorithms could be approximation algorithms
for NP-hard problems or iterative algorithms which iteratively compute results until convergence
criteria met. Multigrid programs, which recursively employ underlying algorithms for computing
partial results, are also variable-accuracy algorithms. To trade performance with accuracy (or vice
versa), a variable-accuracy algorithm could has many parameters for tuning performance/accuracy,
such as the number of iterations or algorithm choice of handling sub-problems. These parameters
build an “abstraction boundary” between the library writers and the library users. Library writ-
ers, who design the variable-accuracy algorithms, may expose many parameters to library users
for handling various accuracy requirements. However, library users may not know the impacts
on accuracy made by the parameters. The genetic tuning algorithm is designed to bring down
the “abstraction boundary.” The authors implemented the genetic tuning/synthesis algorithm in a
parallel programming language compiler (PetaBricks compiler) with support of language extensions
(in PetaBricks). The proposed tuning algorithm can help library writers find the optimal configu-
rations that achieve high performance under specific accuracy requirements. For library users, the
automatic tuning can hide the complexity of setting parameters.

For language extensions, the authors extended PetaBricks (described in the previous section)
to allow more flexibility in tuning/synthesis. In this paper, four major extensions are proposed.
The first extension is allowing programmer-specified accuracy metric. PetaBricks programmers
can write their transforms that calculate accuracy scores based on inputs and outputs. The second
extension is supporting programmer-specified parameters in programs. The tuning method will
automatically find the values of these parameters in optimal programs. The third extension is
providing a loop-statement whose number of iterations is dynamically decided during the tuning
process. The forth extension is a runtime accuracy check statement that allows programmers to
specify locations of accuracy check. This also allows programmers to specify handlers for the case
that accuracy check fails.

The genetic tuning/synthesizing method proposed in this paper is implemented on top of
PetaBricks compiler. Each tuned program is mapped to a choice configuration file created by
PetaBricks compiler. The file contains all parameter values including programmer-defined vari-
ables and decision tree. A decision tree records algorithm choice on each choice site (for handling
sub-problems). During the tuning process, each configuration (an algorithm/program) is randomly
chosen as a “parent” to generate “children configurations.” This generation of children config-
urations is done by a mutator function. The mutator function randomly changes parameters of
the parent configuration based on their categories. For decision tree, the mutator could randomly
remove or insert a algorithm choice cite with a cutoff value to recursively handle sub-problems. For

2

456

large scale parameters like cutoff value, their values are sampled from a log-normal distribution.
The intuition of using log-normal distribution is that it enlarges the impacts of small changes on
small values than large values. For small scale parameters like algorithm choice, their values are
sampled from a normal distribution. The whole genetic tuning method keeps a set of optimal
algorithms (a population) and performs a two-level loop: the outer and the inner loop. The outer
loop controls the input size. The method starts from generating optimal algorithms under small
input sizes. The outer loop increases input size on every iteration. Before entering the inner loop,
all algorithms in the population are tested and preserved if it is optimal. The inner loop repeats
random mutations and creates new algorithms to the population. To prevent search space explo-
sion, each inner loop iteration preserves the best K (a user-specified parameter) algorithm in the
population.

The genetic tuning method requires comparison among algorithms. The comparison is done by
providing trained inputs. The number of inputs to provide is dynamically decided by the tuning
method. The tuning method uses a probability metric to indicate that the two algorithms are the
same or not. Once the two algorithms are indicated to be distinguishable, not more inputs will be
provided for comparison. Otherwise, more inputs will be provided until a threshold (a user-specified
parameter) reached.

To evaluate the genetic tuning method, the authors generated a set of benchmarks. Their
experimental results show that the tuning method can generate high performance programs for all
benchmarks which also meet various accuracy requirements.

3 Discussions

3.1 Potential Impact on Accuracy and The Needs of Improved Accuracy Check

The two papers propose techniques that assist programmers to sacrifice accuracy for performance
improvement. Both papers use “concrete testing” to measure accuracy. I refer “concrete testing”
as providing a set of concrete inputs to the program and observe on outputs. However, they don’t
describe the source of “trained” inputs. (The term “trained” is used in the papers. I assume that
the “trained” inputs are actually random or arbitrarily specified.) Therefore, it is possible that the
tuned programs meet accuracy requirements in the synthesis but (frequently) fail in practice.

My current work, described in our latest paper, is a search based methodology for finding inputs
that cause high numerical errors. Therefore, by using our method of input generation, programs
generate by the two techniques may be more accurate. Here are points to clarify for the this
statement:
• A program is more accurate means it is less likely to fail the accuracy requirements in practice.
• The generated programs may have lower performance.
• The terms “accuracy” and “numerical precision” don’t have the same meaning here. The

“accuracy” means the “distance” between the (current) computed solution and the optimal
solution. Such distance could be known by computing residual. The accuracy could be decided
by the algorithm of approaching the optimal solution and the number of iterations we take in
the algorithm. On the other hand, the “numerical precision” means the difference between
the result calculated in floating-point arithmetic and the result calculated in real number
arithmetic. The cause of the numerical imprecision is mainly from rounding operations during
floating-point arithmetic. Numerical precision could be improved by using higher bit-width

3

457

floating-point numbers or applying compensation methods (like Kahan summation or Knuth
summation).
However, I still believe that our search based input generation can help improve accuracy.
It is because our method finds high numerical errors by exploring “input distributions.” An
input distribution depicts how input values scatter in the input domain. We found that many
inputs of causing high/low numerical errors could possibly have similar distributions. I believe
(but not formally or empirically proved yet) that many inputs which cause low accuracy could
also have similar distributions. It is because our method has shown effectiveness on finding
high numerical error with different metrics.

3.2 Potential Work Needed for Applying Search Based Input Generation

My proposed approach of integrating our input generation method to the two tuning methods is
that, for each candidate algorithm, we search sufficient amount of inputs and provide the top K
(user-specified) inputs needed in the tuning. Apparently, there are some performance issues to
solve. First, the amount of inputs we explored could be much more than the amount needed by the
tuning methods. Second, we may need to re-generate a whole new set of inputs for each candidate
algorithm found by the tuning methods. It is because different algorithms may require different
input distributions to trigger low accuracy. My proposed solutions for the performance issues are
listed as follows:
• We need to “reuse” the generated inputs. First of all, we need to invent a mapping methodol-

ogy that links an algorithm, with its input size, to a set of inputs. An input must be allowed
to appear in other algorithms’ input sets or be part of another input.
• In a variable-accuracy algorithm, an input could be divided into partitions (disjointed sec-

tions) for computing partial results. Therefore, we can firstly generate inputs for algorithms
which take small input sizes. For large inputs, we could generate them by aggregating small
inputs. However, it is possible that computations on partial results could also affect accuracy.
Consequently, inputs generated from aggregations may not effectively trigger high inaccuracy
after several levels of aggregations. Therefore, for algorithms taking large input sizes, we can
set a probability to generate inputs from search.
• Storing actual inputs could require lots of space. An idea to “compact” inputs could be

storing their “distributions.” A distribution can be stored as a conjunction of constraints. A
distribution represents a set of inputs. For example, consider two inputs I1 and I2:

I1 = {v1 = 1.0, v2 = −0.8, v3 = 0.499} I2 = {v1 = 0.9, v2 = −0.7, v3 = 0.509}

We could conclude the set of inputs, {I1, I2}, has distribution

(v1 > 0) ∧ (v2 < 0) ∧ (v3 − 0.5 ≤ 0.01)

We may borrow the template based approach of (loop) invariant synthesis to discover dis-
tributions. Once we store distributions as input sets, we need to re-sample inputs from the
distributions. Naive sampling from distributions is a try-and-error approach. (Randomly
enumerate inputs and prune invalids.) Efficient sampling from distributions is to be investi-
gated.
• Static analysis could also help reduce the space needed for input reusing here. For a pro-

gram/algorithm, we could analyze the transform which specifies the accuracy metric. (The

4

458

second paper allows programmer-specified accuracy metrics.) We can identify the specific
subset of input variables that affect the accuracy calculation. This can be done by program-
ing slicing or information flow analysis. Then only those identified input variables need to be
store. Other variables can have random values.

5

459

1 Central Contribution of the Paper “A Sound Floating-point
Polyhedra Abstract Domain

The paper proposes a sound floating-point implementation of polyhedra abstract domain, an effec-
tive numerical abstract domain. This could improve the performance of abstract interpretation for
numerical programs. It is because previous implementations of polyhedra domain use rational num-
bers to represent numerical values and involve rational number arithmetic which greatly degrade
analysis performance. The authors improve performance by taking the advantage of (relatively)
faster floating-point arithmetic. However, due to rounding operations, naively replacing rational
numbers with floating-point numbers may cause unsound analysis results. (For a numerical vari-
able, its polyhedra domain is sound if the domain contains all the variables’ plausible values.) To
keep soundness, the authors propose a sound floating-point Fourier-Motzkin elimination and em-
ploy rigorous linear programming (LP). These two techniques are the core subroutines of polyhedra
domain operations. The key ideas of preserving soundness in these two techniques are described in
the following two paragraphs.

Fourier-Motzkin elimination is mostly used in removing (or havoc) a variable in a domain.
When coefficients of the input inequality system of Fourier-Motzkin elimination are floating-point
numbers, to keep soundness, the coefficients in the result system are represented by intervals. (In-
equalities with interval coefficients are called linear interval form.) An interval coefficient preserves
all possible values with considering rounding uncertainty during the computation. For each in-
equality in linear interval form, the authors employed a linearization technique to find a linear
non-interval inequality to over-approximate it. Thus, the result inequality system of floating-point
Fourier-Motzkin elimination can be composed by all linearizations of linear interval inequalities.

Linear programming is mostly used in entailment check. It checks whether a domain is contained
by another domain. Entailment check is required by operations like redundancy removal, empti-
ness test, and widening. To keep soundness, the rigorous LP considers the worst-case rounding
error and finds the lowest/highest plausible bound when the objective function targets to mini-
mum/maximum. Consequently, rigorous LP provides conservative answers to entailment checks.
For example, considering two domains P1 and P2, a rigorous LP answers positive to P1 |= P2 means
positive. A rigorous LP answers negative means “not sure” (or “maybe”). Such conservative be-
havior can over-approximate polyhedra domain operations. (e.g. Fewer inequalities will be chosen
in the widening operations.)

To improve analysis precision, the authors also propose some tightening techniques. They
are briefly described as follows. Bounds of variables/coefficients can be tightened by LP and
bound propagation. Widening operation can be tightened by envelop. In linearization (for over-
approximating linear interval inequalities), coefficients can be biased to integers. In the case of
sacrificing soundness, rigorous LP can be replaced by standard LP solver.

1

460

2 Potential Sources of Analysis Imprecision

2.1 General Cases

As the authors mentioned in the paper, there are two general sources of imprecision. The first
source is in linearization. In the inequality shown in Definition 2,

ζ(ϕ,X) =def
∑
k

dk × xk ≤ c ⊕+∞
⊕
k

+∞(max{bk 	+∞ dk, dk 	+∞ ak}⊗+∞ | xk |)

| xk | is decided by the bounding box of (vector) x. As shown in Example 1 in the paper, when xk in
the bounding box is [−10, 5], | xk | is 10 which is a source of over-approximation. (The right-hand
size of the above inequality will be enlarged.) Consequently, an inequality which contains more
values will be introduced. The second source is in rigorous LP. In the case of finding the minimum
value of an objective function, rigorous LP returns a conservative result which is lower than the
real minimum. Therefore, the results of some entailment checks, which should be positive, become
“not sure.” Consequently, as mentioned in the previous section, the polyhedra domains generated
by some operations will contain fewer inequalities, which means more values.

2.2 The Pathological Case in Linearization

There is a pathological case in floating-point Fourier-Motzkin elimination (in the linearization
phase). This pathological case only happens in some specific environments.

The main reason of having this pathological case is that floating-point summation can be calcu-
lated differently by applying different associativities. Consider a mini floating-point format which
allow only four digits in significant. The following shows an example of adding four mini floating-
point numbers (A, B, C, and D). The floating-point numbers are shown in binary.

