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Abstract The database community has devoted ex-
tensive amount of efforts to indexing and querying tem-

poral data in the past decades. However, insufficient

amount of attention has been paid to temporal ranking

queries. More precisely, given any time instance t, the
query asks for the top-k objects at time t with respect to

some score attribute. Some generic indexing structures

based on R-trees do support ranking queries on tempo-

ral data, but as they are not tailored for such queries,

the performance is far from satisfactory. We present
the Seb-tree, a simple indexing scheme that supports

temporal ranking queries much more efficiently. The

Seb-tree answers a top-k query for any time instance t

in the optimal number of I/Os in expectation, namely,
O(logB

N
B + k

B ) I/Os, where N is the size of the data set

and B is the disk block size. The index has near-linear

size (for constant and reasonable kmax values, where

kmax is the maximum value for the possible values of the

query parameter k), can be constructed in near-linear
time, and also supports insertions and deletions with-

out affecting its query performance guarantee. Most of

all, the Seb-tree is especially appealing in practice due

to its simplicity as it uses the B-tree as the only build-
ing block. Extensive experiments on a number of large

data sets, show that the Seb-tree is more than an order

of magnitude faster than the R-tree based indexes for

temporal ranking queries.
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1 Introduction

Temporal data refers to objects that change over time.

Examples include time series (e.g., stock traces, sensor
readings, etc.), trajectories for spatial objects transac-

tional and temporal databases. Due to their numerous

applications, efficient managing, indexing, and querying

temporal data have been extensively studied. Those at-

tributes of objects in a database that change over time
are often referred to as the temporal attributes, for in-

stance the temperature attribute in a sensor readings

database. In general, a temporal attribute A of an ob-

ject can be an arbitrary function f : R → R, but of-
ten time f is represented as a piecewise linear function

(i.e., a sequence of straight line segments) for efficient

storage, transmission, indexing, and querying [12, 25].

There is a vast literature on how to approximate an

arbitrary function f by a piecewise linear function g.
Please see [5,12,27,32] and the references therein. Gen-

erally speaking, more segments in g lead to better ap-

proximation quality, but also increase the size of the

representation. Adaptive methods, in which more seg-
ments are allocated to regions of high volatility while

less segments for smoother regions, are better than non-

adaptive methods which use a fixed segmentation inter-

val. Segmentation is beyond the scope of this paper, and

we assume that the data has already been converted to
a piecewise linear format by any segmentation method.

We do not even require all the piecewise linear functions

have the same number of segments. Thus it is possible

that the data is gathered from a variety of sources after
different preprocessing modules.

Problem definition. In this paper, we study a partic-

ularly useful query type on a collection of objects with a

temporal attribute: top-k queries. We define our prob-
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lem more precisely as follows. Suppose we have a family

of n piecewise linear functions, F = {f1, . . . , fn} : R →
R, where fi is the temporal attribute of object oi and

consists of mi segments. We also refer to these func-

tions as score functions. Given any t and k, a top-k(t)
query retrieves the k functions that have the highest

function values fi(t). Ties are broken arbitrarily. The

goal is to store these functions in an index structure

such that a top-k(t) query can be answered efficiently
for any t and k ≤ kmax where kmax is the maximum pos-

sible k that is supported. We would like to emphasize

that the piece-wise linear line segments from different

functions are not necessarily aligned along the time axis

(i.e., line segments from different functions could start
and end at different time instances, see the example in

Figure 1), and functions may also have different number

of piece-wise linear line segments. We also use objects

when referring to these piece-wise linear functions.
An example of such ranking queries is illustrated

in Figure 1 where Q1 and Q2 ask for top-2 objects at

time instance t1 and t2, respectively. The answer to

Q1 is (o2, o1) and it is (o1, o3) for Q2. Note that if we

simply attach the object id of oi to each segment of fi,
the problem is equivalent to the following more general

problem. Given a set of N =
∑n

i=1 mi segments (n

functions and the ith function has mi segments) in the

xy-plane, for a given query coordinate t, return the top-
k segments having the highest intersection points with

the vertical line x = t. We denote this set of segments,

the set of all segments from all functions, as S.

o1

o2

o3

o4

t1 t2

Score

Time

Q1 Q2

Fig. 1 A top-k(t) query example.

The top-k(t) query has numerous practical applica-
tions on temporal data, as illustrated next.

Example 1 A common query on archival stock price

data is to retrieve the top-k stocks with the highest

prices at a particular time in the past. As storing the
stock prices at every second consumes a large amount

of storage, a common way to store archival stock price

data is to approximate them by segmentation. Thus the

above query is exactly a top-k(t) query on piecewise lin-

ear functions to be investigated in this paper.

Example 2 Another application is to report the top-k

sensors with the highest temperature readings at a cer-

tain time instance. Since wireless transmission of data

is the biggest source of battery drain, a common way

of saving transmission is to approximate the readings

by a piecewise linear function and the sensors only send

these functions back to central station, as opposed to

sending readings continuously at, say every second.

Example 3 Each piecewise linear function could also

represent the sale-volume of an product over time. Then
a top-k(t) query is especially useful for finding out the

k-most popular products at any time instance from a

large collection of objects over a long time period.

Note that top-k(t) queries should not be confused

with similarity search in time series or trajectories [12,

14,37]. In the latter case, one is interested in retrieving

the k most similar functions fi to a query function,
where the similarity is measured over the entire time

domain of the function using for example the L2 metric.

Numerous efforts have been spent on indexing and

querying temporal data, most notably on similarity search
aggregate queries, nearest neighbors, range queries, tem-

poral pattern queries, and interval skyline queries. How-

ever, we feel that the small amount of attention that

top-k(t) queries has received is disproportional to their
importance. Indeed, a top-k(t) query is a special one-

dimensional k-nearest neighbor query where the the

query point is always at infinity, so any temporal k-

nearest neighbor index can be used to answer a top-

k(t) query as well. But as these indexes are not tailored
for top-k(t) queries, the query performance is far from

satisfactory (please refer to our detailed discussion on

this issue in Section 2). We believe that the importance

of ranking queries justifies the need of a specifically de-
signed index that optimizes for such queries.

Our contributions. This paper presents a comprehen-

sive study for top-k(t) queries. We first discuss some

special cases and baseline solutions. This includes how
to use the asymptotically optimal multiversion B-tree

(MVB-tree) for the special case when the score func-

tions are piecewise constant as mentioned above. For

piecewise linear functions we briefly discuss how the

temporal k-nearest neighbor indexes, which are all based
on R-trees, support top-k(t) queries, but these indexes

do not have any query performance guarantee. We also

discuss how to extend the MVB-tree solution to the

piecewise linear function case, but with a quadratic
blowup in the index size and the construction cost.

