
VeriDB: An SGX-based Verifiable Database

Wenchao Zhou∗
Georgetown University &

Alibaba Group
wzhou@cs.georgetown.edu

Yifan Cai†
University of Pennsylvania &

Alibaba Group
caiyifan@seas.upenn.edu

Yanqing Peng†
University of Utah &

Alibaba Group
ypeng@cs.utah.edu

Sheng Wang
Alibaba Group

sh.wang@alibaba-inc.com

Ke Ma†
Shanghai Jiao Tong University
whirlfoureye@sjtu.edu.cn

Feifei Li
Alibaba Group

lifeifei@alibaba-inc.com

ABSTRACT
The emergence of trusted hardwares (such as Intel SGX) provides a
new avenue towards verifiable database. Such trust hardwares act as
an additional trust anchor, allowing great simplification and, in turn,
performance improvement in the design of verifiable databases. In
this paper, we introduce the design and implementation of VeriDB,
an SGX-based verifiable database that supports relational tables,
multiple access methods and general SQL queries. Built on top of
write-read consistent memory, VeriDB provides verifiable page-
structured storage, where results of storage operations can be effi-
ciently verified with low, constant overhead. VeriDB further pro-
vides verifiable query execution that supports general SQL queries.
Through a series of evaluation using practical workload, we demon-
strate that VeriDB incurs low overhead for achieving verifiability:
an overhead of 1-2 microseconds for read/write operations, and a
9% - 39% overhead for representative analytical workloads.

ACM Reference Format:
Wenchao Zhou, Yifan Cai, Yanqing Peng†, Sheng Wang, Ke Ma†, and Feifei
Li. 2021. VeriDB: An SGX-based Verifiable Database. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD ’21), June
20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3448016.3457308

1 INTRODUCTION
Recently there has been a paradigm shift to migrate data storage
and associated computing tasks on to the cloud. While increasingly
more routine or even mission-critical procedures are hosted on the
cloud, data integrity still largely relies on the client’s trust that the
cloud service provider has faithfully maintained the data (and com-
puted results) outsourced to them. It remains challenging for the
client to verify whether the data or computation results retrieved

∗Work is completed during a visit at Alibaba DAMO Academy.
†Work is completed during a research internship at Alibaba DAMO Academy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3457308

from the cloud are correct; from the cloud service provider’s per-
spective, such capability of proving to the client that its data is
correctly handled is also a highly desirable security feature, encour-
aging hesitant clients to adopt cloud-centric solutions.

In practice, it is impossible to require that the results returned
from the cloud be always correct: an adversarial cloud service
provider can simply return empty results for any of the client’s
requests. Verifiability is a more practical and sufficiently strong
guarantee in practice, that is, the correctness of any returned results
is (cryptographically) verifiable. It allows the client to detect any
faults with non-reputable evidence, and the cloud service provider
to retain a formal proof for its correct operations.

In the past, there has already been a large body of work in
the field of providing verifiability for cloud databases [1, 4, 12, 14,
19, 21, 24, 25, 31]. Notably, a classic approach leverages Merkle
Hash Tree (MHT) [18] to ensure data integrity; the recursively
defined hash structure of MHT reduces integrity verification to the
reproducibility of its root hash. Such MHT-based solutions provide
efficient verification for the presence (or absence) of a queried data
record in a database. However, it has difficulties handling complex
SQL queries. For example, the verification object size of JOINs
is linear to the size of input relations. Additionally, MHT-based
approaches fundamentally rely on the mutual agreement between
the client and the cloud on the MHT’s root hash. The root hash
is essentially a concurrency bottleneck: updates to the database
cannot be parallelized, and reads must wait until all preceding
writes are completed. On the other hand, approaches that employ
more advanced cryptographic primitives [30, 31] provide support
for more general database queries, for example, vSQL allows clients
to verify the query result of an arbitrary SQL query. However, most
of these approaches fall in short in terms of performance, and may
take hours or even days to generate a proof [30, 31].

Recent years, the emergence of trusted hardwares (such as Intel
SGX [17]) provides a new avenue towards verifiable database. Such
trust hardwares act as an additional trust anchor, allowing great
simplification and, in turn, performance improvement in the design
of verifiable databases. For example, Intel SGX provides a protected
execution environment (called an enclave) within potentially com-
promised computers, shielding data and attested programs in the
enclave from malicious manipulation. The client can therefore del-
egate some of the verification tasks to programs running in an
SGX enclave. Concerto [1] introduces an SGX-based verifiable key-
value store. It crucially removes the concurrency bottleneck in
MHT-based designs, and adopts deferred verification that employs

https://doi.org/10.1145/3448016.3457308
https://doi.org/10.1145/3448016.3457308

high-performance offline memory checking algorithm. However,
it only supports key-value storage model and simple read/write
interfaces (e.g., get or put of key-value pairs).

In this paper, we introduce the design and implementation of
VeriDB, an SGX-based verifiable database that supports relational
tables, multiple access methods and general SQL queries. InVeriDB,
the client interacts with a query engine that resides in an SGX
enclave. Therefore, the returned query result can be trusted and
easily verified (by checking whether it is endorsed by the SGX),
as long as the inputs to the query engine, i.e., the data retrieved
from the storage, are correct. This effectively reduces the problem
of verifying the query correctness to that of verifying the integrity
of data retrieval from the storage.

A naïve approach is to maintain data within SGX’s internal
memory (i.e., EPC) which is naturally resistant against malicious
manipulations. However, EPC is a scarce resource with a limited ca-
pacity; typical database sizes are well beyond its capacity. It renders
the idea of having the complete database hosted within SGX imprac-
tical, since it requires frequent data swapping in and out of EPC,
which is an expensive operation given the encryption/decryption
and integrity checking needed. It significantly affects the database
performance, causing orders of magnitude degradation [26].

VeriDB instead separates the execution logic and data storage:
while the query execution engine is in an SGX enclave, the actual
data is maintained in untrusted memory. The memory integrity is
enforced by adopting an offline memory checking algorithm [1, 5];
this ensures the integrity of individual data records. The access
methods in the query engine, which serve as the interface that
directly interacts with data retrieval and modification in the un-
trusted memory, are further enhanced to ensure the results from
index search, sequential and range scans are correct.

One key intuition of VeriDB is to partition the verification of
a cloud database into two separately running tasks that verify 1)
a data-intensive yet logically simple storage layer, and 2) a log-
ically complex query engine that has a small memory footprint.
The former leverages an efficient memory checking algorithm that
only introduces constant overhead (1-2 microseconds) to reads
and writes, and the latter relies on the protection provided by the
memory-bounded SGX. Furthermore, these two components are
connected through a thin interface (i.e., the access methods) that
can be efficiently verified, ensuring the verifiability of the complete
cycle of database queries and updates.

This paper makes the following contributions:
Page-structured verifiable storage layer.VeriDB adopts a page-
structured storage design, to facilitate the integration with legacy
relational databases and to support a wide-range of verifiable access
methods. Built on top of write-read consistent memory [5], VeriDB
provides verifiable results with low runtime overhead for storage
operations, where the existence or absence of queried data is proved
by a single record in the database.
Optimizations that improve storage performance. The page-
structured design introduced auxiliary routines such as the mainte-
nance of page metadata and space management within a page. The
verification of these routines introduces non-negligible overhead.
We present a set of optimizations tailored for the page-structured
storage design for mitigating or even removing these overhead.

Verifiable query execution that supports general SQLqueries.
VeriDB hosts the query engine within an SGX enclave, and pushes
the verification tasks to access methods, which can efficiently verify
the correctness and completeness of retrieved data with the sup-
port of verifiable storage. VeriDB’s design requires little changes
to existing database execution engine to allow practical adoption.
System implementation and evaluation. Finally, we implement
a prototype of VeriDB, and demonstrate, through a series of eval-
uations using practical workload, that VeriDB incurs reasonable
overhead for achieving verifiability: VeriDB introduces an over-
head of less than 2 microseconds for read/write operations, and a
9% - 39% overhead for representative analytical workloads.

The rest of the paper is organized as follows: Section 2 presents a
brief background on SGX and classic approaches towards verifiable
databases. Section 3 introduces the design goals and an architectural
overview of VeriDB. We present in details the design of two key
components in VeriDB, the verifiable storage layer and the query
execution built on top of it, in Section 4 and Section 5 respectively.
Section 6 shows a series of evaluations to demonstrate VeriDB’s
performance in practical workflows. Finally, we present a discussion
of related work in Section 7 and conclude the paper in Section 8.

2 BACKGROUND
VeriDB relies on the support of trusted hardwares such as Intel
SGX, and draws inspiration from prior work in the field of verifiable
outsourced databases. In this section, we present a brief introduction
of prior studies in these two fields.

2.1 Intel SGX
Intel Software Guard Extensions (SGX) is a state-of-the-art im-
plementation of the trusted execution environment (TEE), which
guarantees the confidentiality and integrity of computation and
data. It can be used to protect the execution of applications in
outsourced environments, where the host might be compromised.
More implementation details can be found in [6, 10, 11].

