Detecting Moving Objects Using the Rigidity Constraint
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Abstract—We describe a method for visually detecting moving objects
from a moving camera using point correspondences in two orthographic
views. The method applies a simple structure-from-motion analysis and
then identifies those points inconsistent with the interpretation of the
scene as a single rigid object. It is effective even when the actual
motion parameters cannot be recovered. Demonstrations are presented
using point correspondences automatically determined from real image
sequences.

Index Terms— Motion, moving object detection, outlier detection, ro-
bust estimation, segmentation.

I. INTRODUCTION

The ability to visually detect moving objects is important in a
wide variety of circumstances. Simple temporal differencing suffices
if the camera is known to be stationary and lighting well controlled
[1]- The problem becomes significantly more difficult if the camera
is also moving since now the task is to detect objects moving with
respect to the environment and not the camera. Differencing is of
little value as all visible surfaces are likely to be moving with respect
to the camera in a manner that will generate noticeable changes
throughout the image. If camera motion is known to consist only
of translation, a relatively straightforward analysis of the optical
flow field can be used to find moving objects. Translational motion
produces flow radiating out from a focus of expansion at the image
plane location corresponding to the direction of gaze equal to the
direction of motion. If either the direction of motion is known or the
focus of expansion can be accurately estimated, any flow vectors with
an inconsistent direction are due to moving objects (e.g., see {2]).

When general camera motion is possible, more sophisticated anal-
ysis is required [3], [4]. In a previous paper, we reported a family
of methods for detecting moving objects [3]. Each technique used
partial information about the camera motion and/or scene structure
to develop constraints on optical flow that should be satisfied by all
visible background points. Moving object detection was based on
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searching for patterns of flow that violated these constraints. Results
were demonstrated for four situations: known rotation (but unknown
direction of translation), active tracking of objects of interest, object
motion constrained to a smooth surface, and combined use of stereo
and motion. '

In this correspondence, we present an alternate approach based
on the rigidity constraint: A scene containing moving objects can
be thought of as undergoing a particular sort of nonrigid motion
with respect to the camera. Structure-from-motion techniques that
are sensitive to the presence of such nonrigid motions can thus be
used to detect moving objects.

Ullman was one of the first to recognize that the recovery of the
3-D structure and motion giving rise to a particular time-varying
image sequence is greatly aided by the assumption that the structure
is rigid [5]). In fact, the method he developed gives an indication
of whether or not a set of point correspondences actually has an
interpretation as the projection of a moving but otherwise rigid object.
Ullman points out that a combinatorial search could therefore be used
to find separately moving objects in a scene. Heeger and Hager [6]
and Zhang er al. [7] suggest that moving objects be detected by
recovering the relative motion between camera and environment and
then detecting image regions incompatible with this motion. Both
methods require a priori estimates of camera motion. In addition,
Zhang et al. use calibrated stereo input.

The method we describe below is particularly simple. We use the
linear structure-from-motion (SFM) algorithm given in [8] to solve
for partial parameters governing the relative motion of camera and
background.! As with most other SFM algorithms, ill-conditioning

leads to poor estimates due to the noise inherent in dealing with real

imagery. In our case, however, we are only interested in those image
points not consistent with a rigid interpretation. These can often be
found even when the motion and structure of the rigidly moving
background cannot be recovered. The method is demonstrated on
real image sequences for which point correspondences have been
determined in a fully automated manner.

II. METHOD

Huang and Lee revisit Ullman’s original problem of determining
=otion and structure of four noncoplanar object points from image
oint correspondences over three distinet orthographic views [8].
shey show that under orthographic projection, two views are insuf-
ficient to determine a unique solution to the problem no matter how
many point correspondences are available. They go on to develop a
solution by using the two-view case to determine constraints on object

1'We adopt the convention that the coordinate system is fixed to the camera;
therefore, camera motion is equivalent to the environment moving by a
stationary camera.
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rotation between each pair of images in the three-view situation and
then find the unique motion making these constraints consistent.
Adopting the notation of [8], the following holds:

(@i, yi. 5 object-space coordinates of point P; at t;
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Because the projection is orthographic, (X,;.Y:) = (z;,v:), and
(XLYY) = (i y!). Set the origin in each of two views to coincide

with a pamcular corresponding pair of points (e.g., (X:,Y1) =
(X{.Y{) = (0.0)) and adjust all of the other point coordinates
appropriately. Then, the following constraint holds:

7'23.Y,I — T13};‘/ +r32X; —r51Y;=0,1=2,--+.n. (1)

