
Distributed Trajectory Similarity Search

Dong Xie, Feifei Li, Jeff M. Phillips

School of Computing, University of Utah
{dongx, lifeifei, jeffp}@cs.utah.edu

ABSTRACT

Mobile and sensing devices have already become ubiquitous. They
have made tracking moving objects an easy task. As a result, mo-
bile applications like Uber and many IoT projects have generated
massive amounts of trajectory data that can no longer be processed
by a single machine efficiently. Among the typical query opera-
tions over trajectories, similarity search is a common yet expensive
operator in querying trajectory data. It is useful for applications in
different domains such as traffic and transportation optimizations,
weather forecast and modeling, and sports analytics. It is also a
fundamental operator for many important mining operations such
as clustering and classification of trajectories. In this paper, we pro-
pose a distributed query framework to process trajectory similarity
search over a large set of trajectories. We have implemented the
proposed framework in Spark, a popular distributed data process-
ing engine, by carefully considering different design choices. Our
query framework supports both the Hausdorff distance the Fréchet
distance. Extensive experiments have demonstrated the excellent
scalability and query efficiency achieved by our design, compared
to other methods and design alternatives.

1. INTRODUCTION
Thanks to the explosive adoption and development of mobile and

sensing devices, tracking moving objects has already become an
easy task. Many applications rely on user’s (or an object of inter-
est’s) location data to make critical decisions. The growth of IoT
(Internet of Things) applications and mobile apps is both explosive
and disruptive, and they often collect the locations of moving ob-
jects in some fixed period, e.g, an Uber car reports its location ev-
ery few seconds. As a result, applications from different domains
end up collecting massive amounts of location data and locations
of the same object over time form a trajectory. This leads to mas-
sive amount of trajectories that applications must be able to store,
process, and analyze efficiently.

For instance, T-Drive [44] contains 790 million trajectories gen-
erated by 33,000 taxis in Beijing over only a three-months pe-
riod, which implies that mobile-based ride-sharing applications like
Uber, Lyft, and Didi are likely to generate trajectory datasets orders
of magnitude larger than those generated from only 33,000 taxis in

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150­8097/17/07.

just 3 months. The amount of trajectories easily exceeds the stor-
age capacity and the processing capability of a single machine, and
thus needs a cluster of (commodity) machines for storage and pro-
cessing. This naturally brings the important challenge of designing
efficient and scalable distributed query processing algorithms and
frameworks for large-scale trajectory data.

There are many different, useful query operations over a tra-
jectory data set, e.g., range queries to find all trajectories passing
through a spatial or spatio-temporal query range. Among the many
different query operations, trajectory similarity search is a funda-
mental operator that is non-trivial to process. The objective is to
find ‘similar’ trajectories of a query trajectory. This is useful in
many mobile and IoT applications; for example, return all taxis that
share similar routes to a query trajectory representing a query mov-
ing object (another taxis, a user, etc.). Trajectory similarity search
is also useful in sports analytics, weather forecast and modeling,
and transportation planning and optimization. It is also a building
block towards many advanced mining and learning tasks such as
clustering and classification.

Many existing studies focused on defining trajectory similarity
measures such as Dynamic Time Warping (DTW) [41], Longest

Common Sub-Sequence (LCSS) [37], Edit Distance on Real Se-

quence (EDR) [13], etc. More importantly, to the best of our knowl-
edge, none of the prior studies have investigated how to perform
trajectory similarity search in a distributed and parallel setting.

In light of that, we propose a general framework for supporting
trajectory similarity search in a distributed environment. Rather
than directly indexing all trajectories, we design an segment-based

distributed index structure. This is coupled with an effective prun-

ing algorithm to mark far trajectories only using individual seg-
ments. We demonstrate the design and instantiation of the proposed
framework using two popular similarity measures for geometric
curves and time series data, namely, the discrete segment Haus-
dorff distance and the discrete segment Fréchet distance [7]. We
have also investigate the challenges and design issues associated
with realizing our framework in a popular distributed computation
engine, Apache Spark.

The real trajectory of a moving object is always a continuous
curve in space, but trajectories collected and stored in the database
are not, due to the fact that only discrete samples are taken by the
sensing devices. For example, a taxi equipped with GPS will report
its location every 1 minute. Discrete samples from one moving
object form an ordered sequence of segments. When the sample
rate is high enough, these segments will be able to approximate the
real trajectory of a moving object fairly accurately.

That said, we adopt a segment-based representation in this work
to represent the trajectory of a moving object. A trajectory T is a
sequence of line segments. Formally,

Definition 1. A trajectory is a sequence of consecutive line
segments, denoted as T = 〈ℓ1, ℓ2, · · · , ℓm〉, where ℓi is a line
segment in R

2. The end point of ℓi is denoted as si+1 and it is the
starting point of ℓi+1.

T represents a trajectory constructed from (m+1) sample points
with m line segments, where each sample point sj is a location of
the moving object at the time sj was sampled, and ℓi is the i-th line
segment connecting two consecutive sample points si and si+1.
The segment-based approach has been shown to be a more accu-
rate approximation to real trajectories, than the classic point-based

approach in various contexts, including similarity search, outlier
detection, clustering, and classification [29, 25, 23, 24]. The later
represents a trajectory simply as a sequence of points (using the
sampled locations taken for a moving object).

To summarize, the main contributions of our work are:

• We propose the first distributed framework that leverages
segment-based partitioning and indexing to answer similar-
ity search queries over large trajectory data. Two established
similarity measures, discrete segment Hausdorff and Fréchet
distances, are used to demonstrate our framework.

• By realizing our framework and several baselines in Apache
Spark, we identify and overcome critical bottlenecks specific
to the distributed indexing of trajectories. Our instantiation
of the framework includes a carefully designed instance of
IndexRDD, the integration of a compressed bitmap into the
index’s internal nodes, and a dual index to take advantage of
two types of indexes with reasonable space overhead.

• We conduct a comprehensive empirical evaluation of the pro-
posed framework using large synthetic and real trajectory
data sets to measure its scalability and efficiency. The exper-
imental results clearly demonstrate the superior performance
that our framework achieves against possible alternatives.

The rest of the paper is organized as the following. Section 2 for-
malizes the trajectory similarity search problem and provides two
baseline solutions. Section 3 surveys different similarity measures
defined in the literature and the query processing methods that they
have used. We describe the proposed framework in Section 4 and
instantiate it with two similarity measures. Optimizations and de-
tailed design considerations are discussed in Section 5. Section 7
presents the results of our experimental study and Section 8 con-
cludes the paper with remarks on future work.

2. PRELIMINARIES
In this section, we formally define the problem of trajectory sim-

ilarity search and provide two baseline solutions for a distributed
environment. Table 1 lists the frequently used notation in this pa-
per. We focus on the efficiency aspect of processing large-scale
trajectory similarity searches. The focus of our work is not to inves-
tigate the effectiveness of different similarity search measures for
retrieving similar trajectories under different application contexts.
Instead, we adopt the well-known Hausdorff and Frechet distances
as our similarity measures (over discrete segments in a trajectory)
that are widely used for measuring similarity between curves and
geometric trajectories.

2.1 Problem formulation
We will only consider two-dimensional points as the locations of

a moving object in this paper since it represents the most common
application scenarios for trajectories. It is straightforward to extend
our solutions to higher fixed dimensions.

Table 1: Frequently used notations.

Notation Description
ℓ = (s, e) A segment from a starting point s and an end point e
T = 〈ℓ1 · · · ℓm〉 A trajectory consist of m segments
Q = 〈g1 · · · gn〉 Query trajectory consist of n segments
gi, ℓj i-th (resp. j-th) segment of Q (resp. T)
T(TQ) All trajectories (in partitions intersected by Q)
‖p− q‖ L2 distance between two points p and q
~d(p, ℓ) Distance from point p to segment ℓ: minq∈ℓ ‖p− q‖

d(ℓ1, ℓ2) Distance between two segments ℓ1 and ℓ2:
max(d(s1, ℓ2), d(e1, ℓ2), d(s2, ℓ1), d(e2, ℓ1))

mindist(ℓ,Q) minimum distance from segment ℓ to trajectory Q:
mingj∈Q minp∈ℓ d(p, gj)

mindist(A,Q) minimum distance from spatial area A to trajectory Q:
mingj∈Q minp∈A d(p, gj)

DH(Q,T) discrete segment Hausdorff distance between Q and T

DF (Q,T) discrete segment Fréchet distance between Q and T

Definition 2. Given a query trajectory Q, a set of trajectories
T = {T1, · · · , TN}, a distance measure D, and an integer k; a tra-

jectory similarity search query returns the set S(Q,T, D, k)
⊂ T where |S(Q,T, D, k)| = k and for any T, T ′ ∈ T:

if T ∈ S(Q,T, D, k), and T ′ /∈ S(Q,T, D, k)

then D(Q,T) < D(Q,T ′).

The above definition assumes no ties between distances from two
trajectories in T to a query trajectory. If that is not the case and there
is a tie at the k-th position, ranked by trajectories’ distances to Q,
we break the tie arbitrarily.

Different distance functions can be used to define the distance
between two trajectories, D(Q,T), in the above definition. Since
we have adopted a segment-based representation for trajectories,
we define the trajectory distance through the distances of their seg-
ments. The distance between two line segments is defined:

Definition 3. Given two line segments ℓ1 = (s1, e1) and ℓ2 =
(s2, e2), we define their distance as

d(ℓ1, ℓ2) = max(~d(s1, ℓ2), ~d(e1, ℓ2), ~d(e2, ℓ1), ~d(e2, ℓ1)),

where the distance between a point p and a segment ℓ is defined as:

~d(p, ℓ) = min
q∈ℓ

‖p− q‖, ‖ · ‖ is the L2 norm.