A = 1.0001 ∗ 2−4 B = 1.0010 ∗ 2−4 C = 1.0011 ∗ 2−2 D = 1.0100 ∗ 23

Exact : A+B + C +D = 1.01001101111 ∗ 23

Associativity1 : ((A⊕+∞ B)⊕+∞ C)⊕+∞ D = 1.0101 ∗ 23

Associativity2 : ((D ⊕+∞ A)⊕+∞ B)⊕+∞ C = 1.0111 ∗ 23

We can observe the two associativities shown above yield to different results.
Now, again, consider the inequality shown in Definition 2, we name its right-hand side as f :

f = c ⊕+∞
⊕
k

+∞ (max{bk 	+∞ dk, dk 	+∞ ak}⊗+∞ | xk |)

We use mk as a short name of a part of f :

mk = (max{bk 	+∞ dk, dk 	+∞ ak}⊗+∞ | xk |)

Therefore, f could be written as follows: (with an explicit specification on associativity)

f = c ⊕+∞ ((. . . (((m1 ⊕+∞ m2)⊕+∞ m3)⊕+∞ m4)⊕+∞ . . .mk)

The scale of f decides the precision of the original inequality. Fortunately, f is expected to be
small wrt all feasible associativities of adding c and all mks. The intuition is shown as follows:

2

461

• Consider Equation 3 in the paper, ak of Definition 2 is (a+k �−∞ a+i)⊕−∞ (a−k �−∞ a−i), and
bk of Definition 2 is (a+k �+∞ a+i) ⊕+∞ (a−k �+∞ a−i). Therefore, in Definition 2, ak is close
to bk. Thus, if | xk | is not too large, we can expect a small mk.
• If c is sufficiently larger than (

⊕
k +∞ mk), f could be very close to the exact result.

• An example can be shown by the “Associativity 1” in the second paragraph of this section.
Suppose we have three mk terms: m1, m2, and m3. Consider

f = c⊕+∞ ((m1 ⊕+∞ m2)⊕+∞ m3)

let c = D, m1 = A, m2 = B, and m3 = C, f is very close to the exact result.
However, if mk is large (because of large | xk |) or c is close to (

⊕
k +∞ mk), the inequality could

dramatically lose precision. An example can be shown by the “Associativity 2” in the second
paragraph. We can observe the different by mapping c = C, m1 = D, m2 = A, and m3 = B. Now
f , c⊕+∞ ((m1⊕+∞m2)⊕+∞m3), is far from the exact result. Even though the difference between
the two associativities is just 2 units in the last place (10111−10101), the exponent part (23) could
magnify the difference.

In other words, the inequality in Definition 2 does not address this pathological case and seem
to use a deterministic approach to calculate its right-hand side. This could result in a pathological
case of high precision loss in analysis. On the other hand, there also exists a pathological case
(associativity) that causes low precision loss.

Note that the summary is calculated in “rounding to infinite” mode. So every feasible asso-
ciativity is guaranteed to compute the summation greater than the exact result, which preserves
soundness.

3

462

Qualifying Exam

Question 1

Pascal Grosset

University of Utah

1 In your research statement, you discuss several
alternative solutions for compositing algorithms for
volume rendering of combustion codes using AMR
(radix-k, binary swap, direct send). An underlying issue
is how the approach will evolve as socket-level
architectures scale to large numbers of cores. One way
to evaluate different implementation strategies is to
develop performance models of the alternatives, and
then do some validation on the target architectures to
verify the models.

For this question, you are to design performance models
that capture the relevant characteristics of two very differ-
ent compositing algorithms (e.g., direct send and radix-k).

The two algorithms I will compare are the ones suggested: Direct Send
and Radix-k.

Image compositing usually has 2 stages: compositing and gathering. In the
compositing stage, each process starts with one part of the final image that it
has been generated though volume rendering or a similar rendering process.
The processes then exchange sections of the image they have until at the end
of the stage, each process is authoritative on one section of the final image.
Then follows a gathering stage where each process send their section to one
process which puts the sections it receives in the correct position in the final
image. The gathering stage is the same for both algorithms.

463

2 Pascal Grosset

1.1 (a) For each, summarize the algorithm, and describe the

amount of computation and communication relative to input data

set (0.5 page each).

1. Direct Send

There are two versions of direct send. In the first version, all the processes
send their image to the display process [4] and the latter assembles them
to produce the final image on its own. There is no gathering stage in this
version. In the second, more popular version, each process is responsible for
one section of the final image. If there are n processes in the system, each
process is responsible for (1/n)

th
of the final image. All processes send the

sections that they are not responsible for to the relevant node. Figure 1 shows
an example of that. Then there is a gathering stage where one process receives
all the image sections and puts together the complete image. I will consider
the second version as this is the one that is most often cited [1],[6].

In terms of communication, for a system with n processes, the amount
of messages that needs to be sent/received per process is n − 1 (the -1 is
because a process does not send to itself). Let the final image have p pixels.
The number of pixels per message sent is p/n and the total number of pixels
that a process will send/receive:

(n− 1)
p

n
(1)

In terms of computation, a process will need to blend each pixel from
n− 1 images it received. So the number of blending operations that it needs
to perform is:

(n− 1)
p

n
(2)

Fig. 1. Each square represents a process and the dark gray rectangle show the
section that each process is responsible for. The arrow shows the movement of data

2. Radix-k

This is a more complex algorithm. Each process is still responsible for one
section of the image but the way the exchanges take place that is different.
The number of processes n is factored in r factors so that k is a vector where

464

Qualifying Exam 3

Fig. 2. The gray rectangle shows the section that each process is responsible for in
the first round and the blue rectangle show each section that a process is responsible
for in the second round. In this example, r=2, k=[2,2].

k = [k1, k2, ..., kr]. For example if n = 80 and r = 3, k = [5, 4, 4]. The processes
are arranged into groups of size ki and exchange information. At the end of a
round, each process is authoritative on one section of the image in its group.
In the next round, all the the processes with the same authoritative partition
are arranged in groups of size ki+1 and exchange information. This goes on
for r rounds until each process is the only one authoritative on one section
of the image. Figure 2 shows an example of how this works. These sections
are then gathered to generate the final image. Radix-k is described in detail
in [5].

In terms of communication, there are r rounds and in each round, the
number of messages a node receives in a specific round i is ki− 1. So the total

number of messages sent is
r∑

i=1

ki − 1. The size of the messages decreases per

round. If the final image has p pixels, in the first round the size of messages
exchanged is p/k1. Then it’s (p/k1)/k2 and so on. In the ith turn, the message

size is
i∏

j=1

p/kj. So the total number of pixels sent/received per process is:

r∑

i=1

[(ki − 1)(

i∏

j=1

p/kj)] (3)

In terms of computation, for each round i the size to blend is
i∏

j=1

p/kj

which is done ki − 1 times. For r rounds, the total amount of blending is:

r∑

i=1

[(ki − 1)(
i∏

j=1

p/kj)] (4)

465

4 Pascal Grosset

For both radix-k and direct send, the number of pixels sent is the number
of pixels that need to be composited which is why for both algorithm, the
communication and computing is same in terms of pixels. At the end of the
day, both algorithms have to send the same number of pixels but radix-k does
that in fewer messages. The gathering stage is the same for both algorithms;
they need to send their section to the process that will output the final image.

In terms of communication, each process sends 1 message which has p/n
pixels. The total number of messages that the final process will receive is n−1
and so the total size of message in the system is:

(n− 1)(
p

n
) (5)

For computation, only the output process has work to do. The work it
does is copying each section of the image it receives to the right place. I am
using n instead of n− 1 this time as the section of the image that the output
process has might need to be placed in the correct location too.

n(
p

n
) (6)

Fig. 3. All the processes send the section they are authoritative on to the display
process.

1.2 (b) Describe how the implementation might vary by

architecture and scale at the socket level (0.5 page each): (i)

conventional multi-core cluster; (ii) GPU cluster; (iii) many-core

cluster of Xeon Phis

(i) Conventional multi-core cluster

For both of these algorithms, it is possible to run these algorithms on a
per-node basis where a process is mapped to one node or a per-core basis
(where one node has several cores) where each process is mapped to one core.
Assuming modern Intel CPUs are available on the cluster, the implementation
will use vectorization leveraging the SIMD architecture and threads to use all
the cores and exploit hyper threading if the latter is available. With vector-
ization, on a Sandy Bridge architecture for example, this means that 16 single

466

Qualifying Exam 5

floating point operations can be done per core in parallel. Also when doing
compositing for volume rendering, the order in which to blend the images is
crucial. If the images do not arrive in the correct order to be blended, they
will have to be buffered while waiting for processing.

For a per core implementation where each process is mapped to one core,
there will be a lot of messages in the system and this can very quickly become
the bottleneck. Cores on the same node will communicate using MPI which
is slower than using shared memory. Threads will only be available if hyper-
threading is enabled though vectorization will be available.

For a per node implementation, we have one MPI process per node and
each node can use threads and vectorization to maximize the use of all the
cores. Binding the threads to the cores will also probably be advantageous. In
terms of MPI communication, there will be less messages in the whole system.
Blending will generally be faster than on a per core basis.

For Direct Send, on a per core implementation, there will be a lot more
messages in the system. Scaling up the job will massively increase the number
of messages in the system as even processes on the same node will communi-
cate through MPI instead of using shared memory. With more messages, the
order in which the messages will arrive will vary a lot and some cores might
have to wait for a long time to be able to get the image sections they need to
blend them. On a per node basis, there will be fewer messages in the whole
system. Communication will be less of a bottleneck. Also, blending will most
likely be faster as threads (with vectorization) can be used which will share
the same shared memory. The biggest gain here will come from having less
messages in the whole system and so adding more process will scale better.

For Radix-k, on a per core basis, we will have more round than on a per
node basis. Scaling will increase the number of messages in the both cases
but the number of messages will be less in a per core than a per node. Since
the number of messages is fewer in radix-k than direct send, radix-k will scale
better.

Studies [3] have also confirmed that operating at the node level is better
than operating at the level of a core.

(ii) GPU Cluster

I will assume that GPU cluster has one GPU per node. The CPU will
handle mostly communication while the computation will be taken care of by
the GPU. On receiving an image to be composited with the one it has, the
CPU will send that image to GPU where it will be converted into a texture
so that it can be easily blended with OpenGL operations. Using a texture
and OpenGL might be preferable to things like CUDA or OpenCL in this
case as OpenGL has inbuilt functions for doing bending. So in this case, the
implementation for both algorithms will require code for the CPU and code
for the GPU as well. Moreover, now there will need to be information transfer
from the system memory to graphics card memory.

467

6 Pascal Grosset

For Direct Send, each process will operate at the node level. Each node
will take care of 1 portion of the image and will receive that section from
each other node in the system. That portion of the image can reside on the
GPU for the whole duration of the compositing operation. The image received
will have to be sent over the bus to the graphics card which might be costly.
Scaling will increase the number of messages in the system and with direct
send using all-to-all communication, performance will suffer.

For Radix-k, unlike for direct send, there is not a part of the image that
can reside on the GPU throughout the duration on the operation. For example
if we have 4 processes and they are grouped into groups of size 2, in the first
round, p/2 pixels will be sent while in the second round p/4 pixels will have to
be sent where p is the total number of pixels in the whole image. This means
that for each round, we will need to retrieve from the GPU memory some part
of the image. This will take some time. Scaling up the number of processes
will increase the number of messages in the system but also the number of
transfer from the GPU to the CPU and this will have a negative impact on
the performance.

(iii) many-core cluster of Xeon Phis

The xeon phi currently act like a coprocessor attached to a node. There are
usually three modes of execution possible on the xeon phi clusters: Offload,
Native and Symmetric. In the Offload mode, the MPI is on the cpu of the
node and work is offloaded to the xeon phi card. In the native mode, the Xeon
Phi has an MPI rank and can execute and communicate with the other xeon
phis and finally in the symmetric mode, both the xeon phi and the node’s cpu
has an MPI rank and talk. Each MPI rank will start with an image which will
contribute to the final image.