SGX provides the protection via a virtual container called en-
clave. An enclave is an isolated virtual address space in a normal
process, where both its code and data are stored in reserved mem-
ory pages called enclave page caches (EPC). The EPC cannot be
accessed by the rest of the host, including the process outside of
the enclave, other processes and the operating system. Hence, the
integrity of any computation conducted by the enclave and data
stored in EPC are guaranteed. An enclave is initialized by loading
a special library whose authenticity can be verified, and can only
be invoked via well-defined interfaces called ECalls. SGX also in-
troduces OCalls to allow programs running in an SGX enclave to
invoke libraries outside the SGX. SGX supports remote attestation
that allows the client to verify the authenticity of an enclave and
its loaded code/data on an untrusted host. Note that, while the rest
of the host cannot access enclave’s EPC, the enclave can access the
entire address space on the host. This is an important property that
can be exploited for fast data fetching.

When leveraging it in practice, there are several limitations of
SGX that should be seriously handled. First, the preserved memory
space for SGX is extremely limited, which is up to 128 MB in the
current implementation [2, 3, 20] and the usable EPC capacity for
enclaves is even lower. Although SGX provides virtual memory

k5 k6 k7 k8

Hash Hash Hash Hash

Hash Hash

Hash

k1 k2 k3 k4

Hash Hash Hash Hash

Hash Hash

Hash

Hash

a b

3

Figure 1: MHT-based verification of range scan.

(i.e., swapping unused EPC pages to unprotected memory) to hide
this limitation, a page swapping can easily consume 40000 CPU
cycles [2, 6]. Second, an ECall is expensive, which is about 8000
cycles as previously reported [20, 27]. This requires the application
to carefully reduce its ECalls.

2.2 Verifiable outsourced databases
Since the inception of cloud databases, the verifiability of out-
sourced databases has been a high-value target. A first set of prac-
tical solutions adopt Authenticated Data Structure (ADS) based
verification. Notably, Merkle Hash Tree (MHT) is a widely adopted
ADS; MHT is a recursively defined tree structure that leverages
irreversible hash functions to check the absence, presence of data
records in an outsourced database. Briefly, an MHT’s leaf nodes are
the hash calculated from the data, and the internal nodes are recur-
sively calculated as the hash of the contents of the children nodes.
Any manipulation or omission of the data will fail to regenerate
the root hash, and thus be detected. MHT can further efficiently
verify the correctness of range queries.

Example 2.1. Consider a table consists of eight records k1 < k2 <
... < k8, Figure 1 shows the MHT built on top the table. Given a
range query that searches for records in [a,b], we expect it returns
{k3,k4,k5} as the query result. For verification purposes, the MHT-
based solution will return records {k2,k3, ..,k6} (highlighted in
green): k2 and k6 are returned to prove that no records in range
[a,k3) and (k5,b] are omitted. Two additional hashes (highlighted
in yellow) are also returned to reconstruct the root hash.

However, it is hard to apply MHT-based approaches to verify more
general SQL queries. For example, verification of multi-dimensional
range query and JOIN queries are challenging. More critically, data
updates require recalculation of the root hash. This effectively cre-
ates a concurrency bottleneck: verification of subsequent read op-
erations have to wait until all preceding writes complete, even if
they have no direct conflicts.

There have been several efforts to address these two limitations.
One direction is to extend the applicability to more general SQL
queries by adopting more advanced crypto primitives [30, 31]. For
example, IntegriDB employs the bilinear accumulator primitive in
its design, and uses interval trees as a building block to support
a wider range of SQL queries. However, its proof generation is
expensive, which can take hours or even days for large databases.

In another direction, to support high-performance verification in
update-heavy databases, Concerto [1] adopts a drastically different
approach. It abandons the use of MHTs, and instead reduce the
verification of KV store to verifyingmemory integrity. This removes
the concurrency bottleneck in MHT-based approaches, however, it
supports only KV stores and simple read/write interfaces.

3 SYSTEM OVERVIEW
In this section, we describe the threat model (Section 3.1) considered
in this paper, followed by the targeting design goals (Section 3.2).
We further present in Section 3.3 an architecture overview that
introduces the main components in VeriDB.

3.1 Threat model
We consider the typical cloud service scenario consisting of two
participants, where a client interacts with a cloud database service
provider. The client relies on the service provider to maintain its
database and execute queries against the database. However, the
client may not fully trust the service provider. In the paper, we focus
on the threats to the integrity of the database and the query results;
solution that provides data confidentiality, for example, through
encryption and access control, may be layered on top of VeriDB.
Untrusted service provider. The security threat originates from
an adversarial or compromised service provider, who may alter the
database or the query result arbitrarily. For example, the service
provider may 1) insert, alter or delete arbitrary data in the database,
and/or 2) return incomplete, stale, or even fabricated query results.
More generally, we conservatively assume Byzantine faults.
Existence of SGX. In this Byzantine threat model, the adversary
has full control of the cloud database, except a protected TEE that
holds a small set of data and attested programs.More specifically, we
assume that the cloud database is equipped with Intel SGX, where
the data and programs in the SGX enclave cannot be accessed or
modified without the client’s authorization, even if the adversary
controls the rest of the computer.

3.2 Goals
The overarching goal of this paper is to design an SGX-based verifi-
able cloud database, which allows clients to detect incorrect query
results returned by an adversarial or compromised cloud database
service provider. we say a cloud database is verifiable, if it satisfies
the following two correctness properties:
• Endorsement of correct results. When the database re-
turns correct query results, no false alarms should be re-
ported and the result should be endorsed, e.g., through cryp-
tographic signatures, by the trusted hardware. Here, we say
a query result is correct as if the query were performed on a
database that runs on the client’s own machine.
• Detection of incorrect results.When the database returns
incorrect results, the client can detect such misbehavior with
an associated evidence that proves this misbehavior.

Additionally, we consider the following two goals to ensure that
the proposed design is practical and has wide applicability.
• Support for general SQL queries. The cloud database
should support verifiability for general SQL queries. In this
paper, we focus on SPJA queries, but the proposed solution
can be straightforwardly extended to support other relational
operators, such as nested queries.
• Low overhead. Finally, security enhancement to support
verifiability should have small impact on the database’s query
processing performance. For example, it should not impose
constraints that significantly impact the database’s capability
of support concurrent queries.

SGX

Verifier

Verifier

…

Access Methods

3

Key nKey

−∞ k2
k2 k3
… …

kn +∞

Data

d1

d2

…

dn

Addr

addr1
addr2
…

addrn

indices

Untrusted Memory

Query Execution

Verifiable Storage

Query
Compiler

Read/Write
Primitives

1 3

4

5

67

Query
Portal

2

Figure 2: Architectural Overview of VeriDB.

Non-goals.A verifiable database allows users to detectmisbehavior
of a compromised cloud database. However, it doesn’t tolerate mis-
behavior, that is, it doesn’t return correct results when the database
is compromised. For example, data may be lost if an adversarial
service provider deletes or otherwise modifies the data stored in the
cloud database. But we still consider that there is a sufficiently wide
range of application scenarios, especially given that the service
providers are big players in the cloud ecosystem: any detection of
misbehavior would lead to serious penalties, such as reputation
dent, loss of customer loyalty, or even lawsuits, which strongly
incentivize these service providers against data tampering. This
is significantly different compared to the typical blockchain appli-
cation scenario where the goal is to tolerate a bounded number
of misbehaving participants and participants may leave, become
irresponsive or otherwise misbehave at an arbitrary time.

3.3 Architecture
At a high-level, VeriDB separately verifies the integrity of the
storage layer and the query execution engine. The verifiable storage
ensures the verifiability of individual read/write operations, and
the query execution engine ensures the correctness of the query
output if its inputs are correct.

Figure 2 presents the query workflow inVeriDB. A client’s query
Q is authenticated and communicated to the query portal, which
resides in the SGX enclave, through a secure channel, to ensure
that the query is indeed initiated by the client (Step 1). The query
portal passes the query to the query compiler (Step 2), which con-
verts the query into a physical query plan, and further passes it
to the query execution engine (Step 3). While the execution logic
resides in the SGX enclave, the access methods need to retrieve
data from untrusted memory (Step 4). The verifiable storage layer
protects the read/write operations (Step 5) and leverages an offline
memory verification process to continuously check the integrity
of individual data. Multiple verifiers may be employed to verify
different (disjoint) sections of the memory for performance pur-
poses. The data retrieved from the storage layer is verified by the
access method for completeness (its integrity is guaranteed by the
verifiable storage), and is used as the input to the query execution
engine (Step 6). Finally, the execution engine returns and endorses
the query result back to the client (Step 7).
Query compiler. Verification of an arbitrary SQL query under
an untrusted environment is extremely challenging. Given a user-
specified SQL Q and its corresponding compilation result PlanQ ,
which is typically represented as a query execution plan tree, it
is relatively straightforward to convert PlanQ to an equivalent
representation in relational algebra (i.e., as a SQL query) Q ′. How-
ever, given that the compilation and optimization may significantly
change the execution plan, Q ′ may look very differently compared

withQ . Verifying the equivalence ofQ andQ ′ is provably difficult –
equivalence of conjunctive queries is a classic NP-hard problem in
database literature. Therefore, query compilation and optimization
are performed within the trusted SGX environment.
Trusted storage in untrusted memory. The storage layer of
VeriDB provides the basis for the verification of complex SQL
queries: it ensures that individual read/write operations of any
record in the database are verifiable, that is, each read/write opera-
tion is associated with an evidence that proves its correctness.