The above definition for distance between two segments ℓ1 and
ℓ2 is equivalent to the well-known Hausdorff distance [7] defined
between all points on ℓ1 and all points on ℓ2. This is because a line
segment ℓ is a convex object, thus the point on ℓ with the maximum
distance to another line segment must be one of the two end points
of ℓ. Hence, instead of implementing the Hausdorff distance over
all points on ℓ1 and ℓ2, we can use the simplified expression with
their end points. The above distance definition being equivalent to
the Hausdorff distance implies that d(ℓ1, ℓ2) is a metric, and can
thus be used to build an index for segments using any indexing
structures that work for a metric space.

There exists a large variety of trajectory similarity measures, de-
pending on how a trajectory is represented (e.g., point-based vs.
segment-based) and the objective of the application at hand. In-
stead of defining yet another similarity measure, we will demon-
strate the flexibility of our framework using two classic distance
measures between two trajectories (curve objects), namely, the dis-
crete Hausdorff and the discrete Fréchet distances [7] (defined over
segments from the two trajectories). They are notably different in
that the Hausdorff distance does not account for directional infor-
mation (so a route from A to B is equivalent to a route from B to

FrechetMatching

Hausdorff Matching

Figure 1: Difference between segment Hausdorff and Fréchet

distances: arrows on segments in a trajectory indicate the di-

rection of a trajectory; other dotted arrows indicate a matching

from a segment from T (Q) to a segment in Q (T) with respect

to the segment Hausdorff (Fréchet) distance.

A if they follow the same paths), whereas the Fréchet distance does
incorporate directional information.

Definition 4. For any two trajectories Q = 〈g1, g2, · · · , gn〉
and T = 〈ℓ1, ℓ2, · · · , ℓm〉, their discrete segment Haus-

dorff distance is defined as:

DH(Q,T) = max

{

max
gi∈Q

min
ℓj∈T

d(gi, ℓj),max
ℓj∈T

min
gi∈Q

d(ℓj , gi)

}

.

Definition 5. For any two trajectories Q = 〈g1, g2, · · · , gn〉
and T = 〈ℓ1, ℓ2, · · · , ℓm〉, a coupling between them is a set L of
pairings γ1, γ2, . . . , γh where γi = (αi, βi) ∈ [n] × [m]. In par-
ticular, γ1 = (1, 1) and γh = (n,m), and given γi = (αi, βi),
then γi+1 = (αi+1, βi+1) is one of (αi + 1, βi), (αi, βi + 1), or
(αi + 1, βi + 1). Then the discrete segment Fréchet dis-

tance between Q and T is defined as:

DF (Q,T) = min
L

max
γi∈L

d(gαi
, ℓβi

).

The discrete segment Fréchet distance is an extension of the
well-studied discrete Fréchet distance which measures the distance
between points from two curves [7], whereas ours measures dis-

tances between segments. This is more robust and does not suffer
from the sampling rate of the trajectories in the same way that the
discrete Fréchet distance does. Both are more selective models of
trajectories than the Hausdorff distance in that they enforce that the
alignment between trajectories must restrict to the ordering of the

trajectory segments. Whereas the Hausdorff variant can allow one
trajectory to be the reverse of the other, or go back and forth (say
if a rider forgot something and had to go back to get it), without
increasing their distance. Figure 1 illustrates these two distances
and their differences.

Both of these distances are metrics, which is important since
most applications expect distances between two trajectories to be
a metric (which for instance implies, distance from trajectory A
to trajectory B should be the same as the distance from trajectory
B to trajectory A). This also implies that they can be used towards
building effective indexing structures (since they satisfy the triangle
inequality). But it is worth mentioning precisely what this means.

In both cases, there is a base metric space (S, d) where the ob-
jects S are segments, and the distance d is the distance between seg-
ments as defined above in Definition 3. Then Hausdorff just defines
the trajectory as a set of these objects, mapping identical segments
to a single point in S; note that the distance d does not capture the
direction of the segment. And the Hausdorff variant is a metric be-
tween such sets. Alternatively, the Fréchet variant maintains the
ordering between these segment objects, and is a metric between
ordered sets, again defined by the furthest distance in the best pos-
sible alignment. Hence the Fréchet variant is more discriminative
that the Hausdorff one, but on their respective representations, they
are both metrics.

2.2 Baseline solutions
As shown in the problem formulation, trajectory similarity search

is essentially a top-k query under a customized ordering defined by
the query trajectory and the similarity measure. Thus, the classic
distributed top-k algorithm [10] is a natural solution for this prob-
lem.

Specifically, distributed top-k algorithm runs as the following.
First, all trajectories in T are partitioned as whole objects, which
necessarily means no trajectory in T will span two different parti-
tions. Next, in each partition, distances between each Ti ∈ T and Q
are calculated and a local top-k result is found. Finally, we collect
all local top-k results and merge them to get the global top-k result.
Even though such baseline solution can solve the problem directly,
it involves a full scan through the whole data trajectory set for each
incoming query. To make the matter worse, calculating similarity
measures between two trajectories is often expensive, which may
potentially cause a heavy straggler problem.

Another baseline is to build a distributed R-Tree over the data
trajectories. In particular, each trajectory will be treated as an indi-
vidual object and its location property is identified by the centroid
of its minimum bounding box (MBR); much like a Hilbert R-Tree
[22]. Such index structures can help us avoid scanning the whole
trajectory data for each incoming query. For each query, we can
adopt a similar technique as that for kNN queries over points. First,
we need to find a threshold such that at least k data trajectories are
covered. Then, an index based pruning is conducted, where we cal-
culate the minimum distance between the MBR of a data trajectory
to that of Q and see if it falls within the threshold. Finally, we in-
voke the first baseline solution over all potential candidates to get
the final result. In this baseline solution, the distributed index does
help us prune some useless trajectories, yet its pruning power is
limited.

The final baseline is to build a distributed index over all data tra-
jectories in its metric space. Note that the two distance measures
defined in Section 2.1 are metric. On a single machine, index struc-
tures like vantage point trees (VP-Tree) [19, 36, 42] and M-Trees
[14, 8] can be used. However, these have never been studied in a
distributed environment.

We can extend this approach to a distributed setting as follows.
We first sample a group of trajectories uniformly at random as piv-

ots and partition the data by assigning each trajectory to its closest
pivot according to the distance measure. Next, we build a local
metric tree (VP-Tree or M-Tree) for each partition. During the lo-
cal indexing procedure, for each partition Ti, we collect its pivot Vi,
the cover radius ri = maxT∈Ti

D(Vi, T), and the partition size at
the master node. If we have a pruning bound ε from the query tra-
jectory Q covering at least k data trajectories, we can prune a whole
partition Ti if D(Vi, Q)− ri > ε.

A trajectory similarity query S(Q,T, D, k) will be processed as
follows. First, we find the nearest pivots to Q such that their repre-
sented partitions are sufficient to cover k data trajectories. Next, we
find the k nearest neighbors to Q in these partitions to get a pruning
bound ε. Then, we use the condition (D(Vi, Q)− ri > ε) to build
a filter and prune all useless partitions and the partitions we have
already checked. Finally, we launch the distributed top-k algorithm
over the remaining candidate partitions and merge the results to get
the final answer.

According to our experiments, this solution does provide good
pruning power, and has the least total number of distance calcula-
tions among all baselines. However, it is not scalable, as it takes a
very long time to build its index, and the method cannot fully uti-
lize the cluster resources during its querying process. More details
are provided in Section 7.

3. RELATED WORKS
As mentioned, previous work on indexing trajectories and per-

forming trajectory similarity search have only considered the case
when data sets fit on a single machine. They focused on studying
different distance measures such as Dynamic Time Warping (DTW)
[41, 43], Longest Common Sub-Sequence (LCSS) [37], Edit Dis-

tance on Real Sequence (EDR) [13], Edit distance with Real Penalty

(ERP) [12], Edit Distance with Projections [29], and DISSIM (a
dissimilarity measure) [18]. All of the aformentioned distance mea-
sures do not satisfy the triangle inequality, and thus are not metrics.
As a result, most of the design decisions are in designing new in-
dexing and pruning strategies specific to those measures. More-
over, most operate with the base metric defined on points, and thus
have slightly less modeling power.

In contrast, our base metric is defined using all points from the
two segments. And instead of proposing a new distance metric, we
have adopted the classic Hausdorff and Fréchet distances that are
widely used in computational geometry to measure distances be-
tween geometric objects, especially for curves and trajectories [7,
5, 3, 35, 6, 21, 46, 4, 38]. Both distance measures are metrics,
hence, are more intuitive in modeling trajectory distances. Fur-
thermore, all previous works are conducted on a single machine
environment, and the proposed index structures cannot be adopted
trivially in a distributed system.

Another line of work is in efficiently designing fast algorithms
for calculating distances between a pair of trajectories, for instance
under the Hausdorff [21, 6], Fréchet [16], or discrete Fréchet dis-
tances [1]. These improvements are complementary to our work,
they can improve time to compute each distance which is useful
in the last stage of query processing, computing distances between
each candidate trajectory and the query trajectory, but do not influ-
ence the partitioning or pruning strategies.