In the offload mode, the xeon phi acts like a GPU. All communication
must go through the node’s CPU. Openmp and vectorization can be used
to accelerate the blending operation though directives that will offload that
computation to the Phi. The implementation will have to change a bit to
accommodate for that. For both direct send and radix-k, the number of pro-
cesses will be one per node of the cluster. The CPU in both cases can be used
to buffer messages that will be coming out of order and once two images next
to each other in the composting order are available, the CPU will send them
to the xeon phi to be blended. Radix-k will have the same issues as using a
GPU where each time part of the image will have to be retrieved over the bus
after a round to be sent to the other nodes in the next round. For direct send,
a part of the image can just sit on the xeon phi for the whole duration of the
compositing operation. Scaling will have the same issues as with a GPU.

In the native mode, the CPU of the node is not used. The xeon phi card
will handle all the communication as well as the processing. This is like the per
node approach in (i). However, there is usually no direct bus from the xeon phi
to the outside world, communication will still have to go through the CPU and
this might be slower than using the CPU directly if the latter is for example an

468

Qualifying Exam 7

intel sandy bridge. This is also because computation in compositing is usually
super fast. Scaling up will involve having more messages in the system and
will also imply having more communication to and from the xeon phi. That
might have slowdown the system.

In the symmetric mode both the cpu node and the xeon phi card have
are MPI processes and each will start with a part of the image. However the
xeon phi is usually much more powerful than the cpu on the node but on
the other hand, the xeon phi will pay a bigger price for communication. So
load imbalances can easily happen here and can be unpredictable. Scaling up
will increase the number of messages and for the xeon phis, the number of
communication along the bus to and from the cards. Also the implementation
might have to be different to suit the xeon phi and the cpu as they may have
different different register size and so memory alignment criteria would be
different.

1.3 (c) Present a performance model that will predict the

performance for each of your two algorithms. Consider that load

imbalance must somehow be captured in the model. (1.5 pages

each)

The first section of the answer describes the time that must be spent for tasks
common to both direct send and radix-k. In the second part, I will apply the
model to diect send and radix-k.

As mentioned before, compositing takes place in two stages: compositing
and gathering. I’ll start with compositing. Compositing can be broken down
into 3 components: the time spent computing, time spent communicating and
time spent idle. Thus the total time for each process can be expressed as:

TCompositing = TComputing + TCommunicating + TIdle

where:
- computing: is time spent blending pixels of two images.
- communicating: is time spent sending and receiving pixels,
- idle: is time spent waiting for images arrive,

For the communicating time, this is normally made up of two further
components, an initial startup/latency + time to transfer one byte multiplied
by the length of the message L in bytes.

TCommunicating = Tlag + Tcomm−per−byte ∗ L

For both algorithms, I will assume a hybrid implementation where nodes
communicate through MPI and cores inside a node share global memory. This
is the predominant approach now as it has been shown to be more efficient
by Howison et al. [3].

469

8 Pascal Grosset

For computing, most of the time is spent blending pixels together. The
front-to-back blending equation that we commonly use to assemble images is:

Ci = (1−Ai−1)Ci + Ci−1 (7)

where Ci and Ai are the accumulated opacities.

So the amount of computation required per channel is 1 subtraction (1−
Ai−1), 1 multiplication (previous ∗ Ci), 1 addition (previous + Ci−1) and
1 assignment. The (1 − Ai−1) is common across all channels and is maybe
optimized. So it’s either 16 operations or 13 operations probably depending
if the compiler can optimize it or not: an intel compiler probably will but a
blend operation on the graphics card by OpenGL might not. So the computing
time per pixel is the time to spent to perform these 16 or 13 operations and
the overall computing time for an image is the number of pixels p multiplied
by the blend time where blend-time is either time for 16 or 13 operations.
Ttime−blend should also take into account the time for memory fetches as well.

Ttime−blend = time to execute 16 ops

TComputing = Ttime−blend ∗ p

I have grouped the operations together because some architecture like
the SIMD can perform several operations at the same time. The Intel Sandy
Bridge can do 16 single floating point operations in parallel or 8 double oper-
ations in parallel.

The idle time is when a process is not communicating and not doing any
computation. The usually happens when the process is waiting for data to
come to resume computation which is because the right information is not
there yet for computation to start. In compositing, the order of blending
matters. If a process is waiting for let’s say 3 images, and it currently has
images 1 and 3 but not 2, it cannot do any computation and has to wait.
This is usually the result of the messages arriving out of order because it
took more time to compute the image for 2 than for 3 (a classic example
of load imbalance) or it’s the network chose to send image 3 before image
2. Also, direct send uses all-to-all communication while Radix-k uses point
to point communication. When there are many processes in the system, it is
conceivable that the all-to-all communication will slow down much more than
the point-to-point communication.

Quantifying load imbalance is hard as it depends on the order in which
messages will be received and on the dataset, the view position and transfer
function; a small tweak in the transfer function could make a whole region
of the dataset blank and so while some processes will have a lot to compute,
others will have nothing.

TIdle = TCompositing − (TComputing + TCommunicating)

470

Qualifying Exam 9

where TIdle has two components:

TIdle = TIdle−comm + TIdle−comp

where TIdle−comm would represent the time idle because of messages not
arriving in the right order and TIdle−comp would represent the time idle be-
cause of the dataset and viewing parameters.

The best way to get an estimate for TIdle would be to run the compositing
algorithms a few times simulating some cases like translucent dataset, com-
pletely full dataset, sparse image and record some timings for those. Then we
should be able to express the idle time as a fraction x of the total time.

TIdle = x ∗ (TComputing + TCommunicating)

Compositing papers that try to come up with a performance model like [2]
often ignore the idle time as it is hard to model.

Once compositing has been done by each process, the display process needs
to gather the images from each process. This would be an MPI-Gather from
all the processes. So it’s n − 1 (assuming the display process is one of the
compositing nodes) messages of size p/n each for a total of (n− 1) ∗ p

n
pixels

sent over the network and the display node would have to integrate (n−1)∗ p

n

messages.

TGather = TGather−Communicating + TIntegrate−pixels

TGather−Communicating = (n− 1) ∗ (Tlag + Tcomm−per−byte ∗ L)

TIntegratingPixels = n ∗ (Tcopying−pixel ∗ p)

I am also assuming that though the display process has its section of the
pixel it will still need to move it to the right location for display. So all the
pixels in the final images p have to be moved. The Tcopying−pixel is made up
of time it takes to do one assignment operation.

TTotal = TCompositing + TGather

This is the same for both direct send and radix k. Also there is hardly
any lag in the gather process as as soon as an image is received it can be
processed. Any lag here would be because some processes are not done yet
with their compositing work.

Each pixel has 4 channels (red, green, blue & alpha). Floating point is the
datatype commonly used to store each channel but this can vary. To make it
more general, let’s assume that the data type used is of size b bytes. I will
now apply this model to direct send and radix-k using the equations in part
(a).

471

10 Pascal Grosset

1. Direct Send

We have previous computed the computing and communication terms in
terms of pixels for Direct Send in equations 1 and 2 from section (a).

Compositing:

TCompositing = TComputing + TCommunicating + TIdle

TCommunicating = (n− 1) ∗ Tlag + Tcomm−per−byte ∗ [(n− 1)
p

n
∗ 4 ∗ b]

TComputing = Ttime−blend ∗ [(n− 1)
p

n
]

TIdle = x ∗ (TComputing + TCommunicating)

2. Radix-k

For Radix-k, we will use the equations 3 and 4 from section (a).

TCommunicating = [

r∑

i=1

(ki−1)]∗Tlag+Tcomm−per−byte∗[

r∑

i=1

[(ki−1)(

i∏

j=1

p/kj)]]∗4∗b]

TComputing = Ttime−blend ∗ [

r∑

i=1

[(ki − 1)(

i∏

j=1

p/kj)]]

TIdle = x ∗ (TComputing + TCommunicating)

Gather
This is the same for both and can be modeled as follows:

TGather = TGather−Communicating + TIntegrate−pixels

TGather−Communicating = (n−1)∗(Tlag+Tcomm−per−byte∗(p/(n−1)∗n)∗4∗b)

TIntegratingPixels = n ∗ (Tcopying−pixel ∗ p)

The total time would hence be estimated as:

TTotal = TCompositing + TGather

and the value we would have to plugin the are:
- n: the number of processes
- p: size of the final image in pixel
- b: how many bytes are being used for each channel

472

Qualifying Exam 11

and the times to be measured are:
- Tcomm−per−byte

- Ttime−blend which is the time for doing 16 operation on the targeted
platform.

Once we have values for these, we can see how much they differ from the
total time and use that difference to get an estimate for x, x being how much
should we account for load imbalance. Then it should be a pretty decent model
of the performance of radix-k and direct-send.

References

1. E. W. Bethel, H. Childs, and C. Hansen. High Performance Visualization: En-
abling Extreme-Scale Scientific Insight. Chapman & Hall/CRC, 1st edition, 2012.

2. W. Fang, G. Sun, P. Zheng, T. He, and G. Chen. Efficient pipelining parallel
methods for image compositing in sort-last rendering. In Proceedings of the 2010
IFIP International Conference on Network and Parallel Computing, NPC’10,
pages 289–298, Berlin, Heidelberg, 2010. Springer-Verlag.

3. M. Howison, E. W. Bethel, and H. Childs. Mpi-hybrid parallelism for volume
rendering on large, multi-core systems. In Proceedings of the 10th Eurographics
Conference on Parallel Graphics and Visualization, EG PGV’10, pages 1–10,
Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Association.

4. K. Moreland. Icet users’ guide and reference. Technical report, Sandia National
Lab, January 2011.

5. T. Peterka, D. Goodwell, R. Ross, H.-W. Shen, and R. Takur. A configurable
algorithm for parallel image compositing applications. In SC ’09: Proceedings of
ACM Supercomputing 2009, pages 1–10, 2009.

6. H. Yu, C. Wang, and K.-L. Ma. Massively parallel volume rendering using 2-
3 swap image compositing. In Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, SC ’08, pages 48:1–48:11, Piscataway, NJ, USA, 2008. IEEE
Press.

473

Qualifying Exam

Question 2

Pascal Grosset

University of Utah

1 Consider a n-dimensional rectilinear grid with a set of
real values assigned to is vertices. A scalar field f(x) is
defined by tensor product of linear interpolation along
the edges (for n=2 this is a 2D grid with bilinear
interpolation).

For a given real value w, a level set L(w) is the inverse
image f-1 (w) of the isovalue w. Consider the following
questions from a mathematical and algorithmic perspec-
tive providing formal arguments and/or counter examples
as answers. In particular, pay attention to the formal def-
inition of level set and all the special cases that may arise
depending on the shape of the domain, the configuration
of the function f(w) and the choice of isovalue w.

1.1 Is L(w) always manifold?

It is most of the time a manifold but not always. Consider for example a
scalar field on a 2D grid. This would look like a terrain shown in figure 1
where the isocontour lines would be the level sets. Most of the isocontour
lines are 1-manifold but some of them hit the boundary which would make
them manifolds with boundary which is not really a manifold. Also at saddles,
two circles of contour lines can touch and the resulting isocontour line is a
figure eight, a lemniscate, instead of a circle. The intersection would make it
not a manifold.

1.2 What is the dimension of L(w)?

It should usually be n-1. For a 2D grid, n=2, the level set is in the form of
lines which are 1 dimensional. For a 3D grid of scalar values, n=3, the level set

474

2 Pascal Grosset

Fig. 1. Iscontour lines on grid show what a level set would look like for a 2D scalar
field

is a surface, 2-dimensional, like what a marching cubes algorithm for example
would extract. However, maximas and minimas will be different. They will be
a vertex with 0-manifold. Figure 1 shows an example of that.

1.3 Is the dimension of L(w) uniform?

No. For example in a 2D grid that represents a terrain like in Figure 1, most
of the level sets are circular in shape (1-manifold) but at a maximum, the
level set is just a point (0-manifold). So the dimension is not uniform.

