
Rewriting Queries on SPARQL Views

Wangchao Le1 Songyun Duan2 Anastasios Kementsietsidis2 Feifei Li1 Min Wang3

1 Florida State University
{le, lifeifei}@cs.fsu.edu

2 IBM T.J. Watson Research Center
{sduan, akement}@us.ibm.com

3 HP Labs China
min.wang6@hp.com

ABSTRACT
The problem of answering SPARQL queries over virtual SPARQL

views is commonly encountered in a number of settings, in-
cluding while enforcing security policies to access RDF data,
or when integrating RDF data from disparate sources. We
approach this problem by rewriting SPARQL queries over the
views to equivalent queries over the underlying RDF data,
thus avoiding the costs entailed by view materialization and
maintenance. We show that SPARQL query rewriting com-
bines the most challenging aspects of rewriting for the rela-
tional and XML cases: like the relational case, SPARQL query
rewriting requires synthesizing multiple views; like the XML

case, the size of the rewritten query is exponential to the size
of the query and the views. In this paper, we present the first
native query rewriting algorithm for SPARQL. For an input
SPARQL query over a set of virtual SPARQL views, the rewrit-
ten query resembles a union of conjunctive queries and can
be of exponential size. We propose optimizations over the
basic rewriting algorithm to (i) minimize each conjunctive
query in the union; (ii) eliminate conjunctive queries with
empty results from evaluation; and (iii) efficiently prune out
big portions of the search space of empty rewritings. The
experiments, performed on two RDF stores, show that our
algorithms are scalable and independent of the underlying
RDF stores. Furthermore, our optimizations have order of
magnitude improvements over the basic rewriting algorithm
in both the rewriting size and evaluation time.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Management—
Systems. Subject: Query processing

General Terms: Algorithms

Keywords: Rewriting, SPARQL query, SPARQL views

1. INTRODUCTION
In a number of settings, including access control [13, 14,

24,26] or data integration [19,25], users can only access data
that are visible through a set of views. The views are typ-
ically defined using a standard query language (SQL for re-
lational data, XPath/XQuery for XML, SPARQL for RDF) and
commonly the same language is used by the users to express
the queries over the views. The process of answering these
user queries is determined on whether the views are virtual
or materialized. For materialized views, evaluating the user

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011 Hyderabad, India
ACM 978-1-4503-0632-4/11/03.

(person0, name, Eric)
(person1, name, Kenny)
(person2, name, Stan)
(person3, name, Kyle)
(person5, name, Jimmy)
(person6, name, Timmy)
(person9, name, Danny)

(person0, lives, NYC)
(person1, lives, LA)
(person2, lives, NYC)
(person3, lives, NYC)
(person5, lives, NYC)
(person6, lives, CHI)
(person9, lives, LA)

(person0, friend, person1)
(person0, friend, person2)
(person1, friend, person2)
(person1, friend, person5)
(person2, friend, person6)
(person3, friend, person8)

(person0, related, person3)
(person3, related, person9)
(person0, works, person4)
(person2, works, person7)

(a) Base triples

1) View VF:
CONSTRUCT {

1 ?f0 vfriend ?f1,

2 ?f1 vname ?n1, 3 ?f1 vlives ?l1 }
WHERE {

?f0 name 〈P1〉, ?f0 friend ?f1,
?f1 name ?n1, ?f1 lives ?l1 }

2) View VFoF:
CONSTRUCT {
1 ?f2 vfriend ?f4,
2 ?f4 vname ?n4, 3 ?f4 vlives ?l4 }
WHERE {

?f2 name 〈P2〉,
?f2 friend ?f3, ?f3 friend ?f4,
?f4 name ?n4, ?f4 lives ?l4 }

3) View VR:
CONSTRUCT {

1 ?r0 vrelated ?r1,
2 ?r1 vname ?n1, 3 ?r1 vlives ?l1 }

WHERE {
?r0 name 〈P3〉, ?r0 related ?r1,
?r1 name ?n1, ?r1 lives ?l1 }

4) View VRoR:
CONSTRUCT {

1 ?r2 vrelated ?r4,
2 ?r4 vname ?n4, 3 ?r4 vlives ?l4 }

WHERE {
?r2 name 〈P4〉,
?r2 related ?r3, ?r3 related ?r4,
?r4 name ?n4, ?r4 lives ?l4 }

QU: SELECT {
?f5, ?r5, ?l5 }
WHERE {
1 person0 vfriend ?f5,
2 ?f5 vlives ?l5,
3 person0 vrelated ?r5,
4 ?r5 vlives ?l5 }

(b) Views and user query

(person1, vname, Kenny) [VF]
(person2, vname, Stan) [VF, VFoF]
(person3, vname, Kyle) [VR]
(person5, vname, Jimmy) [VFoF]
(person6, vname, Timmy) [VFoF]
(person9, vname, Danny) [VRoR]

(person1, vlives, LA) [VF]
(person2, vlives, NYC) [VF, VFoF]
(person3, vlives, NYC) [VR]
(person5, vlives, NYC) [VFoF]
(person6, vlives, CHI) [VFoF]
(person9, vlives, LA) [VRoR]

(person0, vfriend, person1) [VF]
(person0, vfriend, person2) [VF, VFoF]
(person0, vrelated, person3) [VR]
(person0, vfriend, person5) [VFoF]
(person0, vfriend, person6) [VFoF]
(person0, vrelated, person9) [VRoR]

(c) Materialized triples in VEric

Figure 1: Motivating example

queries is straightforward, but the simplicity in query evalu-
ation comes at a cost, both in terms of the space required to
save the views, and in terms of the time needed to maintain
the views. Therefore, view materialization is a viable alter-
native only when (i) there are a small number of views; (ii)
the views expose small fragments of base data; and (iii) the
base data are infrequently updated. Since most practical
scenarios do not meet these requirements, the other alter-
native is to use virtual view and rewrite the queries over
the views to equivalent queries over the underlying data.
In relational databases, query rewriting over SQL views is
straightforward as it only requires view expansion, i.e., the
view mentioned in the user SQL query is replaced by its def-
inition. However, in the case of RDF and SPARQL, view ex-
pansion is not possible since expansion requires query nest-
ing, a feature not currently supported by SPARQL. In XML,
XPath query rewriting is rather involved and the rewriting is
exponential to the size of the query and the view [14]. Query
rewriting for RDF/SPARQL is inherently more complex since
(i) whereas XML/XPath is used for representing and query-
ing trees, RDF/SPARQL considers generic graphs; and (ii) in
SPARQL, the query and view definitions may use different
variables to refer to the same entity, thus requiring vari-
able mappings when synthesizing multiple views to rewrite
a given query. Therefore, query rewriting in RDF/SPARQL

raises distinct challenges from those in the relational or XML.

To illustrate these challenges, we use a Facebook-inspired
example, and in Figure 1(a) we consider RDF triples mod-
eling common acquaintances (e.g., friend, related, and works).
In such a setting, we can use views to express access con-
trol (privacy) policies over Facebook profiles. For instance,
for each person (e.g., person0 with name “Eric”) we might
have a default policy that exposes from the social network
only the person’s immediate friends (e.g., for person0, person1

and person2), and relatives (e.g., for person0, person3), along
with friends-of-friends (FoF), and relatives-of-relatives (RoR),
while not exposing the relatives-of-friends, or the friends-
of-relatives. Figure 1(b) shows four views to enforce this
policy (variables are prefixed by ‘?’ and constructed view
predicates are prefixed with the letter ‘v’). The views hide
any distinction between immediate friends (or relatives) and
those at a distance of two. Like [24], a parameter 〈Pi〉 spec-
ifies the name of the person for whom the policies are en-
forced. Figure 1(c) shows the result VEric of materializing
all four views for “Eric”, with each triple annotated by the
generating view(s).

Consider the query QU in Figure 1(b) over the triples for
“Eric”(shown in Figure 1(c)). QU identifies“Eric”’s friends and
relatives who live in the same city. Instead of materializing
VEric just to evaluate QU, we would like to use the views
to rewrite QU into a query over the base data in Figure
1(a). The first challenge is to determine which views can
be used in this rewriting. Finding relevant views requires
computing (variable) mappings between the body of QU (its
WHERE clause) and the return values (CONSTRUCT clause)
of the views. An example of a mapping between triples
(?f0, vfriend, ?f1) in VF and (person0, vfriend, ?f5) in QU, maps
?f0 to person0 and ?f1 to ?f5. The mapping indicates that VF

can be used for rewriting QU. How it will be used, is our
next challenge.