SGX provides a section of trusted memory that is within the pro-
tection of trusted hardware. However, its size is limited to 96 MB;
data beyond this size will cause expensive memory swaps that are
across enclave boundaries [26]. Therefore, a fundamental design
decision of VeriDB is to place the database outside the SGX, and
only maintain a small set of data within the SGX for verification
purposes. This is achieved by adopting a write-read consistent mem-
ory implementation. Briefly, SGX ensures the integrity of a small
synopsis of all the client-initiated writes; any tampering of the data
that bypasses the operations in the enclave will cause inconsistent
synopsis and be detected.

Such design has an important advantage: the correctness of a
read/write operation can be proved by a single data record in the
database. The construction of proofs does not require access to any
shared data, and therefore allows for better concurrency; this is in
contrast to MHT-based approaches where every proof requires the
inclusion of the most updated MHT root.
Query execution. With the existence of SGX, the client can dele-
gate part of the verification to the attested code resides in an SGX
enclave, removing the need of shipping large-size proofs over the
network and the client’s burden of verifying the proofs. In VeriDB,
the query execution engine resides in the SGX, this design deci-
sion is based on the goal of maximizing the system performance:
entering or leaving an SGX enclave, through the use of ECalls or
OCalls, adds non-negligible overhead; therefore, VeriDB avoids
frequent ECalls (or OCalls) by colocating the query execution and
the trusted storage.

The SGX-resident query engine ensures the integrity of the query
result, provided that its inputs are correct. The verifiable storage
layer provides APIs for verifiable access to individual records, that
is, the integrity and freshness of the retrieved record are verified.
The access method further verifies the completeness of inputs, and
therefore ensures the correctness of inputs and, in turn, the outputs
of the trusted query engine.

4 STORAGE LAYER
We adopt a storage design that aims to minimize the negative
performance impact on the database system, while achieving the
verifiability properties (see Section 3.2). In VeriDB, the storage
supports relational tables and follows the widely adopted page-
structured design; this benefits a stronger practicality, as it can be
seamlessly integrated with most relational databases which also
adopt page-structured designs for buffers, and in-memory and disk-
based storages. Upon requests from the query execution engine,
the storage layer returns results for read/write operations with
associated proofs to prove the presence or absence of requested
record. In this section, we present the construction of theses proofs.

WriteSet

ReadSet

(addr, data1)

(addr, data1)

(addr, data2)

(addr, data2)

(addr, data3)

(addr, data3)

Write Read/Write Read/Write Read

Figure 3: Example of ReadSet and WriteSet.

4.1 Preliminary: write-read consistent memory
As a fundamental building block, VeriDB relies on trusted memory
to store data records. It employs a set of verification protocols [1, 5]
to ensure that the memory is write-read consistent.
Definition 4.1. Memory is write-read consistent, if, for every read
on address addr , it returns the same data as what is written by the
most recent write on addr .

The definition is further simplified by requiring every write to
check the integrity of addr before it overwrites the data, and every
read to (virtually) write back the data after the read. This way, the
reads and writes on addr are interleaving. Figure 3 shows an ex-
ample of such interleaving writes/reads. Note that, such additional
requirement does not add much burden to the storage system –
data is loaded into cache anyways for the write/read.
Read and Write Sets. Blum et al [5] introduces an efficient imple-
mentation of write-read consistent memory, which is developed
from a simple observation: if the memory is write-read consistent,
at any given time, the set of all reads (or ReadSet, written as RS)
closely tracks the set of all writes (orWriteSet, written asWS). The
WriteSet contains exactly one more item for each memory location
addr (i.e., the last write on addr). For the example shown in Figure 3,
the WriteSet on addr contains the additional write of data3. At the
time of verification, we scan the memory to read the latest content
of each memory location, after which the ReadSet becomes exactly
the same as the WriteSet. Set equivalence can be efficiently eval-
uated [5] by checking the collision-resistant hash function h over
the sets: for example, h(RS) =

∑⊕
(addr ,data)∈RS PRF (addr ,data),

that is, the set hash is the xor sum of the keyed pseudo-random
functions of all set elements. RS =WS implies h(RS) = h(WS),
and h(RS) = h(WS) implies RS =WS with high probability.

Following this intuition, SGX enclave maintains h(RS) and
h(WS), as two byte arrays (currently with length of 64-byte),
and require that all read/write operations be performed by ded-
icated procedures in the SGX which complete these operations and
update h(RS) and h(WS) accordingly. Algorithm 1 presents the
pseudocode of the protected Read andWrite procedures: during
a Read process, in addition to the actual fetch of data (Line 2), we
include this read operation to RS and update h(RS) (Line 3). To
ease the handling of consecutive reads, we virtually write the data
at its current location (no actual I/O is performed), and include
this write in h(RS). h(WS) is updated accordingly (Line 5). The
process ofWrite is similar and omitted due to space constraints.
Non-quiescent verification. The Blum algorithm introduces a
small overhead at runtime: h(RS) and h(WS) are calculated incre-
mentally during each read/write operation. Concerto [1] further
improves the verification performance using a non-quiescent verifi-
cation process, where the verification runs in parallel with routine
reads and writes (shown in Algorithm 2). The system concurrently
maintains the ReadSet and WriteSet of two adjacent epochs; the

Algorithm 1 Verifiable Read and Write (protected by SGX)
1: function Read(addr)
2: data ← Mem[addr] ▷ Mem[addr] is the content of addr
3: h(RS) = h(RS) ⊕ PRF (addr , data) ▷ Update ReadSet
4: ▷ (Virtually) write the same data back
5: h(WS) = h(WS) ⊕ PRF (addr , data) ▷ Update WriteSet
6: return data
7: function Write(addr , datanew)
8: dataold ← Mem[addr]
9: Mem[addr] ← datanew

10: h(RS) = h(RS) ⊕ PRF (dataold) ▷ Update ReadSet
11: h(WS) = h(WS) ⊕ PRF (datanew) ▷ Update WriteSet

Algorithm 2 Non-quiescent Verification (protected by SGX)
1: function Verify
2: h(WSnew) = 0
3: for each paдe ∈ memory do ▷ Scan through the pages
4: paдe .lock = true ▷ Lock the page
5: for each (addr , data) ∈ paдe do
6: h(RScurrent) = h(RScurrent) ⊕ PRF (addr , data)
7: h(WSnew) = h(WSnew) ⊕ PRF (addr , data)
8: paдe .lock = false ▷ Release the lock
9: if h(RScurrent) , h(WScurrent) then return false
10: else return true

start of the memory scan indicates the start of a new epoch. As
the verification scans through the memory, it reads all data exactly
once (Line 5). For each data it scans, it includes the read in the
RS of the current epoch (Line 6) and initiates theWS of the next
epoch (Line 7). When the scan of the memory completes, the ver-
ification process checks the equivalence of RS andWS) of the
current epoch (Line 9); any data tampering will be detected then.
Note that only the page that is currently being scanned is locked
and temporarily stops routine reads and writes. For a large storage
system, we expect that such contentions happen rarely and unlikely
affect the performance.
4.2 Page-structured verifiable storage
Based on the write-read consistent memory, we develop a page-
structured verifiable storage, where the existence or absence of a
queried data is proved by a single record in this storage. To achieve
this, we extend the storage of a relation R by requiring each record
to store, in addition to its primary key, the next smallest key:
Definition 4.2. Consider a relation R = {ri = ⟨f1, f2, ..., fn⟩}
consisting ofn columns.Without loss of generality, suppose column
1 is the primary key, i.e., ri ’s key is f1. The tuple ri is stored as

ri = ⟨key,next(key),data⟩

where data is the aggregated data that contains f2... fn ; next(key)
(or nKey for short) is the smallest key greater than key, or ⊤ if such
key doesn’t exist (i.e., f1 is the largest key). An additional record
⟨⊥,min(keys),−⟩ is also inserted, where min(keys) is the minimal
primary key in the table and − indicates null value.

With this extended model, a single record is sufficient to prove
the presence or absence of a queried data. For example, the record
⟨k,nKey,data⟩ itself is an evidence of its existence (since the record
is read from a trusted memory). The absence of a tuple with primary
key k ′, k1 < k ′ < k2, can be proved by the record ⟨k1,k2,data⟩.

id count price
id1 100 $100

id2 100 $200

id3 500 $100

id4 600 $100

key nKey data
⏊ id1 (⎯, ⎯)

id1 id2 (100, $100)

id2 id3 (100, $200)

id3 id4 (500, $100)

id4 ⏉ (600, $100)

(a) (b)
Figure 4: An example relation (Figure a) stored in the ex-
tended storage model in VeriDB’s storage layer (Figure b).