Trajectory similarity search is a useful building block towards
many other important and useful mining operations, such as clus-
tering and classification. To that end, trajectory clustering and tra-
jectory classification have been extensively studied; see [24, 25]
and references therein. Another related problem is trajectory out-
lier detection [23]. Calibrating trajectories and simplification of
trajectories are useful as a data cleaning step towards more effective
similarity search results [31, 32, 28, 27]. Indexing and summariz-
ing trajectories have also been well studied [29, 47, 33]. A number
of efforts were devoted to building a general trajectory store/sys-
tem for storing and analyzing large trajectories [34, 39, 15]. These
stores do leverage a distributed cluster to store and process trajec-
tories, but they do not support similarity search over trajectories. A
complete survey of related work in trajectory queries and mining
is beyond the scope of this paper, and we refer interested reader to
[47] for a more comprehensive review.

4. FRAMEWORK
Next, we describe the distributed processing framework designed

for executing trajectory similarity search. The framework is based
on a distributed index structure and a suite of pruning techniques
leveraging the distributed index. We will investigate how we par-
tition and build a distributed index structure over a large trajectory
dataset, and examine how the distributed query processing proce-
dure utilizes the index under discrete segment Hausdorff distance
and discrete segment Fréchet distance.

Notably, a distributed index can have significantly different high-
level structure than a non-distributed one. The goal is to minimize
computation and communication on a small number of data shuf-
fles. There are two main bottlenecks. First, a top-level grouping
into partitions so on a query we can quickly avoid examining most

(a) Partition by trajectory.

(b) Partition by segment.

Figure 2: Two very different trajectories with the same cen-

troid, for instance two paths across a city center, one is north-

south oriented (T1) and the other is east-west oriented (T2).

This demonstrates the difficulty of using MBRs and their cen-

troids for an entire trajectory for partitioning and indexing.

of the partitions entirely. Second, an efficient and effective prun-
ing strategy so we only need to brute force compute distances for
a small candidate set of trajectories. We still can use traditional
indexes (like R-trees) within each examined partition to help with
the pruning goal, but unlike the VP-Tree baseline, we are less con-
cerned about creating a single big hierarchy. Instead those two main
levels of filtering are most important. This means we can “touch”
information about each trajectory within a partition as long as it is
done efficiently to very effectively prune these from the next level.
These design observations greatly influence the strategy of our pro-
posed approach based on segment indexing.

4.1 Distributed indexing of segments
The key to building an effective distributed index is a carefully-

designed partitioning strategy to partition the data into blocks, so
on a query, most of the blocks can be quickly pruned. Moreover,
we need to make sure each partition is roughly of the same size
to keep the load balanced. Finally, we need to watch the memory
footprint to make sure the index structure will not blow up the heap
memory of any executor in the distributed system.

Trajectories, however, are from a complex data type which vary
greatly in shape, geometric and spatial span, sample rate, speed,
and number of segments. The multi-variant nature makes design-
ing a good partitioning strategy a non-trivial task. For instance,
building a MBR (minimum bounding rectangle) for each trajectory,
summarizing each one with the trajectory centroid, and building an
R-tree like structure on these MBRs is efficient and easy to achieve
load balance, and has low memory footprint. But as can be seen in
Figure 2 where two very different trajectories have the same cen-
troid, it leads to very limited pruning power.

In contrast, our approach is to partition and index the individ-
ual segments. We create an MBR of each segment, represent each
segment with its centroid (its midpoint), and then build R-trees on
these MBRs using these centroids. This leads to much more effi-
cient and effective partitioning of the data, as can be seen in Figure
3. However, it requires more care in keeping track of the trajectory
associated with each segment, and in pruning an entire trajectory

To index a segment ℓ from a trajectory T , in addition to storing
its start and end points s and e, we assign a tuple (tid, sid) where
tid is the trajectory id of T , and sid indicates ℓ’s position within
trajectory T . For instance, a segment ℓ assigned with the tuple
(3, 6) indicates that ℓ is the 6th segment in trajectory T3. This
tuple also helps reconstruct a trajectory from segments.

All segments are of the same object size, which consists of the
coordinates of its two end points and a (tid, sid) tuple. The load
balancing problem, during partitioning, is thus naturally reduced to

(a) Whole trajectories. (b) Trajectory segments.
Figure 3: MBRs of whole trajectories and MBRs of their seg-

ments, and the resulting partitions from a subset of the same

OpenStreetMap GPS trace dataset. The segment-based parti-

tions clearly have far less overlapping regions.

balance the number of segment objects in each partition, rather than
worrying about the sum of the object size. Moreover, since in most
applications, moving objects have a speed limit, and a relatively
high sampling rate to keep track of its locations, segments in a tra-
jectory usually come with a small spatial span, where the spatial
span of a geometric object refers to the spatial area covered by the
object’s MBR. Partitioning by segments dramatically reduces over-
lapping between MBRs of different partitions. Most importantly, it
is often sufficient to prune a trajectory by simply checking the indi-
vidual relationships between its segments and a query trajectory’s
segments. A pruning theorem for discrete segment Hausdorff and
discrete segment Fréchet distance will be introduced in Section 4.2.

Nonetheless, the segment-based partitioning and indexing ap-
proach does introduce overheads. We often need to reconstruct the
data trajectory, if it ends up being a candidate, before calculating
its similarity measure to the query trajectory. If the segments of
a trajectory T are separated and stored into different partitions on
different nodes, reconstructing T would involve a data shuffle with
non-trivial communication cost. We also need an efficient solu-
tion to link pruned segments back to trajectories in order to prune
trajectories, which is surprisingly a tricky task. Fortunately, these
overheads can be addressed with careful design choices, which we
will demonstrate in details in Section 5.

The indexing procedure in our framework consist of three phases:
partitioning, local indexing and global indexing. In this section,
these stages are described in principle. We will demonstrate the in-
stantiation of a two-level indexing strategy on Apache Spark with
more details in Section 5.2.
Partitioning. In this phase, we extract segments from the in-
put trajectories and partition them according to their spatial local-
ity. Any partitioning strategy that offers strong spatial locality and
good load balancing can be adopted. We choose to adopt the STR
(Sort-Tile-Recursive) partitioning strategy due to its simplicity and
proven effectiveness by existing studies [26]. Specifically, our STR
partitioning strategy first takes a set of uniform random samples
from the input segment collection and then runs the first iteration
of Sort-Tile-Recursive algorithm over the centroids of sampled seg-
ments to determine partition boundaries. Then, each segment ℓ is
assigned to the partition whose spatial region contains the centroid
of ℓ.
Local Indexing. Within each partition, we build an R-Tree [20]
like data structure over the segments as its local index. Figure 4
shows an example of our local index structure. The main difference
between our local index structure and classic R-Tree is that each
internal node u in the tree contains the complete set of trajectory
IDs (denote as the TID set of u) for all segments contained by the
subtree rooted at u. The TID sets identify all trajectories that have
passed through the spatial region of any node (MBR of the node) in

TIDs: {1, 4}

MBR:

TIDs: {1, 3, 4, 6}

MBR:

(4, 2) (4, 3) (1, 4) (1, 1) (1, 2) (3, 3) (3, 2) (6, 1) (4, 1)

TIDs: {1, 3}

MBR:

TIDs: {3, 4, 6}

MBR:

tid sid

Figure 4: Local index structure.

Algorithm 1: Similarity Search S(Q,T, D, k)

1: Find the closest partitions P1, P2, · · · , Pm to Q that
cover at least c · k trajectories.

2: Sample c · k trajectories T ′
1, T

′
2, · · ·T

′
c·k uniformly at

random without replacement from P1, P2, · · · , Pm.
3: Calculate the distances from T ′

1, T
′
2, · · ·T

′
c·k to Q; take

the k-th smallest result as the pruning bound ε.
4: Use the global index to identify all partitions A whose

mindist(Q,A) = mingi∈Q minp∈A
~d(p, gi) > ε; union all

their TIDs as F1.
5: For all partitions A whose mindist(Q,A) ≤ ε, find all

trajectories which contain a segment ℓi such that
mindist(ℓi, Q) > ε; collect and union TIDs of all such
trajectories at the master node as F2.

6: Find all the segments whose TID is not in F1 ∪ F2,
reconstruct the whole trajectories for these segments.

7: Calculate the distance from Q to each such trajectory,
launch a distributed top-k algorithm to identify the k
trajectories R1, R2, · · · , Rk with smallest distances.

8: return R1, R2, · · · , Rk

the local index. Note that we typically have many more segments

in a local index subtree than the number of trajectories passing
through that subtree. Hence, keeping TID sets enables us to prune
all trajectories that pass through a node in a local index without
traversing its children.
Global Indexing. Lastly, the master node will collect statistics
from each partition to build a global index. Specifically, we will
collect the partition boundaries and the TID sets of the root nodes
from all local indexes. The global index enables us to prune tra-
jectories passing through the spatial region of a specific partition
without invoking any task to look into that partition.

4.2 Search procedure
The search procedure consists of three steps: pruning bound se-

lection, index-based pruning, and finalizing the results. The search
procedure is outlined in Algorithm 1. We will first discuss how an
entire trajectory can be pruned by just examining individual seg-
ments given a distance threshold ε for the trajectory distance. Then
we will describe how we can generate a good ε, and finalize the
search results.
Index-based pruning. The distributed index is used to prune
far-away trajectories given a query trajectory Q and a distance thresh-
old ε. Any trajectory T such that D(T,Q) > ε can be pruned away
efficiently. Next, we show how to do this using the distributed seg-
ment index with only information on segments, for both discrete
segment Hausdorff and discrete segment Fréchet distance.

