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Abstract

Navigation in outdoor terrain is difficult due to
a lack of easily and uniquely identifiable land-
marks. This paper outlines current research
on extraction of navigationally salient features
from images and maps, feature matching and
viewpoint determination, landmark selection,
detection and diagnosis of route following er-
rors, perceptual issues related to vision-based
navigation, and database and software avail-
ability.

1 Introduction.

Navigation involves two closely related tasks: localiza-
tion and route planning and following. Most often, a
navigating agent has available a map or some other
model of the environment within which it is operating,
together with sensor data about relevant aspects of that
environment at the current instant in time. Localization
finds the agent’s position within the map or model frame
of reference. Route planning involves the determination
of a sequence of actions aimed at accomplishing some
goal. This may be based in part on sensor data or com-
pletely on the map or model if they are sufficiently rich.
Route following includes those processes which execute
the plan and monitor for errors. These activities must
be closely integrated. For example, accurate localization
estimates are needed for route planning since an initial
position is usually required and for route following to
provide closed loop control of position.

Image understanding approaches to localization must
necessarily contain three parts: feature eztraction,
matching, and viewpoint inference. Feature extraction
involves the detection of salient patterns in both sensed
data and the map or model. Extracted features are then
matched, establishing a correspondence between the two
frames of reference. Finally, this correspondence is used
to place the viewpoint in the map/model frame of ref-
erence. At least in principle, these steps are relatively
straightforward when downward looking aerial imagery
is matched against a standard “plan view” map. (TER-
COM is a classic example [Andreas et al., 1978]). Fea-
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tures can be either raw data or simple, derived point or
contour properties. Matching is essentially 2-D correla-
tion. Viewpoint determination involves standard meth-
ods from photogrammetry.

Localization is much more difficult when performed at
or near ground level due to the 90° change in perspective
from sensed data to map. Passive image understanding
techniques are likely to have serious problems estimating
range to environmental features and thus the relative po-
sition of those features to each other and to the viewpoint
in the map frame of reference. More sophisticated fea-
ture extraction and matching is required and viewpoint
determination methods must be able to to function in
the absence of accurate 3—D information from sensors.
We have made progress in the following areas:

o Feature extraction: Domain specific feature extrac-
tion routines have been demonstrated which exploit
constraints imposed by the geometry of terrain.

o Maiching and viewpoint determination: Higher-
level symbolic problem solving has been integrated
with lower-level computer vision methods to pro-
duce an image understanding system capable of
dealing with inference and ambiguity in localization.

o Landmark selection: Path following is significantly
aided by selecting landmarks which minimize local-
ization errors.

o Diagnosis and recovery: Al-like problem solving
methods can complement lower-level computer vi-
sion in detecting failures in route following and di-
agnosis where the original error occurred.

e Perceptual issues: An understanding of the abili-
ties and limitations of human perception of terrain
features can give insights into the construction of
automated navigation and also lead to better train-
ing methods.

o Database: FExamples of panorama images registered
to digital elevation data together with a variety of
useful software tools are being made available to the
research community.

Results of this work are of potential relevance to au-
tonomous and semi-autonomous mobile vehicles, naviga-
tion aids, mission planning, simulation, and training.



2 Localization.

Our work on navigation has focused primarily on prob-
lems involving outdoor, unstructured terrain. Figure 1
shows typical feature correspondences that must be es-
tablished. Since distinctive cultural landmarks are not
available in such environments, considerable difficulties
can be expected in reliably associating map and view fea-
tures. One way to approach this problem is to use sym-
bolic matching by first independently extracting from
the view and map patterns likely to represent the same
topographic features and then establishing correspon-
dences using a hypothesize and test strategy.

Figure 1. Correspondence between map and view.

Feature extraction from images of outdoor terrain is
based on finding ridge contours with shapes indicative
of peaks, saddles, and valleys. Peaks and saddles are
simply vertical extrema in ridge line contours. Valleys
are more difficult to find, since the actual valley terrain
is usually not visible and must be inferred from other
features such as T—junctions in ridge line contours.

Simple edge detection alone is not sufficient to find
ridge contours in an image. Images of large-scale, out-
door terrain contain many important but indistinct fea-
tures and many extrancous features which convey no
useful information about the topography. The contrast
across ridge contours is often low and of limited spa-
tial extent. Often, local sections of a ridge contourtare
lacking in contrast variation altogether, while many non-
ridge, high-contrast features are present.

Figure 2 shows a 40° portion of the panorama image
shown in Figure 11. Figure 3 shows the results of apply-
ing a zero-crossing edge detector to this image. Hystere-
sis thresholding was used and parameters were carefully
matched to the nature and scale of the image. As a re-
sult, this represents about the best that can be expected
from edge detection alone. Figure 4 shows a new edge
image in which a variety of filtering and gap filling steps
have been applied. These steps are based on exploiting
constraints about how ridge lines appear in horizontally-
looking views of rugged terrain. Finally, Figure 5 shows
extracted features and line segments.