Example 4.3. For example, consider the relation shown in Fig-
ure 4. ⟨id1, id2, (100, $100)⟩ proves the existence of ⟨id1, 100, $100⟩;
A query for a tuple keyed by id > id4 returns null with an evidence
⟨id4,⊤, (600, $100)⟩ that proves the returned result.
Page structure. These records are stored in VeriDB as pages;
the structure of a VeriDB page resembles classic page designs in
database systems like Postgres. Each page contains in the page
header a set of metadata such as the total page capacity, space that
is still available, number of records in the page, etc. The core of
the page is a list of records referenced by pointers that record their
offset relative to the start of the page. Using the pointers, records
are easily accessible by (paдe, index)—a pointer to the page and the
record’s index in the page.
Supported operations. VeriDB provides the following read and
write interfaces for interacting with the page-structured storage.
Algorithm 3 shows their pseudocode (we omit the pseudocode of
update, as it is similar to a delete followed by an insert):
• Get(page, index) reads the offset of the queried record from
the corresponding pointer, which is then used to retrieve the
data from the page.
• Insert(page, data) first checks whether the page still has
enough free space to store the data. If it does, a new pointer is
added to point to the newly inserted data. The insert further
identifies (e.g., by checking the index) the record whose
primary key right precedes the current one, and updates its
nKey to the key of data.
• Delete(page, index) resets the pointer to the deleted data,
and reclaims the space previously allocated for the record. It
also needs to identify the record whose primary key right

Algorithm 3 Interfaces of Page-structured Storage
1: function Get(paдe , index)
2: addr ← Read(paдe .ptr [index])
3: return data = Read(paдe[addr])
4: function Insert(paдe , data)
5: addr ← AssignAddr(paдe , data .lenдth)
6: if addr < 0 then return −1 ▷ Not enough space
7: Write(paдe .ptr [index], addr) ▷ Add a new pointer
8: Write(paдe[addr], data) ▷ Write data
9: (paдe′, index ′) ← Prev(data .key)
10: UpdateNextKey(paдe′, index ′, data .key)
11: return index
12: function Delete(paдe , index)
13: Write(paдe .ptr [index], −1)
14: ReclaimSpace(paдe) ▷ Reclaim space of the delete record
15: (paдe′, index ′) ← Prev(data .key)
16: UpdateNextKey(paдe′, index ′, data .nKey)

precedes the current one, and updates its nKey to the deleted
data’s nKey (i.e., removing the delete record from key chain).
Reclaiming the space may be expensive as multiple records
may be moved within the page to maintain contiguous un-
used space. However, we show that this can be optimized by
delaying the space reclamation (see Section 4.3).
• Update(page, index, datanew) updates the specified record
at the given page. There is no need to update the key chain, as
it only updates the data field in ⟨key,nKey,data⟩. However,
in cases where datanew occupies more space than the cur-
rent data, the update will need to perform a delete followed
by an insert, which may happen on a different page.

As we can notice in Algorithm 3, these operations rely on the
verifiable read and write discussed in Section 4.1. For example,
Get(paдe,data) performs two verifiable reads (Line 2 and 3) on the
write-read consistent memory, one for reading the record’s offset in
the page, and the other for retrieving the actual data. The overhead
of each verifiable read or write (compared to their non-verifiable
counterparts) comes mainly from the evaluation of two crypto-
graphic hash functions (see Algorithm 1). While this overhead is
reasonable—the overhead of verifiable read/write is consistently
between 1.4-4.2 microseconds, we can adopt optimizations (see
Section 4.3) to further reduce the number of hash functions needed,
and in turn reduce the read/write overhead.

Besides these read/write interfaces, VeriDB further provides
two additional interfaces for handling space management needs:
• Register(page) includes the specified page into the verifica-
tion process. This is called by memory management modules,
and allows user to gradually add data that needs to be pro-
tected. The Reдister process also updates h(WS) based on
the initial data in the page.
• Move(pageold, indexold, pagenew) moves data to a new lo-
cation. In theory, the move operation can be simulated by
a delete and an insert. But, we may want to make it atomic
and protected by the SGX. For example, when an index al-
gorithm run in untrusted environment decides to merge or
split pages for space management purposes, the data move
should be protected, such that the integrity of actual data,
which serves as evidence in verification, is still protected.

4.3 Optimizations
Exclude page metadata from verification. The main function-
ality of page metadata is to provide addressing service for the actual
data record. We in fact only need to guarantee that the read of the
data record is consistent with its corresponding write. Therefore,
the ReadSet/WriteSet operations related to the page metadata (e.g.,
check availability the space, find relative offset of a record within
the page, etc) can be omitted. It significantly reduces the number
of ReadSet/WriteSet operations (by 50%-65%), which translates to a
20% reduction in the overall overhead.

The tradeoff is that some misbehavior that only manipulate the
page metadata cannot be detected. For example, a compromised
server can waste space in a page (falsely report the capacity of
availability space in a page). However, 1) it does not impact the
correctness of the goals presented in Section 3.2, and 2) the ser-
vice provide does not have incentive to so, as it is lowering how
efficiently it is using its own physical storage.

Compact page during verification. The default page implemen-
tation assumes that unused space is a contiguous region, for higher
space utilization and easier management. Such design requires sig-
nificant data relocation during deletion: since records can have
different sizes, we cannot simply swap the deleted records with the
last record in a the page. On average, half of the records in the page
needs to be read and written to another location in the page. To
address this issue, we remove the assumption that unused space is
contiguous and delay the space reclamation, such that unnecessary
data move is completely removed during the deletion process. A
separate compaction process is employed to periodically perform
space reclamation and gather unused space into a contiguous region
again. While having a separate compaction process removes the
need of data relocation during each delete, it still needs to update
h(RS) and h(WS) at compaction time.

As another step further, we find that the compaction process
resembles the verification process of write-read consistent memory
(see Algorithm 2): suppose there are N records in a page, both need
to read N records, and update h(RS) and h(WS) N times. There-
fore, we can perform the compaction process as a side-task during
the verification process. This way, the compaction introduces little,
if any, additional overhead, while retaining high space utilization
in the page-structured storage.
Avoid scanning unvisited pages during verification.Addition-
ally, by organizing data in pages, we can further optimize the veri-
fication process: the verification process requires the scan of the
whole memory to make the read and write sets consistent; scan
the complete memory is likely an overkill and can be optimized
by scanning the pages that have been touched, i.e., read or written,
after the last verification. Such information needs to be maintained
within SGX. Assuming a total memory capacity of 32 GB and a
page capacity of 8 KB, it requires one bit for each of the 4 million
pages, that is, it consumes 0.5 MB memory within the SGX enclave.
While it is non-negligible, the storage cost of such a structure is
affordable given that the total capacity of SGX memory is 96 MB. If
VeriDB is required to support memory space well beyond 32 GB,
we can further adopt coarser granularity (e.g., consider 16 pages as
a group) to reduce the memory utilized for tracking the pages that
are touched between two verifications.
Use multiple RSWSs to avoid lock contention. To improve the
performance of concurrent queries, VeriDB introduces RSWS locks.
A higher concurrencymeansmore likelihood to havemultiple work-
ers updating the ReadSet/WriteSet, i.e., a higher contention for the
RSWS locks. Therefore, as an optimization, VeriDB allows multiple
ReadSets/WriteSets (corresponding to disjoint memory sections),
with a lock for each set. On updating or checking a ReadSet/Write-
Set, the worker or verifier grabs only the corresponding RSWS lock.
Compared with MHT-based solutions, which require global lock
that halts the system for updating the MHT’s root hash, the RSWS
locks allow for much finer granularity concurrency management.

5 QUERY EXECUTION
VeriDB’s storage layer ensures that reads and writes of individual
tuples in the database are verifiable; the presence and absence of a
queried tuple is proved by a single record in the verifiable storage.
In this section, we show the design of a secure query engine that
leverages these proofs for individual reads and writes to generate

verifiable results of complex SQL queries. In VeriDB, the query
execution engine resides in an SGX enclave, colocating with the
storage layer’s read and write interfaces. This eliminates the needs
of frequent ECalls and OCalls during the interaction among the
storage layer and different operators in the query execution engine.

Section 3.2 presents a general correctness definition: the returned
result is correct, if it is consistent with what would have been
returned by a database instance running by a trusted entity (e.g.,
by the client). More specifically, given a query Q , we consider the
following properties of the returned query result:
Integrity: Any tuple returned should satisfy Q .
Completeness. All tuples that satisfyQ are returned (not omitted).
Freshness. The query is executed on the latest state of the database.
In the rest of the section, we describe the query portal (Section 5.1)
that performs query authorization and recovery from power failure,
and the support for access methods such as point and range scans
(Section 5.2). We then present how it can be further extended to
support general SQL queries in Section 5.4 and provide a brief
security analysis in Section 5.5.