Then, we present the Seb-tree (the sampled enve-

lope B-tree), the new index structure for top-k(t) queries.

Compared with the baseline solutions, the Seb-tree is
superior (or at least on par) in the following aspects.

Query performance: Theoretically, it answers a top-

k(t) query in O(logB
N
B + k

B ) I/Os in expectation, which
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matches the query performance of the MVB-tree for

the general piecewise linear functions. The R-tree ap-

proaches have no query guarantee at all. Our index is

randomized, and the expectation on query cost is w.r.t.

the randomization within the structure, not in the data
or the query. So for R-tree based indexes there are some

bad inputs that always lead to large query costs, but

such bad inputs do not exist for our index.

Size and construction: The Seb-tree takes O(N
B α(N

B )

(
√

log N
B + log kmax

B )) 1 disk blocks in expectation, and

requires expected O(Nα(N
B ) log N

B (
√

log N
B +log kmax

B ))

time for construction, where α(·) is the inverse Ack-
ermann function, an extremely slow-growing function

and can be essentially treated as a small constant for

all imaginable data sizes. Thus, the Seb-tree does re-

quire more space than the R-tree, but only by a small
logarithmic factor, and its construction cost is much

less than a R-tree (as seen in our experiments). Though

the MVB-tree only takes linear space and N
B log N

B con-

struction cost, but the the MVB-tree based solution for

top-k(t) queries introduces a quadratic blowup to its
size and construction cost, which makes it at least an

order of magnitude worse than the Seb-tree.

Updates: The Seb-tree supports updates of histori-

cal records. It is a sampling based structure, and as a

result, for 99.5% of the updates (based on our exper-

imental results), we just need to perform a few inser-
tions or deletions in the collection of B-trees. Thus the

concurrency control, logging, and recovery mechanisms

of B-trees can still be enforced easily and efficiently.

For the rest 0.5% updates, we may need to lock and

update a larger portion of the B-tree, but these hap-
pen rarely. In contrast, the MVB-tree does not allow

any changes to the historical records and updating the

R-tree with concurrency control and locking is highly

inefficient (due to the re-insertion).

Furthermore, the Seb-tree is in fact just a collection

of B-trees and has a simple query algorithm (but with

a nontrivial analysis). Thus it can be easily integrated
into a commercial DBMS. In contrast, there is so far

no commercial implementation of the multiversion B-

tree yet, and the support for R-trees is also limited in

commercial DBMSs.

We survey the baseline solutions and other related

works in Section 2. The Seb-tree is discussed in Section
3, followed by a useful space-query trade-off and the

support of ranking with multiple attributes per object

and time instance for the Seb-tree in Section 4. An

extensive experimental report is presented in Section 5,

and the paper is concluded in Section 6.

1 In this paper we let log(x) = max{log2(x), 0} for all x > 0.

2 Baseline Solutions and Related Work

We give some baseline solutions using existing indexing

structures and survey the related work in this section.

2.1 Special case, naive and baseline solutions

We first review some baseline solutions to the top-k(t)

queries by leveraging on existing techniques. Note that

these techniques were not designed for answering top-
k(t) queries, nevertheless, we show how to extend them

to solve the top-k(t) queries proposed in this work.

Staircase score functions and the multiversion

B-tree. If the temporal attribute of each object is a
piecewise constant (i.e., staircase) function rather than

piecewise linear, the problem can be efficiently solved

using the multiversion B-tree [8], which answers a range

query at any time instance in the optimal O(logB
N
B +

k
B ) I/Os, where B is the block size. Unfortunately, it

is not known how to extend the multiversion B-tree

to the case where the functions are piecewise linear.

Furthermore, the multiversion B-tree is an inherently

static structure that does not support insertions and
deletions of historical records: Updates are allowed only

on the current version of the B-tree.

We first show, how the multiversion B-tree (MVB-

tree) [8] can be used to solve the special case where all
the score functions are piecewise constant (i.e., stair-

case). An example is illustrated in Figure 2. In this

case, if we sweep a vertical line from left to right, the n

objects become one-dimensional objects on the sweep-

ing line whose locations could be updated for a total
of N times. We observe that this is exactly what the

MVB-tree is designed for. The MVB-tree stores in a

compact way all the N versions of the B-tree, one after

each update. It supports queries on any version of the
B-tree as efficiently as if each version is stored individ-

ually. A top-k(t) query retrieves the k highest objects

at time t, namely, from the version of the B-tree at that

time. Thus, the query can be answered in the optimal

O(logB
N
B + k

B ) I/Os using the MVB-tree.

o1

o2

o3

o4

t1 t2

Score

Time

Q1 Q2

Fig. 2 Ranking queries on objects with staircase functions.

It is well known that for a large number of typical
functions a piecewise linear function has a much higher

approximation accuracy than a staircase function, given

the same description size. Unfortunately, the MVB-tree
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does not generalize to our general setting with piecewise

linear functions, the fundamental reason being that the

MVB-tree essentially keeps all versions of the B-tree.

For staircase functions, there are only Θ(N) different

orderings, but this number becomes Θ(N2) for piece-
wise linear functions, which would be prohibitive for the

MVB-tree to store. Furthermore, the MVB-tree does

not support insertions/deletions of objects or changes

in their score functions.

Naive solutions. There are two naive solutions to the

top-k(t) queries. The first solution is to based on the
temporal data using the original time instances, instead

of representing them with piece-wise linear functions.

In this case, one can pre-process all time instances and

sort all objects at each time instance, then store the
sorted orders for every time instance. Then, one can in-

dex all time instances using an B-tree (time instance

as the indexing attribute and the sorted list of ob-

ject ids at a particular time instance as the indexing

record). The obvious benefit of this approach is the low
query cost and ease of implementation. However, this

approach does not scale since the space consumption is

linear to the number of time instances for the union of

all objects, which is significantly higher than the space
consumption of a solution based on the piece-wise lin-

ear representation of these objects. This also eliminates

all the benefits of the piece-wise linear segmentation as

discussed in Section 1. The expensive storage cost also

introduces overheads to the query performance, since
the B-tree has to index much more (easily by a few or-

ders of magnitude) points than the solution based on

the piece-wise linear functions. Furthermore, this solu-

tion does not support dynamic updates efficiently.

The second solution applies the above idea on the

piece-wise linear functions to reduce the space consump-

tion. It works as follows. Given the piece-wise linear rep-
resentation for all temporal data objects, each object

could be viewed as a piece-wise linear function defined

by multiple linear line segments (as shown in Figure 1.