Theorem 1. Given a distance threshold ε > 0 and two

trajectories Q and T . If there exist a segment ℓi ∈ T such

(a) Pruning by segment.

(b) Pruning by MBR.

Figure 5: Pruning Trajectory T with Bound ε.

that mindist(ℓi, Q) = mingj∈Q minp∈ℓi
~d(p, gj) > ε, then we

have DH(Q,T) > ε and DF (Q,T) > ε.

Proof. Discrete segment Hausdorff distance is:

DH(Q,T) = max

{

max
gj∈Q

min
ℓi∈T

d(gj , ℓi),max
ℓi∈T

min
gj∈Q

d(ℓi, gj)

}

≥ min
gj∈Q

d(ℓi, gj) ≥ min
gj∈Q

min
p∈ℓi

~d(p, gj) > ε.

As for discrete segment Fréchet distance, each segment ℓi ∈ T will
be matched with at least one segment gj ∈ Q. The discrete distance
is then defined by the matching with the smallest maximum gap
between all pairs of segments. If there exists ℓi ∈ T such that
mindist(ℓi, Q) > ε, the maximum gap in any possible matching
between Q and T must be greater than mindist(ℓi, Q) > ε, which
further implies DF (Q,T) > ε.

Thus to apply the theorem above, we only need to check indi-
vidual segments of a data trajectory against individual segments of
a query trajectory. For instance, as shown in Figure 5(a), given a
pruning bound ε and the query trajectory Q, trajectory T can be
safely pruned as there are two segments of T whose distances to
Q are greater than ε. Any of these two segments of T can indi-
vidually serve as a witness to prune T in its entirety. Note that we
have introduced the concept of minimum distance between a seg-
ment ℓ and a trajectory Q, denoted as mindist(ℓ,Q). It represents
the minimum possible distance from ℓ to any segment of Q.

In our framework, we first invoke a range query in the global in-
dex to find all partitions whose minimum distance to Q is greater
than ε. According to Theorem 1, we can prune all trajectories pass-
ing through these partitions. Note that the minimum distance be-
tween a trajectory Q and a partition (which is identified by an MBR
A) is defined as:

mindist(Q,A) = min
gi∈Q

min
p∈A

~d(p, gi).

We union the TID sets of all such partitions returned by the
global index; which can efficiently be represented with the com-
pression techniques as we will detail in Section 5.3. This pro-
vides a collection of trajectories that can be safely pruned. Next,
we invoke the same range query now on each local index of the
remaining partitions. The TID set associated with each node in
a local index allows us to avoid traversing down the subtree of
a node u when u’s MBR is already out of the search range (i.e.,
mindist(Q,A(u)) > ε). This enables each local index to return
another set of TIDs, representing those trajectories passing through
that partition that can be safely pruned.

Next, the framework unions these TID sets at the master node,
including the earlier TID set returned by the global index, to derive
the final set of trajectory ids that can be safely pruned.
Pruning bound selection. Selecting a good distance bound
ε to be used for the above pruning strategy is critical. We will show

how to select a relatively tight pruning bound ε to help us prune
away most irrelevant trajectories, given a query trajectory Q. To
safely prune a data trajectory, the threshold ε must satisfy that at
least k data trajectories from T have distances at most ε from Q.

A key observation is that similar trajectories will pass through
similar spatial regions. Hence we use the global index to identify
all partitions which Q intersects; let TQ be the set of trajectories
contained in these partitions. Then from these partitions we gener-
ate c · k uniform random samples from the union of their trajectory
ids (i.e., TQ, the union of their TID sets), for some parameter c.
We set ε as the k-th smallest distance among those c · k sampled
trajectories. If there are fewer than c · k trajectories of interest in
these partitions, we invoke a nearest neighbor query on the global
index to find enough partitions to cover c · k different trajectories.

The choice of c represents how effectively these partitions can
prune trajectories. If c is small (say c = 3), and very few addi-
tional partitions are required (i.e., partitions with MBR A such that
mindist(Q,A) > ε), then the search is efficient and the pruning
power is high. If c is large (say c = 100), or many additional
partitions must be considered, then the search becomes slow.

To help understand the choice of c, we observe that given c · k
samples, the k-th closest distance estimates the (1/c)-th quantile
of distances among the set {D(Q,T) | T ∈ TQ}, i.e. from Q
to trajectories in partitions Q intersects. If this value ε is smaller
than the minimum distance to any point in a partition, then we can
prune all segments in that partition, hence, pruning away all trajec-
tories passing through that partition. It is reasonable that among
partitions which Q does not intersect (i.e., the trajectories, T \TQ),
most are further than (for instance) the 0.2- or 0.1-quantile of those
distances in partitions Q does intersect, making c = 5 or c = 10
a good choice. Indeed we observe that c = 5 is a good enough
in Section 7.5. However, what remains is to understand how accu-
rate an estimate of the (1/c)-th quantile is; we summarize in the
following bound.

Lemma 1. Let T
′ be c · k trajectories randomly sampled

from TQ. Let ε be the k-th smallest distance from {D(Q,T) |
T ∈ T

′}. We can guarantee with probability at least 9/10,
that ε is a γ-quantile of {D(Q,T) | T ∈ TQ}, where

γ ≤
1

c
+

√

3

2ck
.

Proof. The (1/c)-quantile is the distance ε∗ where with prob-
ability (1/c) a distance sampled from {D(Q,T) | T ∈ TQ} is
smaller than ε∗. To show that our pruning bound γ is useful, we
need to bound the fraction of these distances smaller than ε∗. We
can map each trajectory T ∈ T

′ to a random variable which is 1 if
the corresponding distance is D(T,Q) < ε∗ or 0 otherwise. The
average of these is well-concentrated around 1/c, and the fraction
more than 1/c can be bound with a standard Chernoff-Hoeffding

bound as
√

1

2ck
ln(2/δ) with probability 1 − δ. Setting δ = 1/10

proves our claim.

For instance, this implies that if c = 10 and k = 20, then with

0.9 probability, the error
√

3

2ck
=

√

3

2·10·20
≤ 0.087, and thus ε

is at most a 1

10
+ 0.087 = 0.187-quantile of the distances induced

from TQ.
Finalizing results. Here we reconstruct all trajectories that sur-
vive the pruning (i.e., those trajectories whose id is not in the prun-
ing set of trajectory ids constructed above), evenly distribute them
to all CPU cores, and calculate their exact similarity measures to
Q. Then, we invoke a distributed top-k algorithm to get the final
results.

Correctness of the search algorithm. Recall that we will
only prune a trajectory T if there exists a segment ℓi ∈ T such
that mindist(ℓi, Q) > ε. By Theorem 1, the similarity measure
from such trajectories to Q must be greater than ε. In addition,
note that there are at least k trajectories (the k samples retrieved for
generating the pruning bound) whose similarity measure is within
ε. This implies we will include all top-k results in the comparison
in the finalizing stage. Hence, the search algorithm is correct.

5. INSTANTIATION OF THE FRAMEWORK
It is possible to instantiate our framework in different distributed

systems. Instantiation on different systems introduce slightly dif-
ferent challenges, but the underpinning principles are similar. Thus,
we choose to demonstrate such principles using one of the most
popular distributed computation engines, Apache Spark [45], for
this purpose. In particular, we discuss the techniques we have de-
veloped to achieve distributed indexing in Spark, to support com-
pact representation of the trajectory IDs on each node (the TID set)
in global and local indexes, and to build an auxiliary structure to
avoid reconstructing a full trajectory in finalizing the query results.

5.1 Apache Spark overview
Apache Spark[45] is a general-purpose distributed computing

engine for in-memory big data analytics. It provides a data ab-
straction called Resilient Distributed Dataset (RDD), which is a
distributed collection of objects partitioned across a cluster. User
can manipulate RDDs through functional programming APIs (e.g.
map, filter, reduce). RDDs are fault-tolerant since Spark can
recover lost data using linage graphs by rerunning operations to
rebuild missing partitions. RDDs can also be cached in memory
or made persist on disk explicitly to support data reusing and iter-
ation. Moreover, RDDs are evaluated lazily: each RDD actually
represents a “logical plan” to compute a dataset, which consists of
one or more “transformations” on the original input RDD, rather
than the physical, materialized data itself. Spark will wait until cer-
tain output operations (known as “actions”), such as collect, to
launch a computation. This allows the engine to execute pipelining
operations, as a result Spark never needs to materialize intermedi-
ate results.