1.4 Provide an optimal algorithm for computing a single isosurface
without preprocessing.

In 3D there is the marching cubes algorithms [5], marching squares for 2D,
which has been extended by Bhaniramka et al. [1] to go n dimensions. For each
hypercube in the n-dimensional grid, process each edge and check whether the
scalar value w lies between the values on the two ends of the edge. That is,
check if at one end of the edge the scalar value is greater than w and for the
other end it’s less than w. If that happens, this indicates a crossing of that
edge by the isosurface for w. Linear interpolation can be used along the edge
to determine the position of the crossing. Once we have the set of vertices, we

475

Qualifying Exam 3

can use a lookup table to see which configuration the set of points we have
found match with and triangulate for it. Lorenen and Cline [5] have such a
lookup table for 3 dimensional cases. Bhaniramka et al. [1] have a technique for
generating lookup tables in any dimension or they can construct the isosurface
on the fly. Both approaches are similar except that the lookup table approach
might require lists of storage. Let U be the set of points that indicate where
the isosurface crosses the cube. For each hypercube determine set of vertices
V +

h
whose value are greater or equal to w. Canonically construct a convex hull

for V +

h
and remove the simplices that lie on the hypercube and the remaining

are the isosurface. As mentioned before, if we would like to contract a lookup
table, we would repeat the same procedure but on all possible combinations
of edge crossings.

1.5 Dividing the work between pre-processing and isosurface
computation:

a. provide an optimal algorithm for computing an isosurface?

One of the ways that the marching cubes can be optimized is by preprocessing
the hypercubes to know which ones contain which scalar values. This would
speed up the marching cubes algorithm as instead of having to go through all
the hypercubes, we could only go through those that will intersect with the
isosurface to recreate the latter.

Since each hypercube will have a maximum and minimum scalar value,
we need to find structure to represent that. Interval trees as proposed by
Edelsbrunner [3] is an ideal candidate for storing intervals and it was used by
Cignoni et al. [2]. The algorithm is as follows:

1. Sort all the scalar values at the vertices of the grid (x1, x2, ..., xn)
2. Pick the median value m
3. This gives 3 sets of intervals, those less than m, those greater than m and

those who span m
4. Each node has 2 pointers: the left one pointing to intervals less than m

and a right one pointing to intervals greater than m
5. Each node has 2 lists: a list of intervals ordered by minimum vale and a

list of intervals ordered by maximum value
6. For each of the left and right interval, we recursively pick the median value

and repeat the steps from 2 to 5

For a scalar value s, we recursively query the tree, to find the node contain
the scalar value s and for each hypercube. Once this is found, we only need
to reconstruct the isosurface in the cube using marching cubes in 3D or the
algorithm proposed by Bhaniramka et al. [1].

476

4 Pascal Grosset

b. argue that the algorithm is optimal.

Given that the interval tree is a balanced binary tree, the maximum depth
for n levels is log n. This means that we will step through at most log n nodes
before finding the right interval. log n is as good as it gets when it comes to
searching algorithms. So this is the optimal algorithm.

c. what is the cost of the preprocessing?

The cost of finding where to insert an element in a balanced tree is log n.
Given that we have to do that for n hypercubes, the cost is O(n log n).

1.6 If the purpose of the computation is to render the isosurface
from a particular viewpoint. Is the algorithm provided to answer
parts 4 and 5 still optimal in terms of big O complexity? If not
how can it be improved?

Both algorithms provided in parts 4 and 5 will generate a complete isosurface
no matter where the user is looking from. The algorithm in part 4 has O(n)
complexity while the one in part 5 had O(log n) where n is the number of
cells. However, only some of the cells processed will be visible when we take
into account that the front part of the isosurface will conceal the back part.
Livnat et al. [4] mention a saving of up to 93% in terms of isosurface size to
show only the visible isosurface. So an algorithm is needed that would take
into account the viewpoint, do visibility detection and thus avoid processing
the whole isosurface could result in quite a big saving. How much will be saved
depends more on the dataset and viewpoint that the algorithm.

The algorithm proposed by Livnat et al. [4] would work for that. Instead
of storing the isosurface in an interval tree, an octree, as proposed by Wilhems
and Van Gelder [6], can be used to store the data as it will allow us to traverse
the data from front-to-back. At each node in the octree, the minimum and
maximum value of the subtree is also stored. This will allow us to avoid
exploring regions of the dataset that do not contain the relevant scalar value.
In Wilhems and Van Gelder work, the lowest level of the octree would point
to 8 cells which would contain the data.

The octree is traversed from front-to-back and for each triangle that is
extracted, by looking up in table like for marching cube, we project it to
a virtual screen that acts as an occlusion mask. When traversing nodes, we
project them on the screen to determine if it will be visible or not. If they are
not, all of their children won’t be visible as well. A hierarchical frame buffer
is used to help with usability testing. Each time a triangle is extracted, the
hierarchical frame buffer is updated in a bottom-up fashion. For each new cell
that we need to traverse, we project it into the frame buffer and compared
with the hierarchical frame buffer to determine its visibility. When a cell is
determined to be visible, marching cubes is used for triangulation.

477

Qualifying Exam 5

References

1. P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurface construction in any di-
mension using convex hulls. IEEE Transactions on Visualization and Computer

Graphics, 10(2):130–141, Mar. 2004.
2. P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno. Speeding up

isosurface extraction using interval trees. IEEE Transactions on Visualization

and Computer Graphics, 3(2):158–170, Apr. 1997.
3. H. Edelsbrunner. Dynamic data structures for orthogonal intersection queries.

Technical Report F59, Inst. Informationsverarb., Tech. Univ. Graz, Graz, Aus-
tria, 1980.

4. Y. Livnat and C. Hansen. View dependent isosurface extraction. In Proceedings

of the Conference on Visualization ’98, VIS ’98, pages 175–180, Los Alamitos,
CA, USA, 1998. IEEE Computer Society Press.

5. W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. In Proceedings of the 14th Annual Conference on Com-

puter Graphics and Interactive Techniques, SIGGRAPH ’87, pages 163–169, New
York, NY, USA, 1987. ACM.

6. J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation. ACM

Trans. Graph., 11(3):201–227, July 1992.

478

Qualifying Exam

Question 3

Pascal Grosset

University of Utah

1 This question concerns physical, mathematical, and

perceptual issues of Depth of Field.

1.1 a) Definite Depth of Field, Depth of Focus, Blur, Circle of
Confusion.

Most optical systems like the human eye and cameras (except for a pinhole
camera) have a lens which has certain properties like a focal length and its
behavior is defined by the thin lens equation:

1

f
=

1

s
+

1

zf
(1)

where f is the focal length of the lens, s is the distance from the center of
the lens to the image plane and zf is the distance from the center of the lens
to an object in the scene. That relation is shown in Figure 1(a)

Ideally, we want the lens to focus light rays from one point in the scene to
one point on the image plane. When that happens the objects are said to be
in focus but for a lens with a specific focal length and the image plane fixed at
a certain distance, only objects within a specific distance - the depth of field
region - in the scene will be in focus and appear sharp on the image plane.
Figure 1(b) shows the distance from the lens where that happens. For objects
that are not in focus, instead of getting mapped to a single point on the image
plane, they get mapped to a circular region called the circle of confusion which
can be computed from this equation:

c(z) = A
|z − zf |

z
(2)

where c(z) is the diameter of the circle of confusion, A is the aperture of the
lens.

The definitions:

479

2 Pascal Grosset

• Depth of field : the region in a scene where the objects located in that
region will appear in focus (sharp) on the image plane.

• Depth of focus : the region behind the lens where the image plane can be
moved so that a point from the scene appears to be in focus. An object is
in focus when the diameter of the circle of confusion is less than the pixel
diameter.

• Blur : when instead of a point from scene being focussed to one point on
the image plane, a point in the scene is focussed on a region and appears
fuzzy, it is said to be blurred.

• Circle of confusion : the circular region on the image plane to which a
point from the scene is mapped to when it is not in focus (blurred).

Fig. 1. (a) Lens Setup, (b) Circle of Confusion. Taken from [1]

480

Qualifying Exam 3

1.2 For a camera lens and for a given image, the near and far
depth of field (DOF) equations are:

NearBoundary =
sf2

f2 +Nc(s− f)
(3)

FarBoundary =
sf2

f2
−Nc(s− f)

(4)

where s = subject distance, f = focal length, N = aperture, c = minimum
circle of confusion

Thus depth of field can be described by three parameters: focal
length of the lens, size of the aperture, and the camera-subject dis-
tance. If you were to create a computational version of DOF, what
would the corresponding computational parameters be? Create a
diagram illustrating these concepts for a viewer looking at a screen
(image plane) of a 3D visualization.

This is just a rewrite of equations 3 and 4 to use the same terms that I
was using in part 1: A for aperture and z for subject distance.

NearBoundary =
zf2

f2 +Ac(z − f)
(5)

FarBoundary =
zf2

f2
−Ac(z − f)

(6)

We can also combine equations 2 and 1 to to get a better insight on the
effects of focal length and size of aperture.

c(z) = A

∣∣∣z − (1
f
−

1

s
)
∣∣∣

z
(7)

The focal length of a lens quantifies the lens’ ability to bend light. So a
shorter focal length means a wider view while a longer focal length means
a narrower view. Figure 2 shows an example of this. With a narrower view,
there is also less blurring as the diameter of the circle of confusion tends to
be smaller. So computationally, the focal length behaves like the field of view
and there is an equation that maps the focal length f to the field of view fov
for a vertical distance x, the blue line between the two black rays in figure 2b.

fov = 2 ∗ arctan(
2 ∗ x

f
) (8)

The perspective project matrix 1 is as below:

1Taken from: https://www.safaribooksonline.com/library/view/webgl-
programming-guide/9780133364903/appc.html

481

4 Pascal Grosset

1

aspect∗tan(fov/2)
0 0 0

0 1

tan(fov/2)
0 0

0 0 −
Zfar+Znear

Zfar−Znear
−

2(Znear∗Zfar)

Zfar−Znear

0 0 −1 1

So using the projection matrix, we can extract the field of view used in a
3D scene (when specifying perspective projection we also specify aspect ratio
and field of view) and compute the focal length using equation 8 and use the
latter in the equations 3 and 4. If the projection is orthographic, the user will
have to specify a value for the focal length.

Fig. 2. a. This figure shows how a lens with different focal length
captures the same scene. The 18mm focal length provides a much
wider view of the scene compared to the 135 mm focal length.
Taken from the Nikon website: http://www.nikonusa.com/en/Learn-And-
Explore/Article/g3cu6o2o/understanding-focal-length.html b. This show the
relation between focal length and field of view

Aperture defines how much light we allow through the lens. From equa-
tion 7, we can see that aperture affects how much blurring we have for depth
of field. From equations 5 and 6, we can also see that it impacts the position
of the near and far boundary of the depth of field. Since the aperture is also
strongly linked to the size of the circle of confusion, this is a parameter that
the user will have to set. Schott et al. [2] asked the user to enter an angle

482

Qualifying Exam 5

alpha which would control the aperture. From the angle value, the Aperture
was computed as: A(zf) = 2tan(α

2
)zf . The same approach can be used.

Fig. 3. a. Subject distance in normalized device coordinates b. Subject distance
with Near and Far DOF boundary

Fig. 4. Viewer’s perspective of a 3D scene. z is the subject distance and θ is the
field of view which would map to focal distance.

Subject distance is just the distance of the subject that the camera is fo-
cussing on. So computationally, the subject distance would be a fixed distance
from the camera to where the user would like to focus on irrelevant of the an-
gle at which the viewer is looking at an object in the scene. However, since in
a 3D scene, we only see as from the near clipping plane, figure 4, z should be

483

6 Pascal Grosset

only from the near clipping plane else it would be very confusing to a user.
This can even further be simplified to a fraction between 0 and 1, see figure 3,
to indicate at which range inside the clipping volume the focus should be at.
In Figure 3a., z would be set to about 1

3
.