In a pre-processing step, we can find all the intersection
points among all linear line segments for all objects. Ev-

ery two intersection points define an interval. Next, we

sort all objects in each interval and index these sorted

lists by an B tree where the indexing attribute is the

x-values of the intersection points that define these in-
tervals. Unfortunately, this approach too suffers from

the high space consumption, even though it does reduce

the storage cost comparing to the first solution above.

In the worst case, given a total of N linear line segments
in the union of all objects, there could be Θ(N2) inter-

section points defined as above. Hence, this approach

requires quadratic space with respect to the input data

set. It also introduces higher query cost since the B tree

has to index Θ(N2) keys.

This solution is essentially the generalization of the

MVB-tree approach on the staircase functions to the

general piecewise linear functions. Specifically, for any
input, the MVB-tree solution needs to find all the possi-

ble intersection points among all segments of all objects,

which naturally leads to O(N2) smaller segments to be

indexed, on a typical input. Since the MVB-tree takes
linear space to the data to be indexed, the MVB-tree

based solution will take O(N2

B ) space and O(N2

B log N
B )

construction cost. Its query cost is just O(log N
B ), which

is similar to the query cost of the Seb-tree.

Piecewise linear score functions and R-tree based

indexes. For piecewise linear score functions, almost all

existing techniques rely on the R-tree, the generic mul-

tidimensional spatial index. The observation is that if

we treat each fi as the trajectory of a one-dimensional
object over time, then the top-k(t) query becomes k-

nearest neighbor (kNN) query at time instance t using

a query point that is high enough. The state-of-art tech-

niques on indexing trajectories [5, 16, 19] all share the
following framework. We first break up each trajectory

(score function) into a number of pieces, then an R-

tree is built on top of these pieces. After we have such

an R-tree, the generic kNN algorithm can be applied

to answer a query at any given time instance t. Essen-
tially, one uses the same branch-and-bound kNN search

principle in R-trees. The R-tree nodes, starting with the

root node, and the trajectories in the leaves are explored

in the increasing order of their “minimum snapshot dis-
tance” (denoted as the MinSTDist, see Figure 3) using

a priority queue. The search terminates when there are

k objects whose MinSTDist are larger than any objects

not seen. This R-tree based algorithm is the baseline

solution for piecewise linear score functions.

t

Score

Time

MinSTDist to R2 q

MinSTDist to R1

R1
R2

Fig. 3 Querying the R-tree using MinSTDist.

In the literature, various techniques have been pro-

posed under the above framework. They differ in how to

split each trajectory and how the R-tree is constructed.

Intuitively, if the trajectories are split in a way such
that the resulting R-tree MBRs are “nice”, then the

queries can be processed efficiently. Different metrics

[5, 19] have been proposed to measure how “nice” the
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MBRs are, e.g., small overlap, small total area, small

total perimeter, and various algorithms have been de-

signed to optimize them. However, no metric has been

shown to have a provable implication on the query per-

formance. As a result, all these R-tree based indexes
remain heuristic in nature, and the query cost could be

as high as Θ(N
B ) in the worst case. In the next section,

we introduce the Seb-tree, a simple index structure for

top-k(t) queries, which not only enjoys a strong theo-
retical guarantee, but also is far more efficient than the

state-of-art R-tree based solutions in practice.

2.2 Other related work

Large amounts of efforts have been spent on manag-

ing and querying temporal data that come in differ-
ent forms. Examples include time series data, spatio-

temporal trajectories, transactional databases and oth-

ers. Arguably, many of these works are relevant to this

paper. Our review here is brief and only covers the most
related ones.

First of all, our framework deals with temporal data

when they are represented and stored as piecewise lin-

ear functions. A rich body of work has been devoted to
approximate time series or spatio-temporal trajectories

in this form [5, 27, 32]. For objects in a transactional

database, their score functions are staircase functions

as we have demonstrated in Section 2. Indexing piece-
wise linear approximations of time series for the pur-

pose of similarity search has also been explored [12].

However, since the metric for the similarity search is

quite different from a ranking query, such an index does

not directly help answering ranking queries. The similar
reason holds for other index structures (see [14, 37, 41]

and references therein) designed for similarity search

over time series data. In this case, the query is a tem-

poral object (e.g., a time series), rather than a snapshot
query point, and the goal is to retrieve similar tempo-

ral objects from the database w.r.t some pre-defined

similarity function.

There have been numerous works on indexing his-
torical, spatio-temporal trajectories for various types

of spatial and/or temporal queries [4,9,11,16,19,30,33,

34, 36], e.g., range queries, nearest neighbor queries, or

even complex pattern queries [18]. As we discussed in

Section 2, indeed it is possible to transform a top-k(t)
query to a k-nearest neighbor query on spatio-temporal

trajectories, and apply the existing techniques for snap-

shot kNN queries, e.g., the state of the art in [16] us-

ing 3DR-tree for two dimensional trajectories. It is also
possible to do so with a Multi-Version R-tree (MVR-

tree) [19, 39]. However, as noted in [19], MVR-tree is a

better choice than R-tree if the goal is support temporal

range queries. For snapshot queries, an R-tree based so-

lution usually works well. Indexing structures in trans-

actional databases support queries over objects with

staircase curves efficiently [8, 24, 28, 29, 36]. In fact, as

indicated in Section 2, we can simply use the MVB-tree
to optimally answer the top-k(t) query when all objects

could be represented by staircase functions. Unfortu-

nately, this no longer holds for the general setting with

piecewise linear functions.

There are also extensive studies on indexing and

querying continuous moving objects, e.g., [23,31,33,35,

38,40]. In numerous cases, the piecewise linear represen-

tation is adopted to represent the movements of mov-

ing objects and the queries studied are similar to those
for spatio-temporal trajectories. An additional require-

ment in this scenario is to support frequent, dynamic

updates at the current time instance efficiently. In par-

ticular, to deal with frequent updates in moving objects,
Jensen et al. [23] also used the B-tree. However, they

used the B-tree to index the Z-values of the movements

for moving objects and designed their index specially to

handle frequent, dynamic updates. They were mostly

interested at queries with a temporal range. Hence, our
usage of the B-tree has a fundamentally different pur-

pose. Similar to the case in spatio-temporal trajecto-

ries, it is also possible to leverage on these works by

transforming the top-k(t) query to a nearest neighbor
query. However, since they were not specially designed

for ranking queries, special characteristics of the rank-

ing queries were not explored by these approaches. Note

that the name Seb-tree has been previously used in the

work by Song et al. [38]. It stands for Start/End time
stamp B-tree, where the trajectories of the moving ob-

jects are partitioned into a set of groups. The segments

in each group have the aligned start and end time and

these time instances are indexed by the B-tree. Ob-
viously, this Seb-tree enables fast retrieval of partial

trajectories that are within a certain time range, but

it is fundamentally different from the Seb-tree we have

designed and does not help in answering the ranking

queries.

