
VRE: A Versatile, Robust, and
Economical Trajectory Data System

Hai Lan, Jiong Xie, Zhifeng Bao, Feifei Li, Wei Tian, Fang Wang, Sheng Wang, Ailin Zhang

Outline
• Movtivation & Goals
• Existing Trajectory Systems
• VRE Architecture
• Storage Layer
• Query Processing
• Evaluation
• Conclusion

2

Motivation & Goals

3

Large-scale Trajectory Data

Billion Points
Per Day

Various Queries on Trajectory DataDifferent Trajectory Properties

LCSS
EDR
DTW

Fréchet
Hausdorff

G1: Store the large-scale data economically

G2: Support all the typical queries and distance functions

G3: Be robust to trajectories with different properties, i.e., property-aware

Properties AIS
(Vessels)

Porto
(Taxi)

Avg. #Points 2,678.9 50.0

Avg. Spatial Span (2.05, 1.49) (0.03, 0.02)

Density of Traj. 2,310 410,326

Existing Trajectory Systems

4

Work Basic Query Advanced Query Scalability Data Properties
IDTQ SRQ STRQ Tb-Search Sub-Search k-Search Tb-Join k-Join Processing Storage NoP SpS DoT

Summit ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ - - -

MobilityDB ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

TrajMesa ✓ ✓ ✓ F/H ✗ F/H ✗ ✗ - ✓ ✗ ✗ ✗

DFT ✗ ✗ ✗ F/H ✗ F/H ✗ ✗ ✓ ✗ ✗ ✗ ✗

DITA ✗ ✓ ✗ F/D/L/E ✗ F/D/L/E F/D/L/E ✗ ✓ ✗ ✗ ✗ ✓

REPOSE ✗ ✗ ✗ ✗ ✗ F/H/D ✗ ✗ ✓ ✗ - - -

UlTraMan ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ - - -

VRE ✓ ✓ ✓ F/H/D/L/E F/H/D/L/E F/H/D/L/E F/H/D/L/E F/H/D/L/E ✓ ✓ ✓ ✓ ✓

IDTQ: ID-Temporal Query
SRQ: Spatial Range Query
SRQ: Spatial-Temporal Range Query

Tb-Search: threshold-based similarity search, Tb-Join
Sub-Search: subtrajectory similarity search
k-Search: kNN search, k-Join

Frechet, Huarsdorff, DTW, LCSS, EDR

NoP: Number of Points
SpS: Spatial Span
DoT: Density of Trajectory

G3G1G2

Architecture

5

Processing Layers

Schema Definition
Table Schema
Storage Model

Index Type/Mode

Data Operation
Insert update delete

IDTQ SRQ STRQ

Tb-Search
k-Search

sub-Search
Tb-Join
k-Join

Supported
Queries

Prune with meta

Prune with points

Parallel Processing
Process Pushdown

Two-stage
Framework

LCSS
EDR

Fréchet
Huasdorff

DTW

Pruning
Framework

Supported
Metrics

Point/Segment/Trajectory-based Model
ID-Temporal Index, Spatial Range Index,
Spatial-temporal range index, OTS index

Storage Layers

Key
Value
Dup.
Cols

v1+Seg1 …

v2+Seg2 …

Key
Value

Meta Indexed
Col1 Traj.

Seg1 Obj_id,… v1 Points
Seg2 Obj_id,… v2 Points

Secondary Index Table Primary Index Table Engine Features - Lindorm

Distributed Storage Engine
Secondary Index

Compression
Cold-Hot Data Separation

Coprocessor

Storage Layer – Storage Layout
• Storage Model

⎻ Point / Segment / Trajectory
• Storage Layout

6

n related to primary index

n metadata (used for pruning)
n Object id, start time, end time, start point, end point
n Segment’s MBR, segment order, segment signature
n Segment type

n secondary index’s key

Insert automatically

Storage Layer – Indexing
• Indexing

⎻ Support basic queries
⎻ Types: ID-Temporal Index, Spatial Range Index, Spatial-temporal

range index, OTS index
⎻ Basic Idea

⎻ Insert: generate the indexed key: 𝑘𝑒𝑦=𝐹(𝑥)
⎻ Query: generate the key range [𝑘𝑒𝑦!"#$% , 𝑘𝑒𝑦&''$%] for a query, and then

fetch the rows in the range

7

Query Processing – General Steps

1. Fetch the candidates’ metadata only from the
storage layer

2. Prune the unsatisfied results with metadata in
query processing layer

3. Fetch the full trajectories of the remaining
candidates

4. Verify the candidates with the full trajectories

8

Stage 1

Stage 2

A pruning framework
based on metadata

Pruning pushdown into
storage layer

Query Processing – k-Search as an example

• k-Search
⎻ Given a query trajectory 𝑞, a distance function 𝑓, and an integer 𝑘, k-

Search returns a subset 𝐾 with size 𝑘 (from 𝒯), whose distances to 𝑞
are less than the other trajectories in 𝒯 − 𝐾 to 𝑞.