If n > 4 and the points are not coplanar, this defines a system of
equations that can be solved for ry3.713.732 and r3; up to a scale
factor:
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Presuming that the correspondences between (X;.Y;) and (X[, Y/)
are correct, it is also the case that

2 2 2 2
ri3 + 23 = 731 + 7i2. (3)

The system defined by (2) will have an exact solution if there
is no error in point displacements and if no independently moving
objects are present in the field of view. In the presence of noise, such
systems can be solved by using a standard least squares approach that
minimizes || Pr|| subject to the constraint that |[r|] = 1. (Clearly, any
scalar multiple of this solution also satisfies (2).) Moving objects can
introduce inconsistencies such that (1) has no meaningful solution
since the parameters of motion relating the moving object and the
imaging system need not have a relationship to 723,713,732 and r3;.
One way to deal with this problem is to consider points associated
with moving objects as outliers—removing such points from (1)
again allows a solution. Researchers in computer vision have recently
become very interested in applying methods from robust statistics to
problems such as structure-from-motion that are inherently unstable
and thus sensitive to both outliers and even small amounts of noise
(e.g., see [9]-{11]). We also use such an approach. Our interest,
however, is not in actually solving (2) but only in identifying the
outliers that make the solution difficult.

Outliers in (2) are found using a modification of the least median
squares (LMedS) algorithm presented in [11] and [12]. Standard
least-squares techniques find an approximate solution to the system
of linear equations Pr = b by defining a residual vector e =
le;] = [Pr — b); and then solving for the r then minimizes the
sum of squares of the e;’s. LMedS is similar, except that the 7
that minimizes the median of the squares of the e;’s is found. This
is more appropriate than least-squares optimization when outliers

are likely. Unfortunately, least median squares methods are quite
computationallly intensive. Some efficiency is possible, however, by
adopting a Monte Carlo approximation.

In our case, b = 0, and the solution procedures described in [12]
cannot be applied directly. Instead, we use a residual vector defined as

€2
Pr=e= 4

Len

and search for the r minimizing the median over i of e? (or
equivalently of |e;|). To approximate the optimal r, we successively
choose random sets of three image points. For each three-point
sample, we find a solution to (2), subject to the constraint that
||r|] = 1. These solutions are exact and, except in degenerate cases,
unique. For each such set, we compute the median residual over all
matched feature points in the image, using the values of 7 just found.
The process is continued, keeping track of the particular » resulting in
the smallest median residual so far. A relatively small number of trials
gives reasonable assurance that the best  is a good approximation of
the LMedS solution. For the problem described here, we do not care
about the actual value of r; we only care about the outliers in (2).
These are found by using the best r found through the random trials,
computing the individual residuals, and then flagging as potential
outliers any points resulting in a value of le;| greater than

toutlier = C - med|e|. &)

Although developed for a different formulation of the problem, the
formula for C' given in [12] proved to be sufficient for this purpose.

III. EXPERIMENTAL RESULTS

We present the results of this method applied to two image se-
quences. Both sequences consist of 13 frames taken by a conventional
television camera and digitized at a resolution of 240 by 320 pixels. A
variety of objects are scattered over a table. In both cases, the camera
is looking down on the scenes from an oblique angle and rotating
around an axis near the center of the visible objects. The camera
rotation between consecutive frames is approximately constant within
each sequence. The per frame rotation varies between the two
sequences but is less than 1°/frame in each case. The axis of rotation
is perpendicular to the table surface (i.e., the camera is moving over
a plane parallel with the table). The camera is approximately 3.4 m
away from the objects, and a lens with focal length 102 mm is
used to approximate orthographic projection. The field of view is
approximately 7 by 5°. No effort was made to correct for geometric
distortions.

Figs. 1 and 2 show the first and last frames of a sequence in which,
in addition to the camera motion, an object is rolling along the table.
For this sequence, the total camera rotation is 7.5%s. Figs. 3 and 4
are the first and last frames of a similar sequence in which one of
the objects is translating over the table. Total camera rotation for the
second sequence is 7.0°.

The feature point matching method described in [13] was applied
to each consecutive frame pair in both sequences.” No parameter
tuning was performed other than to adjust the number of feature
points to a reasonable value. A linking algorithm was used to track
points from frame to frame. In both examples, over 200 points could
be tracked through the complete sequence. Intermediate frames were
then discarded and the corresponding locations in the first and last
frames used to define discrete point correspondences. Twenty-five sets
of three feature points were randomly selected from each sequence

2The feature points used were local extrema in difference of Gaussian
images.
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First frame of sequence with rotating object.