In more detail, the second challenge of the query rewrit-
ing is to determine how the views can be combined into a
sound and complete rewriting. Intuitively, soundness guar-
antees that the rewritten query only returns results that
would have been retrieved should the user query have been
executed over the materialized view. Completeness guaran-
tees that the rewritten query returns all these results. Ad-
dressing the second challenge requires algorithms that (i)
meaningfully combine the views identified in the first step
of the rewriting; and (ii) consider all such possible combina-
tions of the views. In our example, a sound and complete
rewriting results in a union of 64 queries, with each query
being a result of a single view combination, and where each
view combination results in by combining 2 possible var.
mappings for each of vfriend and vrelated, and 4 possible var.
mappings for each instance of vlives. Clearly, there is an (ex-
ponential) blowup in the size of the rewritten query, with
respect to the size of the input query and views. However,
the blind view combinations often generate rewritings that
have empty results, which provides optimization opportu-
nities by removing the empty rewritings from evaluation.
For this particular example, only four of these combinations
need to be evaluated (the others are either subsumed by
these four, or return no results). Therefore, our third chal-
lenge is to optimize the rewriting and evaluate only a subset
of the view combinations without sacrificing soundness or
completeness.

Given that relational algebra (and the corresponding SQL

fragment) has the same expressive power as SPARQL [8], one

VF-SQL:

SELECT F.s, F.o, N’.s, N’.o, L.s, L.o
FROM name N, friend F, name N’, lives L
WHERE N.s =F.s AND N.o =〈P1〉 AND

N’.s =F.o AND L.s =F.o

VR-SQL:

SELECT R.s, R.o, N’.s, N’.o, L.s, L.o
FROM name N, related R, name N’, lives L
WHERE N.s =R.s AND N.o =〈P3〉 AND

N’.s =R.o AND L.s =R.o

VFoF-SQL:

SELECT F.s, F’.o, N’.s, N’.o, L.s, L.o
FROM name N, friend F, friend F’, name N’, lives L
WHERE N.s =F.s AND N.o =〈P2〉 AND

F.o =F’.s AND N’.s =F’.o AND L.s =F’.o

VRoR-SQL:

SELECT R.s, R’.o, N’.s, N’.o, L.s, L.o
FROM name N, related R, related R’, name N’, lives L
WHERE N.s =R.s AND N.o =〈P4〉 AND

R.o =R’.s AND N’.s =R’.o AND L.s =R’.o

(a) SQL translation of VF, VR, VFoF and VRoR.
vfriend:
SELECT fs, fo FROM VF-SQL
UNION
SELECT fs, fo FROM VFoF-SQL

vrelated:
SELECT rs, ro FROM VR-SQL
UNION
SELECT rs, ro FROM VRoR-SQL

vlives:
SELECT ls, lo FROM VF-SQL
UNION
SELECT ls, lo FROM VFoF-SQL
UNION
SELECT ls, lo FROM VR-SQL
UNION
SELECT ls, lo FROM VRoR-SQL

(b) Secure predicate tables definitions
QU-SQL:

SELECT F.o, R.o, L.o
FROM vfriend F, vlives L, vlives L’, vrelated R
WHERE F.s =person0 AND F.o =L.s AND R.s =person0 AND R.o =L’.s AND L.o =L’.o

(c) SQL translation of query QU.

Figure 2: Attempting a relational/SQL rewriting

might be tempted to address the SPARQL rewriting problem
by considering the corresponding SQL setting and applying
the solutions in SQL. Although this seems promising since
some RDF stores do use a relational back-end (e.g., Jena
SDB [2], Virtuoso [3], C-store [4], etc), we show here that for
a number of reasons such an approach does not reduce the
complexity. To translate our setting to the relational case,
we use one of the most efficient relational storage strategies
for RDF, namely, predicate tables [4] (column-store style
storage); our observations are independent of this choice. So,
we have a database with five tables: name (s, o), lives (s, o),
friend (s, o), related (s, o), and works (s, o), whose contents are
easily inferred by the corresponding triples in Figure 1(a).
In Figures 2(a) and (c), we show the SQL translations of the
views and query of Figure 1(b). During this translation, we
need to create the corresponding view predicate tables of the
base database tables. So, as shown in Figure 2(b), we need
to create the vfriend table which contains the friend subjects
and objects returned by the VF-SQL and VFoF-SQL views (simi-
larly for vrelated and vlives). How can we rewrite QU-SQL to a
query over the base five tables? Since view expansion is sup-
ported in SQL, we can replace in QU-SQL the vfriend, vrelated,
and vlives tables with their definitions in Figure 2(b), and in
turn replace VF-SQL, VFoF-SQL, VR-SQL and VRoR-SQL with
their definitions in Figure 2(a). Finally, it is not hard to see
that the rewriting of QU-SQL results in a union of 64 queries,
the same blow-up in size, as the one observed in SPARQL.
So, moving from SPARQL to SQL does not reduce the com-
plexity of the problem (more exposition in Section 5); we
will validate this observation in Section 4. Such move is also
prohibitive as there is an increasing number of stores (e.g.,
Jena TDB [2], 4store [1]) using native RDF storage. For
these stores, translation to SQL does not work. Therefore, it
is necessary to have a native and efficient SPARQL rewriting
algorithm, which has the advantage of being generic since it
works on any existing RDF store irrespectively of the storage
model used.

Summary of our contributions:
1. We study the rewriting of SPARQL queries over virtual
SPARQL views, and propose a native SPARQL rewriting al-
gorithm (Section 2), and prove that it generates sound and
complete rewritings.
2. We propose several optimizations of the basic rewriting

algorithm to reduce the complexity (Section 3.1) and size of
the rewritten queries (Sections 3.2 and 3.3), while employing
novel optimization techniques customized for our needs.
3. We present extensive experiments on two RDF stores
(Section 4) on the scalability and portability of our algo-
rithms. The optimizations result in order of magnitude im-
provements in rewritten query sizes and evaluation times
over our basic rewriting algorithm in SPARQL; the latter is
comparable to applying rewriting techniques in SQL after
translating SPARQL queries into SQL queries.

We survey the related work in Section 5 and conclude the
paper in Section 6.

2. QUERY REWRITING IN SPARQL
SPARQL, a W3C recommendation, is a pattern-matching

query language. The most common SPARQL queries have the
following form: Q := (SELECT | CONSTRUCT) RD (WHERE

GP), where GP are triple patterns, i.e., triples involving vari-
ables and/or constants, and RD is the result description.
Given an RDF graph G, a triple pattern on G searches for
a set of subgraphs of G, each of which matches the pattern
(by binding pattern variables to values in the subgraph).
For SELECT queries, RD is a subset of variables in the graph
pattern, similar to a projection in SQL. This is the case for
query QU in Figure 1(b). For CONSTRUCT queries, RD is
a set of triple templates that construct a new RDF graph
by replacing variables in GP with matched values. This is
the case for the views in Figure 1(b). Finally, we consider
boolean SPARQL queries of the form ASK GP which indi-
cate whether GP exists, or not, in G. Similar to SQL where
research considered set before bag semantics, for our non-
boolean SPARQL queries we assume set semantics whose im-
portance for SPARQL has already been noted [22].

The central technical problem in this paper is the rewriting
problem as follows: given a set of views V = {V1, V2, . . . , Vl}
over an RDF graph G, and a SPARQL query Q over the vo-
cabulary of the views, compute a SPARQL query Q′ over G

such that Q′(G) = Q(V(G)). Like [26], we consider two crite-
ria on the correctness of a rewriting, namely, soundness and
completeness.

1. The rewriting is sound iff Q′(G) is contained in Q(V(G)),
i.e., Q′(G) ⊆ Q(V(G))

2. The rewriting is complete iff Q(V(G)) is contained in
Q′(G), i.e., Q(V(G)) ⊆ Q′(G)

Soundness and completeness suffice to show that Q(V(G)) =
Q′(G). We will prove our rewriting meet the two criteria.

2.1 Rewriting Algorithm
The first challenge in query rewriting (as mentioned in the

introduction) is to determine which views can be used for
the rewriting. In SPARQL, the crucial observation to address
this challenge is that if a variable mapping exists between a
triple pattern (sv, pv, ov) in the result description RD(Vj) of
a view Vj and one of the triple patterns (sq, pq, oq) in the
graph pattern GP(Q) of query Q, then view Vj can be used to
rewrite Q . Using this observation, we present Algorithm 1
(SQR) to perform the rewriting in two steps. In the first step
(lines 3-18), the algorithm determines, for each triple pattern
pi(X̄i) in user query, the set CandVi of candidate views that
have a variable mapping to this triple pattern. For ease
of presentation, we assume that in our SPARQL queries the
predicate in each triple pattern is a constant (the subject

and object can either be variables or constants). Even if a
triple has a variable in its predicate, we can simply substitute
such a triple by a set of triple patterns, each triple in the set
binding the predicate variable to a constant predicate from
the active domain of predicates in the RDF store.