5.1 Query portal
The query portal runs insides an SGX enclave, and is the entry
point of queries submitted from the users. Notably, it performs the
following tasks to ensure data integrity.
Query authorization. VeriDB should only execute queries (and
the corresponding memory accesses) that are indeed initiated by
the clients; otherwise, an adversarial service provider can launch
a SQL query to modify the database in any way it wants. This
is enforced by a query authorization process (as a part of Step
1 in Figure 2). Briefly, the client and its trusted query execution
engine (resides in the SGX) maintains a pre-exchanged key k . Each
query issued by the client is associated with a unique query id
qid and a message authentication code (MAC) generated using k ;
upon receiving a query, the query portal verifies that qid has never
been seen before and that the query matches its MAC. Similarly,
the query and verification results generated by the query engine
should also be authenticated by the SGX and verified by the client
(as a part of Step 7 in Figure 2).
Recovery from failure. VeriDB crucially relies on states securely
stored in SGX, such as h(RS) and h(WS), to achieve verifiability.
It is inherently vulnerable to power or machine failure: these data
are permanently lost. However, it is worth noting that, as VeriDB
focuses primarily on in-memory database, power failure wipes out
not only the data inside SGX enclaves, but also the complete data-
base. Therefore, re-establishing the states in SGX can be performed
as a side-task during the ordinary database recovery used in typical
databases: the query portal starts the recovery by copying data from
a designated source, e.g., from a remote replica, as how a typical
in-memory database operates. These repeated writes use the same
interfaces introduced in Section 4.2, and naturally update the states
stored in SGX. The always-running verification process further
ensures that data tampering during the recovery can be detected.
Defense against rollback attack.An adversarial service provider
may introduce intentional power failure to launch rollback attack,
that is, revert the system to an old state which was valid in the past.
For example, the compromised server can wipe out the SGX state

Left element ≤ a: k2 ≤ a

Right element ≥ b: k6 ≥ b

Contiguous region: nKeyi-1 = keyi

<k2, k3, d2>

<k3, k4, d3>

<k4, k5, d4>

<k5, k6, d5>

k5 k6 k7 k8k1 k2 k3 k4

a b

4

Figure 5: VeriDB support for verification of range scan.

by an intentional power failure and then replay selected queries.
Previous research has shown that defending against rollback at-
tack crucially relies on a trusted persistent storage[9]. Data can be
protected by a consensus protocol[16] or storage controlled by a
trusted entity (e.g., the user)[13]. In VeriDB, we require the user
to maintain a small piece of data, which effectively serves as a
synopsis of query history, to defend against rollback attacks.

More concretely, the query portal maintains a strictly increasing
counter: the counter is incremented for each received user query;
at the same time, the value of the counter is assigned to the query
as its sequence number. When a query is completed, the associated
sequence number is returned back to the user along with the query
result. Given that the counter increases strictly, the user should
never see a sequence number twice. However, any rollback attacks
will inevitably decrease the value of the counter, and cause the user
to receive a repeated sequence number1. The user maintains a list of
received sequence numbers, and verifies that there is no repetition
in the list. VeriDB leverages optimizations such as maintaining
intervals of successive sequence numbers (instead of individual
numbers) to help reduce user’s storage cost.

5.2 Secure access methods
Access methods interact directly with the storage layer, and rely
on the returned proofs, in the format of ⟨key,nKey,data⟩, to verify
the correctness of query result.
Index Search. One of the most basic query types is to search for a
specific record in a table based on its primary key:
SELECT * FROM table WHERE key = keyValue

Such query leverages theGet(paдe, index)API provided by the stor-
age layer, where (paдe, index) is retrieved from an index stored in
untrusted memory (the index does not need to be verifiable). The in-
dex returns the (paдe, index) pair for the largest key that is less than
keyValue: this supports the generation of evidence for searches that
do not have a match record for the queried keyValue. The returned
result ofGet(paдe, index) is ⟨key,nkey,data⟩, VeriDB verifies that
one of the two conditions holds:

(1) key = keyValue, in which case, the index search returns a
tuple (i.e., ⟨key,data⟩) that matches the query; or

(2) key < keyValue < nKey, in which case, the index search
returns null as the result.

Otherwise, the verification fails; for example, the untrusted index
may return a tampered (paдe, index) pair.
Range Scan. Range scan returns all records whose primary keys
are in a specified range [start, end]:
1Note that, due to factors such as processing delays or network congestion, sequence
numbers received by the user may not be in an increasing order.

SELECT * FROM table WHERE start<=key and key<=end

Before we introduce VeriDB’s support for verifying range scans,
we briefly revisit the classic MHT-based solution for range scan
verification. The query result is returned as an ordered list of records
r1, ..., rk that satisfies the following three conditions (1) r1 ≤ start ,
(2) end ≤ rk , and (3) ri+1 is the successive record of ri in the MHT.
In addition, it returns necessary metadata to allow reconstruction
of the MHT’s root hash. VeriDB verifies the result of range scan
by checking conditions 1 - 3 as well.
Example 5.1. In VeriDB, the range query relies on the index
to locate the largest key not exceeding a, and then traverses the
ordered records until reach a record that is greater than or equal to
b. By calling Get(paдe, index) repeated, the query engine receives
⟨k2,k3,d2⟩, ..., ⟨k5,k6,d5⟩. Figure 5 illustrates VeriDB’s verification
of this range scan. It verifies the following conditions hold:

(1) The key of the first record (i.e., k2) is less than or equal to a.
(2) The nKey of the last record (i.e., k6) is greater than a.
(3) Each record’s key is the same as its predecessor’snKey (high-

lighted with same color), to ensure that the records form a
contiguous region in the table (ordered by the key).

5.3 Verifiable scan on multiple columns
Verification of the access methods heavily rely on the ⟨key,nKey⟩-
structured evidence. These ⟨key,nKey⟩ structures effective form a
key chain—The storagemodel presented in Section 4maintains such
a chain on the table’s primary key. However, it does not provide
good support when search condition of a point search or a range
query is related to a column other than the primary key 2.

A naïve solution is to maintain multiple tables in the storage, one
for each column. However, this leads to large redundancies. In fact,
the ordering of the records’ physical locations is inconsequential,
instead, the verifiability roots from the integrity and completeness
of the key chains. Therefore, we maintain one single copy of the
data, but extend the storage model to maintain multiple ⟨key,nKey⟩
chains, one for each column that appears in a range scan (or a key
search) as the range (or search) key.
Definition 5.2. Given a relation R = {d = ⟨f1, f2, ..., fn⟩} consist-
ing of n columns. Suppose we provide access methods on k columns
(without loss of generality, suppose they are columns 1 through k),
we model the data as
⟨key1,nKey1,key2,nKey2, ...,keyk ,nKeyk ,data⟩

where data is the aggregated data that contains fk+1... fn .
Effectively, this creates k chains, one for each column, such that the
access method on that column can be verified for the correctness.
Example 5.3. As an example, consider a relation that supports
access methods on two columns. In the extended storage model,
each record has the format ⟨key1,nKey1,key2,nKey2,data⟩. Fig-
ure 6 shows the table status during the insertion of two tuples
⟨1, 4,data1⟩ and ⟨3, 2,data2⟩.

The relation is initialized to contain two records: ⟨⊥,⊤,−,−,−⟩,
⟨−,−,⊥,⊤,−⟩ which indicates there are no keys inserted for col-
umn 1 and column 2 respectively, that is, the table is initialized
2It is still possible, but with higher cost, to support verifiable query execution without
creating a ⟨key, nKey ⟩ chain for the relevant field: one can perform a sequential scan
on the primary key, followed by a Select to find the records satisfying the condition.

key1 nKey1 key2 nKey2 data
⏊ ⏉ ⎯ ⎯ ⎯
⎯ ⎯ ⏊ ⏉ ⎯

key1 nKey1 key2 nKey2 data
⏊ 1 ⎯ ⎯ ⎯
⎯ ⎯ ⏊ 4 ⎯
1 ⏉ 4 ⏉ data1

key1 nKey1 key2 nKey2 data
⏊ 1 ⎯ ⎯ ⎯
⎯ ⎯ ⏊ 2 ⎯
1 3 4 ⏉ data1
3 ⏉ 2 4 data2

(c)(b)(a)

Figure 6: An example relation that support access methods on multiple column.

project project

seq scan index search

quote inventory

join
q.id = i.id

evidence

(⏊, id1)
(id1, id2)
(id2, id3)
(id3, id4)
(id4, ⏉)

evidence

(id4, id6)

select

evidence

(id1, id3)
… …

Figure 7: Example query execution plan.

key = id nKey data = (count, price)
⏊ id1 (⎯, ⎯)

id1 id2 (100, $100)

id2 id3 (100, $200)

id3 id4 (500, $100)

id4 ⏉ (600, $100)

key = id nKey data = (count, desc)
⏊ id1 (⎯, ⎯)

id1 id3 (50, desc1)

id3 id4 (200, desc3)

id4 id6 (100, desc4)

id6 ⏉ (100, desc6)

quote inventory

Figure 8: Example tables.

as two empty key chains. After the insertion of ⟨1, 4,data1⟩, the
two key chains are updated: the chain for column 1 is updated to
⊥ → 1→ ⊤, and the chain for column 2 is updated to ⊥ → 4→ ⊤.
Note that, similar to how insertion is executed in a linked list, the
records preceding the newly insert record need to update their
nKey (highlighted in red in Figure 6). Finally, after the insertion of
⟨3, 2,data2⟩, the two chains are updated to ⊥ → 1→ 3→ ⊤ and
⊥ → 2→ 4→ ⊤.
Performance implication.While the solution is generically ap-
plicable to any number of columns, it comes with performance
implications. For each write operation (e.g., Insert and Delete)
that introduces or removes keys, it needs to perform extra oper-
ations to update predecessor’s nKey for each of the maintained
key chains. It also increases the overall storage size, as each record
needs to maintain both its key and its successor’s key. However,
the storage overhead is bounded – in the worst case, where we
support access methods on all columns, the storage cost is doubled.