Figures 6 and 7 show similar results for map features.
Unlike the problem of extracting topographic structure

Figure 2: Original image.

Figure 3: Output from zero-crossing edge detector.
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Figure 4: Processed edges.
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Figure 5: Extracted features.

from images, the “map-understanding” problem does not
have to deal with the multitude of effects that can lead to
contrast variation in images. Difliculties associated with
scale are still very real, however. For example, ridge lines
have a large spatial extent along their length. Across the
length of a single ridge line, extent can vary from small
(a sharp section of ridge) to quite large (a section where
the ridge top is essentially a plateau). Peaks are likewise
more difficult to accurately detect. Simply finding local
maxima in elevation is not sufficient. Figure 6 shows the
results of applying a local ridge detector similar to [Har-
alick et al., 1983} to a portion of our elevation database
(see section 6). Figure 7 shows the final results of fea-
ture extraction after thinning the raw results and filling
gaps where ridge sharpness was low. In addition, peaks
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Figure 7: Peaks and ridge line hierarchy.

are found using a large area search that is more reli-
able than simple local maxima detection and ridge lines
are organized into a hierarchy of importance that allows
significant ridges to be used for initial matching while
making available subsidiary ridges for subsequent verifi-
cation operations. (The ridge lines to the northwest are
not rendered in this view of the hierarchy, since they are
actually part of the parent of the ridges shown.)
Features extracted using these processes still have a
great deal of ambiguity associated with them. For ex-
ample, lacking a priori information about viewing po-
sition and/or direction, it is hard to extract features
such as peaks and ridges known to correspond in the
view and map. This difficulty is similar to that faced
by many symbolic problem solving systems dealing with
tasks such as classification and diagnosis. In [Thompson
et al., 1993], we show that high-level hypothesize and
test strategies can be integrated with lower-level feature
extraction to solve difficult localization problems.
Additional details about feature extraction from views
and maps can be found in [Savitt et al, 1992, Savitt,
1992, Thompson et al., 1993]. High-level strategies for
feature matching are described in [Heinrichs et al., 1989,

Thompson et al., 1990, Smith et al., 1991, Heinrichs
et al, 1992] and computational implementations us-
ing these strategies can be found in [Bennett, 1992,
Bennett, 1993, Thompson et al., 1993, Thompson, 1993].

3 Landmark Selection.

We have previously demonstrated that the accuracy of
landmark-based viewpoint determination is quite sensi-
tive to geometric properties of the particular configu-
ration of landmarks used [Sutherland, 1992]. Recently,
the image understanding community has been paying
increased attention to error estimation. Of equal impor-
tance are approaches which minimize the amount of error
which can occur rather than only providing a posteriori
characterizations of the error distribution.

The extraction of navigationally salient landmarks
typically involves costs in time, computation, and sens-
ing resources. As a result, there is benefit to be gained if
simple strategies can be used to select a small set of land-
marks which are likely to lead to accurate localization.
Effective landmark selection methods are also relevant
to mission planning, where one of the criteria entering
into route selection should be the availability of land-
marks sufficient to provide whatever degree of accuracy
is required.

Error analysis is complicated by the lack of general
sensor models which effectively describe position vari-
ability in properties used for viewpoint determination.
This is particularly true when localization is based on
bearings to features over a wide field of view, since sens-
ing might involve mechanical scanning of cameras, fish
eye optics, or more exotic technologies. We take a con-
servative approach in which we assume that the angular
error in detected bearings to features is bounded, but
the distribution of values within this range is not known.
We then find the the region within which the viewpoint
must lie to be consistent with these assumptions and are
thus able to determine if conflicts with obstacles or un-
traversable terrain are possible. Figure 8 shows an exam-
ple in which the relative bearing between two landmarks
and the absolute bearing to a third landmark [Thomp-
son et al., 1993] separately generate possible viewpoint
regions shown in light gray, the intersections of which
are marked in dark gray.

Starting from the analysis of uncertainty regions, it is
possible to develop simple heuristics for selecting land-
marks likely to minimize the size of such regions [Suther-
land and Thompson, 1993, Sutherland, 1993]. Note that

Figure 8: Intersection of viewpoint uncertainty regions.



this is not as easy as it might seem, since the problem
must be solved with very minimal knowledge about the
true viewing location. Figures 9 and 10 demonstrate the
effectiveness of this method. Simulated navigators have
identified landmarks on a map. Their task is to move
along the segmented path shown by the dashed line.
Current position is estimated at the beginning of each
straight path segment, using relative bearing to three
landmarks. In Figure 9, the landmark selection heuris-
tic is used at each step to choose the three landmarks
on which localization is based. In Figure 10, landmark
selection is random. Both navigators start at the square
at the left end of the dashed line. Direction and dis-
tance of move are based on estimated position. Uniform
multiplicative error is assumed in both relative bearing
measurement and in movement. The squares mark ac-
tual navigator positions at the end of each path segment
for fifty trials. The scattering of location in Figure 10 is
much increased over that in Figure 9.