Computing variable mappings between triple patterns in
SQR is similar to computing substitutions between conjunc-
tive queries [6]. Formally, a substitution is a mapping be-
tween the corresponding elements (subject, predicate, and
object) in a pair of triples that maps: (i) a variable in
the first triple to another variable or constant in the sec-
ond triple; or (ii) a constant in the first triple to the same
constant in the second triple. Or, conversely, a substitution
cannot map a constant in the first triple to a variable in
the second, or map two different constants in the triples.
For example, a substitution exists from (?f0, vfriend, ?f1) to
(person0, vfriend, ?f5), which maps the variable ?f0 to the con-
stant person0 and the variable ?f1 to the variable ?f5. There
is no substitution from the second to the first triple since we
cannot map the constant person0 to the variable ?f0.

1 Input: Views V, query Q with GP(Q)=(sQ
1 , pQ

1 , oQ
1), . . . ,

(sQ
n , pQ

n , oQ
n)

2 Output: a rewriting Q′ as a union of conjunctive queries

3 for each (sQ
i , pQ

i , oQ
i), 1 ≤ i ≤ n do

4 Set CandVi to ∅.
5 for each view Vj ∈ V do

6 Let RD(Vj)=(s
Vj
1 , p

Vj
1 , o

Vj
1), . . . , (s

Vj
m , p

Vj
m , o

Vj
m)

7 for each (s
Vj
k , p

Vj
k , o

Vj
k), 1 ≤ k ≤ m do

8 if pQ
i = p

Vj
k then

9 Set variable mapping Φijk to undefined

10 for the pair (sQ
i , s

Vj
k) of subjects (similarly objects (oQ

i ,

o
Vj
k)) do

11 if var. mapping φ : sQ
i → s

Vj
k exists then

12 if φ maps two variables then Φijk(s
Vj
k) = sQ

i

13 else Φijk(s
Vj
k) = s

Vj
k (s

Vj
k is a constant)

14 if var. mapping φ : s
Vj
k → sQ

i exists then

15 if φ maps a variable to a constant then

Φijk(s
Vj
k) = sQ

i

16 if Φijk is defined then

17 For any variable v′ in RD(Vj) not in (s
Vj
k , p

Vj
k , o

Vj
k),

Φijk maps v′ to a fresh variable (a new variable)
18 Add (Vj , Φijk) to CandVi

19 Set the query rewriting result Q′ to ∅
20 for each entry in Cartesian product CandV1 × . . . × CandVn do

21 if Φ1j1k1
, Φ2j2k2

, . . . , Φnjnkn is compatible then

22 RD(q′) = RD(Q)

23 GP(q′) = GP(Φ1j1k1
(Vj1

), . . . , Φnjnkn (Vjn))

24 Q′ = Q′ ∪ q′

25 return Q′

Algorithm 1: SPARQL Query Rewriting (SQR) Algorithm

Unlike substitutions that are directional, i.e., the mapping
is always from one triple to another, the variable mappings
computed here are more complex; since for their creation
we need to compose the (partial) substitutions that exist be-
tween the two triples in both directions. As an example, con-
sider the triples (person0, vfriend, ?f5) and (?f6, vfriend, person1).
There is no substitution between the two triples in either
of the directions. However, the variable mappings used by
our algorithm attempt to compute partial substitutions be-
tween the two triples and use those to compute a variable
mapping. In our example, our algorithm computes a partial
substitution from the first triple to the second that maps ?f5

to constant person1. It also computes a partial substitution
from the second triple to the first that maps ?f6 to constant

(VF, Φ111) : Φ111(?f0, ?f1, ?n1, ?l1)= (person0, ?f5, ?ν0, ?ν1)

(VFoF, Φ121) : Φ121(?f2, ?f4, ?n4, ?l4)= (person0, ?f5, ?ν2, ?ν3)

(a) CandV1 for triple (person0, vfriend, ?f5)

(VF, Φ213) : Φ213((?f1,?l1,?f0,?n1))=(?f5,?l5,?ν4,?ν5)

(VFoF, Φ223) : Φ223((?f4,?l4,?f2,?n4))=(?f5,?l5,?ν6,?ν7)

(VR, Φ233) : Φ233((?r1,?l1,?r0,?n1))=(?f5,?l5,?ν8,?ν9)

(VRoR, Φ243) : Φ243((?r4,?l4,?r2,?n4))=(?f5,?l5,?ν10,?ν11)

(b) CandV2 for triple (?f5, vlives, ?l5)

GP(q’)={ person0 name 〈P〉, person0 friend ?f′3, ?f′3 friend ?f5, ?f5 name ?ν2,

?f5 lives ?ν3, ?ν8 name 〈P〉, ?ν8 related ?f5, ?f5 name ?ν9, ?f5 lives ?l5 }

(c) Rewritten body of QU
part

Table 1: Variable mapping example

person0. The combination of the two partial substitutions
constitutes a variable mapping. Eventually, this is used to
compute a new triple of the form (person0, friend, person1).
The computed triple is such that a substitution exists from
each of the initial triples to it.

After the var. mapping computation, Algorithm SQR (lines
19-23) constructs in its second step the rewriting as a union
of conjunctive queries. Each query in the union is generated
by considering one combination from the Cartesian prod-
uct of the sets CandVi (i ∈ [1, n]). While considering each
combination, we need to make sure that the corresponding
variable mappings from individual predicates are compati-
ble, i.e., they do not map one variable in the query Q to two
different constants (from the views). For the variables only
appearing in GP of the views, they are mapped to fresh (i.e.,
new) variables by default. For each compatible combination,
we generate one query in the union.

To illustrate this, consider triples t
QU
1 = (person0, vfriend, ?f5)

and t
QU
2 = (?f5, vlives, ?l5), from QU of Figure 1. For t

QU
1 ,

CandV1 = {(VF, Φ111), (VFoF, Φ121)}, where both Φ111 and
Φ121 are shown in Table 1(a) (the subscripts of Φs are de-
fined in Algorithm SQR and labelled in Figure 1(b)). Sim-
ilarly, Table 1(b) shows CandV2 for t

QU
2 . To get Φ111, SQR

first considers t
QU
1 with t

VF
1 = (?f0, vfriend, ?f1) from VF (lines

3-8). Then, for the pair of subjects (person0, ?f0) (line 10), a
var. mapping φ exists (line 14) from ?f0 to person0. Therefore
Φ111 assigns the constant to the variable (line 15). Next, the
pair of objects (?f5, ?f1) is considered (line 10) and as a result
Φ111 assigns ?f1 to ?f5 (lines 11-12). The remaining variables
(?n1 and ?l1) in VF are assigned to fresh/new variables respec-
tively (?v0 and ?v1) (line 17). This concludes the computation
of Φ111. Other Φ’s are computed accordingly. To illustrate,
we consider the (partial) query QU

part of QU consisting only
of triples t

QU
1 and t

QU
2 . Then, there are 8 rewritings of QU

part

(lines 20-24), one for each combination of Φ’s in CandV1 and
CandV2. Table 1(c) shows the rewriting for QU

part, using
(VFoF, Φ121) in CandV1 and (VR, Φ233) in CandV2.

Theorem 1. The rewriting Q′ of SQR is sound and com-
plete (see proof in [18]).

The cost of Algorithm SQR is influenced by the cost of
computing variable mappings O(|Q| ×

P

j |RD(Vj)|), but is
dominated by the generation of rewritings and is thus equal

to O((
P

j |Vj |)
|Q|), where |Q| (resp. |Vj |) is the size of Q

(resp. Vj).
In SQR, as long as a view predicate is mentioned in a query,

the view automatically becomes a candidate for rewriting
the query (modulo an incompatibility check). The key rea-
son is that the RDF model is, in a sense, schema-less. This

schema-less nature of the data model is the main reason be-
hind the exponential blow-up of the rewriting. As an exam-
ple, using SQR to rewrite query QU over the views of Figure
1 results in a rewriting Q′ that is a union of 64 queries; all
of which must be evaluated in principle for the rewriting to
be sound and complete. However, a number of these queries
can either be (i) optimized and replaced by more succinct
and equivalent queries; or (ii) dropped from consideration
altogether because they result in an empty set. Going back
to our motivating example, remember that actually only 4
queries suffice for the rewriting. Therefore, the challenge
we address next is to perform such optimizations without
sacrificing soundness or completeness.