Another related query in temporal data is the sky-

line queries on time series [25]. The objective there is to

retrieve skyline time series over a query time interval. A

time series belongs to the skyline for a time interval iff it
has not been completely dominated by other time series

in that time interval. This query was studied for sim-

ilar motivations as that for the top-k(t) queries. How-

ever, the query semantics of the two bears fundamental

differences. Hence, the query processing techniques are
different as well.

Finally, there exists a large body of research on pro-

cessing ranking queries in various settings. Interested
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readers are referred to the survey by Ilyas et al. [22] on

this subject .

3 The SEB-Tree

We present the Seb-tree in this section.

3.1 The design principle

The Seb-tree index for answering the top-k(t) queries

leverages on some simple intuitions and randomization.

In the high level, a key observation that motivates

our design is that at any time instance t, the result for a

top-k(t) query depends on the k “highest” line segments
covering t. Furthermore, a line segment from these k

“highest” line segments is more likely to belong to the

set of k “highest” line segments covering a temporal in-

terval around t. In other words, if we can partition the
temporal dimension into disjoint intervals and find the

k “highest” line segments w.r.t. each interval, we can

index these temporal intervals (e.g., with the t value of

the right endpoint of a temporal interval) using an B-

tree and store the k “highest” line segments from each
interval as data records pointed by each temporal inter-

val at the leaf level of the B-tree. This B-tree, termed

as the Seb-tree, obviously provides a highly efficient in-

dexing structure for answering any top-k(t) queries. We
next highlight our design principles to help understand

how a Seb-tree works and why it works well.

We first break each piecewise linear function into a

number of line segments. Now a top-k(t) query is to

find the top-k segments from above at a given t. Our
construction uses the upper envelope of a set of line seg-

ments. Specifically, the upper envelope U(S) of a set of

segments S is made of the portions of the segments vis-

ible from +∞ along the y-axis. Suppose we have sam-

pled a subset of segments S1 from S, and built its up-
per envelope U(S1). An important observation is that

given any time instance t, a top-k(t) query only needs to

check all the segments from S that locate above U(S1)

at t, if there are at least such k segments. Furthermore,
note that U(S1) is made of disjoint segments (see an

example in Figure 4). Hence, for each segment e from

U(S1), we can store the set of segments C(e) from S

that ever locate above e within the time extent covered

by e. For every e from U(S1), we refer to the set C(e)
as e’s conflict list. Assume (unrealistically) for now that

every conflict list has at least k segments from S. To

answer a top-k(t) query, we simply locate the segment

e in U(S1) that spans t, and scan C(e) to find in C(e)
the k segments that are the highest at t. The second

step is trivial; while the first step can be achieved with

a B-tree on the upper envelope U(S1). Note that U(S1)

consists of segments that do not overlap on the time

axis, this becomes a one-dimensional problem and can

be easily solved by a B-tree.

Now we need to deal with the assumption that C(e)

contains less than k segments or it contains too many. In
the former case the query algorithm fails; in the latter

case, scanning C(e) will be too expensive. To deal with

this issue, the idea of is to use geometrically decreasing

samples, i.e., we obtain S1 by sampling with proba-
bilities 1/2, 1/4, 1/8, · · · , and build the conflict lists for

each of these sampling rates. The intuition is the follow-

ing. If we sample every segment in S with probability

1/2, then C(e) should be very small, remembering that

a segment in C(e) must be above all the sampled seg-
ments at some t spanned by e. As we lower the sampling

rate, C(e) gets larger. Since we lower the sampling rate

by half every time, hopefully one C(e) will have be-

tween k and 2k segments, i.e., the “right” number of
segments that we would like to scan.

Of course to materialize the above intuition several

questions need to be formally addressed: Will there al-

ways be a C(e) with Θ(k) segments for any given k

(in the expected sense)? How about the total size of
the structure? Will it get too large as one segment may

potentially belong to multiple conflict lists? We will an-

swer them in Section 3.3 after giving the detailed con-

struction algorithm of the Seb-tree in the next section.

3.2 The index

This subsection contains everything that a practitioner

needs to know about how to implement the Seb-tree

index for ranking queries on temporal data. We defer
the more complicated analysis to the next subsection.

Let S be a set of N segments in the plane. We as-

sume that the segments are in general position, i.e., no

endpoints of the segments share the same x-coordinates;
such an assumption can be easily removed using stan-

dard tie-breaking techniques.

The structure. We call a sample from S a p-sample if

we pick each segment from S randomly with probability
p. The basic idea of our index is to draw a collection

of p-samples for a series of geometrically decreasing p’s;

this basic principle has also been successfully applied on

numerous geometric range searching problems, though
mostly in a theoretical setting. Please see [2,10,13] and

the references therein.

We create a series of ℓ + 1 independent samples of

S for ℓ = ⌈
√

log(N/B) + log(kmax/B)⌉:

S0, S1, . . . , Sℓ,

where Si is a (1/(2iB))-sample of S, i = 0, 1, . . . , ℓ.

Note that Si has expected size N/(2iB).



7

∆1 ∆3∆2 ∆4 ∆5 ∆6 ∆7

Fig. 4 The trapezoidal decomposition D(Si) of the region
bounded by the upper envelope Ui of a set of sampled segments
Si. The sampled segments Si are shown in thickness and their
upper envelop Ui is indicated by the dash-dotted lines.

We say that a segment s is alive at x if s inter-
sects the vertical line at x; let the coordinates of the

intersection point be (x, s(x)). If s is not alive at x, we

set s(x) = −∞. For each i = 0, . . . , ℓ, we compute the

upper envelope of Si, defined as the function

Ui(x) = max
s∈Si

s(x).

Note that Ui is also a piecewise linear function, possibly

taking the value −∞ in some intervals. There are well-

known algorithms for computing the upper envelope of
a set of segments [21], as well as fast and reliable im-

plementations [1]. Consider a particular Ui. From each

vertex on Ui, we shoot up a vertical line; if the ver-

tex is an endpoint of a segment, we also shoot down

until it hits another segment (or goes to −∞). This
results in the trapezoidal decomposition of the region

bounded by Ui from below. Please refer to Figure 4.

We denote by D(Si) the trapezoidal decomposition ob-

tained from Si this way and a trapezoid in D(Si) is de-
noted as ∆. Figure 4 shows the upper envelope (marked

by the dash-dotted lines) for a set of sampled segments

(shown in thickness). Their trapezoidal decomposition

is represented by ∆1 to ∆7 as shown in Figure 4.