Last frame of sequence with rotating object.

i o

Fig. 3. First frame of sequence with translating object.

and used in the outlier detection process. Empirical testing later
showed that solutions were reasonably stable for any sample larger
than about 12 sets of points. The particular set of three features
leading to the minimum median residual over the entire collection
of feature point correspondences was found. Those points in the
complete set with a residual value in excess of the threshold given by
(5) were marked as outliers inconsistent with a single, rigid motion
of the background. The values of C for the first and second sequence
were 3.794332 and 3.788867, respectively. The value of C in (5) was
defined prior to any experimental results based on a method similar
to that described in [12]. No subsequent tuning of the parameter was
performed. Subsequent experimentation has shown that results are
relatively stable for thresholds within = 20% of this value.

Fig. 4. Last frame of sequence with translating object.
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Fig. 6. Detected outliers in Fig. 5.

Fig. 5 shows the disparities found for the sequence starting with
Fig. 1. Fig. 6 includes only those disparity values in Fig. 5 that were
flagged as outliers. Two hundred and fourteen feature points were
matched across the complete sequence. Of these, 46 were actually
on the moving object. The outlier detection method flagged 19 of
these moving object points correctly. None of the background points
was erroneously flagged. Figs. 7 and 8 give the disparity vectors and
detected outliers for the sequence starting with Fig. 3. Two hundred
and twenty eight feature points were tracked over the sequence, and
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Fig. 7. Feature point disparities for Figs. 3 and 4.
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Fig. 8. Detected outliers in Fig. 7.

28 of them were on the moving object. All 28 of the moving object
points were detected. An additional eight background points were
also flagged (4% of the total background points).

IV. DISCUSSION

Few of the structure-from-motion algorithms proposed in the
literature have been demonstrated to work on real imagery. The
method we present is able to perform well using automatically
determined point correspondences that are rather noisy and contain
a number of outright mismatches. The assumption of orthographic
projection is only approximated in our imaging setup. The linear
algorithm is simple to describe and implement but is likely to be less
stable than many nonlinear formulations. The algorithm depends only
on the point correspondences between two frames and involves no
assumptions about the camera motion. The method works as well as it
does because it embodies principles articulated in [14], including the
principle of least effort. We do qualitative analysis that looks for large
effects—the presence of outliers—rather than trying to accurately
determine quantitative parameters that depend on subtle differences
in the input data. In fact, the method does estimate quantitative
motion parameters as an intermediate step. With simulated data,
these parameters can be recovered accurately. With real data (or
simulations involving substantial noise), the recovered rotation values
may bear little if any relationship to the actual camera motion, but
moving objects are still recoverable. This result is observed for the
experimental data presented here.

It is important to note the limitations of the specific technique we
have presented. Perhaps most importantly, many situations involving
independently moving objects are compatible with a single rigid
motion observed in only two orthographic views. The large number
of moving object points not flagged in Fig. 6 is an example. These are
points with disparities that are plausibly consistent with the motion of
the background, given the limited power of the contraints used in the
specific method we have described. Such situations are not detectable
by this method unless information about depth is also available. In
addition, this technique relies on the selection of a “distinguished
point,” which is assumed to lie on the rigid object. For effective use of
this method, consistency checks would be necessary to ensure that the
chosen point is not from the moving object. One such test would be
(3) since a poor choice for the distinguished point yields an estimate
vector that does not correspond to a feasible rotation in some cases.
Further tests would also be desirable. In addition, detection can almost
certainly be improved by considering perspective projection (more
than two frames) and/or continuity of motion over longer intervals,
although the nonlinear nature of such a problem will significantly
complicate the construction of reliable outlier detection procedures.
Our goal, however, is not to argue for a specific algorithm but instead
to point towards a general approach we feel is likely to be successful.

The question of computational complexity is more difficult- to
address. Our approach, together with most of the other “robust” meth-
ods for computer vision, involves substantial computation. Clearly,
parallel implementations are appropriate and can produce significant
speedups. We suspect that a more fundamental answer may be to
move away from median-based optimization methods that require
some form of sorting and towards mode-based estimations. Under
appropriate circumstances, distribution modes are an efficiently com-
puted robust estimator. The success of many “relaxation labeling”
and “connectionist” algorithms for specific vision problems can be
better understood by recognizing that the essential component is the
extraction of the mode of some simple function of the input data.
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