3. OPTIMIZING REWRITINGS

3.1 Optimizing Individual Rewritings
In the rewriting of QU, each rewriting q′ generated by

Algorithm SQR joins four views (one view from the CandV

of each of the four predicates vfriend, vlives, vrelated, lives in
QU). One such rewriting involves views VF for vfriend, VF for
vlives, VR for vrelated, and VR for vlives. That is, the rewriting
uses two copies of both VF and VR. Since the join (e.g.,
vfriend joined with vlives) in QU is done in a similar way as
that in the view (correspondingly, VF), there is redundancy
to have two copies of VF for this join; the similar situation
happens to VR. The question is whether it is possible to get
an equivalent rewriting by merging view copies, and thus
generate a simpler query to evaluate. Indeed, one copy from
each view suffices: the two copies of VF are due to predicates
vfriend and vlives being joined on variable ?f5 in QU. But in
the CONSTRUCT of VF these two predicates are joined in
a similar way. Therefore, one copy of VF suffices since it
already returns all the triples joinable by the two predicates
(i.e., the view self-join is equivalent to the view itself).

1 Inputs: (V, Φ1) from CandV1, (V, Φ2) from CandV2

2 Output: (V, Φmerge)
3 Continue merge = false;
4 for each triple pattern (s, p, o) in Φ1(RD(V)) do

5 Let (s’, p, o’) be the corresponding pattern in Φ2(RD(V))

6 if {s, o} ∩ {s′, o′} 6= ∅ then Continue merge = true;

7 if Continue merge == false then return (V, ∅);
8 for each triple pattern (s, p, o) in Φ1(RD(V)) do

9 Let (s’, p, o’) be the corresponding pattern in Φ2(RD(V))
10 Create corresponding merged pattern (sM, p, oM) for Φmerge

11 if s is a fresh variable then sM = s′; goto 14;

12 if s′ is a fresh variable then sM = s; goto 14;

13 if s = s′ then sM = s else return (V, ∅)

14 if o is a fresh variable then oM = o′; goto 8;

15 if o′ is a fresh variable then oM = o; goto 8;

16 if o = o′ then oM = o else return (V, ∅)

17 return (V, Φmerge)

Algorithm 2: Candidate View Merging

Algorithm 2 detects such situations by accepting as input
two copies of a view V that are used in rewriting a query,
one as the candidate view for predicate p1 and the other for
its joinable predicate p2, with variable mappings Φ1 and Φ2,
respectively. The algorithm considers the variable mappings
between the query and the views and attempts to construct
a new mapping Φmerge that merges the two input mappings.
If Φmerge exists, the two copies of V can be merged to sim-
plify the rewriting. During merging, should multiple occur-
rences of the same predicate appear in the same V, they
are treated as distinct predicates. A key observation during

the construction of Φmerge is that all the variables and con-
stants appearing in the query are treated as constants (thus
only fresh variables are treated as variables for the purpose
of merging the view copies). This ensures that views are
merged not only because they are copies of the same view,
but also because their predicates are joined in precisely the
same way as in the query (lines 4-7). Each time view copies
are merged, we must also account for any variable mappings
that have been applied to the views, due to their relation-
ships with the views used for rewriting other predicates. Al-
gorithm 2 ensures that the effects of such variable mappings
are also merged (lines 8-16). If Φmerge in the output of
Algorithm 2 is ∅, the two copies of V can not be merged.

To illustrate, consider in the rewriting of QU the var. map-
ping (VF, Φ111) for predicate vfriend and (VF, Φ213) for predi-
cate vlives. Applying the two mapping functions respectively
on VF would result in two copies of VF joined on ?f5. Since
in VF the triple patterns of vfriend and vlives are joined in
the same way as that in QU, Φ111 and Φ213 can be merged;
Φmerge(?ν4, ?f5, ?ν0, ?ν1) = (person0,?f5,?ν5,?l5). Therefore, the
rewriting from Algorithm SQR involving two copies of VF

can be simplified into a rewriting with one copy.

Theorem 2. Query q′merge resulting from (i) replacing
the two copies of view V in query q′ with one; and (ii) ap-
plying Φmerge computed by Algorithm 2, in place of Φ1 and
Φ2; is equivalent to q′ (see proof in [18]).

The cost of Algorithm 2 is O(|V|). Since, in the worst case,
there can be as many view copies of a view V as the size of the
query, optimizing with Algorithm 2 each conjunctive query
generated at lines 22-23 of SQR costs O(|Q| × |V|).

3.2 Pruning Rewritings with Empty Results
Due to the schema-less nature of RDF, a sound and com-

plete rewriting of an input query requires that we construct
rewritings by considering every possible combination of pred-
icates from the input views, which often results in a certain
number of rewritings with empty results. (This observation
is unique to RDF/SPARQL, in comparison to the query rewrit-
ing results in relational or XML case.) For example, a sound
and complete rewriting of query QU

part (see Section 2.1) in-
cludes the rewriting q′ in Table 1(c). Rewriting q′ joins
triples from VFoF and VR and essentially looks for persons
that are relatives of friends-of-friends of person0. Looking at
the triples in Figure 1, it is clear that no current base triples
satisfy the constraints of q′. The question is then how can
we detect such empty rewritings, and more importantly, how
to do this in a light-weight fashion.

Consider a simple case where a rewriting involves a join
between two predicates (?y1, p1, ?y2) and (?y3, p2, ?y4), where
the join equates ?y2 and ?y3. Denote the value set of a vari-
able ?x as A(?x). If we store A(?x) for every variable in any
triple pattern, this problem is trivial, i.e., we simply check
whether A(?y2)

T

A(?y3) = ∅. Unfortunately, this straight-
forward solution is expensive space-wise. In general, a neg-
ative result exists for the boolean set intersection problem,
i.e., given two sets A1 and A2, checking if A1 and A2 inter-
sects requires linear space, even if one is willing to settle to a
constant success probability [7,17]. However, we can design
a space-efficient heuristic that works well in practice.

The basic idea is to first determine the value set for each
distinct variable involved in the rewriting, and then con-
struct a synopsis for each value set. In our example, we can

estimate the size of intersection of A(?y2) and A(?y3) based
on their synopses. If the intersection size is estimated to be
above some preset threshold with a reasonable probability,
we consider the predicates as joinable; otherwise we issue
an ASK query to verify if the join is actually empty; if it
is, we remove this and other rewritings involving predicates
(?y1, p1, ?y2) and (?y3, p2, ?y4). Note that our pruning step does
not affect the soundness and completeness of our solution,
as before pruning, we always issue an ASK query to make
sure that rewriting has an empty result. In general, an ASK

query is much cheaper than the corresponding SELECT query
especially when the graph pattern is nonselective, and the
synopses are used to avoid issuing unnecessary ASK queries
(for those rewritings that are very likely to be non-empty).

The synopses should satisfy two key requirements. First,
we should be able to estimate the size of intersection of mul-
tiple value sets (not just binary intersection) since a rewrit-
ing might include a join of m predicates on m variables. Let
?x1, ?x2, . . . , ?xm denote these variables. To simplify notation,
we use Ai to denote A(?xi). Second, the synopses of each
variable should be able to estimate the distinct elements in
its value set (as well as support distinct elements estima-
tion under the set intersection operator). This requirement
comes from the observation that we can estimate the size
of an intersection |A1

T

A2| by simply estimating the size of
D(A1

T

A2) where D is the number of distinct elements in
A1 and A2, respectively. In what follows, we show that the
KMV-synopsis [9] meets both requirements.

For a set A1, we denote its KMV-synopsis as σ(A1). The
construction of σ(A1) is as follows. Given a collision-resistant
hash function h that generates (roughly) uniformly random
hash values in its domain [1, M], σ(A1) simply keeps the k
smallest hash values from all elements in A1, i.e., σ(A1) =
{h(v1), . . . , h(vk)}, where vi ∈ A1, and h(v) ≥ max(σ(A1))

if v ∈ A1 and h(v) /∈ σ(A1). Then, bD(A1) = k−1
max(σ(A1))/M

is an unbiased estimator for D(A1) [9]. Furthermore, it is
also possible to estimate the distinct number of elements
in a general compound set (produced based on A1, . . . , Am

with set union, intersection and difference operators) [9]. In
our case, we are only interested in estimating D(I) where
I = A1

T

A2 · · ·
T

Am. Specifically, inspired by the dis-

cussion in [9], we can obtain an unbiased estimator bD(I)
as follows. Define σ(Ai) ⊕ σ(Aj) as the set consisting of
the k smallest values in σ(Ai)

S

σ(Aj), and let σ1...m =
σ(A1) ⊕ σ(A2) · · · ⊕ σ(Am). Furthermore, let:

KI =
˛

˛

˛

σ1...m

\

σ(A1)
\

· · ·
\

σ(Am)
˛

˛

˛

and,

bD(I) =
KI

k

„

k − 1

max(σ1...m)/M

«

.
(1)

We can show that (see proofs in [18]), by extending similar
arguments from [9]:

Lemma 1. For k > 1, bD(I) in Equation 1 is an unbiased
estimator for D(I).