So to summarize, the focal length is derived from the field of view param-
eter, the subject distance is manipulated by the user and for the aperture, we
ask the user to enter a value. Figure 4 shows an overall view of this setup. θ
that represents the field of view would map to the focal length for equations 3
and 4. The fraction into which the subject is in between the near and far
clipping plane would match to the subject distance and the aperture would
have to be entered separately as an additional parameter.

References

1. A. Grosset, M. Schott, G.-P. Bonneau, and C. Hansen. Evaluation of depth of
field for depth perception in dvr. In Visualization Symposium (PacificVis), 2013
IEEE Pacific, pages 81–88, Feb 2013.

2. M. Schott, A. V. P. Grosset, T. Martin, V. Pegoraro, S. T. Smith, and C. D.
Hansen. Depth of field effects for interactive direct volume rendering. In Pro-
ceedings of the 13th Eurographics / IEEE - VGTC Conference on Visualization,
EuroVis’11, pages 941–950, Aire-la-Ville, Switzerland, Switzerland, 2011. Euro-
graphics Association.

484

Qualifying Exam

Question 4

Pascal Grosset

University of Utah

1 Compare and contrast the following papers on AMR

volume rendering:

1. Stephane Marchesin and Guillaume Colin de Verdiere High-Quality, Semi-
Analytical Volume Rendering for AMR Data IEEE TVCG, VOL. 15, NO.
6, 2009

2. Weber, G.H., Kreylos, O., Ligocki, T.J., Shalf, J.M., Hagen, H., Hamann,
B., Joy, K.I. and Ma, K.-L. (2001), High-quality volume rendering of adap-
tive mesh refinement data (pdf), in: Ertl, T., Girod, B., Greiner, G., Nie-
mann, H. and Seidel, H.-P., eds., Vision, Modeling, and Visualization 2001,
IOS Press, Amsterdam, The Netherlands, pp. 121-128.

3. Joachim E. Vollrath, Tobias Schafhitzel, and Thomas Ertl Employing
Complex GPU Data Structures for the Interactive Visualization of Adap-
tive Mesh Refinement Data Volume Graphics, 2006, pp. 55-58

4. Kaehler, R., Prohaska, S. , Hutanu, A., Hege, H.-C. Visualization of
time-dependent remote adaptive mesh refinement data IEEE Visualiza-
tion 2005, pp. 175 - 182

Since these papers present different approaches to solving AMR, some are
for CPUs, some for GPUs, some focus on cell centered data, others on vertex
centered, I will start by presenting a summary of the paper and detail their
contribution and then comment on how the resemble or differ from each other.

1. Semi-Analytical Volume Rendering for AMR Data

This paper presents an analytical approach for volume rendering vertex-
centered data which can also applied to AMR data. A k-d tree is then used
to store the different sub volumes on a CPU. These are then sent to a GPU
for rendering.

To sample the scalar value at a specific location s(x, y, z) inside an hexahe-
dral cell, we most of the time use trilinear interpolation to interpolate among

485

2 Pascal Grosset

the different vertices of a vertex centered dataset. In this paper, the authors
use a parametric representation of trilinear interpolation and the result is a
third degree polynomial s(t). During volume rendering, rays are sent in a vol-
ume and sampling is done at regular intervals along that ray. To optimally
sample along the ray and make sure not to miss any relevant features, the
authors propose to sample at the entry point and exit point of the cell as
well as the local maximum or minimum in that cell. That extrema is obtained
through the derivative of s(t) which is a quadratic. For the transfer function,
they use a formulation similar to the pre-integrated classification of Engel
and Ertl [2]. For volume shading, the gradient is needed and for that they
compute the partial derivatives of s(x, y, z) and come up with a parametric
representation of that d(t). By integrating s(t) and d(t) in the volume render-
ing equation, they produce a complete analytical representation of the volume
rendering equation.

To use this in AMR data, they need to take care of the discontinuities that
exist at the edge between a fine and a coarse cell. At the boundary of AMR
levels, a cell can have for one face one neighbor and for the opposite face, four
neighbors. This will break the trilinear interpolation at this boundary cell. So
that cell is split into small cells so that trilinear interpolation can be applied
and thus an analytical solution would work.

The AMR patches are then stored in a k-d tree on the CPU. Each leaf of
the k-d tree is repeatedly split until a leaf contains cells belonging to the same
AMR level. In practice, each left can just store an AMR patch. Once this is
done, the volume is traversed from front to back and whenever a patch needs
to be rendered, it is sent to the GPU for fast rendering.

2. High-quality volume rendering of adaptive mesh refinement
data.

In this paper, Weber et al. tackle the issues in rendering cell based AMR
data. They present a system where a stitch mesh is used to fill in the gaps
between different refinement levels and use cell projection to render the data.

In volume rendering, we usually deal with data found at the vertices of a
grid but with cell centered data, the data is at the center of a cell. To get past
this issue, the paper considers the dual representation which would center the
grid at the center of each cell. However, using the dual representation shortens
a grid on each side. For example, for a grid with 5 x 5 vertices, the dual a grid
of size 4 x 4 and is located inside the 5 x 5 grid. This creates gaps between
grids. Moreover with AMR data, where we have a fine grid covering a coarse
grid the gaps becomes even more noticeable.

To deal with that, Weber at al. propose that a stitch mesh is constructed
that interpolates the values between the dual grids at the gaps. Since the
grid points between a fine a coarse mesh are not aligned, the stitch mesh is
made up of pyramidal, deformed triangle prisms and deformed hexahedral

486

Qualifying Exam 3

cell depending on the position of the grid points. This approach is explained
in details in [4]. For gaps between grids of the same level, the cells are just
regular cubes. When doing volume rendering, we want to sample values inside
a cell. For a cube it is simple but for the deformed cells, the papers explains
how to sample values for each shape.

To do volume rendering, they use cell projection presented by Ma and
Crockett [3]. Rays are traced through the volume and each cell determine
the rays that pass through it. Each pixel collects the ray segments from the
cells that will contribute to the color value of that pixel. These segments are
stored in a queue based on the depth information of that pixel. To get the
scalar value from the volume for these segments, interpolation is done with
the cell the ray segment maps to and the emission absorption model is used
to get the color value.

To finally render the AMR data, each level of coarseness is cell projected
separately. A bottom up approach would involve rendering the finest level first
followed by coarser levels.

3. Employing Complex GPU Data Structures for the Interactive
Visualization of Adaptive Mesh Refinement Data

In this paper, the whole of the AMR data is placed on the GPU in either
an octree texture of an adaptive page table data structure. Rendering is then
trivial for the adaptive page table or for data at the same level for an octree.
Data at different levels require an additional interpolation step for the octree.

For the octree representation, an octree texture is constructed over the
whole 3D grid. Each of the 8 nodes in the octree is represented by a texel
which indicates whether that node points to the actual data, is empty or is an
internal left node. For volume rendering, we will send rays and sample along
the ray. To obtain the sample at one sampling location, we will need to do
trilinear interpolation and retrieve 8 samples. If all the samples are at the
same AMR level, interpolation is trivial. If some of the samples are at one
refinement level and at another level, we need to do some more work. If the
exact location falls in a coarse cell and some of the samples returned are in
a fine cell, the latter can be average to a coarser level to allow for trilinear
interpolation. If it is the opposite case, the coarse cells can be interpolated to
get finer cells which can be easily trilinearly interpolated.

Adaptive page table is another data structure than can be represented
using textures on the GPU. It maps a virtual domain to the physical memory
on the graphics card. The AMR dataset is mapped into pages and each page is
recursively subdivided until it matches the size of the smallest cell in the AMR
dataset. Sometimes it leads to oversampled cells which increase the storage
requirements but it speeds up access and thus rendering. Also since there is
no guarantee that pages adjacent in the virtual domain will be adjacent in the
graphics memory, there is an extra layer of ghost cells padded to physical pages

487

4 Pascal Grosset

which increases memory requirement. Once these are set though rendering is
fast.

4. Visualization of time-dependent remote adaptive mesh refine-
ment data

This paper presents a system where time-dependent AMR data is stored
remotely on a cluster but visualization takes place on the local graphics hard-
ware. So the data must be streamed from the cluster to the local PC. The
main focus of this paper though is how to visualize intermediate time steps
of an AMR simulation, time steps where some of the fine level have data
while the coarse level might not as one simulation step for the coarse level has
completely stepped over these smaller intermediate time steps.

The first section of this paper explains the mechanics of an AMR simula-
tion. How initially we start with a coarse grid and need to refine regions of the
grid based on error estimators. Grids with a coarse level of refinement move
forward a big time step during the simulation while grids with finer level of
refinements move ahead in smaller intermediate time steps and so the finer
grid needs several iterations in time in order to catch up with the coarse grid.
If the user wants to visualize data at one of these intermediate time steps,
we have a problem as that intermediate time step is undefined in the coarse
level grid. To solve this issue, they do the following. Firstly, all the sub grids
at the same refinement levels are merged. In doing so, information about the
boundaries of the sub grids are lost. This poses a problem as this makes the
new merged sub grid hard to store. A solution would be to store the sub grid
as an unstructured mesh but this not very convenient. So the merged grid is
broken down into many small sub grids which are then clustered together (to
reduce the number of sub grids) using [1]. Once this is done, we have a nice
intermediate AMR grid with different levels. We must fill these grids and their
cells with values. If the cell existed at that refinement level for a time step
before and after, it’s a matter of using an interpolation scheme. In the paper
they use continuous C0 piecewise linear interpolation or the continuous C0

cubic hermit interpolation. If the level of refinement did not exist previously,
we interpolate data from the next coarsest level of refinement before doing
interpolation. Finally, the data on the coarser levels are updated by data the
finer grid as the latter is more accurate. All of this is done remotely on the
server and the grid with data can now be streamed to be rendered on the
local computer. In this paper, this is done using Remote Procedure Call and
the SOAP web protocol.

As can be seen from the summaries of these four papers, they focus on
quite different things. The focus of the first paper is to find an analytical
approach to volume rendering and they show that it can be used for AMR.

488

Qualifying Exam 5

The second paper focusses on rendering cell based data and present ways to
get past issues linked with cell-based AMR. The third paper only want to see
if more complex data structures like octrees and adaptive page table would
work on the GPU for representing AMR data and the focus of the last paper is
rendering intermediate time steps in an AMR simulation. Nevertheless, we can
group the discussion on how they address some important aspects of volume
rendering.

1. Dataset: Cell Centered vs Vertex Centered
The work of Weber et al. (paper 2) focus on cell centered data. So they

create a dual mesh and have to deal with the gaps resulting from the creation
of dual meshes. Marchesin et al. (paper 1) deal with exclusively vertex centered
data where the issue of gaps do not come up at all. The others are quite vague
about it but since they do not mention anything about stitching, they are
probably using vertex centered data.

2. Rendering
Weber et al. (paper 2) is a purely CPU based rendering paper while all the

other leverage the GPU for rendering. Because of the obnoxious cells created
by their stitching approach, they use cell projection for volume rendering
which is more common in unstructured grid rendering. The others use GPU
for rendering. Marchesin et al. (paper 1) use code their analytical rendering
formulation in the shader program. For Joachim et al. (paper 3), they use use
both an octree and a page table for GPU rendering. Kaehler et al. (paper 4)
only mention that rendering is on the GPU.

3. Data Organization
Using a data structure to organize AMR data is quite common. Marchesin

et al. (paper 1) use k-d tree for storing the arm meshes. Joachim et al. (paper
3) experiment with both an octree and an adaptive page table while the others
remain vague about it.

As mentioned before, these papers have different focus and each devised
interesting approaches to solve their problem.

1.1 For the Uintah AMR data structures, would any of these
methods suffice and if not, what changes/new techniques would be
required and why.

The uintah dataset has both cell-centered and vertex centered. So some the
approach by Weber et al. (paper 2) would work for cell-centered rendering.
Vertex-centered rendering is usually trivial and we could also use the work by
Marchesin et al. (paper 1) for that. However, one of the reason why a different
approach is required is because of the goal of the uintah project. In terms of
rendering, the GPU rendering would work fine but the focus of the uintah

489

6 Pascal Grosset

project is to be able to render remotely on the server which is at the opposite
end of paper 4 which does rendering on the GPU. Finally using a kd-tree is a
good idea which is already being done for visualizing data in Uintah. However,
it is the goal of the project that is generating demands for new techniques.