Consider a trapezoid ∆ from some D(Si); by con-
vention we will treat ∆ as open, i.e., it does not include

its boundaries. For any segment s ∈ S, we say that s

conflicts with ∆ if s intersects ∆. Then for each seg-

ment s ∈ S, we find all the trapezoids that it conflicts
with. We will discuss how to do this efficiently in a mo-

ment. Note that the sampled segments are treated in

the same way.

After this process, each trapezoid ∆ can collect all

the segments that conflict with it, denoted by C(∆).
This is called the conflict list of ∆. For each level D(Si),

i = 0, 1, . . . , ℓ, letting ∆1, . . . , ∆t be the trapezoids in

D(Si) from left to right, we simply build a B-tree Ti on

the conflict lists C(∆1), . . . , C(∆t) in order. This means
that the indexing attribute of the B-tree is the value of

the time instance on the x-axis that corresponds to the

left starting point of each trapezoid, and the record in

the B-tree is the conflict list of the corresponding trape-

zoid. If we denote the left x-value for the starting point

of a trapezoid ∆i as x(∆i), then the B-tree essentially

indexes the following records, where each record is a

(key, record) pair, {(x(∆1), C(∆1)), . . . , (x(∆t), C(∆t))}.
We built this B-tree for each level, from D(S0) to D(Sℓ),

thus we obtain a total of ℓ + 1 B-trees. These B-trees

are our complete index and denoted as the Seb-tree.

The query algorithm. Our query algorithm is also

extremely simple as outlined in Algorithm 1. Basically,

the query starts with the first level B+ tree and contin-
ues to the last level B+ tree if necessary. In any given

level i, using a point search with t in the B+ tree, we

find the trapezoid ∆ ∈ D(Si) whose x-span contains the

query time instance t, which is pointed to by some leaf
entry in the B+ tree at this level. We then read the con-

flict list of ∆, C(∆). If C(∆) contains more than k seg-

ments at t, we return the top-k segments at t with the k

highest score attribute values and terminate the search.

Otherwise, the search goes to the next level. When we
are unable to terminate after iterating through all lev-

els, we simply do a linear scan over the entire S to find

the answer.

Algorithm 1: Top-k query at t

ℓ0 = ⌈log(k/B)⌉;
for i = ℓ0, . . . , ℓ do

do a point search in Ti and find the trapezoid
∆ ∈ D(Si) whose x-span contains t;
read the conflict list C(∆);
let R be the set of segments in C(∆) alive at t;
if |R| ≥ k then

return from R the highest k segments at t;
terminate;

scan the entire S and return the top-k segments at t;

We would like to emphasize that even though the

Seb-tree is built based on the envelops for a subset

(sampling) of objects at different levels, its query al-

gorithm does return the exact results for the top-k(t)
queries, due to the last line in Algorithm 1, i.e., it

will scan the entire data set if necessary. However, as

shown by our theoretical analysis in next section, the

query algorithm in most cases terminates before incur-
ring this expensive scan operation and the overall ex-

pected query cost is still logarithmic. This is also con-

firmed by our experimental study in Section 5. The

Seb-tree has an excellent query cost and it almost never

needs to initiate the scan of the entire data set.

Building the conflict lists. It remains to show how
to build all the conflict lists efficiently. Let us focus on

a particular level Si and its trapezoidal decomposition

D(Si). We will build a hierarchical data structure on
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2
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1

1

0

0

0

0

Fig. 5 The hierarchical trapezoidal decomposition imposed by
the gradation L2 ⊆ L1 ⊆ L0. The two segments numbered with 2
are in L2 (hence also in L1 and L0); the two segments numbered
with 1 are in L1 (hence also in L0); the four segments numbered
with 0 are in L0. The bottom-level trapezoidal decomposition
D(L0) consists of the darkest trapezoids; D(L1) consists of the
darker trapezoids; D(L2) consists of the three lighter trapezoids.

top of D(Si) such that for any segment s ∈ S, we can
find efficiently all the trapezoids ∆ ∈ D(Si) that con-

flict with s. Let L0 be the set of segments in Si. We

will build a gradation L0 ⊇ L1 ⊇ · · · ⊇ Lλ, where

each Lj is a 1/2-sample of Lj−1, j = 1, . . . , j = λ. We
stop the sampling process when there are only a con-

stant number of segments left. Thus the gradation has

λ = O(log |L0|) levels. For each Lj , j = 0, 1, . . . , λ, we

build its trapezoidal decomposition D(Lj). In addition,

we further partition each D(Lj) with the vertical di-
viding lines from all higher levels D(Lj+1), . . . ,D(Lλ).

Please see an example in Figure 5 for the set of sam-

pled segments in Figure 4. Note how some trapezoids

in D(L0) are further divided by the vertical lines from
higher levels, as compared with those in Figure 4. This

way obtains a hierarchical trapezoidal decomposition

D(L0),D(L1), . . . ,D(Lλ). We store all the trapezoids in

this hierarchy in a tree, where a trapezoid ∆ ∈ D(Lj)

is a child of some ∆′ ∈ D(Lj+1) if and only if ∆ ⊆ ∆′.

Now, for each segment s ∈ S, we follow this hierar-

chy recursively, visiting a trapezoid ∆ if and only if s

intersects with ∆. Eventually we will find all the trape-

zoids in D(L0) that conflict with s. Note that some

trapezoids in D(Si) may correspond to multiple trape-
zoids in D(L0) due to the further partitioning. In this

case s is added to the conflict list of the trapezoid in

D(Si) only once.

3.3 Analysis

Although our structure of our index is quite simple, its

analysis is nontrivial, requiring some abstract notions

from computational geometry.

Correctness. We first argue for the correctness of our
index, before moving on to the more involved perfor-

mance analysis. Let ∆0 ∈ U0, ∆1 ∈ U1, . . . be the trape-

zoids whose x-span contains t from each of the ℓ levels.

The query algorithm scans each C(∆i), i = 0, 1, . . . in

order, until we reach some C(∆i) that contains at least

k segments alive at t. Suppose we stop at C(∆i). By

the definition of the conflict list, any segment not in

C(∆i) lies completely outside ∆i, hence must be lower
at t than any segment in C(∆i) alive at t. This proves

the correctness of our index.