Lemma 2. If D(I) > 0, ǫ ∈ (0, 1) and k ≥ 1, let T =
kD(I)/j, it follows:

Pr

| bD(I) − D(I)|

D(I)
≤ ǫ

˛

˛

˛

KI = j

!

= ∆(kD(I)/j, k, ǫ) = δ, (2)

∆(T, k, ǫ) =

T
X

i=k

“T

i

”

„

k − 1

(1 − ǫ)T

«i „

1 −
k − 1

(1 − ǫ)T

«T−i

−
T

X

i=k

“T

i

”

„

k − 1

(1 + ǫ)T

«i „

1 −
k − 1

(1 + ǫ)T

«T−i

In practice, given the observation of bD(I) and KI , we can

set T = k bD(I)/KI and substitute T in Equation 2. Thus,

we can obtain the confidence value δ for Pr
“

| bD(I)−D(I)|
D(I)

≤ ǫ
”

for any error value ǫ. That said, our pruning technique works
as follows.

We preset a small threshold value τ > 1, a probability
threshold θ ∈ [0, 1) and a relative error value ǫ ∈ (0, 1). For
any m value sets of m variables to be joined in a rewriting,

we estimate their intersection size as bD(I) by Equation 1,

and δ = Pr
“

| bD(I)−D(I)|
D(I)

≤ ǫ
”

as above. Then, we check if

bD(I)/(1+ǫ) > τ and δ > θ (i.e., if D(I) is larger than τ with
a probability ≥ θ). If this check returns false, we issue an
ASK query to verify if the corresponding rewriting is empty;
if yes, we can safely prune this rewriting. Otherwise (either
the check returns true or the ASK returns nonempty), we
consider that I is not empty and keep the current rewriting.
In practice, we observe that the above procedure can be

simplified by just checking if bD(I) ≤ τ for a small threshold
value τ > 1 (without using δ, θ and ǫ), which performs
almost equally well.

To illustrate, consider again the rewriting in Table 1(c) of
query QU

part. To detect whether the rewriting is empty, we
estimate the intersection size of the join in Table 1(c) using
Equation 1. For the example, the equation indicates that
the intersection is not larger than τ , and therefore we issue
an ASK query. The ASK query evaluates the rewriting of
Table 1(c) over the triples of Figure 1(a). Since there are no
triples for persons that are relatives of friends-of-friends of
person0, the ASK query returns false. Thus, QU

part is pruned.
Discussion on synopsis updates. The KMV-synopsis

supports insertions (of a new item to the multiset the syn-
opsis was initially built from) but not deletions (hence, it
does not support the general update, which can be modeled
as a deletion followed by an insertion) [9]. However, we can
still use the KMV-synopsis to provide a quick estimation
for pruning rewritings with empty results in case of updates
to RDF stores, by only updating the synopses with the in-
sertions and ignoring the deletions. Clearly, over the time,
this will lead to an overestimation of the intersection size for
multiple sets. However, such an overestimation only gives us
false positives but not false negatives, i.e., we will not mis-
takenly prune any rewritings that do not produce an empty
result. Of course, as the number of deletions increases, this
approach will lead to too many false positives (rewritings
that do produce empty results cannot be detected by check-
ing their synopses) Hence, we can periodically rebuild all
synopses after seeing enough number of deletions w.r.t. a
user-defined threshold.

3.3 Optimizing the Generation of Rewritings
The pruning technique presented in Section 3.2 considers

rewritings in isolation, to decide if a rewriting is empty or
not. One way to integrate Algorithm SQR with the prun-
ing technique will be: generating all the possible rewritings
in one shot followed by a pruning step to remove empty
rewritings from evaluation. However, such an integration
ignores some inherent relationships between the rewritings,
i.e., that different rewritings share similar sub-queries. If
we can quickly determine a common sub-query (i.e., par-
tial rewriting) is empty, it will save time that otherwise is
needed to determine whether the rewritings contained in this
sub-query are empty or not. In what follows, we show how

one can optimize the rewriting by taking advantage of these
common sub-queries. To illustrate, consider our running ex-
ample and the rewriting of QU over the views in Figure 1(b).
One generated rewriting q′1 for QU involves views VF, VR, VR,
VR with appropriate variable mappings since each view is in
the CandV of predicate friend, lives, related and lives, respec-
tively. Similarly, another generated rewriting q′2 involves
views VF, VR, VRoR, VR. The key observations here is that
(i) both rewritings involve a join of views VF and VR; and
(ii) from the optimization of the previous section, the join
of views VF and VR is empty since the set of friends of “Eric”

(see Figure 1(c)) is disjoint from his relatives. Therefore,
both rewritings q′1 and q′2 can safely be removed (and every
other rewriting involving a join of the two views over the
corresponding predicates). By detecting with a single check
the empty join between views VF and VR, the algorithm op-
timized SQR (OSQR, see Algorithm 3) terminates immedi-
ately the branch of rewritings (including q′1 and q′2) involving
these two views. To remove them from consideration, Algo-
rithm SQR must check each generated individual rewriting
independently. Algorithm OSQR addresses this shortcom-
ing by building individual rewritings in a step-wise fashion.
This way, OSQR detects and terminates early any branch of
rewritings involving views whose join result is empty.

1 Input: Views V, query Q with GP(Q)=(sQ
1 , pQ

1 , oQ
1), . . . ,

(sQ
n , pQ

n , oQ
n)

2 Output: a rewriting Q′ as a union of conjunctive queries

3 Set the query rewriting result Q′ to ∅.

4 Generate CandVi for each triple pattern (sQ
i , pQ

i , oQ
i), 1 ≤ i ≤ n.

5 Set SubQ to ∅; initialize a stack STACK to store view
combinations for SubQ.

6 Pick a triple pattern (sQ
i , pQ

i , oQ
i), with the smallest size of

|CandVi|.

7 Add (sQ
i , pQ

i , oQ
i) into SubQ;

8 push each combination (SubQ, {V, V ∈ CandVi}) into STACK.
9 while STACK is non-empty do

10 Pop a combination R from STACK; extract SubQ from R.
11 if SubQ contains all triple patterns in user query then

12 Generate a rewriting q from R’s view set (lines 21-23 in
SQR).

13 Q′ = Q′ ∪ q; goto line 9.

14 Get all triple patterns that can be joined with SubQ but not
in SubQ;

15 Pick the triple pattern (sQ
j , pQ

j , oQ
j) with the smallest size of

|CandVj |.
16 for each view V in CandVj do

17 Create a copy R′ of R and a copy SubQ′ of SubQ.

18 if V is redundant with existing views in R′ then

19 Merge V with the view set of R′ (Sec. 3.1).

20 else Add V into the view set of R′.

21 if the estimated result of a rewriting from R′ is empty
(Sec. 3.2) then

22 Issue an ASK query corresponding to the rewriting.
23 if ASK query confirms the result is empty then goto

line 16.
24 Add (sQ

j , pQ
j , oQ

j) in SubQ′ to replace SubQ in R′;

25 Push R′ in STACK.

Algorithm 3: The Optimized SQR (OSQR) Algorithm

In a nutshell, Algorithm OSQR works as follows. The algo-
rithm uses a structure STACK where each element in STACK

stores a sub-query SubQ of Q along with a candidate view
combination for rewriting SubQ. Initially, STACK and SubQ

are empty. The first sub-query considered corresponds to a
triple pattern in Q, and we pick the pattern with the smallest
size of |CandV| (i.e., the number of views in CandV). Intu-
itively, this triple pattern is the most selective and by con-
sidering the most selective predicates in order (in terms of
their |CandV|), we maximize the effects of early terminating

a branch of rewritings once we detect the rewriting for SubQ

results in an empty set (a larger portion of the rewritings
for Q that contain this rewriting for SubQ is pruned earlier
in this manner). After the first pattern, the algorithm con-
siders one pattern added at each step. The way the pattern
is picked (line 14) ensures that it can be joined with the cur-
rent SubQ at the head of STACK, which increases the chance
of optimization with techniques described in Section 3.1 and
Section 3.2. Again, when more than one patterns are under
consideration, the most selective one is picked. After a pat-
tern is added and a candidate view for the pattern is picked,
the view redundant with the existing view set for SubQ will
be merged into the view set (lines 18-19). If the current
rewriting for SubQ has an empty result (lines 21-23), the
rewriting is not extended further and not pushed back into
STACK.