Figure 9: Fifty trials — “intelligent” landmark selection.
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Figure 10: Fifty trials — random landmark selection.

4 Error Detection and Diagnosis.

Mobile robots capable of independent operation all em-
ploy some form of “perceptual servoing” to implement
a sense-plan-act-verify cycle in which expectation about
sensor data are compared with actual observations, and
then differences are quantified and used to update es-
timates of current position and desired path (e.g., [Fen-
nema et al., 1990]). If a match between expectations and
observations cannot be established, then some sort of re-
planning activity is initiated, a part of which requires a
solution to the localization problem. This approach is
only effective when a rich model of the environment is
available, allowing for complete and specific predictions
about the appearance of the world from any predicted

viewpoint. Often, such models do not exist, particularly
in tasks involving outdoor maneuvering. (Consider the
effort that went into producing 5m resolution DEM data
for the ALV site.) When this is the case, it is not possible
to determine with certainty that an expectation does or
does not match actual sensor values. At best some sort of
confidence estimate can be produced. One consequence
of this is that it is possible to travel substantial distances
on what is in fact an incorrect path before determining
with reasonable certainty that an error has occurred.

Sparse world models and the potential for substantial
delays between when an error occurs and when it is de-
tected mean that lower-level image understanding tech-
niques are not sufficient in and of themselves to support
effective plan monitoring in mobile robotics. We are ad-
dressing this problem by creating a qualitative model of
error in vision-based navigation and using this model to
characterize the sorts of errors that can occur, how they
can be detected, and what sort of diagnosis is possible to
determine the original source of difficulties [Stuck, 1992].
The research suggests a number of techniques that may
usefully complement lower-level perceptual servoing.

5 Perceptual Issues.

Our approach to the development of novel methods
for vision-based navigation is interdisciplinary, involv-
ing computational analysis, computer simulations, and
studies of expert map users. Many of the strategies we
use to automatically solve localization problems [Hein-
richs et al., 1992, Thompson et al., 1993] arose out of ex-
periments done with experts solving actual and artificial
navigation problems [Pick et al., in press]. In retrospect,
these strategies make excellent computational sense since
the experts are highly adapted to dealing with the ambi-
guity and complexity inherent in these problems. Nev-
ertheless, the strategies were not obvious to us or others
until we undertook our studies.

This interdisciplinary investigation is continuing with
a current focus on the accuracy with which people are
able to determine terrain geometry. By comparing hu-
man and machine vision perceptual competence, we can
better understand the relevance of expert strategies to
image understanding solutions. At the same time, we
can identify specific perceptual skills for which mecha-
nized aids and/or alternative training might significantly
improve human performance. Elsewhere in this proceed-
ings we summarize two such studies [Pick et al., 1993].
One demonstrates that people are poor at estimating dis-
tance and slope in environments of the scale and topog-
raphy typical of outdoor navigation tasks [Melendez et
al.,in prep). Since passive vision systems are also poor at
these estimates, the strategies people use to compensate
for their perceptual limitations may also be relevant in
automated systems. The second study deals with local-
ization using visual angle. Again, people are quite poor
at using this cue. On the other hand, sensors which are
capable of measuring large visual angles with reasonable
accuracy can be designed, suggesting both possible dif-
ferences between machine and human solutions and aids
that might assist people in performing the task.



Figure 11: First panorama image.

6 Database and Software.

Many recent papers addressing ground level localization
have presented results obtained only from synthetic im-
agery. A few have used the highly calibrated data avail-
able for the Martin Marietta ALV test area. In addition
to the well-known pitfalls of failing to test new image un-
derstanding algorithms on real data, the use of synthetic
terrain data to generate test imagery is problematic since
realistic digital elevation data is often in error.

We have produced two 360° panorama images of
mountainous terrain obtained with a video camera, dig-
itized at high resolution, and digitally photo-mosaicked.
(Figure 11 shows one of them). They extend approxi-
mately 6,000 pixels horizontally by 450 pixels vertically.
Viewpoint location has been registered £30m to USGS
30m DEM data. Direction relative to UTM north and
tilt are known within 4:0.5°. Geometric distortions due
to misalignments between the pan axis, the camera, and
“true” vertical have been normalized to approximately
40.25°. Included in the database are 4 USGS 7.5 DEM
quadrangles composed together and containing the view-
points for the panorama images. Also available is soft-
ware for converting USGS format data into a useful form,
mosaicking DEM quads and panorama frames, and ren-
dering expected views given map position.
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