Space analysis. To bound the total size of our B-tree

index, we need to introduce the notion of a configura-
tion space, an abstract combinatorial framework with

numerous useful geometric instantiations. A configura-

tion space is a 4-tuple X = (X, Π, D, C), where X is the

ground set, Π is set of configurations. The two sets are
related by two mappings D and C: Π → 2X . Each con-

figuration ∆ ∈ Π is characterized by the two subsets

of X : its defining set D(∆) and conflict list C(∆). We

require that there are at most a constant number of con-

figurations sharing the same D(∆); but there could be
many with the same conflict list. The degree of the con-

figuration space is defined as d = max∆ |D(∆)|. Given

a subset Y ⊆ X , the induced configuration space Π|Y

is the set of all configurations ∆ such that D(∆) ⊆ Y
and C(∆) ∩ Y = ∅, i.e., all the defining elements of ∆

appear in Y but none of the conflicting ones does.

In our setting, the ground set X is the set of N seg-

ments in the plane. The configuration space Π includes

all the possible top-open trapezoids that are determined
by two vertices, each of which can be either an endpoint

of a segment in X or the intersection of two segments.

The defining set D(∆) of a trapezoid ∆ is thus the at

most four segments that decides its two bottom ver-
tices. So the degree of this configuration space is 4. The

conflict list of ∆, as defined before, includes all the seg-

ments that intersect ∆. When defined this way, one can

easily see that the induced configuration space Π|Y for

a subset Y ⊆ X of segments exactly consists of all the
trapezoids in the trapezoidal decomposition of the re-

gion bounded from below by the upper envelope of Y .

We need the following result from [13] with respect

to a random sample Y and its induced configuration
space Π|Y .

Lemma 1 (Clarkson and Shor [13]) Let a configu-

ration space of constant degree be X = (X, Π, D, C) and

Y be a p-sample of X. For any configuration ∆ ∈ Π|Y :

E[|C(∆)|] = O(1/p).

This lemma essentially states that if we randomly

sample a subset of segments Sp from S with a sampling

rate p, the conflict list of any segment from U(Sp) con-
tains O(1/p) segments from S on expectation (i.e., the

size of the conflict list is bounded). In addition, with

the geometrically decreasing sampling rate, the chance
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that we have a layer that most conflict lists have more

than k segments is high (for typical value of k).

A second technical lemma we need is with respect

to the complexity of the upper envelope of n segments

in the plane, which is given in [20].

Lemma 2 (Hart and Sharir [20]) There are O(nα(n))

vertices on the upper envelope of n segments in the

plane, where α(n) is the inverse Ackermann function.

Note that α(n) is an extremely slow-growing func-

tion. For n as large as 2
2·

·

·

2
)

65536 twos

, α(n) is still less

than 4. Thus α(n) can be treated as a constant for all

imaginable input sizes. Hence, this result guarantees

that there are not too many segments from U(Sp) for
any sampling rate p for a sampled set of segments Sp

from S. This is critical since the number of segments

in U(Sp) will decide how many leaf entries we have to

index in the B+ tree in the Seb-tree.

Because Si is a sample of expected size 1/2i ·N/B,
the trapezoidal decomposition Ui has expected O(1/2i ·
N/B ·α(1/2i ·N/B)) = O(1/2i ·N/B ·α(N/B)) trape-

zoids. The complexity of Ui is actually O(1/2i · N/B ·
α(N/B)) with high probability. By Lemma 1, for each
∆ ∈ Ui, we have

E[|C(∆)|] = O(2iB).

Thus, the expected total size of Ti, which is the total

size of all the conflict lists in Ui, is
∑

∆∈Ui
E[|C(∆)|] = O(1/2i · N/B · α(N/B)) · O(2iB)

= O(Nα(N/B)).

Since the whole index consists of ℓ+1 = O(
√

log(N/B)+

log(kmax/B)) B-trees, we obtain the following.

Corollary 1 Our index occupies the following number

of disk blocks in expectation:

O

(

N

B
α

(

N

B

)

(
√

log
N

B
+ log

kmax

B

))

.

Query performance analysis. We now analyze the

query performance of our index. The analysis depends

on the following key lemma.

Lemma 3 The probability that the algorithm 1 queries

Ti is at most 2−Ω((i−ℓ0)
2), for any i > ℓ0 = ⌈log(k/B)⌉.

Proof We first consider the probability that if the al-

gorithm queries Ti, what is the probability that it will
fail. Let ∆ be the trapezoid in Ui whose x-span con-

tains t. The query algorithm fails on Ti because there

are less than k segments in C(∆) that are alive at t.

For this to happen, at least one of the top-k segments

at t must have been sampled into Si. Otherwise, these

k segments will all conflict with ∆, leading to a contra-

diction. Thus, the probability that at least one of the

top-k segments is sampled is an upper bound on the
probability that Ti fails. Since Si is a (1/(2iB))-sample

of S, this probability is bounded by

1 −
(

1 − 1

2iB

)k

≤ 1 −
(

1 − k

2iB

)

=
k

2iB
.

Now we consider the probability that the algorithm

queries Ti, which happens if and only if all of Tℓ0 , Tℓ0+1,

. . . , Ti−1 have failed. Since the B-trees are constructed

from independent samples, this happens with probabil-
ity at most:

k

2ℓ0B
· k

2ℓ0+1B
· · · · · k

2i−1B

=

(

k

2ℓ0B

)i−ℓ0 ( 1

20
· 1

21
· · · · · 1

2i−1−ℓ0

)

≤ 1

20
· 1

21
· · · · · 1

2i−1−ℓ0

= 2−Ω((i−ℓ0)
2). ⊓⊔

The algorithm always visits Tℓ0 . The expected cost,

in terms of the number of I/Os, is given by:

O(logB N + E[|C(∆)|/B] = O(logB N + 2ℓ0B/B)

= O(logB N + 2ℓ0)

= O(logB N + k/B).

Next consider the B-tree Ti, i > ℓ0. Conditioned on

the event that we query Ti, the expected I/O cost on
Ti is O(logB N + E[|C(∆)|]/B) = O(logB N + 2i). By

Lemma 3, we query Ti with probability 2−Ω((i−ℓ0)
2), so

the (unconditioned) expected cost on Ti is

2−Ω((i−ℓ0)
2) · O(logB N + 2i)

≤ 2−Ω((i−ℓ0)
2) logB N + 2−Ω((i−ℓ0)

2) · 2i−ℓ0k/B

≤ 2−Ω((i−ℓ0)
2) logB N + 2−Ω((i−ℓ0)

2) · k/B.

By the linearity of expectation, the total expected cost
for all the trees Tℓ0+1, . . . , Tℓ is O(logB N + k/B) I/Os,

as the series 2−Ω((i−ℓ0)
2) decreases faster than a geo-

metric series.