We use CandV1 and CandV2 in Tables 1(a) and 1(b) to illus-
trate OSQR. Since |CandV1| is smaller in size (line 6) , it first
initializes STACK = {({vfriend },{VF}), ({vfriend },{VFoF})}
(line 8). OSQR processes CandV2 next (line 15). It iter-
ates through CandV2 from (VR, Φ233) and detects that VF

in CandV1 can not be merged with VR in CandV2 (line 18).
Therefore, OSQR adds (vlives,VR) to R′ (line 20). Assume
OSQR detects an empty result (line 21), (e.g., the join of
VF and VR for“Eric” is actually empty), OSQR issues an ASK

query. If ASK returns negative (i.e., empty), OSQR will skip
lines 24-25 to avoid pushing ({vfriend, vlives },{VF, VR}) into
STACK. The above procedure iterates until STACK is empty.

4. EXPERIMENTS
We implemented our rewriting algorithms and optimiza-

tion components in C++ and evaluated them on two RDF

stores, namely, 4store [1] and Jena TDB [2]. Our rela-
tional database experiments were conducted using MySQL.
For KMV synopsis, we set k=16 and τ = 2 whenever the
synopses were used (the simplified version of the checking
procedure from Section 3.2 was adopted).

Here, we report the experimental results that compare the
basic SPARQL query rewriting (SQR) algorithm with the op-
timized SQR (OSQR) algorithm, with detailed evaluation of
the impact of individual optimization components. We used
two key performance metrics, i.e., the number of rewrit-
ings generated through query rewriting and the end-to-end
evaluation time, including query rewriting and execution.
Also we studied the scalability of our algorithms along mul-
tiple dimensions, i.e., the size of query |Q|, views |V| and
|CandV|. In experiments, we used the popular RDF bench-
mark LUBM [15] (which considers a setting in the university
domain that involve students, departments, professors, etc.)
to generate a dataset of 10M triples as the base data, over
which views are defined using SPARQL queries. We run all
experiments on a 64-bit Linux machine with a 2GHz Intel
Xeon(R) CPU and 4GB of memory.

4.1 Experimental Results with 4Store

Native SPARQL rewriting vs. SQL expansion: In the
introduction, we claim that translating SPARQL queries/views
to SQL does not resolve the challenges addressed by our
work. Here, we illustrate experimentally this is indeed the
case. For the experiment we use the setup shown in Figure 3.
In more detail, we use the seven view templates to instanti-
ate 56 different views. Specifically, we create 14 views using
template V1 (each view with a different parameter in P1), 12

V1:CONSTRUCT { ?x1 name ?n1 } WHERE { ?x1 name ?n1, ?x1 worksFor 〈P1〉}
V2:CONSTRUCT { ?x2 email ?e2 } WHERE { ?x2 email ?e2, ?x2 worksFor 〈P2〉}
V3:CONSTRUCT { ?x3 degreeFrom ?d3 } WHERE { ?x3 degreeFrom ?d3, ?x3 worksFor 〈P3〉}
V4:CONSTRUCT { ?x4 phone ?p4 } WHERE { ?x4 phone ?p4, ?x4 worksFor 〈P4〉}
V5:CONSTRUCT { ?x5 teacherOf ?c5 } WHERE { ?x5 teacherOf ?c5, ?x5 worksFor 〈P5〉}
V6:CONSTRUCT { ?x6 interest ?i6 } WHERE { ?x6 teacherOf ?i6, ?x6 worksFor 〈P6〉}
V7:CONSTRUCT { ?x7 worksFor ?w7 } WHERE { ?x7 worksFor ?w7, ?x7 worksFor 〈P7〉}

(a) Views templates

Q:SELECT { 1 ?x, 1 ?n, 1 ?e, 1 ?d, 2 ?p, 3 ?c, 4 ?i, 5 ?w }

WHERE { 1 ?x name ?n, 1 ?x email ?e, 1 ?x degreeFrom ?d,

2 ?x phone ?p, 3 ?x teacherOf ?c, 4 ?x interest ?i, 5 ?x worksFor ?w }

(b) Query template

Figure 3: Experimental Setup 1

3 4 5 6 7
0

15

30

45

60

75

|Q|

N
um

. o
f r

ew
rit

in
gs

 (×
10

4)

SQR OSQR SQL

(a) Rewritten queries over query size

3 4 5 6 7
0

400

800

1200

1600

|Q|

T
im

e
(S

ec
on

ds
)

SQR OSQR SQL

(b) Eval. time over query size

Figure 4: SPARQL rewriting vs. SQL expansion

views using template V2 (using the same first 12 of the 14
parameters used for V1), 10 views using template V3 (using
the same first 10 of the parameters used for V1 and V2), 8
views using template V4 (using the same first 8 of the pa-
rameters used for V1, V2, and V3), 6 views using template
V5 (using the same first 6 of the parameters used for V1,
V2, V3 and V4), 4 views using template V6 (using the same
first 4 of the parameters used for V1, V2, V3, V4, and V5),
and 2 views using template V7 (using the same first 2 of the
parameters used for all the other views). Each view exposes
some aspect of a student’s data (e.g., name, email). In terms
of the query, we execute a different query in each iteration
of the experiment. In iteration i, the query involves all the
predicates in Figure 3(b) with an annotation j ≤ i. So,
the query initially has 3 predicates, and in each iteration we
add one more predicate, up to a size of 7. Given the above
setup, it is not hard to see that (i) the CandV for predicate
name has 14 views, that for predicate email has 12, and fi-
nally for predicate worksFor has only 2 views; and (ii) for any
two predicates pi and pj there are min(|CandVi|, |CandVj |)
non-empty joins between the two candidate views.

We also translate the SPARQL queries/views and the un-
derlying RDF data to SQL and relational data. For the re-
lational representation of RDF data we use (fully-indexed)
predicate tables [4], which provide one of the most efficient
representations of RDF in terms of query performance. Then,
we compare algorithms SQR and OSQR as well as the cor-
responding relational/SQL-based representation (denoted as
SQL in our figures). Figure 4 shows the comparison results.
As the size of the input query increases, Algorithm OSQR

results in between one and four orders of magnitude less
queries as part of the rewriting process, while both algo-
rithms SQR and the SQL view expansion result in the same
number of queries. Meanwhile, Algorithm OSQR is up to two
orders of magnitude faster than both SQR and SQL, in terms
of the evaluation times for query rewriting and execution.

To illustrate that the above result holds for different queries
and views we perform the same experiment with an alter-
native setup. In this setting, a query has three predicates

V1:CONSTRUCT { ?x1 email ?e1, ?x1 course ?c1 }
WHERE { ?x1 email ?e1, ?x1 course ?c1, ?x1 member ?u1, ?u1 subOrg 〈P1〉}

V2:CONSTRUCT { ?x2 phone ?p2, ?x2 course ?c2 }
WHERE { ?x2 phone ?p2, ?x2 course ?c2, ?x2 member ?u2, ?u2 subOrg 〈P2〉}

V3:CONSTRUCT { ?x3 degree ?d3, ?x3 course ?c3 }
WHERE { ?x3 degree ?p3, ?x3 course ?c3, ?x3 member ?u3, ?u3 subOrg 〈P3〉}

V4:CONSTRUCT { ?x4 email ?e4, ?x4 course ?c4 }
WHERE { ?x4 email ?e4, ?x4 course ?c4, ?x4 member ?u4, ?u4 subOrg 〈P3〉}

V5:CONSTRUCT { ?x5 email ?e5, ?x5 course ?c5 }
WHERE { ?x5 email ?e5, ?x5 course ?c5, ?x5 member ?u5, ?u5 subOrg 〈P5〉}

(a) Views templates

Q: SELECT { ?x, ?e, ?c, ?d } WHERE { ?x email ?e, ?x course ?c, ?x degreeFrom ?d }

(b) Query template

Figure 5: Experimental Setup 2

10 12 14 16 18 20
0

200

400

600

800

1000

Max|CandV|

N
um

. o
f r

ew
rit

in
gs

SQR OSQR SQL

(a) Rewritten queries over max CandV

10 12 14 16 18 20
0

150

300

450

600

Max|CandV|

T
im

e
(S

ec
on

ds
)

SQR OSQR SQL

(b) Eval. time over max CandV

Figure 6: SPARQL rewriting vs. SQL expansion

and retrieves the email, degree, and all the courses taken by
each student (see Figure 5(b)). The query is evaluated over
views that have one of five view templates, denoted by Vi,
1 ≤ i ≤ 5 (shown in Figure 5(a)). The templates are defined
so that CandVcourses = {V1, V2, V3, V4, V5}, CandVdegree =

{V3}, and CandVemail = {V1, V4, V5}. Notice that if each
template is instantiated only once, SQR results in 15 rewrit-
ings. Normally, one expects that only a few of the rewritings
are non-empty and hence we make 2 of the 15 rewritings non-
empty, those involving templates V3 and V4. To do this, we
make sure that the same variable P3 is used for both view
templates V3 and V4 and thus both templates are instanti-
ated from the same university. Notice that definition-wise,
view templates V1, V4 and V5 are identical. However, we
make sure that the three templates are instantiated from dif-
ferent universities so that they are non-overlapping in their
contents. We create multiple instances of view templates
using students from different departments, and by always
populating pairs of instances of templates V3 and V4 from
the same department, we make sure they join. Figure 6
shows the number of rewritings and evaluation times for
SQR, OSQR and the corresponding relational/SQL setting.
In the experiment, we start by instantiating each template
twice (10 views in total), and proceed by picking a template
and adding view instances in a way that linearly increases
the cardinality of CandVcourses (the largest CandV set). Fig-
ure 6 shows that as the size of the largest CandV set increases,
OSQR generates up to an order of magnitude less rewritings
than SQR and the SQL view expansion, resulting in up to an
order of magnitude savings in evaluation times.