5.2 Building an index over RDDs
The RDD abstraction is an abstraction originally designed for

sequential scan, thus random access through this abstraction is ex-
pensive as it may simply fall back to a full scan over the data collec-
tion. An extra complexity is that we do not want to alter the Spark
core or the RDD abstraction, in order to support easy migration to
future Spark releases. To overcome these challenges, we adopt the
IndexRDD abstraction introduced in our previous work Simba [40]
to fit the two-levelindexing strategy.
IndexRDD. To build an index over an RDD, we pack all objects
within an RDD partition into an array, which gives each record a
unique subscript as its index. This structure makes random access
inside a RDD partition an efficient operation with O(1) cost. To
achieve this, we define the IPartition data structure as below:
case class IPartition[T](Data: Array[T], I: Index)

Index is an abstract class that represents the local index for data in
this partition, and can be instantiated with our local index structure
presented in Section 4.1. IndexRDD is simply defined as an RDD
of IPartition:
type IndexRDD[T] = RDD[IPartition[T]]

Objects in an RDD are partitioned by a partitioner, and then packed
into a set of IPartition objects, which contains a local index over
records in that partition. Furthermore, each IPartition object

Partition

Packing

&

Indexing

Array[TrajSeg] Local Index

IPartition[TrajSeg]
Partition Metadata

Local Index Global Index

 Global Index (R-Tree)

TrajSeg

IndexRDD[TrajSeg]

On Master Node

Figure 6: Distributed segment index structure in Spark.

emits its meta information, including the boundary of the partition
and the TID set of the root node from the local index of this par-
tition, to construct the global index at the master node. By the
construction of IndexRDD, RDD elements and local indexes are
naturally fault tolerant because of the RDD abstraction of Spark.
The global index is kept in the heap memory of the driver program
on the master node with no fault tolerance guarantee. Nevertheless,
global indexes can be lazily reconstructed by the statistics collected
from persisted RDD when required.

More specifically, to instantiate our framework, elements in an
RDD are objects defined as below:

case class TrajSeg(seg: LineSegment , meta: TrajMeta)

In this definition, seg is a line segment and meta contains its tra-
jectory ID and segment ID (representing the tuple (tid, sid) as dis-
cussed in Section 4.1). The index structure and its construction is
summarized in Figure 6. We first partition all trajectory segments
using the STR partitioning strategy. Spark allows users to define
their own partitioning strategies through an abstract interface called
Partitioner. In our framework, we instantiate the STR partition-
ing strategy in STRPartitioner to generate partition boundaries
and specify how segments (of all trajectories) map to a partition.
Then, local indexes are built inside IPartition objects following
the design described in Section 4.1, in parallel on multiple, dif-
ferent nodes (cores). Finally, the driver program collects statistics
from each partition, including the partition’s MBR and the TID set
of the root node of its local index, to build a global index at the
master node.

5.3 Compressed bitmap
As a key component of our index design, a TID set is attached to

each internal node in the tree. Recall that the number of segments in
a branch of a local index can be far more than the number of trajec-
tories that pass through the same region represented by the MBR
of that branch. As a result, storing a TID set significantly boosts
the performance of our pruning algorithm as it can retrieve the IDs
of all trajectories which pass through an internal tree node to be
pruned without traversing the entire subtree. However, this will
also increase the memory footprint of the tree significantly, which
hurts the scalability of our framework in an in-memory instantia-
tion like on Spark. As we move up in the tree, the union of the TID
sets from lower levels lead to a large set of ids to remember, thus,
saving all trajectory IDs in an uncompressed data structure causes
a substantial impact on memory consumption.

One solution is to use a Bloom filter to encode each TID set on
an internal node. A Bloom filter is a space-efficient probabilistic
data structure used to test whether an element is a member of a set.
It hashes each item with h independent hash functions to a single
bitmap with m bits. However, it allows false positives and other
drawbacks and limitations we expound upon next.

First, note that there are two directions to apply the pruning
bound introduced in Section 4.2. On one hand, a trajectory T could

qualify as a candidate of the top-k set if there exists at least one
segment ℓi ∈ T such that d(ℓi, Q) ≤ ε. On the other hand, T can
be safely pruned if there exists at least one segment ℓi ∈ T such
that d(ℓi, Q) > ε. The latter offers better pruning power since it
gets rid of a lot of false positives. However, if we use a Bloom
filter b(u) to encode the TID set TID(u) of a node u in the index,
u is pruned when mindist(u,Q) > ε, but b(u) may return false
positives when we test if a particular tid belongs to TID(u).

Recall that in the finalizing step, we need to find all candidate
trajectory ids that are not in the set of TIDs being pruned away
during the search procedure. The fact that b(u) may return false
positives means that we cannot find all such candidate trajectory
ids, i.e., a trajectory close to the query trajectory Q can be missed.

Second, as trajectory ids are integer values from a fixed domain,
say from [N] (there are N trajectories in T). Storing the trajectory
ids in a TID set may often end up using more space than using just
a length N bitmap (where 1 at the i-th position indicates that Ti

is part of this TID set, and 0 indicates otherwise). Using a bitmap
structure will not introduce any false positives, thus we can fully
leverage the power of our pruning bound. However, for a large
value of N , storing a size-N bitmap at each node of every local
index is still prohibitively expensive.

To solve this problem, we adopt a roaring bitmap [11], which is
a concise, compressed bitmap. In other words, we represent each
TID set as a size-N bitmap as explained above, but compress it us-
ing a roaring bitmap. It builds a hybrid data structure combining
three container types (arrays, bitmaps and runs) into a two-level
tree. Elements in roaring bitmaps are separated into chunks by
their most significant bits, and then each chunk is organized as an
uncompressed bitmap for dense chunks or an array container for
sparse chunks. Roaring bitmap has been tested against compet-
itive implementations of other popular formats (such as Concise,
WAH, EWAH), and is typically two orders of magnitude faster. In
addition, roaring bitmap often offers significantly better compres-
sion ratio than other approaches. In our case, the size-N bitmaps
for most nodes in local indexes are sparse due to the strong spatial
locality achieved within each partition by our partitioning strategy.
Hence, roaring bitmaps can encode and replace these sparse size-
N bitmaps very effectively with high compression ratio, leading
to significantly smaller memory footprint. Finally, roaring bitmap
supports set operations like union, which is needed when building
the bitmap of a parent node from the bitmaps of its children nodes.

5.4 Dual indexing
A major overhead in our framework is that we need to regroup

all segments of a candidate trajectory before its similarity distance
to the query trajectory Q can be calculated. Since our framework
relies on segment-based partitioning and indexing, segments of the
same trajectory may end up in different partitions on different nodes
in a cluster. The step introduces a data shuffling stage that may in-
volve notable communication overhead. If we were to partition
trajectories using the trajectory-based approach, all segments of a
trajectory are guaranteed to locate within a single partition. But
as illustrated earlier, trajectory-based partitioning and indexing is
ineffective in terms of pruning.

Given these observations, we design an auxiliary structure in ad-
dition to the segment-based partitioning and indexing, in an ap-
proach called dual indexing. It combines the pruning power of
segment-based indexing and the benefit of avoiding the potentially
expensive retrieval of all segments to reconstruct a trajectory.

In particular, we will keep two copies of the indexed dataset. In
the first copy, data trajectories are partitioned by their segments,
and indexed by the distributed index structure as described in Sec-

tion 4. This copy is used for pruning. In the second copy, each
trajectory is viewed as a single object during partitioning, and they
are partitioned by the centroid of each trajectory’s MBR. However,
we do not build any local indexes over the partitions from the sec-
ond copy. The master node still collects the partition boundaries to
build a global index for the second copy.

Using the second copy and its global index, once the search from
the first copy has returned a set of candidate trajectory ids (after
removing any trajectory ids from its pruning process), denoted as
C(Q), we can first find all partitions that may contain any candi-
date trajectories by using the pruning bound established in Theorem
1. More specifically, we can calculate the distance mindist(gi, Aj)
between each segment gi from the query trajectory Q and the MBR
Aj for the j-th partition on the second copy, and use these distances
to perform pruning. Note that Aj’s are available from the global
index of the second copy. C(Q) must be from the remaining parti-
tions after pruning using the global index of the second copy, and
we find the entire trajectory for each trajectory id from C(Q) by
probing into those partitions in parallel.

More importantly, with dual indexing, the local indexes in the
first copy does not require to store an array of TrajSeg any more
as included in Figure 6, since we no longer need the (tid, sid) pairs
to reconstruct a trajectory from its segments. Hence, dual indexing
is to separate the IndexRDD as presented in Section 5.2 into two

RDDs with different partitioning strategies and local structures.
Furthermore, for trajectories in the second copy, since we do not

need to maintain any local indexes on any partition, each partition is
simply a hash table where the key is a trajectory id tid and the value
is a trajectory Ttid. All our framework needs from the second copy
is to retrieve candidate trajectories in the final step from different
partitions using their trajectory ids. Thus, we can compress each
trajectory in a partition in the second copy to reduce the memory
footprint. This adds a small overhead during index construction,
and while decompressing a trajectory during query processing. But
for query processing, we only need to decompress those candidate
trajectories, which is a very small set and is done in parallel.

As a result, dual indexing actually does not lead to notable mem-
ory storage overhead compared to using only one copy with the
original IndexRDD structure. The overall memory footprint of dual
indexing is much less than two factors of using just the distributed
segment based indexing alone.

6. EXTENSION TO OTHER METRICS
Our framework will work for other metrics based on (S, d), such

as average of aligned distances [41, 43, 9], averages of all pairs of
distances [30], bipartite matchings [2], or partial matchings [17].
Also our framework structurally will work for different base met-
rics, such as using (R2, L2), the standard Euclidean distance de-
fined over the segment end points si. But this model captures less
of the connected nature of these trajectories.

As an example, we can use similar pruning techniques, as il-
lustrated in Section 4.2, for Dynamic Time Warping (DTW) with a
slightly modified pruning bound. Common forms of DTW matches
pair of segment end points (with base metric (R2, L2)) and sums
these distances along the trajectory. Thus, if there is an endpoint si
in trajectory T such that mindist(si, Q) > ε, we can still safely
prune T since the cost of the best potential match for one end point
si in T has already exceeded the pruning threshold and all other
matchings, which only add more to the cost. Similarly, for average

aligned distance of segments, if there is a segment ℓi ∈ T such that
mindist(ℓi, Q) > ε, we will have D(Q,T) > ε

|Q|+|T |
.