The goal of the project is to allow the rendering of massively large datasets
that will become more and more common as we advance in the exascale era of
computing. Also, what we presume is going to happen with exascale systems
is that they will be less focussed on GPUs but will rather move in the direction
of processors with hundreds and thousands of cores like the upcoming Intel
Knight Landing processor. Three of the four papers focussed on using GPU
rendering which will not be relevant. CPU rendering through ray casting is
trivial though and the same approach being used on the GPU can be used
on the CPU. The main issue is with scaling up the number of nodes. This
will drastically increase communication during the compositing phase. None
of the papers mention compositing as they all render all the data on the
same machine. Good compositing algorithms like radix-k and binary swap do
exist but they were created at a time where the focus was on balancing the
workload. Computing power is starting to be cheap with the new generation
of CPUs. What we must try to decrease is communication cost. Also, these
existing compositing algorithms assume that each node will have one image
and break down if we have several images. With AMR, one node might have
more than one image. A fine patch might overlap coarse AMR patches that
exist on two or more nodes. The fine AMR patch can also cause the coarse
patches to be concave. So we must find new compositing algorithms that
minimize communication in general and work for AMR as well.

References

1. M. Berger and I. Rigoutsos. An algorithm for point clustering and grid gener-
ation. Systems, Man and Cybernetics, IEEE Transactions on, 21(5):1278–1286,
Sep 1991.

2. K. Engel and T. Ertl. Interactive high-quality volume rendering with flexible
consumer graphics hardware, 2002.

3. K.-L. Ma and T. Crockett. A scalable parallel cell-projection volume rendering
algorithm for three-dimensional unstructured data. In Parallel Rendering, 1997.

PRS 97. Proceedings. IEEE Symposium on, pages 95–104, 119–20, Oct 1997.
4. G. H. Weber, O. Kreylos, T. J. Ligocki, J. M. Shalf, H. Hagen, B. Hamann, and

K. I. Joy. Extraction of crack-free isosurfaces from adaptive mesh refinement
data. pages 25–34. Springer Verlag, 2001.

490

1 Overview of Nelson-Oppen Theory Combination

Nelson-Oppen combination is a method of combining decision procedures of different theories to
solve formulas which are mixed with expressions in different theories. Since every decision procedure
only solves formulas in one particular theory, a formula mixed with multiple theories can not be
solved by a single decision procedure. Nelson-Oppen combination is not a decision procedure but
a methodology of collaborating different solvers to handle formulas in combination theory.

High Level View of Nelson-Oppen: To solve a formula ϕ (in a conjunction form) which
contains expressions in two different theories, T1 and T2 (with their signatures

∑
1 and

∑
2), we

can introduce variables to split closures in ϕ which contain multiple symbols from T1 and T2. We
stop splitting closures until each of them belongs to only one theory. Then we can partition the
closures into two sub-formulas (F1 and F2) based the theories. Suppose F1 belongs to theory T1

and F2 belongs to theory T2, we solve them separately by their decision procedures. If F1 or F2 is
unsatisfiable (UNSAT), ϕ is UNSAT. Otherwise, from F1 or F2, some equality relationships between
variables of ϕ may be inferred. In the case that F1 can infer an equality between two variables but
such relationship cannot be inferred from F2, F1 passes this “information” to F2. Then we solve
F1 and F2 again. If both F1 and F2 are satisfiable (SAT) and have no more “unique” information,
ϕ is SAT.

Information Exchange Between Decision Procedures: The information inferred from a
single-theory formula (says F1 mentioned in the previous paragraph) is a disjunction of equalities
between variables. However, if T1 is a convex theory, F1 must be able to infer a single equality
between two variables. (This is based on the definition of convex theory. The single equality is
one of the terms in the disjunction.) In this case, the information flows from F1 to F2 is a single
equality. We should prioritize the exchange of single equality. For a non-convex theory, it may
generate a disjunction of equalities. (Let’s assume T2 is non-convex.) There may be a case that
each equality in the disjunction can not be individually inferred from F2. In this case, a non-
convex theory involved, Nelson-Oppen method works in a recursive mode. It needs to consider
each equality separately. Let’s a = b∨ c = d is a disjunction inferred from F2. We may add (a = b)
to F1 and F2 and continue. If no more information can be inferred at the end and both F1 and F2

are UNSAT, we need to roll back and try (c = d) instead. If we exhaust every possible exchange
of equality and each of the exchanges results in UNSAT, the whole formula is UNSAT. If any SAT
found (means all sub-formulas are SAT) and no more information could be generated, the whole
formula is SAT. It means that we can find an interpretation, a witness, to satisfy the formula.

2 Restrictions of Nelson-Oppen Theory Combination

For a formula ϕ which contains theories T1, . . . , Tn with their signatures
∑

1, . . . ,
∑

n, it can be
solved by Nelson-Oppen combination if the following restrictions are met:
• T1, . . . , Tn are quantifier-free first-order theories with equality.
• Every theory in T1, . . . , Tn has its decision procedure.
• ∀i, j s.t. (1 ≤ i, j ≤ n) ∧ (i 6= j).

∑
i ∩

∑
j = {=}. This restriction is for dividing ϕ into

single-theory sub-formulas.
• T1, . . . , Tn are theories over infinite domains.

1

491

3 An Illustrative Example

We show how Nelson-Oppen combination works on the formula

ϕ = (1 ≤ x) ∧ (x ≤ 2) ∧ (f(x) 6= f(1)) ∧ (f(x) 6= f(2))

which contains uninterpreted functions and linear integer arithmetic. (Suppose that we have deci-
sion procedures for these two theories.)

Step 0: Formula ϕ will be firstly divided in to two sub-formulas: F1 and F2. F1 is in linear
integer arithmetic. F2 is in uninterpreted function theory. The following table shows the division
result:

Formula Name F1 F2

Formula (I1 = 1) (f(x) 6= f(I1))
(I2 = 2) (f(x) 6= f(I2))
(1 ≤ x)
(x ≤ 2)

Inference and Information Flow

We introduce two fresh variables, I1 and I2, to replace the constants in F2.

Step 1: Since both F1 and F2 are SAT, we try to generate information. An information, a
disjunction (x = 1) ∨ (x = 2), inferred by F1 is shown in the following table:

Formula Name F1 F2

Formula (I1 = 1) (f(x) 6= f(I1))
(I2 = 2) (f(x) 6= f(I2))
(1 ≤ x)
(x ≤ 2)

Inference and Information Flow (x = 1) ∨ (x = 2)

Step 2: Since the inference generated by F1 is a disjunction, the whole process is split: F1 could
pass either (x = 1) or (x = 2) to F2. The equality passed to F2 will also be considered in F1’s
decision procedure. In this step, we consider the case of passing (x = 1) first.

Formula Name F1 F2

Formula (I1 = 1) (f(x) 6= f(I1))
(I2 = 2) (f(x) 6= f(I2))
(1 ≤ x)
(x ≤ 2)

Inference and Information Flow (x = 1) ⇒

The symbol ⇒ doesn’t mean implication here. I just borrow this symbol to indicate information
flow.

2

492

Step 3: Both F1 and F2 are SAT. However, F1 can infer (I1 = x) now. It passes this new
information to F2 which is shown as follows.

Formula Name F1 F2

Formula (I1 = 1) (f(x) 6= f(I1))
(I2 = 2) (f(x) 6= f(I2))
(1 ≤ x) (x = 1)
(x ≤ 2)
(x = 1)

Inference and Information Flow (x = I1) ⇒

Step 4: With (x = I1), F2 is UNSAT. Thus the procedure rolls back to step 1, and F1 passes
(x = 2) to F2 instead.

Formula Name F1 F2

Formula (I1 = 1) (f(x) 6= f(I1))
(I2 = 2) (f(x) 6= f(I2))
(1 ≤ x) (x = 1)
(x ≤ 2) (x = I1)
(x = 1) UNSAT!!!
(x = I1)

Inference and Information Flow

Step 5: We skip the details of passing (x = 2) from F1 to F2 in step 1. The consequence is
an UNSAT scenario shown in the following table. Then we will need to roll back to step 1 again.
However, we already exhausted all information in the disjunction generated in step 1. It means
that any possible information exchange results in UNSAT. Thus the whole formula, ϕ, is UNSAT.

Formula Name F1 F2

Formula (I1 = 1) (f(x) 6= f(I1))
(I2 = 2) (f(x) 6= f(I2))
(1 ≤ x) (x = 2)
(x ≤ 2) (x = I2)
(x = 2) UNSAT!!!
(x = I2)

Inference and Information Flow

3

493

Appendix P: Sample Thesis/Dissertation Abstracts

494

SOFT SHADOW MIP-MAPS

by

Yang Shen

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computing

School of Computing

The University of Utah

August 2016

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text
495

ABSTRACT

This document introduces the Soft Shadow Mip-Maps technique, which consists of three

methods for overcoming the fundamental limitations of filtering-oriented soft shadows.

Filtering-oriented soft shadowing techniques filter shadow maps with varying filter sizes

determined by desired penumbra widths. Di↵erent varieties of this approach have been

commonly applied in interactive and real-time applications. Nonetheless, they share some

fundamental limitations. First, soft shadow filter size is not always guaranteed to be

the correct size for producing the right penumbra width based on the light source size.

Second, filtering with large kernels for soft shadows requires a large number of samples,

thereby increasing the cost of filtering. Stochastic approximations for filtering introduce

noise and prefiltering leads to inaccuracies. Finally, calculating shadows based on a single

blocker estimation can produce significantly inaccurate penumbra widths when the shadow

penumbras of di↵erent blockers overlap.

We discuss three methods to overcome these limitations. First, we introduce a method

for computing the soft shadow filter size for a receiver with a blocker distance. Then,

we present a filtering scheme based on shadow mip-maps. Mipmap-based filtering uses

shadow mip-maps to e�ciently generate soft shadows using a constant size filter kernel

for each layer, and linear interpolation between layers. Finally, we introduce an improved

blocker estimation approach. With the improved blocker estimaiton, we explore the shadow

contribution of every blocker by calculating the light occluded by potential blockers. Hence,

the calculated penumbra areas correspond to the blockers correctly. Finally, we discuss how

to select filter kernels for filtering.

These approaches successively solve issues regarding shadow penumbra width calculation

apparent in prior techniques. Our result shows that we can produce correct penumbra

widths, as evident in our comparisons to ray-traced soft shadows. Nonetheless, the Soft

Shadow Mip-Maps technique su↵ers from light bleeding issues. This is because our method

only calculates shadows using the geometry that is available in the shadow depth map.

Therefore, the occluded geometry is not taken into consideration, which leads to light

bleeding. Another limitation of our method is that using lower resolution shadow mip-map

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text
496

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

layers limits the resolution of the shadow placement. As a result, when a blocker moves

slowly, its shadow follows it with discrete steps, the size of which is determined by the

corresponding mip-map layer resolution.

iv

Denise Haynie
Typewritten Text
497

SCALABLE SPATIAL SCAN STATISTICS

by

Raghvendra Singh

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computing

School of Computing

The University of Utah

August 2015

Denise Haynie
Typewritten Text
498

ABSTRACT

We present algorithms for detecting spatial anomaly in a time efficient manner. There

are many other approaches solving the same problem but are facing a serious issue of very

huge computational time. We came up with some novel algorithms which help us to solve

the problem in a time efficient manner for very large data sets. We tried to show, by

executing experiments on both synthetic and real world data set, that the results obtained

from original data set and the sampled data set are very similar and therefore we executed

all our approaches on sampled data set rather than on the original data set. Thus we saved

a lot of computational time by using sampled data set as an input to our approaches.