5.4 Execution of SQL queries
VeriDB adopts the classic volcano query execution model: a given
SQL query is compiled into a tree-structured execution plan con-
sisting of relational operators, where the leaf nodes are the access
methods described in Section 5.2, and the output of a lower-level
operator is passed as an input to its parent operator. In VeriDB,
the query execution engine resides inside an SGX enclave, and
therefore, the output of an operator (such as Select, Project, and
Join) can be trusted if its input is trusted or passes verification.
This effectively pushes the verification to the leaf operators, i.e.,
the access methods.

Furthermore, since the client can offload the verification process
to attested programs running in an SGX enclave, s/he can simply
verify that the received query results are endorsed by the query
execution engine and sent through a secure channel. The query
result can be trusted as long as neither the query execution engine
nor the storage layer raises verification failure alarms.

Example 5.4. Consider an example query operating on the input
database depicted by Figure 8. The query checks the quote and
inventory tables to find all sale quotes that exceed the current
balance in the inventory.

SELECT q.id, q.count, i.count
FROM quote as q, inventory as i
WHERE q.id = i.id and q.count > i.count
Figure 7 depicts the execution plan of the query, and the verification
status of the access methods. The Join pulls data from the outer
relation quote through SeqScan (on quote.id) and from the inner
relation inventory through IndexSearch (on inventory.id). The
SeqScan, treated as RangeScan for range (⊥,⊤), first pulls records
from the storage. It retrieves ⟨⊥, id1,−⟩ and verifies that ⊥ is less
than or equal to the left-end of the range (⊥,⊤).

As the key ⊥ is outside the range (⊥,⊤), it continues to retrieve
⟨id1, id2, (100, $100)⟩ and verifies that its key = id1 is the same as
its predecessor’s nKey = id1. The output ⟨id1, 100, $100⟩ is passed
to the Project (to remove the price column), and then the down-
stream Join. After the Join operator receives ⟨id1, 100⟩ from the
outer relation, it pulls the tuple with key = id1 from the inner rela-
tion using the IndexSearch operator. The IndexSearch retrieves
from the storage layer an inventory record ⟨id1, id3, (50,desc1)⟩;
the record itself proves its existence (i.e., passes the verification).
Finally, the tuples pulled from the outer and inner relations are
joined together and generate ⟨id1, 100, 50⟩ which satisfies the Se-
lect conditions and is included in the final output.

This process continues until the SeqScan exhausts all records
in the quote table. Figure 7 shows all the records retrieved by the
SeqScan. As they satisfy the three verification conditions of range
scans, they pass the verification as well. The client considers the
the query result as correct, since no verification failure is reported.

The operators in the execution engine, when triggered, output
one tuple. Therefore, the intermediate state during a query exe-
cution is minimal and can be maintained within SGX. However,
when the intermediate state is large (e.g., because of introduction of
materialization points or aggregations) and beyond the capacity of
EPC, it needs to be offloaded to untrusted memory. We can rely on
the secure swap of SGX, however, the secure swap can be expensive
(because of encryption and decryption). Alternatively, we can reuse
the trusted storage of VeriDB for storing the intermediate results
(i.e., treat the intermediate state as additional external data). Such
approach avoids heavy-weight secure swap, and we plan to explore
this direction as a future work.

5.5 Security analysis
As the write-read consistent memory adopts deferred verification,
VeriDB does not provide online verification, instead, it achieves a
delayed version of the integrity, completeness, and freshness prop-
erties. We provide a brief security analysis of the integrity and
completeness properties; the analysis of the freshness property
closely resembles the one of the integrity property, and is omitted
in the paper due to space constraints.

Theorem 5.1 (Integrity). Given any client-specified query Q ,
each tuple returned to the client satisfies Q; otherwise the breach of
the integrity will be (eventually) detected.

Proof. The result received by the client is authenticated using
MAC, any compromise of its integrity will be detected when the
client verifies the MAC (see Section 5.1). Therefore, the proof re-
duces to show the integrity of the query result generated by the
execution engine. Given that the execution engine resides in the
SGX, the integrity of the output of an operator depends solely on
the integrity of its inputs. The physical plan of a query forms a
tree consisting of relational operators, where the leaf nodes are
access methods. The integrity of the query result is reduced to the
integrity of the inputs of the access methods (see Section 5.2).

For an access method, it retrieves records from the verifiable
storage layer using the SGX-protected APIs (see Section 4.2). Since
the actual data is stored outside of the trusted environment, it is
susceptible to attacks. However, the write-read consistent memory
(see Section 4.1) ensures that any unauthorized modification to the
storage (e.g., by bypassing the provided APIs and making direct
modification to the memory) will be detected. Therefore, unless the
verification reports an alarm, the data access will be performed on
a correct database state, that is, the result of following the sequence
of writes submitted through the SGX-protected APIs. □

Theorem 5.2 (Completeness). Given any client-specified query
Q , all tuples that satisfy Q are returned to the client; otherwise the
omission will be (eventually) detected.

Proof. The proof of the completeness property follows the sim-
ilar strategy as the one of integrity. The completeness of the query
result is reduced to the completeness of the input of the access
methods. For index searches, the completeness is guaranteed by the
verifiable storage layer: the absence of a queried record needs to be
proved by a non-forgeable evidence stored in the write-read con-
sistent memory. For range scans, the completeness is guaranteed
by checking the coverage of the start and end points of the range,
and the evidence that the returned results form a no-omission key-
chain (see Section 5.2). Fundamentally, the non-forgeability of the
evidences is guaranteed by the write-read consistent memory. □

6 EVALUATION
In this section, we present a series of experiments to answer the
following questions: As micro-benchmarks (Section 6.1), 1) how
much overhead does VeriDB incur compared to a baseline that does
not support verifiability, and 2) how does the internal of non-quiescent
verification affect VeriDB’s performance, and whether it can sup-
port verification frequent enough to be practical? As a comparative
study (Section 6.2), 3) how does VeriDB perform compared against
the classic MHT-based approach? 4) Finally, as a macro-benchmark
(Section 6.3), how is the end-to-end query performance affected by
the support of verifiability?

6.1 Micro-benchmarks
The performance overhead of VeriDB mainly roots from the verifi-
cation of the write-read consistent memory, which is the foundation
of the verifiable storage layer. The main source of overhead comes
from 1) the need to update the ReadSet andWriteSet (i.e.,h(RS) and
h(WS)) during each read/write operation, and 2) the need to per-
form non-quiescent verification. Therefore, we focus on evaluating
the overhead from these two sources.

Experiment setup. Each experiment loads an initial state of the
database and then runs a mixed set of read/write operations on the
database. We use 4-byte integers as keys and 500-byte strings as
values. The initial database consists of N key-value pairs, where
the keys are in the range of 1 ... N and the values are generated
randomly. Unless otherwise stated, we used N = 1 million pairs as
the initial database size. In our experiments, we use the following
four kinds of operations:
• Update: Given a specified key, it updates the corresponding
data record in the database.
• Insert: It inserts a data record to the database, and updates
the nKey field of the preceding record.
• Delete: It deletes a data record (with a specified key) from
database, and updates the nKey field of the preceding record.
• Get: Given a specified key, it retrieves the corresponding
data record from database.

The detailed description of these operations are presented in Sec-
tion 4.2. Unless otherwise specified, we run the experiments as
follows: each experiment is repeated three times and in each of
these three runs 10 thousands operations in total, where the number
of four kinds of operations are approximately the same. The latency
is measured as the average latency over time and across the three
runs. Our experiments are carried out on a server equipped with
Intel Xeon CPU E3-1270 v6 @ 3.80GHz CPU and 64 GB of RAM.

Overhead for maintaining ReadSet/WriteSet. Our first set of
experiments evaluate the latency of the aforementioned four kinds
of read/write operations. We consider four configurations: a) Base-
line which performs the read/write operations without additional
mechanisms to guarantee verifiability; b) RSWS which provides
verifiability guarantee for data records but not page metadata; and
c) RSWS incl. metadata which additional ensures the verifiability
of page metadata. Figure 9 presents our evaluation results.

We make the following observations: First, we notice that the
cost introduced by the update of the ReadSet and WriteSet is rel-
atively smaller (ranging between 1.5-2.2 us), and can be reduced
if we exclude the page metadata from verification (recall that the
correctness verification of client’s query relies only on the integrity
of actual data records). The average cost for updating the Read-
Set and WriteSet is reduced by around 20% after we removed the
page metadata verification. The operations of ReadSet and Write-
Set add around 1.5 us for Get and Delete, and around 2.2 us for
Insert and Delete. This difference is mainly because the Insert
and Delete operations need to update the nKey field of preceding
records, causing additional updates on the ReadSet and WriteSet.