Even though the pruning bounds above are looser than Theorem
1 for discrete Hausdorff and Fréchet distances, we will still quickly

prune most trajectories which are far from Q. Furthermore, if we
have more assumptions on spatial spans or segment counts for data
trajectories (e.g., aggregating effects from many segments in an in-
dex subtree), a tighter pruning bound can be derived.

Metrics based on a max distance (e.g., Hausdorff or Fréchet)
work more naturally, and probably more effectively, in our frame-
work, yet the pruning bounds do directly extend to average- or sum-
based measures (e.g., DTW). However, as these bounds may not
prune as effectively, the best way to handle such measures may
be to base a filter on the several segments located within a single
partition, as opposed to using just one — or other solutions more
tailored to individual similarity measures. We leave these details
for future work.

7. EXPERIMENTS

7.1 Setup

Cluster setup. All experiments were conducted on a cluster
with 1 master node and 16 client nodes. The master node has two
4-core Intel Xeon E5-2609 @ 2.40GHz processors and 20GB main
memory reserved for Spark’s driver program. Ten client nodes have
a 4-core Intel Core i7-3820 @ 3.60GHz processor, and the other
six nodes have a 6-core Intel Xeon CPU E5-1650 v3 @ 3.5GHz
processor. All 16 processors on client nodes are configured with
hyper-threading. Each node in the cluster is connected to a Gi-
gabit Ethernet switch runs Ubuntu 14.04.4 with Hadoop 2.6.4 and
Spark 2.1.0. We reserved 32GB DRAM on each client node (in
total 512GB) for running our Spark jobs.
Datasets. We have used the following real-world and synthetic
datasets in our experiments.

OSM-FULL: It contains all publicly available GPS traces (of var-
ious objects) uploaded in the first 7.5 years of the OpenStreeMap
project. We filtered out data trajectories that are clearly outliers,
including those extremely long trajectories (bouncing across the
world) or too short (stuck at a single point). OSM-FULL contains
about 1.4 million data trajectories with a total of roughly 1.06 bil-
lion sample points (hence, roughly 1.06 billion segments), and is
50.7 GB.

OSM-DE: This dataset is a subset of OSM-FULL in Germany.
It is of the highest data density among all regions in OSM-FULL.
OSM-DE contains about 370k data trajectories with roughly 360
million sample points (hence, roughly 360 million segments), and
is 16.7 GB.

GEN-TRAJ: To test the scalability of various methods, we also
generate a large set of trajectories with the following procedure:
we took the entire road network of the United States, randomly
generate a large amount of shortest path queries, and take the re-
turned shortest paths as the data trajectories. To better simulate
real trajectories on a road network, we randomly generate shortest
path queries such that the distance of a returned shortest path fol-
lows a Gaussian distribution, whose mean and standard deviation
are both set to 40km. The largest synthetic data set, GEN-TRAJ,
has 10 million trajectories (roughly 2.35 billion segments) and is
102.9GB. We take a random sample of various size from this data
set, ranging from 1 million to 10 million data trajectories, to carry
out the scalability test.
Methods tested. We included the following base line solutions
as outlined in Section 2.2:

Brute Force: The general distributed top-k algorithm which will
calculate the distance between the query trajectory and each data
trajectory in distributed and parallel fashion.

Traj Index: A distributed R-Tree is built according to the cen-
troid of each data trajectory’s minimum bounding rectangle (MBR).

The search procedure is similar to our proposed solution. Specif-
ically, we sample c · k trajectories from all partitions the query
trajectory has passed through, to elect a pruning bound ε. Then, we
will prune a trajectory T (whose minimum bounding box is A) if
d(Q,A) > ε, using the distributed R-tree. Finally, we calculate the
exact similarity measures between Q and all remaining trajectories
to get the final top-k results.

VP-Tree: A distributed vantage point tree (VP-tree) [19, 36, 42]
is built and its search procedure involves two groups of local kNN
queries over a limited number of partitions; see our discussion in
Section 2.2.

M-Tree: A distributed M-Tree [14, 8] is built while its search
procedure follows similar strategy to that of VP-Tree.

Centralized: We also implemented the centralized version of
Traj Index, VP-Tree, and M-Tree running on a single machine.
The index construction time of these centralized approaches are
much more expensive than their distributed versions, as well as
their query latencies, due to the lack of parallelism. Furthermore,
these solutions are non-scalable when data size starts to grow. Hence,
we have omitted Centralized when reporting our experimental re-
sults.

DFT, our method: For our proposed framework, we imple-
mented several different variants. They differ in the data structure
(either a bloom filter or a roaring bitmap as discussed in Section
5.3) used for representing the TID set associated with an internal
node in a local index, and the choice of whether to use dual in-
dexing or not (Section 5.4). We refer to our method as the DFT

(Distributed Framework for Trajectory similarity search). The vari-
ants tested include: DFT–BF+DI, DFT–RB w/o DI, and DFT–

RB+DI, which stands for DFT using bloom filter with dual index-
ing, DFT using roaring bitmap without dual indexing, and DFT

using roaring bitmap with dual indexing, respectively.
The default is DFT–RB+DI, and when the context is clear, we

will simply use DFT to represent this variant.
Evaluation metrics. We focus on evaluating the following
metrics in our experiments:

Query Latency: end to end execution time for a query.
Selectivity: let CM(Q) be the set of candidate trajectories that a

method M has computed exact similarity distances for, with respect
to a query trajectory Q. Selectivity of the method M on Q is defined
as CM(Q)/|T|.

Index Size: total memory footprint of an indexing structure (in-
cluding all local indexes and the global index).

Index Time: time required to build all indexes used in a method
before it can start serving the first query.

For all query-processing experiments, we executed 100 queries,
where each query trajectory is a trajectory randomly sampled from
the data set, to evaluate query latency and selectivity. Since the cost
of different queries may vary dramatically, we report latency and
selectivity using both the 5%-95% interval and the median from
these 100 queries.
Default parameters. By default, we set k = 10 and use the
discrete segment Hausdorff distance as the similarity measure. For
experiments on GEN-TRAJ, the default number of data trajectories
is 3 million, which is 30.9GB. For all variants of our framework
and the Traj Index baseline, the default value for c is 5. In all
experiments except for the study of scalability against cluster size,
we make use of all machines in the cluster.

7.2 Effectiveness of design choices in DFT

We first investigated the effectiveness of different design choices
in DFT. We did not consider using raw bitmaps since it has caused
heap memory overflow and crashed even on our smallest dataset.

GEN-TRAJ-3M OSM-DE OSM-FULL
Data Set

100

101

102

103

104

La
te

nc
y

(s
ec

on
ds

)
DFT-BF+DI, (M, h)=(23963, 3)
DFT-BF+DI, (M, h)=(47926, 3)
DFT-RB
DFT-RB+DI

(a) Query Latency

GEN-TRAJ-3M OSM-DE OSM-FULL
Data Set

10−4

10−3

10−2

10−1

100

101

Se
le

ct
iv

ity

DFT-BF+DI, (M, h)=(23963, 3)
DFT-BF+DI, (M, h)=(47926, 3)
DFT-RB
DFT-RB+DI

(b) Selectivity

GEN-TRAJ-3M OSM-DE OSM-FULL
Data Set

0

200

400

600

800

1000

In
de

x
Ti

m
e

(s
ec

on
ds

)

DFT-BF+DI, (M, h)=(23963, 3)
DFT-BF+DI, (M, h)=(47926, 3)
DFT-RB
DFT-RB+DI

(c) Index Time

GEN-TRAJ-3M OSM-DE OSM-FULL
Data Set

0

50

100

150

200

250

300

In
de

x
Si

ze
 (G

B)

DFT-BF+DI, (M, h)=(23963, 3)
DFT-BF+DI, (M, h)=(47926, 3)
DFT-RB
DFT-RB+DI

(d) Index Size
Figure 7: Effectiveness of design choices for DFT.

The (M,h) values for DFT–BF+DI in Figure 7 indicate number
of bits (M) and the number of hash functions (h) used in a bloom
filter. We used (23963, 3) and (47926, 3), which are the optimal
configurations for achieving a false positive rate of 0.1 on 5, 000
and 10, 000 distinct items inserted into a bloom filter, respectively.

As shown in Figure 7(a) and 7(b), DFT–RB+DI has led to the
best latency and selectivity among all variants. Specifically, it pro-
vides 1.5x-3.5x smaller query latency and around an order of mag-
nitude better selectivity compared to DFT–BF+DI. Even though
they share a similar index structure as described in Section 4.1, us-
ing bloom filters will introduce false positives and invalidate the
more effective pruning strategy mentioned in Section 5.3.

Figures 7(c) and 7(d) show that using roaring bitmaps also achieves
better index construction time and smaller index size than using
bloom filters. Note that roaring bitmap is a flexible data structure
and works extremely well on sparse bitmaps. It will use a very
small space at internal nodes of the local indexes, for which their
TID sets are sparse.

Dual indexing does not provide much benefit on improving se-
lectivity as shown in Figure 7(b), but help reduce query latency sig-
nificantly, due to the savings resulted from avoiding the step of re-
grouping segments back to a trajectory in the final calculation step
for all candidate trajectories. In particular, as shown in Figure 7(a),
dual indexing helps lower the query latency of DFT–RB by 2 to
15 times. Dual indexing works especially well in cases where most
data trajectories span across multiple partitions, which may intro-
duce non-trivial shuffling cost during trajectory reconstruction.