9

1. Maintain a priority queue 𝑔𝑞 for these grids based on their

distance to query 𝑞 , 𝑔𝑞 = < 10,01,12,03,… > , a priority queue

𝑡𝑞 = <> for results, 𝑑!"# = ∞

2. Pop an item 𝑔 from 𝑔𝑞, if 𝑡𝑞 = 𝑘 and 𝑓$% 𝑞, 𝑔 ≥ 𝑑!"#, return 𝑡𝑞.

3. Fetch the candidates 𝐶 with a spatial range query with range 𝑔.

4. Partition 𝐶 randomly and process each partition in parallel.

5. Goto step 2

Pass the accessed ranges
to storage layer

Pass 𝑑!"# to storage layer

2 3

0 1

§ Sort the candidates based on
their bounds first

§ Two-stage processing
§ Local bound synchronization

main thread

child thread 1 child thread 2

Update local 𝑑!"#

01 10 1203

Query Processing – Pruning Framework

10

⎻ Completeness: whether a complete trajectory can be recovered from all the segments in 𝐺.
⎻ LB_SES: the lower bound by considering the start and end segments.
⎻ LB_PartialSim: lower bound based on the collected segments’ metadata, i.e., partial segments.
⎻ LB_Pivots: lower bound based on pivots from query 𝑄.
⎻ LB_SIG: lower bound based on their signatures.

• Given a query 𝑄 = {𝑞!, 𝑞", … , 𝑞#} with a distance threshold 𝜏 , after getting the candidates, we
group these segments based by their 𝑡𝑖𝑑. Each group is formed as 𝐺 = {𝑆!, 𝑆", … , 𝑆|%|}, where
𝑆& = {𝑡!, 𝑡", … , 𝑡|'!|} denotes a segment.

Evaluation – Setup
• Dataset statistics

• Parameters

11

Density

Spatial Span

Avg. Points

Porto

AIS

Evaluation – Different Storage Schemas on AIS

• Storage & Bulkload(AIS)
⎻ With secondary index, storage cost is reduced significantly.
⎻ Metadata only takes 4% of total storage cost.
⎻ Insertion time is proportional to the storage size.

• Query Performance (AIS)
⎻ One schema cannot be best in all cases!

⎻ Related to query types & result types
⎻ For example, trajectory-based is more suitable for Tb-Search than segment-

based model while k-Search has a different result.

12

Evaluation – Proposed Optimizations
• Impact of Secondary Index

• Efficiency of Two-Stage Framework

• Impact of Pushdown (Tb-search as example)

13

⎻ The candidate size of 𝑆𝑇𝑅𝑄 on Porto is much
larger. Random access leads to a high latency.

⎻ Add metadata into secondary index or answer
𝑆𝑇𝑅𝑄 with SR index.

⎻ Two-stage has smaller latency with much
fewer data transferred from storage layer

⎻ With pushdown strategies, we can
reduce the candidate size to be verified
in processing layer.

⎻ On AIS, pushdown is not a good choice.
⎻ Overhead in evoking coprocessor

and pruning

Evaluation – k-Search

14
⎻ VRE beats other systems or is competative in all cases.

Evaluation – k-Search

15

⎻ VRE is better or competative to DITA
and DFT with fewer cores.

⎻ VRE has good scalability
on dataset size.

Different number of coresDifferent dataset sizes

Evaluation – Sub-Search and Tb-Join
• Sub-Search

• Tb-Join

16

⎻ VRE achieves a better scalability in terms of data size.

⎻ VRE has better performance under the same core

number setting.

⎻ VRE outperforms DITA on AIS in both DTW and Fréchet

is competitive to DITA on Porto in Fréchet.

⎻ DITA beats VRE on Porto in DTW.

⎻ 32 cores vs. 256 cores

More…
• Algorithms for all advanced queries
• Results for basic queries, Tb-Search, and other joins
• Insights for VRE

17

Conclusion & Future Work
• Conclusion

⎻ First system that supports all typical basic and advanced query types
and distance functions

⎻ Deployed as part of Lindorm Ganos in Alibaba
• Future Work

⎻ Select the right execution plan with a cost model
⎻ Able to handle the queries across multiple nodes
⎻ Benchmark for trajectory processing

18

Q&A
Thanks!

19

Storage Layer – Different Schemas

2022/11/14 23

storage model

whether use
secondary index metadata type

Evaluation – Different Storage Schemas

• Storage Size (AIS)

• Query Performance (AIS)

2022/11/14 24

⎻ With secondary index, storage cost redcues

significantly.

⎻ Metadata only takes 4% of total storage cost.

⎻ Inserttion time is proportional to the storage size.

⎻ One schema cannot be best in all cases!

⎻ Related to query type

Evaluation – Tb-Search

2022/11/14 25

⎻ Except EDR on Porto, VRE
beats other systems or is
competative.

Different number of coresDifferent dataset sizes

⎻ VRE has good scalability on
dataset size.

⎻ VRE is better or competative to
DITA and DFT with fewer cores.

2022/11/14 26