Denise Haynie
Typewritten Text
499

CeNet- CAPABILITY ENABLED NETWORKING:
TOWARDS LEAST-PRIVILEGED NETWORKING

By

Jithu Joseph

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

School of Computing

The University of Utah

July 2015	

Denise Haynie
Typewritten Text
500

ABSTRACT

In today’s IP networks any host can send packets to any other host irrespective of

whether the recipient is interested in communicating with the sender or not. The downside

of this openness is that every host is vulnerable to an attack by any other host. We observe

that this unrestricted network access from compromised systems is also a main reason

for data ex-filtration attacks within corporate networks. We address this issue using the

network version of capability based access control.

We bring the idea of Capabilities and Capability based access control to the domain of

Networking.

Network capabilities can be passed between hosts thereby allowing a delegation-oriented

security policy to be realized. We believe that this base functionality can pave the way for

the realization of sophisticated security policies within an enterprise network.

Further we built a policy manager which is able to realize Role-Based Access Control

(RBAC) policy based network access control using capability operations. We also look at

some of the results of formal analysis of capability propagation models in the context of

networks.

Denise Haynie
Typewritten Text
501

SEACAT: AN SDN END-TO-END CONTAINMENT

ARCHITECTURE

by

Makito Kano

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

School of Computing

The University of Utah

May 2015

Denise Haynie
Typewritten Text
502

ABSTRACT

Healthcare organizations heavily rely on networked applications. Many applications

used in healthcare settings have different security, privacy, and regulatory requirements.

At the same time, users may use their devices with medical applications for non-medical

related purposes. Running arbitrary applications on the same device may affect the

healthcare applications in a way that violates their requirements. The ability of using

the same device for multiple purposes in an enterprise network presents a challenge to

healthcare IT operations. To allow the users to use the same device for both medical

and non-medical related purposes while meeting the set of requirements for medical ap-

plications, we present the design and implementation of the SeaCat, an SDN End-to-end

Application Containment ArchitecTure, and evaluate the system in a testbed environ-

ment. SeaCat has two major components. First is the container technology used in the

client device to securely isolate any application. Second is the software-defined networking

(SDN) that provides isolated secure network resource access for each application.

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text
503

CONCEPT AWARE CO-OCCURRENCE

AND ITS APPLICATIONS

by

Klemen Simonic

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

School of Computing

The University of Utah

2015 May

Denise Haynie
Typewritten Text
 504

ABSTRACT

Term cooccurrence data has been extensively used in many applications ranging from

information retrieval to word sense disambiguation. There are two major limitations of

cooccurrence data. The first limitation is known as the data sparseness problem or the zero

frequency problem: For a majority of pairs, the probability that they co-occur in even a

large corpus is very small. The second limitation is that in cooccurrence data, each term

is considered as a meaningless symbol, or in other words, terms do not have types, or any

semantic relationships with other terms. In this paper, we introduce a novel approach to

address these two limitations. We create concept aware cooccurrence data wherein each

term is not a symbol, but an entry in a large scale, data driven semantic network. We show

that with concepts or types, we are able to address the data sparseness problem through

generalization. Furthermore, using concept co-occurrence, we show that our approach can

benefit a large range of applications, including short text understanding.

Denise Haynie
Typewritten Text
505

Appendix Q: Partial List of School’s Graduate Students and their
Employment Information

506

Denise Haynie
Typewritten Text

Denise Haynie
Typewritten Text

Students	 Name Degree Year	 Completed First	 Company	 First	 Title/Role Present	 Company Present	 Title/Role Advisor	 That	 Supplied	 Info
Pascal	 Grossett Ph.D. 2016 LANL PostDoc LANL PostDoc Chuck	 Hansen
Kevin	 Wall MS 2016 Self-‐employed	 (Startup) Self-‐employed	 (Startup) Chuck	 Hansen
Mark	 Kim Ph.D. 2016 ORNL	 PostDoc ORNL	 PostDoc Chuck	 Hansen
Manasa	 Prosad MS 2015 Google Chuck	 Hansen
Brad	 Loos Ph.D. 2014 Bungee	 Games Bungee	 Games Chuck	 Hansen
Liang	 Zhou Ph.D. 2014 University	 of	 Stuttgart PostDoc University	 of	 Stuttgart 	 PostDoc Chuck	 Hansen
Yong	 Wan Ph.D. 2013 University	 of	 Utah PostDoc University	 of	 Utah 	 PostDoc Chuck	 Hansen
Carson	 Brownlee Ph.D. 2012 TACC Intel Chuck	 Hansen
Mathias	 Scott Ph.D. 2011 Nvidia Nvidia Chuck	 Hansen
Siddarth	 Shankar MS 2009 CDADAPT	 Co	 Chuck	 Hansen
Jianrung	 Shu MS 2009 Numira	 Biosciences Chuck	 Hansen
Daniel	 Kopta Ph.D. 2015 NVIDIA Senior	 OptiX	 Engineer SoC	 at	 U Assistant	 Prof Cem	 Yuksel
Yang	 Shen MS 2015 Originate Software	 Engineer Originate Software	 Engineer Cem	 Yuksel
Yuntao	 Ou MS 2014 AMD GPU	 Software	 Engineer AMD GPU	 Software	 Engineer Cem	 Yuksel
Amit	 Prakash MS 2016 AMD GPU	 Software	 Engineer AMD GPU	 Software	 Engineer Cem	 Yuksel
Wei-‐Fan	 Chiang Ph.D. 2016 Delaware PostDoc Ganesh	 Gopalakrishnan
Vishal	 Sharma	 Ph.D. 2016 Microsoft Ganesh	 Gopalakrishnan
Sriram	 Aananthakrishnan Ph.D. 2016 Intel	 Labs Ganesh	 Gopalakrishnan
Peng	 Li Ph.D. 2015 Fujitsu	 Research Samsung	 Research Ganesh	 Gopalakrishnan
Subodh	 Sharma Ph.D. 2012 Oxford PostDoc 	 Computer	 Science,	 IIT	 Delhi Assistant	 Professor Ganesh	 Gopalakrishnan
Anh	 Vo Ph.D. 2011 Microsoft Ganesh	 Gopalakrishnan
Sarvani	 Vakkalanka	 Ph.D. 2010 Microsoft VMWare Ganesh	 Gopalakrishnan
Guodong	 Li	 Ph.D. 2010 Fujitsu	 research Codiscope	 (security	 firm) Ganesh	 Gopalakrishnan
Yu	 Yang Ph.D. 2009 Microsoft Pinterest Ganesh	 Gopalakrishnan
Tyler	 Sorensen MS BS/MS	 Thesis 2014 Imperial	 College PhD	 student Ganesh	 Gopalakrishnan
Wei-‐Fan	 Chiang MS BS/MS	 Thesis 2010 University	 of	 Utah PhD	 student Ganesh	 Gopalakrishnan
Ben	 Meakin MS Thesis 2010 Qualcomm Ganesh	 Gopalakrishnan
Bruce	 Bolick MS BS/MS	 Non	 Thesis 2014 Ganesh	 Gopalakrishnan
Leif	 Andersen MS BS/MS	 Non	 Thesis 2014 Northeastern	 Univ PhD	 student Ganesh	 Gopalakrishnan
Joe	 Mayo MS BS/MS	 Non	 Thesis 2010 Microsoft Ganesh	 Gopalakrishnan
Brandon	 Gibson MS BS/MS	 Non	 Thesis 2010 Microsoft Ganesh	 Gopalakrishnan
Grant	 Ayers MS BS/MS	 Non	 Thesis 2010 Stanford PhD	 CS	 student Ganesh	 Gopalakrishnan
Alan	 Humphrey MS BS/MS	 Non	 Thesis 2009 University	 of	 Utah PhD	 student Ganesh	 Gopalakrishnan
Carson	 Jones MS BS/MS	 Non	 Thesis 2009 Ganesh	 Gopalakrishnan
Chris	 Derrick MS BS/MS	 Non	 Thesis 2009 Ganesh	 Gopalakrishnan
KaiQiang	 Wang MS MS	 Project 2016 Google Google Jeff	 Phillips
Liang	 Zhang	 MS MS	 Project 2015 Microsoft Jeff	 Phillips
Raghvendra	 Singh MS MS	 Thesis 2015 InsideSales Overstock.com Jeff	 Phillips
Amey	 Desai	 MS MS	 Thesis 2014 UrbanEngines Google Jeff	 Phillips
Shashanka	 Krishnaswamy MS MS	 Project 2013 Amazon Jeff	 Phillips
Supraja	 Jayakumar MS MS	 Project 2013 Cerner	 Systems Jeff	 Phillips
Yuan	 Fang MS 2013 Zillow Jeff	 Phillips
Lingbing	 Jiang MS 2012 Microsoft Jeff	 Phillips
Jon	 Rafkind Ph.D. 2013 HP Senior	 software	 engineer HP Senior	 software	 engineerMatthew	 Flatt
Kevin	 Tew Ph.D. 2012 BYU Assistant	 professor BYU Assistant	 professor Matthew	 Flatt

507

Students	 Name Degree Year	 Completed First	 Company	 First	 Title/Role Present	 Company Present	 Title/Role Advisor	 That	 Supplied	 Info
Kevin	 Atkinson Ph.D. 2011 Rice	 U.	 /	 U.	 Halmstad Researcher Matthew	 Flatt
Eric	 Eide Ph.D. 2009 University	 of	 Utah Research	 assistant	 professor University	 of	 Utah Research	 assistant	 professorMatthew	 Flatt
Arvind	 Haran MS 2014 IBM Software	 Engineer:	 EDA	 Formal	 Verification	 and	 Simulation	 Framework	 ToolsIBM Software	 Engineer:	 EDA	 Formal	 Verification	 and	 Simulation	 Framework	 ToolsZvonimir	 Rakamaric
Prashanth	 Nayak MS 2014 NetApp Software	 Developer NetApp Software	 Developer Eric	 Eide
Scott	 Kuhl Ph.D. 2009 Michigan	 Tech Michigan	 Tech William	 Thompson
Margarita	 Bratkova Ph.D. 2009 ImageMovers	 Digital William	 Thompson
Tina	 Ziemek Ph.D. 2010 Stupid	 Fun	 Company William	 Thompson
Kritina	 Rand Ph.D	 (Psychology) 2014 William	 Thompson
Mukund	 Raj MS 2013 University	 of	 Utah Ph.D.	 candidate William	 Thompson
Xing	 Lin Ph.D. 2015 NetApp	 Advanced	 Technology	 Group Robert	 Ricci
Weibin	 Sun Ph.D. 2014 Google Robert	 Ricci
Anil	 Kumar MS 2016 Microsoft Robert	 Ricci
Anil	 Mallapur MS 2015 LinkedIn Robert	 Ricci
Nikhil	 Mishrikoti MS 2013 Cisco	 Systems Robert	 Ricci
Srikanth	 Raju MS 2013 Coverity Robert	 Ricci
Yathindra	 Dev	 Naik MS 2013 NetApp Robert	 Ricci
Srikanth	 Chikkulapelly MS 2011 Amazon	 AWS Robert	 Ricci
Raghuveer	 Pullankandam MS 2011 Adobe	 Systems Robert	 Ricci
Matt	 Strum MS BS/MS 2013 Amazon	 Silk	 Browser	 Team Robert	 Ricci
Erik	 Anderson Ph.D. 2013 EGI	 and	 University	 of	 Oregon PostDoc Chris	 Johnson
Joel	 Daniels Ph.D. 2012 CD-‐Adapaco PostDoc Chris	 Johnson
Yaniv	 Gur Ph.D. 2014 IBM	 Research PostDoc Chris	 Johnson
Brad	 Hollister Ph.D. 2016 CalPoly PostDoc Chris	 Johnson
Jens	 Krueger Ph.D. 2009 University	 of	 Duisberg-‐Essen,	 GermanyPostDoc Chris	 Johnson
Paul	 Rosen Ph.D. 2015 University	 of	 South	 Florida PostDoc Chris	 Johnson
Mavin	 Martin MS 2014 Workday Elaine	 Cohen
Fangxiang	 Jiao Ph.D. 2012 VA	 Hospital,	 SLC,	 UT Senior	 Research	 Staff Elaine	 Cohen
Dafang	 Wang Ph.D. 2012 Johns	 Hopkins	 University	 -‐	 Institute	 for	 Computational	 MedicineAssistant	 Research	 Scientist Elaine	 Cohen
Kristi	 Potter Ph.D. 2010 University	 of	 Utah Postdoc University	 of	 Oregon Manager,	 Research	 Support	 Services,	 Visualization	 SpecialistElaine	 Cohen
Anastasia	 Mironova MS 2009 Conoco-‐Phillips Elaine	 Cohen
William	 Martin Ph.D. 2012 Google Research	 Scientist Elaine	 Cohen
Tobias	 Martin Ph.D. 2011 Eidgenossische	 Technische	 Hochschule,	 ZurichPostDoc Elaine	 Cohen
Suraj	 Musuvathy Ph.D. 2011 Siemens	 Research Research	 Scientist Elaine	 Cohen
Joel	 Daniels Ph.D. 2009 NYU PostDoc Elaine	 Cohen
Sai	 Deng MS 2015 Google Elaine	 Cohen
Suqin	 Zeng MS 2015 Google Elaine	 Cohen
Geoffrey	 Draper Ph.D. 2009 BYU	 Hawaii Professor-‐tenure	 track
Mike	 Steffen Ph.D. 2009 Boing	 Corp Mike	 Kirby
Dafang	 Wang Ph.D. 2012 	 Johns	 Hopkins PostDoc Johns	 Hopkins	 Researchers Mike	 Kirby
Hanieh	 Mirzaee Ph.D. 2012 Fraunhaufer	 MeVIs	 (Research	 Institute,	 Germany) Fraunhaufer	 MeVIs	 (Research	 Institute,	 Germany) Mike	 Kirby
Blake	 Nelson Ph.D. 2012 Utah	 State	 University Utah	 State	 University Mike	 Kirby
Varun	 Shankar Ph.D. 2014 University	 of	 Utah Department	 of	 Math University	 of	 Utah Department	 of	 Math Mike	 Kirby
James	 King Ph.D. 2016 Google Mike	 Kirby
Anshul	 Joshi Ph.D. 2016 Cubiscan R&D	 Engineer Cubiscan R&D	 Engineer Thomas	 C.	 Henderson
Linda	 DuHadway Ph.D.	 2016 Weber	 State	 University Assistant	 Professor Weber	 State	 University Assistant	 Professor Thomas	 C.	 Henderson