As for the index construction cost, as shown in Figures 7(c) and
7(d), dual indexing does introduce overhead, in terms of both con-
struction time and index size, but this overhead is small and is only
a factor of 1.3 to 1.5 compared to without dual indexing.

In all remaining experiments, we will use DFT–RB+DI as the
default of our framework, which is simply dubbed DFT.

7.3 Comparison against baseline solutions
Figure 8 compares our solution against baseline solutions using

three data sets: GEN-TRAJ (3 million trajectories), OSM-DE, and
OSM-FULL. We omit the results for M-Tree on OSM-FULL as
it took more than two weeks to build the M-Tree index on this
data set, and its query performance is worse on the other data sets
than the similar but faster VP-Tree. Clearly, DFT has achieved the
smallest query latency, which is 2x-5x faster than Traj Index, 6x-
25x faster than VP-Tree, 25x-68x faster than M-Tree and 65x-186x

GEN-TRAJ-3M OSM-DE OSM-FULL
Data Set

100

101

102

103

104

105

La
te

nc
y

(s
ec

on
ds

)

×

DFT
Traj Index
VP-Tree

M-Tree
Brute Force

(a) Query Latency

GEN-TRAJ-3M OSM-DE OSM-FULL
Data Set

10−4

10−3

10−2

10−1

Se
le

ct
iv

ity

×

DFT
Traj Index

VP-Tree
M-Tree

(b) Selectivity

GEN-TRAJ-3M OSM-DE OSM-FULL
Data Set

100

102

104

106

108

In
de

x
Ti

m
e

(s
ec

on
ds

)

×

DFT
Traj Index

VP-Tree
M-Tree

(c) Index Time

GEN-TRAJ-3M OSM-DE OSM-FULL
Data Set

0

40

80

120

160

In
de

x
Si

ze
 (G

B)

×

DFT
Traj Index
VP-Tree

M-Tree
Raw Data

(d) Index Size
Figure 8: Comparison against baseline solutions.

faster than Brute Force on average. DFT also shows more stable
query latency than Traj Index (having smaller 5%-95% intervals).

In terms of query selectivity, DFT is constantly better than Traj

Index by a factor from 5 to 7. VP-Tree shows the smallest vari-
ance in its query selectivity, but is having a much worse selectivity
than DFT on both OSM-DE and OSM-FULL datasets. The median
selectivity of VP-Tree is slightly better than DFT on the GEN-

TRAJ-3 million data set. Nevertheless, VP-Tree still has much
worse query latency than DFT even when its query selectivity is
slightly better, as its search procedure incurs linear cost. M-Tree

has worse selectivity than VP-Tree as it is designed as a dynamic
structure and has higher fanout.

As to the indexing cost, VP-Tree, M-Tree and Traj Index intro-
duce a small overhead on memory consumption compared to the
size of the raw data, while our solution is more expensive due to
dual indexing. Nevertheless, the index size of DFT is about twice
of the raw data size. Note that the index size DOES ALREADY

INCLUDE the size of the raw data (since they are essentially data
items at the leaf levels, which means the size of DFT’s index is
only 1x of the raw data sizes.

Traj Index shows the fastest indexing time, while our solution is
roughly 2x slower than Traj Index. In contrast, it is very expensive
to build the VP-Tree and M-Tree. Their construction time are too
expensive to be practically useful: for GEN-TRAJ-3M, it takes 15
hours to build VP-Tree and 101 hours (which is more than 4 days)
to build M-Tree. This is because both VP-Tree and M-Tree will
invoke a large number of similarity measure calculations (which
is extremely expensive) during index building. M-Tree performs
much worse as it is built dynamically with node split procedures;
we expect variants that bulk load to perform similar to VP-Tree.

7.4 Scalability
Next, we study the scalability of different solutions with respect

to the size of T, using the GEN-TRAJ data set. Figure 9(a) shows
that the query latency of all methods grows linearly to data size,
while DFT always has the best performance, which is almost 1
order of magnitude faster than Traj Index, and close to or more
than 2 orders magnitude faster than VP-Tree, M-Tree, and Brute

Force respectively.
For selectivity, all methods show a similar trend and become

more selective as the data size grows. The selectivity of our so-
lution is always close to or more than one magnitude better than
those of Traj Index and M-Tree. VP-Tree shows slightly better se-

1 3 5 7 10
Data Size (×106)

100

101

102

103

104

105

La
te

nc
y

(s
ec

on
ds

)
DFT
Brute Force
Traj Index

VP-Tree
M-Tree

(a) Query Latency

1 3 5 7 10
Data Size (×106)

10−4

10−3

10−2

10−1

Se
le

ct
iv

ity

DFT
Traj Index

VP-Tree
M-Tree

(b) Selectivity

1 3 5 7 10
Data Size (×106)

0

300

600

900

1200

1500

In
de

x
Ti

m
e

(s
ec

on
ds

) For 1M trajectories,
Building VP-Tree took 7.01 hours
Building M-Tree took 23.6 hours

DFT Traj Index

(c) Index Time

1 3 5 7 10
Data Size (×106)

0

100

200

300

In
de

x
Si

ze
 (G

B)

Raw Data
DFT
Traj Index

VP-Tree
M-Tree

(d) Index Size

Figure 9: Scalability with respect to data size.

1 2 4 8 16
Cluster Size

100

102

104

106

La
te

nc
y

(s
ec

on
ds

)

DFT
Brute Force

Traj Index

(a) Query Latency

1 2 4 8 16
Cluster Size

101

102

103

104

105

In
de

x
Ti

m
e

(s
ec

on
ds

)

DFT Traj Index

(b) Index Time

Figure 10: Scalability with respect to cluster size.

lectivity than DFT, but its overall query latency is still much worse
due to the reasons explained in last sub-section.

Note that we have ignored most results of VP-Tree and M-Tree

from this experiment, due to the fact that they become extremely
expensive to build as data size grows. For example, it already takes
more than 7 hours to build VP-Tree and more than 23 hours to
build M-Tree even with just 1 million trajectories, while DFT and
Traj Index only take less than 100 seconds.

Figure 9(c) shows that the indexing time of all methods grows
linearly to the data size. The index construction time of our solu-
tion is around 2x slower than that of Traj Index. And, VP-Tree

and M-Tree take much more time to build than other solutions, and
have the fastest growth rate in construction time as data size in-
creases. Figure 9(d) shows that VP-Tree, M-Tree and Traj Index

only introduce a small storage overhead compared to raw data size,
while our solution is about 2x-2.3x of raw data size (including the
raw data size; so the index size is only 1x-1.3x of raw data size).

In addition to scalability against data size, we also conduct ex-
periments to study query and index performance against cluster
size. Note that we omit results for index size and query selectivity
as they are not influenced by the cluster size. As shown in Figure
10, DFT, Traj Index, and baseline all demonstrate roughly linear
scalability against the cluster size while DFT achieves the smallest
query latency. For index time, both DFT and Traj Index scale lin-
early to the cluster size and the difference between them for index
construction time is around 2x.

7.5 Impacts of k, c, and query size
Figures 11(a) and 11(b) show that k does not have a significant

impact on query latency and selectivity for all methods. This is
because, when k only increases moderately, distance calculation
for the final candidate set C(Q) dominates the query processing

1 10 30 50 70 100
k

100

101

102

103

104

La
te

nc
y

(s
ec

on
ds

)

DFT
Brute Force

Traj Index

(a) Query Latency

1 10 30 50 70 100
k

10−4

10−3

10−2

10−1

Se
le

ct
iv

ity

DFT Traj Index

(b) Selectivity
Figure 11: Impact of k.

1 3 5 7 10
c

100

101

102

103

La
te

nc
y

(s
ec

on
ds

)

DFT Traj Index

(a) Query Latency

1 3 5 7 10
c

10−4

10−3

10−2

10−1

100

Se
le

ct
iv

ity

DFT Traj Index

(b) Selectivity
Figure 12: Impact of c.

100 200 300 400 500
Query Size

100

101

102

103

La
te

nc
y

(s
ec

on
ds

)

DFT Traj Index

(a) Query Latency

100 200 300 400 500
Query Size

10−4

10−3

10−2

10−1

Se
le

ct
iv

ity

DFT Traj Index

(b) Selectivity
Figure 13: Influence of query size on GEN_TRAJ_3M.

0 2000 4000 6000 8000
Query Size

100

101

102

103

104

La
te

nc
y

(s
ec

on
ds

)

DFT Traj Index

(a) Query Latency

0 2000 4000 6000 8000
Query Size

10−4

10−3

10−2

10−1

100

Se
le

ct
iv

ity

DFT Traj Index

(b) Selectivity
Figure 14: Influence of query size on OSM_DE.

time, and a moderate increase in k value doesn’t have change the
size of C(Q) significantly.

Figure 12 shows how the value of c does have an impact to the
query performance of Traj Index and DFT. As c grows, both so-
lutions have achieved smaller query latency and better selectivity.
But note that after c ≥ 5, query latency of both solutions stop see-
ing any significant reduction.

Number of segments in a query trajectory, namely query size, is
an important factor that will influence both query latency and selec-
tivity. Intuitively, it is more expensive to calculate similarity mea-
sures when the query trajectory has more segments. Furthermore,
longer trajectories are likely to pass through larger spatial regions,
which may limit the effectiveness of partition based pruning.