Optimizing Individual Rewritings: In Section 3 we in-
troduced three orthogonal optimizations and in algorithm
OSQR we incorporated all of them into a single algorithm.
It is interesting to see what are the effects of each opti-
mization in isolation, to the size of the rewriting and the
evaluation time of the rewritten query. In the next three ex-
periments we investigate exactly this, starting here with an
experiment that studies the effects of optimizing individual

V1:CONSTRUCT { ?x1 name ?n1, ?x1 email ?e1, ?x1 takes ?c1 }
WHERE { ?x1 name ?n1, ?x1 email ?e1, ?x1 takes ?c1 }

V2:CONSTRUCT { ?x2 phone ?p2, ?x2 course ?c2, ?x2 member ?u2 }
WHERE { ?x2 phone ?p2, ?x2 course ?c2, ?x2 member ?d2 }

V3:CONSTRUCT { ?x3 phone ?p3, ?x3 course ?c3, ?x3 degree ?d3 }
WHERE { ?x3 phone ?p3, ?x3 course ?c3, ?x3 degree ?d3 }

V4:CONSTRUCT { ?x4 name ?n4, ?x4 email ?e4, ?x4 takes ?c4 }
WHERE { ?x4 name ?n4, ?x4 email ?e4, ?x4 takes ?c4 }

V5:CONSTRUCT { ?x5 phone ?p5, ?x5 course ?c5, ?x5 member ?u5 }
WHERE { ?x5 phone ?p5, ?x5 course ?c5, ?x5 member ?u5 }

V6:CONSTRUCT { ?x6 phone ?p6, ?x6 course ?c6, ?x6 degree ?d6 }
WHERE { ?x6 phone ?p6, ?x6 course ?c6, ?x6 degree ?d6 }

(a) Views templates

Q:SELECT { ?x, 1 ?e, 2 ?p, 3 ?c, 4 ?n, 5 ?u, 6 ?u′ }

WHERE { 1 ?x email ?e, 2 ?x phone ?p, 3 ?x takes ?c,

4 ?x name ?n, 5 ?x member ?u, 6 ?x degree ?u′ }

(b) Query template

Figure 7: Experimental Setup 3

1 2 3 4 5 6
0

100

200

300

|Q|

N
um

. o
f r

ew
rit

in
gs

SQR OSQR−M

(a) Rewritten queries over query size

2 4 6
0

50

100

150

200

|Q|

T
im

e
(S

ec
on

ds
)

SQR OSQR−M

Crash

(b) Eval. time over query size

Figure 8: Optimizing Individual Rewritings

rewritings (presented in Section 3.1). To this end, we switch
off in OSQR all other optimizations but merging views (de-
noted as OSQR-M) and compare it with SQR. In terms of
the experimental setup, this is shown in Figure 7. We de-
fine 6 views over our base data, with each view exposing
some aspect of a student’s data (e.g., email, phone). As for
the queries, we execute 6 different queries, with each query
increasingly bringing together data from the views. The re-
turn values and predicates of the query executed in iteration
i are marked appropriately in Figure 7(b). Figure 8 shows
the results of the comparison between SQR and OSQR-M,
as the input query size increases. Figure 8(a) shows that
both algorithms result in the same number of rewritings;
note that merging does not influence the number of gener-
ated rewritings (this is the focus of the other optimizations).
Merging optimizes each individual rewriting, and this be-
comes apparent in the evaluation time of the rewritings (see
Figure 8(b)). As the size of query |Q| increases, so is the po-
tential for merging views (the same view might appear in the
candidate view set of more predicates), which is confirmed in
Figure 8(b) — savings in evaluation time of OSQR-M, com-
pared to SQR, start from 10% to 70% for queries with 2 to 5
predicates. As |Q| increases, so is the size of each rewriting
(since the rewriting ultimately integrates the where clauses
of candidate views). In our experiments, when a (rewritten)
query has approximately 16 predicates, the engine of 4store
crashes, therefore, it is impossible to execute a rewriting
from SQR when |Q| ≥ 6. Since merging results in smaller
rewritings, OSQR-M can handle larger input queries.

Pruning Rewritings with Empty Results: As before,
we switch off in OSQR all other optimizations but pruning
empty rewritings (denoted as OSQR-P) and compare it with
SQR. The experimental setup used here is shown in Fig-
ure 9. Using the view template in Figure 9(a), we generate
10 views, where each view has a different value for the vari-

V:CONSTRUCT {?x1 name ?n1,
?x1 email ?e1,?x1 course ?c1 }

WHERE { ?x1 name ?n1, ?x1 course ?c1,
?x1 email ?e1, ?x1 member 〈P〉 }

(a) Views templates

Q:SELECT { ?x, ?n, ?e, ?c }
WHERE { ?x name ?n, ?x email ?e,

?x course ?c }

(b) Query template

Figure 9: Experimental Setup 4

2 4 6 8 10
0

200

400

600

800

1000

|CandV|

N
um

. o
f r

ew
rit

in
gs

SQR OSQR−P

(a) Rewritten queries over max CandV

2 4 6 8 10
0

200

400

600

|CandV|

T
im

e
(s

ec
on

ds
)

SQR OSQR−P

(b) Eval. time over max CandV

Figure 10: Pruning Empty Rewritings

able 〈P 〉. Our instantiation is such that we use ten differ-
ent departments from the same university as the values for
variable 〈P 〉. In this manner, we make sure that the views
are non-overlapping. The experiment has 8 iterations. The
same query Q (shown in Figure 9(b)) is evaluated across all
iterations over a set of i + 2 views at iteration i. Notice
that the CONSTRUCT statements of all views are identical
to the graph pattern of the Q. It is not hard to see that for
SQR, the CandV for each predicate of Q (name, email, course)
contains all the views. Therefore, SQR will create (i + 2)3

rewritings at iteration i. Contrarily, OSQR-P does not gen-
erate rewritings involving different views since these lead
to empty results; synopses and ASK queries, which are less
expensive, are executed to detect these empty results, and
therefore in each iteration i essentially only i+2 queries need
to be executed by OSQR-P. Figure 10 shows the compari-
son. Through synopses and ASK queries, OSQR-P produces
an order of magnitude less rewritings than SQR, resulting in
an order of magnitude faster evaluation times for query Q.

Optimizing the Generation of Rewritings: Here, we
investigate the influence of sub-query (i.e., triple pattern)
ordering to OSQR. Since the objective of ordering is to im-
prove the effectiveness of pruning, in OSQR we only switch
off merging views; the algorithm is denoted as OSQR-R. We
consider the same experimental setup with the one used in
our first experiment, shown in Figure 3. For this setup,
Figure 11 compares the performance of OSQR-R using 3 dif-
ferent reordering strategies. The figure shows the number of
ASK queries issued during query rewriting (to detect empty
rewritings), and the evaluation time of the rewritten query.
Note that all the three reordering strategies result in the
same number of nonempty rewritings, and only the num-
bers of ASK queries issued during rewriting are different; the
latter affects the evaluation times, as shown in Figure 10.
Using the proposed ordering on the size of CandV, OSQR-R

detects the optimal ordering (which considers p1, p2, . . . , p7

in order) and generates up to an order of magnitude less ASK

queries than either a random or the worst (p7, p6, . . . , p1) or-
dering, resulting in near 60% savings in evaluation times.