Finally, we need to account for the expected cost

of the algorithm falling into the brute-force one on the
last line, which leads to O(N/B) I/Os. However, this

happens only with probability

2−Ω((ℓ+1−ℓ0)
2) = 2−Ω((

√
log(N/B)+log(kmax/B)−log(k/B))2)

≤ 2−Ω((
√

log(N/B))2)

= 2−Ω(log(N/B))

≤ (B/N)O(1).
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Thus this only adds O(1) to the overall expected query

cost, as long as we set the constant before ℓ properly,

which naturally leads to the following result:

Theorem 1 For any query at t, our index finds the

top-k segments at t in expected O(logB N +k/B) I/Os.

Construction time analysis. Finally we analyze the

time required to build our index. Generating all the

samples S0, S1, . . . , Sℓ takes O(N) time. Building the

upper envelopes for all of them takes O(N/B log(N/B))

time using the algorithm of [21] and because the sizes of
the samples form a geometric series. Once we have all

the conflict lists, building all the B-trees takes time pro-

portional to the total size of our index, i.e., O(Nα(N/B)

(
√

log(N/B)+log(kmax/B))), so we will concentrate on
analyzing the cost of constructing all the conflict lists.

Focusing on a particular level Si. Recall that to

build the conflict lists C(∆) for all ∆ ∈ D(Si), we con-
struct a gradation Si = L0 ⊇ L1 ⊇ · · · ⊇ Lλ and a

corresponding hierarchical trapezoidal decomposition.

Since for each segment s, we visit all and only those

trapezoids in this hierarchy that conflict with s, the
total time spent will be proportional to

λ
∑

j=0





∑

∆∈D(Lj)

|C(∆)|



 .

Let us bound the total conflict list size for D(Lj).

Recall that D(Lj) is not precisely the trapezoidal de-

composition of the upper envelope of Lj; it is slightly

finer as we further divide it using the vertical lines from

all higher levels. However, since the sizes of levels ge-
ometrically decrease, the further partitioning does not

increase the complexity of D(Lj) by more than a con-

stant factor. Thus there are still O(|Lj |α(|Lj |)) trape-

zoids in D(Lj). Since Lj is a 1/2j-sample of Si, which
is a 1/(2iB)-sample of S, Lj is effectively a 1/(2i+jB)

sample of S. Invoking Lemma 1, we have E[|C(∆)|] =

2i+jB for any ∆ ∈ D(Lj). Also |Lj | is O(N/(2i+jB))

with high probability, thus all the conflict lists of D(Lj)

has an expected total size of O(Nα(N/B)). Summed
over all λ = O(log(N/B)) levels in the gradation, the

total cost for Si is O(Nα(N/B) log(N/B)). Since we

have
√

log(N/B)+ log(kmax/B) B-trees, the total time

spent to build our entire index is O(Nα(N/B) log(N/B)
(
√

log(N/B) + log(kmax/B))).

Theorem 2 Our index can be built in expected time

O

(

Nα

(

N

B

)

log
N

B

(
√

log
N

B
+ log

kmax

B

))

.

3.4 Updating the SEB-tree

The Seb-tree can also be efficiently updated without af-

fecting the space and query guarantees. Since the Seb-

tree is nothing but a collection of B-trees, in the sequel

we will just describe how to update the level-i tree; the

same procedure is applied on all the B-trees.
Recall that in the level-i B-tree, we take a (1/(2iB))-

sample Si of all the segments, build the trapezoidal de-

composition D(Si) of the upper envelope of Si, and then

store the conflict lists of all the trapezoids in D(Si) in
a B-tree. When the segment s to be inserted or deleted

is not one of the sampled segment, the procedure is

extremely simple. In fact, it is the same as how the

conflict lists were built in the construction algorithm of

Section 3.2. More precisely, we first follow the hierar-
chical trapezoidal decomposition D(L0), . . . ,D(Lλ) to

find all the conflict lists where s belongs to, and then

simply insert or delete s from these lists. Since each seg-

ment has probability only 1/(2iB) to be sampled into
Si, this simple update procedure is invoked most of the

time. In the rare case where s is being sampled, we first

need to restructure the upper envelope of Si and the

hierarchical trapezoidal decomposition before updating

the conflict lists. This procedure is more complicated,
but fortunately it only happens for about 1/(2iB) of

the insertions and deletions. Below we give the details

for each of the steps. We will focus on insertions only;

deletions can be handled similarly.
The first component is to update the upper envelope

and the hierarchical trapezoidal decomposition. When

s is inserted into Si, the upper envelope of Si (hence

D(Si)) might get changed. To update D(Si), we simply

reconstruct the portion of the upper envelope in the
x-span of s using the algorithm of [21]. Similarly we

update D(L1), . . . ,D(Lλ) for each level in the hierar-

chical trapezoidal decomposition on top of D(Si).

Next, we need to update the conflict lists. For all the
trapezoids ∆ in D(Si) that no longer exist in the new

D(Si), we collect their conflict lists C(∆) after remov-

ing the duplicates. Then we again, as in the construc-

tion algorithm, filter each segment down the hierarchi-

cal trapezoidal decomposition to find its new trapezoids
in conflict. Finally, we add s to the conflict lists that it

belongs to.

3.5 Comparison of different solutions

We have summarized the theoretical upper bounds of

the Seb-tree comparing to the other baseline solutions

for solving top-k(t) queries in Figure 6. Note that the
Seb-tree is a randomized structure while the R-tree and

the MVB-tree solutions are deterministic, the bounds

for the Seb-tree are the expected case while they are
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Seb-tree R-tree MVB-tree

index size O(N

B
α(N

B
)(

q

log N

B
+ log kmax

B
)) O(N

B
) O(N

2

B
)

construction cost O(Nα(N

B
) log N

B
(
q

log N

B
+ log kmax

B
)) O(N

B
log N

B
) O(N

2

B
log N

B
)

query cost O(logB

N

B
+ k

B
) O(N

B
) O(logB

N

B
+ k

B
)

update cost unknown O(logB

N

B
) not supported

Fig. 6 Theoretical upper bounds of the Seb-tree (expected), R-tree and MVB-tree (worst case) for top-k(t) queries.

worst-case bounds for the other two. However we em-

phasize that, as with any randomized algorithm, the ex-
pectation is with respect to the randomization within

the structure itself, not the input data. It should be

pointed out that it is possible the query cost could be as

high as O(N/B) for the Seb-tree, but this happens ex-
tremely rarely (guaranteed by Lemma 3, as well as ob-

served in our experiments). More importantly, whether

this happens or not depends on the internal random-

ization within the structure, not on the input data or

query. On the other hand, the two deterministic solu-
tions will always attain their worst-case bounds on cer-

tain inputs. Nevertheless, in situations where the per-

formance needs to be absolutely guaranteed, random-

ized algorithms should be avoided at all. Unfortunately
for the top-k(t) problem there are no deterministic so-

lutions with good worst-case guarantees on both the

index size (hence construction cost) and query time.