508

Students	 Name Degree Year	 Completed First	 Company	 First	 Title/Role Present	 Company Present	 Title/Role Advisor	 That	 Supplied	 Info
Protonu	 Basu Ph.D.	 2016 Postdoctoral	 Research	 Fellow Lawrence	 Berkeley	 National	 Laboratory	 Postdoctoral	 Research	 Fellow Lawrence	 Berkeley	 National	 Laboratory	 Mary	 Hall
Saurav	 Muralidharan	 Ph.D.	 2016 NVIDIA Research	 Scientist NVIDIA Research	 Scientist Mary	 Hall
Anand	 Venkat	 	 Ph.D.	 2016 Intel Research	 Scientist Intel Research	 Scientist Mary	 Hall
Yu-‐Jung	 Lo	 	 	 	 	 MS Thesis 2015 Pinterest 	 Software	 Engineer Pinterest 	 Software	 Engineer Mary	 Hall
Axel	 Rivera MS Thesis 2014 Intel Compiler	 Developer Intel Compiler	 Developer Mary	 Hall
Shreyas	 Ramalingam	 MS Thesis 2012 AMD Design	 Engineer	 2 Mary	 Hall
Gabe	 Rudy MS Thesis 2010 Golden	 Helix VP	 Product	 Development Golden	 Helix VP	 Product	 &	 EngineeringMary	 Hall
Suchit	 Maindola	 MS Project 2012 Cisco	 Systems 	 Software	 Engineer Facebook 	 Software	 Engineer Mary	 Hall
Prajakta	 Mane	 (ECE) MS Project 2015 VT	 iDirect	 	 	 Software	 Engineer VT	 iDirect	 	 	 Software	 Engineer Mary	 Hall
Amit	 Roy MS Project 2016 DrChrono	 	 Software	 Engineer DrChrono	 	 Software	 Engineer Mary	 Hall
Gagan	 Sachdev MS Project 2011 AMD Design	 Engineer	 2 ARM	 Inc. Staff	 Design	 Engineer Mary	 Hall
Ashequl	 Qadir Ph.D. 2016 Philips	 Research Research	 Scientist Ellen	 Riloff
Ruihong	 Qadir Ph.D. 2014 Stanford	 University PostDoc Texas	 A&M	 University Assistant	 Professor,	 Computer	 Science	 &	 Engineering,Ellen	 Riloff
Siddharth	 Patwardhan Ph.D. 2010 IBM	 T.J.	 Watson	 Research	 Center Research	 Staff	 Member Apple NLP	 and	 Machine	 Learning	 EngineerEllen	 Riloff
David	 Price MS 2009 PAWAR	 Systems	 Center	 Pacific Ellen	 Riloff
Nathan	 Gilbert MS 2014 Delcam Software	 Engineer Autodesk Senior	 Software	 EngineerEllen	 Riloff
Lalindra	 De	 Silva MS 2016 Department	 of	 Veterans	 Affairs	 Salt	 Lake	 City,	 Healthcare	 SystemSenior	 Software	 Engineer Ellen	 Riloff
Yupeng	 Zhang MS 2015 Amazon Amazon SDE Feifei	 Li
Oscar	 Marshall MS BS/MS 2015 Startup Unknown SDE Feifei	 Li
Mengyang	 Wang MS 2015 Microsoft Microsoft SDE Feifei	 Li
Klemen	 Simonic MS 2015 Facebook Facebook SDE Feifei	 Li
Natalee	 Ann	 Villa MS 2015 Adobe Adobe Research	 Scientist Feifei	 Li
Mingwang	 Tang Ph.D. 2014 Uber SDE Feifei	 Li
Wangchao	 Le Ph.D. 2013 Microsoft Microsoft SDE Feifei	 Li
Jeffrey	 Jestes Ph.D. 2013 Cerner Cerner Senior	 Software	 EngineerFeifei	 Li
Chi	 Zhang Ph.D. 2013 Walmat	 Lab Walmat	 Lab RSDE Feifei	 Li
Cody	 Hansen MS 2013 Disney	 Interactive Disney	 Interactive Software	 Engineer Feifei	 Li
Chengxu	 Ding MS 2013 Epic Epic Software	 Engineer Feifei	 Li
Limou	 Wang MS 2013 Turn Yahoo SDE Feifei	 Li
Namita	 Mahtta MS 2013 Goldman	 Sachs University	 of	 Utah Information	 Technology	 and	 Services,	 Programmer/AnalystFeifei	 Li
Yu	 Sun Ph.D. 2007 U.	 South	 Florida Associate	 Professor John	 Hollerbach
Josh	 de	 Bever Ph.D. 2015 Stanford	 Cancer	 Imaging	 Training	 Program John	 Hollerbach
Babak	 Hejrati Ph.D.	 (Mechanical	 Engineering)2016 Harvard	 University	 Biodesign	 Lab Postdoctoral	 Fellow John	 Hollerbach
Joshua	 Dawson MS 2015 US	 Army Flight	 Instructor Miriah	 Meyer

509

	1. PROGRAM OVERVIEW
	1.1 Program Mission and Organization
	1.2 Program Planning
	1.3 Previous Review and Actions
	1.4 Department Profile

	2. FACULTY
	2.1 Faculty Profile
	2.2 Faculty Diversity
	2.3 Faculty Teaching
	2.4 Faculty Scholarship
	2.5 Faculty Service
	2.6 Retention, Promotion and Tenure (RPT)
	2.7 Faculty Vitae

	3A. UNDERGRADUATE STUDENTS
	3A.1 Undergraduate Student Recruitment
	3A.2 Undergraduate Student Diversity
	3A.3 - N/A
	3A.4 - Undergraduate Student Support
	3A.5 Undergraduate Student Advising
	3A.6 Undergraduate Teaching Assistant (TA) Training

	3B. GRADUATE STUDENTS
	3B.1 Graduate Student Recruitment
	3B.2 Graduate Student Diversity
	3B.3 Graduate Student Admissions
	3B.4 Graduate Student Support
	3B.5 Graduate Student Advising
	3B.6 Graduate Teaching Assistant (TA) Training

	4A. UNDERGRADUATE CURRICULUM AND PROGRAMS OF STUDY
	4A.1 Undergraduate Degree and Certificate Requirements
	4A.2 Undergraduate CS Courses Offered
	4A.3 Undergraduate Programs of Study
	4A.4 Undergraduate Professional Development
	4A.5 Undergraduate Outreach Education

	4B. GRADUATE CURRICULUM AND PROGRAMS OF STUDY
	4B.1 Graduate Degree and Certificate Requirements
	4B.2 Graduate Courses Offered
	4B.3 Graduate Programs of Study
	4B.4 Graduate Professional Development
	4B.5 Graduate Outreach Education
	4B.6 Qualifying Exams
	4B.7 Theses and Dissertations

	5A. UNDERGRADUATE PROGRAM EFFECTIVENESS - OUTCOMES ASSESSMENT
	5A.1 Undergraduate Outcomes Assessment Procedures
	5A.2 Undergraduate Outcomes Assessment Feedback
	5A.3 Undergraduate Degree Completion Data
	5A.4 Employment

	5B. GRADUATE PROGRAM EFFECTIVENESS - OUTCOMES ASSESSMENT
	5B.1 Graduate Outcomes Assessment Procedures
	5B.2 Graduate Outcomes Assessment Feedback
	5B.3 Graduate Degree Completion Data
	5B.4 Employment

	6. FACILITIES AND RESOURCES�
	6.1 Operating Budget
	6.2 Physical Facilities
	6.3 Libraries
	6.4 Centers, Institutes or Bureaus Associated with the Program
	6.5 Technology
	6.6 Staff Support

	APPENDICES
	Appendix A: School's IAB Meeting Agenda
	Appendix B: School's Career-line Faculty Review Operating Procedures
	Appendix C: School's Policy Statement on RPT
	Appendix D: Faculty Curriculum Vitae
	Balasubramonian, Rajeev
	Berzins, Martin
	Bhaskara, Aditya
	Bojnordi, Madhi
	Brunvand, Erik
	Cohen, Elaine
	Denning, Tamara
	Eide, Eric
	Flatt, Matthew
	de St. Germain, James
	Gopalakrishnan, Gonesh
	Hall, Mary
	Hansen, Charles
	Henderson, Thomas
	Hermans, Tucker
	Hollerbach, John
	Jensen, Peter
	Johnson, Christopher
	Johnson, David
	Kasera, Sneha
	Kavan, Ladislav
	Kessler, Robert
	Kirby, Robert
	Lex, Alexander
	Li, Feifei
	Meyer, Miriah
	Might, Matthew
	Myers, Chris
	Parker, Erin
	Pascucci, Valerio
	Phillips, Jeff
	Rakamaric, Zvonimir
	Regehr, John
	Ricci, Robert
	Riloff, Ellen
	Srikumar, Vivek
	Stutsman, Ryan
	Sundar, Hari
	Sutherland, James
	Thompson, William
	Van der Merwe, Jacobus
	Wang, Bei
	Weiss, Jeffrey
	Whitaker, Ross
	Wiese, Jason
	Yuksel, Cem
	Zachary, Joseph

	Appendix E: Student Code
	Appendix F: Computer Science Undergraduate Track Elective Suggestions
	Appendix G: Computer Science BS Degree Requirements
	Appendix H: Computer Science BS Degree Requirements EAE
	Appendix I: Sample for Computer Engineering Degree Program
	Appendix J: Minor in Computer Science Requirements
	Appendix K: Computer Science Suggested Plan
	Appendix L: Computer Science EAE Plan
	Appendix M: Program of Study Examples for MS
	Appendix N: Program of Study Examples for PhD
	Appendix O: Recent Qualifying Exams
	Appendix P: Sample Thesis/ Dissertation Abstracts
	Appendix Q: Graduate Students Employment Information