Second, we notice that this latency overhead for supporting
verifiable storage layer is dominated almost exclusive by PRF op-
erations (required by updating h(RS) and h(WS)). By adopting
hardware solutions such as FPGA, the hash speed can be signif-
icantly improved (potentially by orders of magnitude), making
VeriDB a more appealing solution that provides verifiability with
little performance penalty.
Verification.Our next set of experiments focus on the performance
impact introduced by the non-quiescent verification. The cost of
the non-quiescent verification mainly comes from two sources: a)
the need to lock a page when it scans that page, preventing race
conditions with routine read/write operations, and b) the resources

RSWS w/ Metadata RSWS Baseline
Configurations

0

1

2

3

4

La
te

nc
y

(u
s)

Get
Insert

Delete
Update

Figure 9: Latency of reads/writes with
different system config.

50 100 200 500 1000
opeartions per page scan

0

1

2

3

4

5

La
te

nc
y

(u
s)

Get
Insert

Delete
Update

Figure 10: Latency of reads/writes with
different verification freq.

MHT VeriDB
Method

2
4
8

16
32
64

128

La
te

nc
y

(u
s)

Get
Insert

Delete
Update

Figure 11: Latency of reads/writes for
MB-tree and VeriDB

needed to update the ReadSet during the scan. Figure 10 presents
the latency of read/write operations when the non-quiescent verifi-
cation is performed with different frequencies. The configurations
x have the background verification thread always running, and
perform a memory scan after x operations.

We observe that, as the verification is invoked more frequently,
the latency of the read/write operations also becomes larger. It
is understandable, a more frequent memory scan requires more
resources to read page data, compact the records (see Section 4.3)
and update the ReadSet; it also locks pages more often and creates
a higher chance of data contention that prevents routine read/write
operations. We posit that a verification frequency of 1,000 oper-
ations introduces a small overhead (1-4% overhead compared to
the Baseline, i.e., the RSWS data in Figure 9) is frequent enough
in practice. To summarize, VeriDB provides verifiability for read-
/write operations with reasonable overhead that is insignificant
enough to be adopted in practical scenarios.

6.2 VeriDB vs. MB-Tree
We next present a comparative evaluation that compares VeriDB’s
performance with that of MB-Tree [14], a classic MHT-based ap-
proaches for database verification. It is a representative example
that reveals the general limitation of MHT-based approaches – the
concurrency bottleneck at the root hash in an MHT. In an MB-Tree,
read/write operations in data records are not performed in an SGX
environment; the system does not maintain the ReadSet and Write-
Set, instead, it maintains a MHT on top of the data records. For
example, each write operation requires updating the path from the
MHT’s leaf node affected by the write to the root, and each read
operation requires the return of an ADS that allows regeneration
of the MHT’s root hash. We continue to use workload introduced
in Section 6.1, that is, performing 100K mixed read/write opera-
tions on a database initialized with an init state. Figure 11 shows
the latency of the four kinds of read/write operations executed on
VeriDB and MB-tree (note the logarithmic scale on the y-axis).
In this experiment, we enable non-quiescent verification with a
frequency of verifying one page every 1,000 operations.

We observe that VeriDB significantly outperforms MB-Tree,
yielding a 94-96% reduction in read/write latency. This agrees with
evaluation results reported in prior work [1]: the concurrency bottle-
neck in MHT-based approaches largely affect system performance.
Admittedly, MB-Tree provides online verification, meaning the re-
turned result can be directly verified against its associate ADS. We
posit that, while VeriDB adopts a delayed verification (detection

happens at the end of a memory scan), VeriDB is an appealing
alternative given its significant performance boost, and its support
for a more general class of SQL queries.

6.3 Macro-benchmark
TPC-Hbenchmark.Weevaluate the query performance ofVeriDB
using the TPC-H benchmark. The TPC-H benchmark contains 22
SQL queries and a dataset, and is widely used by the database com-
munity to evaluate the performance of new systems. We evaluate
the performance of VeriDB using Query #1, #6 and #19 in the
TPC-H benchmark; take Query #19 as an example: it is a Sum on
the result of a Join query applied to two multidimensional range
queries on tables lineitem and part. In our evaluation, we con-
sider two configurations: Baseline that excludes all needed security
enhancements for verifiability (e.g., the maintenance of the ReadSet
and WriteSet, the non-quiescent verification, and the enhanced
access methods), and VeriDB that provides verifiability.

Figure 12 shows the evaluation results, we make two observa-
tions: 1) VeriDB introduces a consistently reasonable overhead
across different queries, and 2) the overhead is dominated by the
overhead of table scans, during which VeriDB performs the update
of ReadSet and WriteSet. For Queries #1 and #6 which both scan the
lineitem table once, the overhead on both queries is about 6.7 sec-
onds. Query #19 is a Join over two tables. We considered two query
plans: one usesMergeJoin, and the other uses NestedLoopJoin
and materialize the Select result on inner loop. The cost of data
access remains the same: VeriDB scans both the part and lineitem
tables once and the overhead is about 7.1 seconds. On the other
hand, the computation cost of MergeJoin is significantly lower,
although it introduces a larger intermediate state to store sort re-
sults. Importantly, we observe that the query execution engine,
while resides in an SGX enclave, introduces no additional overhead.
Therefore, for queries with computational bottleneck like Query
#19 (with NestedLoopJoin), the relative overhead is only 9%; for
simple Select queries like Query #1 and #6, the relative overhead
can be up to 39%.
TPC-C benchmark.We also evaluate the performance of VeriDB
when processing concurrent reads/writes using the TPC-C bench-
mark.WemeasureVeriDB’s average throughput on a 20-warehouse
configuration when varying the number of clients and the number
of ReadSets/WriteSets (RSWSs). Figure 13 shows our evaluation
result. We observe that VeriDB has a similar performance trend
compared to an ordinary database which does not protect data
integrity: both systems reach a peak throughput when the number

Q1 Q6 Q190

20

40

60

80

100
Ex

ec
ut

io
n

Ti
m

e(
s)

Scan Nodes w/ RSWS
Other Nodes w/ RSWS

Scan Nodes w/o RSWS
Other Nodes w/o RSWS

Figure 12: Execution time on TPC-H dataset.

1 2 3 4 5 6 7 8
Clients

0

1000

2000

3000

4000

Th
ro

ug
hp

ut
 (T

PS
)

No RSWS updates
1024 RSWSs

128 RSWSs
16 RSWSs

4 RSWSs
1 RSWS

Figure 13: Transaction throughput on TPC-C dataset.

of clients is 6, and the throughput decreases afterwards. Unlike
MHT-based approaches, VeriDB, with sufficiently many RSWSs,
does not introduce extra concurrency bottlenecks. We further ob-
serve that increasing the number of RSWSs significantly reduces
the performance overhead caused by the lock contention as we
expect in Section 4.3. Overall, VeriDB with 1024 RSWSs introduces
an overhead of around 3x-4x on transaction throughput, as VeriDB
needs to update the hashes of the read and write sets.

7 RELATEDWORK
The problem of verifiable cloud databases has been extensively
studied to ensure result integrity against an untrusted cloud service
provider. Generally speaking, the techniques to achieve integrity
can be categorized into three groups: Authenticated Data Structure
(ADS), Succinct Arguments of Knowledge (SNARK), and Trusted
Execution Environment (TEE).
ADS-based approach. ADS is a classic technique to ensure query
integrity. There are two commonly-used building blocks for ADS:
digital signatures that use asymmetric cryptography to authen-
ticate any piece of data, and Merkle Hash Trees (MHT) that use
hierarchical hashes to verify the existence of any record(s) in an
array of data. The ADS-based approach typically handles only a
specific class of computations on the data, e.g., range queries [14,
22], joins [29, 32], pattern matching [7, 23], and a subset of SQL
queries [31]. They have limited applicability and cannot serve as
full-functional databases.
SNARK-based approach. SNARK is a technique that verifies the
execution result of arbitrary non-deterministic arithmetic circuits.
Therefore, SNARK-based approach can support arbitrary compu-
tation tasks, but at the expense of an extremely high performance
overhead. In particular, vSQL [30] designs a verifiable database
system that can support arbitrary SQL queries with an interac-
tive protocol. However, it is limited to relational databases with
a fixed schema. Nevertheless, the impractical overhead prevents
these solutions from being widely adopted in real world scenarios.

TEE-based approach. TEE serves as an additional trust anchor,
and allows simplification and performance improvement in the
design of verifiable database. For example, CorrectDB [4] considers
moving the database into an environment protected by a trusted
CPU, and VeritasDB [26] proposes a network proxy running in
an SGX enclave that mediates communication between the client
and the database server. They both rely on MHT-based ADS for
integrity verification, and suffer from the problem that MHT root
inevitably becomes a concurrency bottleneck. Concerto [1] adopts
a radically different approach and removes the concurrency bot-
tleneck in MHT-based designs. It reduces the problem of verifying
data integrity to that of verifying memory integrity, which can
be efficiently achieved using a high-performance memory check-
ing algorithm. However, it only supports key-value storage model.
Opaque [33] is an SGX-based oblivious distributed analytics plat-
form that also ensures integrity in query processing, but its main
focus is on access pattern leakage protection which introduces large
overhead and therefore not comparable to our system.
Verifiable databases on multi-parties. There are also related
work that aims for data and query integrity in an untrusted cloud
environment, but assume that there are multiple clients and servers
in the scenario. Some approaches achieve a similar goal as our paper
that the clients want to outsource the database without storing the
full data. These works typically use ADS to achieve integrity and
use blockchain to synchronize the digest of ADS [24, 28]. Therefore,
they also suffer from the functional limitation of the underlying
ADS, and in addition, the performance overhead introduced by
blockchain consensus protocol.