Figures 13 and 14 demonstrate how query size impacts the query
latency and selectivity of both Traj Index and DFT on GEN-TRAJ

and OSM-DE datasets. Clearly, a larger query trajectory leads to
longer query latency and worse query selectivity, with the excep-
tion on OSM-DE, where large queries may actually have a better
selectivity. This is due to the fact that OSM-DE contains trajecto-
ries from a small area (Germany vs the world), so more segments
in a query trajectory may lead to better pruning power using our
pruning bound in Theorem 1. Nevertheless, they still lead to more

GEN-TRAJ-3M OSM-DE OSM-FULL
Data Set

100

101

102

103

104
La

te
nc

y
(s

ec
on

ds
)

Brute Force
Traj Index

DFT

(a) Query Latency

GEN-TRAJ-3M OSM-DE OSM-FULL
Data Set

10−4

10−3

10−2

10−1

Se
le

ct
iv

ity

Traj Index DFT

(b) Selectivity
Figure 15: Performance on discrete segment Fréchet distance.

expensive query processing time, as the distance calculation for the
final candidate set becomes more expensive with more segments in
the query trajectories.

In all cases, DFT has significantly outperformed Traj Index (note
that the y-axis is in log scale).

7.6 Discrete Segment Fréchet Distance
Finally, we show how our solution works on the discrete segment

Fréchet distance. Note that since our framework uses the same
index structures as those for Hausdorff distance, the indexing time
and index size remain the same as demonstrated in Section 7.3. As
VP-Tree takes too long to build (more than 12 hours), we omitted
its results, which follows a similar trend as that in Figure 8. Figure
15 shows that DFT achieves the best query latency and selectivity.

8. CONCLUSION
We present a generic and scalable framework for processing dis-

tributed similarity search on a large set of trajectories. Our ap-
proach utilizes a segment-based approach with a number of opti-
mizations. We illustrate how to support the classic Hausdorff and
Fréchet distances using our framework, and investigate challenges
in instantiating our framework in a distributed system. Interesting
future work includes how to extend our framework to support other
trajectory similarity metrics than the discrete segment-based simi-
larity measures used in this work, deal with updates, process sub-
trajectory similarity search, and search for a tighter pruning bound.
Another interesting extension is to generalize our framework for
non-metric measures using the ideas of embedding.

9. ACKNOWLEDGEMENT
We appreciate the comments from the annoymous reviewers.

Authors thank the support from NSF grants 1200792, 1251019,
1350888, 1443046, and 1619287. Feifei Li was also supported in
part by NSFC grant 61428204 and a Huawei gift award.

10. REFERENCES
[1] P. K. Agarwal, R. Ben Avraham, H. Kaplan, and M. Sharir. Computing the

discrete frechet distance in subquadratic time. Siam Journal of Computing,
43:429–449, 2014.

[2] P. K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite
matching with metric and geometric costs. In STOC, 2014.

[3] H. Alt and M. Godau. Computing the fréchet distance between two polygonal
curves. JCG Appl., 5:75–91, 1995.

[4] H. Alt, C. Knauer, and C. Wenk. Comparison of distance measures for planar
curves. Algorithmica, 2004.

[5] H. Alt and L. Scharf. Computing the hausdorff distance between curved
objects. JCG Appl., 18(4):307–320, 2008.

[6] Y.-B. Bai, J.-H. Yong, C.-Y. Liu, X.-M. Liu, and Y. Meng. Polyline approach
for approximating Hausdorff distance between planar free-form curves. CAD,
43:687–698, 2011.

[7] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars. Computational

Geometry: Algorithms and Applications. Springer-Verlag TELOS, 2008.
[8] T. Bozkaya and Z. M. Özsoyoglu. Indexing large metric spaces for similarity

search queries. TODS, 24(3):361–404, 1999.
[9] S. Cabello, P. Giannopoulos, C. Knauer, and G. Rote. Matching point sets with

respect to the Earth mover’s distance. Computational Geometry: Theory and

Applications, 39:118–133, 2008.
[10] P. Cao and Z. Wang. Efficient top-k query calculation in distributed networks.

In PODC, pages 206–215, 2004.

[11] S. Chambi, D. Lemire, O. Kaser, and R. Godin. Better bitmap performance with
roaring bitmaps. Softw., Pract. Exper., 2016.

[12] L. Chen and R. Ng. On the marriage of lp-norms and edit distance. In VLDB,
pages 792–803, 2004.

[13] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for moving
object trajectories. In SIGMOD, pages 491–502, 2005.

[14] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for
similarity search in metric spaces. In VLDB, pages 426–435, 1997.

[15] P. Cudré-Mauroux, E. Wu, and S. Madden. Trajstore: An adaptive storage
system for very large trajectory data sets. In ICDE, pages 109–120, 2010.

[16] M. de Berg, A. F. Cook IV, and J. Gudmundsson. Fast frechet queries. In
Symposium on Algorithms and Computation, 2011.

[17] A. Driemel and S. Har-Peled. Jaywalking your dog – computing the Frëchet
distance with shortcuts. Siam Journal of Computing, 42:1830–1866, 2013.

[18] E. Frentzos, K. Gratsias, and Y. Theodoridis. Index-based most similar
trajectory search. In ICDE, pages 816–825, 2007.

[19] A. W. Fu, P. M. Chan, Y. Cheung, and Y. S. Moon. Dynamic vp-tree indexing
for n-nearest neighbor search given pair-wise distances. VLDBJ, 2000.

[20] A. Guttman. R-trees: A dynamic index structure for spatial searching. In
SIGMOD, pages 47–57, 1984.

[21] J. Hangouët. Computation of the Hausdorff distance betwene plane vector
polylines. In Proceedings AutoCarto 12, 1995.

[22] I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-tree using fractals. In
VLDB, pages 500–509, 1994.

[23] J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect
framework. In ICDE, pages 140–149, 2008.

[24] J.-G. Lee, J. Han, X. Li, and H. Gonzalez. Traclass: trajectory classification
using hierarchical region-based and trajectory-based clustering. In VLDB, 2008.

[25] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a
partition-and-group framework. In SIGMOD, pages 593–604, 2007.

[26] S. T. Leutenegger, M. Lopez, J. Edgington, et al. Str: A simple and efficient
algorithm for r-tree packing. In ICDE, pages 497–506, 1997.

[27] C. Long, R. C. Wong, and H. V. Jagadish. Direction-preserving trajectory
simplification. PVLDB, 6(10):949–960, 2013.

[28] C. Long, R. C. Wong, and H. V. Jagadish. Trajectory simplification: On
minimizing the direction-based error. PVLDB, 8(1):49–60, 2014.

[29] S. Ranu, D. P, A. D. Telang, P. Deshpande, and S. Raghavan. Indexing and
matching trajectories under inconsistent sampling rates. In ICDE, 2015.

[30] B. K. Sriperumbudur, K. Fukumizu, and G. R. G. Lanckriet. Universality,
characteristic kernels and RKHS embedding of measures. Journal of Machine

Learning Research, 12:2389–2410, 2011.
[31] H. Su, K. Zheng, J. Huang, H. Wang, and X. Zhou. Calibrating trajectory data

for spatio-temporal similarity analysis. VLDBJ, 24(1):93–116, 2015.
[32] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou. Calibrating trajectory data

for similarity-based analysis. In SIGMOD, 2013.
[33] H. Su, K. Zheng, K. Zeng, J. Huang, S. W. Sadiq, N. J. Yuan, and X. Zhou.

Making sense of trajectory data: A partition-and-summarization approach. In
ICDE, pages 963–974, 2015.

[34] H. Su, K. Zheng, K. Zheng, J. Huang, and X. Zhou. Stmaker - A system to
make sense of trajectory data. PVLDB, 7(13):1701–1704, 2014.

[35] C. F. Torres and R. Trujillo-Rasua. The fréchet/manhattan distance and the
trajectory anonymisation problem. In DBSec, pages 19–34, 2016.

[36] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric
trees. Inf. Process. Lett., 40(4):175–179, 1991.

[37] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar
multidimensional trajectories. In ICDE, 2002.

[38] H. Wang, H. Su, K. Zheng, S. W. Sadiq, and X. Zhou. An effectiveness study on
trajectory similarity measures. In ADC, 2013.

[39] H. Wang, K. Zheng, X. Zhou, and S. W. Sadiq. Sharkdb: An in-memory storage
system for massive trajectory data. In SIGMOD, pages 1099–1104, 2015.

[40] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo. Simba: Efficient in-memory
spatial analytics. In SIGMOD, pages 1071–1085, 2016.

[41] B.-K. Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of similar time
sequences under time warping. In ICDE, 1998.

[42] P. N. Yianilos. Data structures and algorithms for nearest neighbor search in
general metric spaces. In SODA, 1993.

[43] R. Ying, J. Pan, K. Fox, and P. K. Agarwal. A simple efficient approximation
algorithm for dynamic time warping. In SIGSPATIAL, 2016.

[44] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-drive:
driving directions based on taxi trajectories. In SIGSPATIAL, 2010.

[45] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In NSDI, 2012.

[46] Z. Zhang, K. Huang, and T. Tan. Comparison of similarity measures for
trajectory clustering in outdoor surveillance scenes. In ICPR, 2006.

[47] Y. Zheng and X. Zhou, editors. Computing with Spatial Trajectories. Springer,
2011.