4.2 Experimental Results from Jena TDB
Using the same query and view definitions, we have run

the same set of experiments on Jena TDB, to demonstrate
the flexibility and the store-independent property of our al-
gorithms. In general, the results from Jena TDB are highly

3 4 5 6 7
0

100

200

300

400

|Q|

N
um

be
r

of
 A

S
K

OSQR−R Random Worst

(a) ASK queries over query size

3 4 5 6 7
0

5

10

15

20

|Q|

T
im

e
(s

ec
on

ds
)

OSQR−R Random Worst

(b) Eval. time over query size

Figure 11: Optimizing Rewriting Generation

3 4 5 6 7
0

200

400

600

|Q|

N
um

. o
f r

ew
rit

in
gs

 (×
10

3)

SQR OSQR

(a) Rewritten queries over query size

3 4 5 6 7
0

200

400

600

800

|Q|

T
im

e
(×

10
2 s

ec
on

ds
)

SQR OSQR

(b) Eval. time over query size

Figure 12: SQR vs. OSQR on Jena TDB

10 15 20
0

500

1000

Max(|CandV|)

N
um

. o
f r

ew
rit

in
gs

SQR OSQR

(a) Rewritten queries over max CandV

10 15 20
0

50

100

150

Max(|CandV|)

T
im

e
(s

ec
on

ds
)

SQR OSQR

(b) Eval. time over max CandV

Figure 13: SQR vs. OSQR on Jena TDB

consistent with our observations from 4store. As is evident
from Figure 12, the overall performance in Jena TDB of
OSQR is several orders of magnitude better than the SQR in
the first experiment using the setup in Figure 3. The situ-
ation is similar when using the experimental setup of Fig-
ure 5 and the results are shown in Figure 13. These trends
are highly consistent with what we have observed from their
comparison in 4store (Figures 4 and 6, respectively).

4.3 Concluding remarks
Our experiments clearly illustrate the advantages of OSQR

over SQR. In [18], we show, in a full set of experiments,
that these results are not limited to 4store but carry over to
Jena. Our experiments show that: we have realized the first
practical rewriting solution (OSQR) which provides, in real
time, sound and complete access of RDF data, independent
of underlying RDF stores, with good efficiency in practice (to
rewrite and evaluate a query over tens to hundred of views)
and without the need to materialize intermediate data.

5. RELATED WORK
Query rewriting over views, motivated by a view-based ap-

proach to access control, has been well studied in relational
(e.g., [24]) and XML (e.g., [13,14]) database. However, to the
best of our knowledge, our work is the first on native query
rewriting in SPARQL. SPARQL query rewriting combines the
challenges that arise in the relational and XML settings: like

the relational case, SPARQL query rewriting needs to synthe-
size multiple views; like the XML case, SPARQL query rewrit-
ing generates a query of exponential size. Previous work on
rewriting SPARQL queries typically adopted a rule-based
approach. In [12], the authors perform rewritings using pre-
defined rewriting rules, whereas our rewriting techniques can
dynamically compose the right views to rewrite a user query.
Similarly in [10], the authors identify a set of tightest re-
strictions under which an XPath query can be rewritten over
multiple views in PTIME. Such restrictions are expressed as
rules during the rewriting, therefore this approach is rule-
based as well. Reference [11] presents theoretical results for
rewriting a query over multiple data sources; the authors
studied the rewriting problem in the presence of embedded
constraints from up to infinite data sources, and focused on
the problem of deciding the right data sources that satisfy
integrity constraints (i.e., the expressibility and the support
for the sources). Unlike our work, the rewriting algorithm
in [11] does not guarantee completeness, and the optimiza-
tion issue was not addressed.

Although our proposed SPARQL query rewriting techniques
face similar challenges as the classical techniques for an-
swering queries using views [16] and rewriting queries on
semi-structured data [21], the actual rewriting steps differ
significantly. In particular, relational techniques surveyed
in [16] can not efficiently address the problem in SPARQL.
For example, the pruning power of MiniCon [23] vanishes
due to the fact that all the variables in SQL-translated views
(see Figure 2(b)) are distinguished variables [23]. Further-
more, our computation of variable mappings and selection
of candidate views are distinct from the query containment
techniques discussed in [23]. The exponential size of the
rewriting is also unique to our setting, which forces us to
address new challenges not found in [16]. To address those
challenges, we propose novel optimization techniques to re-
move empty rewritings from execution.

Existing works on general query rewriting in RDF store
[5, 20] specify view definition in customized high-level lan-
guages, and perform query rewriting in an ad-hoc manner.
In contrast, our work defines views in SPARQL, thus having
more expressive power and wider applicability; furthermore,
our SPARQL rewriting techniques are principled and inde-
pendent of the underlying RDF stores.

6. CONCLUSION
We studied the classical problem of query rewriting over

views in the context of SPARQL and RDF data. We proposed
the first sound and complete query rewriting algorithm for
SPARQL, with novel optimizations that (i) simplify individ-
ual rewritings by removing redundant triple patterns coming
from the same view; (ii) eliminate rewritings with empty re-
sults based on a light-weight synopsis construction and effi-
cient value-set intersection computation to estimate the size
of joined triple patterns; and (iii) prune out big portions of
the search space of rewritings (that lead to empty results)
by optimizing the sequence of sub-query rewriting. Evalua-
tion of our rewriting algorithm over two RDF stores showed
its portability and its scalability in terms of query and view
size. This work opens the gate to several interesting di-
rections in future research, such as how to efficiently deal
with variable predicates (instead of enumerating all predi-
cates in the data to replace them) in query and view defini-
tion, how to partially materialize the views with the query

rewriting in SPARQL to further improve the efficiency, and
also, how to include other SPARQL features such as FILTER

and OPTIONAL into the algorithm.

7. ACKNOWLEDGMENT
This work was done in part when Wangchao Le (intern)

and Min Wang were with IBM. Wangchao Le and Feifei Li
were partially supported by NSF Grant CNS-0831278.

8. REFERENCES
[1] 4store - scalable RDF storage. http://4store.org/.

[2] Jena semantic web framework. http://jena.sourceforge.net.
[3] Virtuoso universal server. http://virtuoso.openlinksw.com.
[4] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach.

Scalable semantic web data management using vertical
partitioning. In VLDB, 2007.

[5] F. Abel and et al. Enabling advanced and context
dependent access control in RDF stores. In ISWC, 2007.

[6] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[7] N. Alon, Y. Matias, and M. Szegedy. The space complexity
of approximating the frequency moments. In STOC, 1996.

[8] R. Angles and C. Gutierrez. The expressive power of
SPARQL. In ISWC, pages 114–129, 2008.

[9] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and
R. Gemulla. On synopses for distinct-value estimation
under multiset operations. In SIGMOD, 2007.

[10] B. Cautis, A. Deutsch, and N. Onose. Xpath rewriting
using multiple views: Achieving completeness and
efficiency. In WebDB, 2008.

[11] B. Cautis, A. Deutsch, and N. Onose. Querying data
sources that export infinite sets of views. In ICDT, 2009.

[12] G. Correndo, M. Salvadores, I. Millard, H. Glaser, and
N. Shadbolt. SPARQL query rewriting for implementing
data integration over linked data. In EDBT, 2010.

[13] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML
querying with security views. In SIGMOD, 2004.

[14] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Rewriting regular XPath queries on XML views. In ICDE,
pages 666–675, 2007.

[15] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for
OWL knowledge base systems. Journal of Web Semantics,
2005.

[16] A. Y. Halevy. Answering queries using views: A survey.
VLDB J., 10(4):270–294, 2001.

[17] B. Kalyanasundaram and G. Schintger. The probabilistic
communication complexity of set intersection. SIAM J.
Discret. Math., 5(4):545–557, 1992.

[18] W. Le, S. Duan, A. Kementsietsidis, F. Li, and M. Wang.
Query rewriting over SPARQL views. Technical report.
http://ww2.cs.fsu.edu/∼le/rdfview.pdf.

[19] M. Lenzerini. Data integration: A theoretical perspective.
In PODS, pages 233–246, 2002.

[20] G. Manjunath and et al. Semantic views for controlled
access to the semantic web. In Tech. Rep. HPL-08-15, 2008.

[21] Y. Papakonstantinou and V. Vassalos. Query rewriting for
semistructured data. In SIGMOD, pages 455–466, 1999.

[22] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. ACM Trans. Database Syst.,
34(3):1–45, 2009.

[23] R. Pottinger and A. Halevy. MiniCon: A scalable algorithm
for answering queries using views. VLDB J., 2001.

[24] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy.
Extending query rewriting techniques for fine-grained
access control. In SIGMOD, pages 551–562, 2004.

[25] J. D. Ullman. Information integration using logical views.
In ICDT, pages 19–40, 1997.

[26] Q. Wang and et al. On the correctness criteria of
fine-grained access control in relational databases. In
VLDB, 2007.

http://4store.org/
http://jena.sourceforge.net
http://virtuoso.openlinksw.com
http://ww2.cs.fsu.edu/~le/rdfview.pdf