Another way to achieve integrity is to keep a local copy of the
full data and ensure that the local data is up-to-date. This goal can
be achieved by either blockchain [8] or TEE [15]. As a result, they
can achieve fault tolerance in addition to fault detection, at the cost
of large per-node storage overhead.

8 CONCLUSION
To conclude, we introduce in this paper the design and implemen-
tation of VeriDB, an SGX-based verifiable database that supports
relational tables, multiple access methods and general SQL queries.
VeriDB adopts a page-structured storage design, to facilitate the
integration with legacy relational databases and to support a wide-
range of verifiable access methods. By moving the query engine
into an SGX enclave, VeriDB reduces the problem of verifying the
integrity of query results to verifying the correctness and complete-
ness of retrieved data, which can be efficiently achieved with the
support of the verifiable storage. Using our prototype implementa-
tion, we demonstrate that VeriDB incurs reasonable overhead for
achieving verifiability: VeriDB introduces an overhead of 1-2 mi-
croseconds for read/write operations, which allows it to be adopted
for logically simple queries that require low latency. VeriDB in-
troduces a 9%-39% overhead for analytical workloads. Overall, We
posit that such overhead is a reasonable tradeoff for achieving
verifiability in practical scenarios.

ACKNOWLEDGMENTS
This work was supported by Alibaba Group through Alibaba Re-
search Fellowship Program.

REFERENCES
[1] Arvind Arasu, Ken Eguro, Raghav Kaushik, Donald Kossmann, Pingfan Meng,

Vineet Pandey, and Ravi Ramamurthy. 2017. Concerto: A High Concurrency
Key-Value Store with Integrity. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA,
May 14-19, 2017. ACM, 251–266.

[2] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In
Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’16). USENIX Association, 689–703.

[3] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio Honda,
and Kapil Vaswani. 2019. SPEICHER: Securing LSM-based Key-Value Stores
using Shielded Execution. In Proceedings of the 17th USENIX Conference on File
and Storage Technologies (FAST’19). USENIX Association, 173–190.

[4] Sumeet Bajaj and Radu Sion. 2013. CorrectDB: SQL Engine with Practical Query
Authentication. Proc. VLDB Endow. 6, 7 (2013), 529–540.

[5] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni
Naor. 1991. Checking the Correctness of Memories. In 32nd Annual Symposium
on Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October 1991. IEEE
Computer Society, 90–99.

[6] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 86 (2016), 1–118.

[7] Premkumar T. Devanbu, Michael Gertz, April Kwong, Charles U. Martel, Glen
Nuckolls, and Stuart G. Stubblebine. 2001. Flexible authentication of XML doc-
uments. In ACM Conference on Computer and Communications Security. ACM,
136–145.

[8] Johannes Gehrke, Lindsay Allen, Panagiotis Antonopoulos, Arvind Arasu,
Joachim Hammer, James Hunter, Raghav Kaushik, Donald Kossmann, Ravi Ra-
mamurthy, Srinath T. V. Setty, Jakub Szymaszek, Alexander van Renen, Jonathan
Lee, and Ramarathnam Venkatesan. 2019. Veritas: Shared Verifiable Databases
and Tables in the Cloud. In CIDR 2019, 9th Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings.
www.cidrdb.org.

[9] Intel. [n.d.]. Intel(R) SGX SDK Developer Reference for Windows.
https://software.intel.com/content/www/us/en/develop/download/sgx-
sdk-developer-reference-windows.html. March 2020.

[10] Intel. [n.d.]. Intel(R) Software Guard Extensions (Intel SGX). https://software.
intel.com/sites/default/files/332680-002.pdf. June 2015.

[11] Intel. [n.d.]. Intel(R) Software Guard Extensions Programming Reference. https:
//software.intel.com/sites/default/files/managed/48/88/329298-002.pdf. 2014.

[12] Rohit Jain and Sunil Prabhakar. 2013. Trustworthy data from untrusted databases.
In 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013. IEEE Computer Society, 529–540.

[13] N. Karapanos, A. Filios, R. A. Popa, and S. Capkun. 2016. Verena: End-to-End
Integrity Protection for Web Applications. In 2016 IEEE Symposium on Security
and Privacy (SP). 895–913.

[14] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. 2006. Dy-
namic authenticated index structures for outsourced databases. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, Chicago,
Illinois, USA, June 27-29, 2006. ACM, 121–132.

[15] Kai Mast, Lequn Chen, and Emin Gün Sirer. 2018. Enabling Strong Database
Integrity using Trusted Execution Environments. CoRR abs/1801.01618 (2018).
arXiv:1801.01618 http://arxiv.org/abs/1801.01618

[16] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution. In Proceedings of the 26th USENIX Conference on Security
Symposium (SEC’17). USENIX Association, USA, 1289–1306.

[17] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative instructions
and software model for isolated execution. In HASP 2013, The Second Workshop
on Hardware and Architectural Support for Security and Privacy, Tel-Aviv, Israel,
June 23-24, 2013. ACM, 10.

[18] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption
Function. InAdvances in Cryptology - CRYPTO ’87, A Conference on the Theory and
Applications of Cryptographic Techniques, Santa Barbara, California, USA, August
16-20, 1987, Proceedings (Lecture Notes in Computer Science), Vol. 293. Springer,
369–378.

[19] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. 2004. Authentication and
Integrity in Outsourced Databases. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2004, San Diego, California, USA. The Internet
Society.

[20] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. 2017. Eleos:
ExitLess OS Services for SGX Enclaves. In Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys’17). 238–253.

[21] HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan. 2005. Verify-
ing Completeness of Relational Query Results in Data Publishing. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, Baltimore,
Maryland, USA, June 14-16, 2005. ACM, 407–418.

[22] Dimitrios Papadopoulos, Stavros Papadopoulos, and Nikos Triandopoulos. 2014.
Taking Authenticated Range Queries to Arbitrary Dimensions. InACMConference
on Computer and Communications Security. ACM, 819–830.

[23] Dimitrios Papadopoulos, Charalampos Papamanthou, Roberto Tamassia, and
Nikos Triandopoulos. 2015. Practical Authenticated Pattern Matching with
Optimal Proof Size. Proc. VLDB Endow. 8, 7 (2015), 750–761.

[24] Yanqing Peng, Min Du, Feifei Li, Raymond Cheng, and Dawn Song. 2020. Fal-
conDB: Blockchain-based Collaborative Database. In Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020. ACM, 637–652.

[25] Sarvjeet Singh and Sunil Prabhakar. 2008. Ensuring correctness over untrusted
private database. In EDBT 2008, 11th International Conference on Extending Data-
base Technology, Nantes, France, March 25-29, 2008, Proceedings (ACM International
Conference Proceeding Series), Vol. 261. ACM, 476–486.

[26] Rohit Sinha and Mihai Christodorescu. 2018. VeritasDB: High Throughput Key-
Value Store with Integrity. IACR Cryptol. ePrint Arch. 2018 (2018), 251.

[27] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves. ACM SIGARCH Computer
Architecture News 45, 2 (2017), 81–93.

[28] Cheng Xu, Ce Zhang, and Jianliang Xu. 2019. vChain: Enabling Verifiable Boolean
Range Queries over Blockchain Databases. In SIGMOD Conference. ACM, 141–
158.

[29] Yin Yang, Dimitris Papadias, Stavros Papadopoulos, and Panos Kalnis. 2009.
Authenticated join processing in outsourced databases. In SIGMOD Conference.
ACM, 5–18.

[30] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. 2017. vSQL: Verifying Arbitrary SQL Queries over
Dynamic Outsourced Databases. In 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 863–880.

[31] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2015. IntegriDB:
Verifiable SQL for Outsourced Databases. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA, October
12-16, 2015. ACM, 1480–1491.

[32] Qingji Zheng, Shouhuai Xu, andGiuseppeAteniese. 2012. Efficient query integrity
for outsourced dynamic databases. In CCSW. ACM, 71–82.

[33] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E.
Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed
Analytics Platform. In NSDI. USENIX Association, 283–298.

https://software.intel.com/content/www/us/en/develop/download/sgx-sdk-developer-reference-windows.html
https://software.intel.com/content/www/us/en/develop/download/sgx-sdk-developer-reference-windows.html
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://arxiv.org/abs/1801.01618
http://arxiv.org/abs/1801.01618

	Abstract
	1 Introduction
	2 Background
	2.1 Intel SGX
	2.2 Verifiable outsourced databases

	3 System Overview
	3.1 Threat model
	3.2 Goals
	3.3 Architecture

	4 Storage Layer
	4.1 Preliminary: write-read consistent memory
	4.2 Page-structured verifiable storage
	4.3 Optimizations

	5 Query Execution
	5.1 Query portal
	5.2 Secure access methods
	5.3 Verifiable scan on multiple columns
	5.4 Execution of SQL queries
	5.5 Security analysis

	6 Evaluation
	6.1 Micro-benchmarks
	6.2 VeriDB vs. MB-Tree
	6.3 Macro-benchmark

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