4 Extensions

We discuss a space-query tradeoff of the Seb-tree and

the generalization of the Seb-tree to support aggregate

score functions over multiple attributes in this section.

4.1 Space-query tradeoff of the Seb-tree

The Seb-tree uses near-linear space (only with a small

logarithmic factor). This introduces little storage over-
head that does not raise a concern for most practical

applications. In practice, one may further reduce the

space consumption of the Seb-tree without abruptly

changing its query performance. In fact, there exists a

simple method to gradually adjust the behavior of the
Seb-tree to achieve a nice tradeoff between its query

cost and space consumption.

Our idea is built upon the observation given by

Lemma 1. Essentially, one expects to see O(1/p) con-
flicting segments for any one trapezoid where p is the

sampling rate for some level Si. For level i ∈ [0, ℓ],

p = 1
2iB . Now assume that a query has come to a partic-

ular trapezoid ∆ in level i, directed by the search in the
ith level B-tree. If the size of ∆’s conflict list, |C(∆)|,
is way larger than the expectation, 2iB, say by a fac-

tor of λ, we know that this is an outlier and we should

try to avoid. In that case, we may choose to skip read-

ing the conflict list of this particular ∆. Instead, the
query continues to the B-tree on the next level. The

intuition is that the probability for a query to consis-

tently encounter such bad cases across multiple levels

is extremely low in practice. Of course, if the query is
currently at the last level, we do not skip reading any

conflict list, since this represents the last line of defense

to avoid the (extremely rare) expensive linear scan of

the entire database.

By doing the above on the query side, an immediate
optimization for reducing the size of the Seb-tree is to

simply throw away the conflict lists for those trapezoids

∆ at level i that have |C(∆)| > λ·2iB. Obviously, there

is a tradeoff between the query efficiency and the space
consumption for different values of λ. We denote a Seb-

tree built by applying the above idea with a particular

value for λ as the Seb-treeλ. Clearly, the basic version

of the Seb-tree is equivalent to the case when λ = ∞,

i.e., keeping conflict lists for all trapezoids. Our exper-
iments explore this interesting tradeoff in more details

and reveal that typically setting λ = 3 or 4 will reduce

the size of the Seb-tree by a factor of 1/2 or 1/3, while

keeping the query cost close enough to the optimal per-
formance given by the basic version of the Seb-tree.

4.2 Aggregation of multiple attributes

In some situations, the objects could have multiple tem-
poral attributes, say a1(t), . . . , ad(t), where each ai(t)

is a piecewise linear function, and a top-k(t) query asks

for the top-k objects at time t according to an aggrega-

tion function f(a1(t), . . . , ad(t)), e.g., sum, max, or min.

Next, we discuss how to extend the Seb-tree to support
top-k(t) queries using such aggregation functions.

Predefined aggregation functions. The extension

is straightforward when the aggregation function f is

predefined. All we need to do is to compute the ag-
gregation function f(t) = f(a1(t), . . . , ad(t)) and then

build the Seb-tree on these f(t)’s. The Seb-tree works

directly for most aggregation functions, such as sum,

average, max, min, since if the ai(t)’s are piecewise lin-
ear, f(t) is also a piecewise linear function. Thus the

construction, query, and update algorithms remain the

same, although the complexity of the Seb-tree might
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change slightly: When the aggregation function is sum

or average, it is clear that the total size (total number

of pieces) in an f(t) is the same as that of the ai(t)’s,

since each turning point in an ai(t) contributes to at

most one turning point in f(t). So all the bounds remain
the same in this case. When the aggregation function is

max or min, f(t) is the upper or lower envelope of these

ai(t)’s (not to be confused with the upper envelopes we

used in the construction of the Seb-tree), so the size of
f(t) could be more than linear by an O(α(N)) factor

by Lemma 2. So all bounds for the Seb-tree hold after

replacing N with Nα(N). But for all practical values

of N , this increase is negligible.

In fact, even if the aggregation function is a higher-

degree polynomial, say f(t) = a2
1(t) + · · · + a2

d(t), the

Seb-tree still works. In this case, f(t) is a piecewise

quadratic function, but the upper envelopes and con-
flict lists can still be defined in the same way as before,

and the Seb-tree works in exactly the same way as be-

fore. The analysis also stays the same, except that the

bound in Lemma 2 becomes O(n2α(n)) [3]. This in turns
changes N to N2α(N) in all subsequent bounds. Note

that although 2α(N) looks “exponential”, it is not. In

fact it is still close to a constant due to the extremely

slow growth of the inverse Ackermann function.

Ad hoc aggregation functions. When the aggrega-

tion function is only given at query time, a standard

technique is to build a Seb-tree on each attribute ai(t)

separately, and then merge the results together using
the threshold algorithm (TA) [15] at query time. Note

that TA requires sorted accesses to each ranked list, but

the Seb-tree supports such accesses easily by querying

T0, T1, . . . in order. In this case the index size and con-
struction costs of the Seb-trees remain the same as be-

fore, but we do not have a bound on the query cost any

more, because in order to find the top-k objects at time

t, we may need to access more than k objects from each

Seb-tree. Nevertheless, since TA is instance-optimal, it
is guaranteed that we will not retrieve more objects

than necessary from each Seb-tree. However, we note

that this optimality holds only when we restrict our-

selves to the framework in which TA is analyzed in [15],
i.e., the algorithm cannot access an object before it is

accessed in sorted order on at least one of its attributes.

5 Experiments

We implemented the Seb-tree using C++. We uses the

CGAL library [1] for computing the upper envelope of
a set of line segments, and the TPIE library [7] for disk-

based B-trees. To compare against the baseline solution,

we obtained the latest spatial index library from [17]

that includes the R*-tree, the MVR-tree (multi-version

R-tree, the generalization of the MVB-tree to R-trees)

and the TPR-tree (time parametrized R-tree) [35, 40].

Our observation is that, for snapshot queries, the R*-

tree outperforms the MVR-tree and the TPR-tree. The
latter ones are preferred for temporal range queries.

The same observation has also been observed by sev-

eral latest works in indexing spatio-temporal trajecto-

ries [16, 19]. Hence, we compared the Seb-tree against
the baseline solution using the two-dimensional R*-tree

from [17]. In addition, we also tried to optimize the

segmentation of each object before indexing them by

the R*-tree. There are several methods in the litera-

ture. We choose to use the global distance-based seg-
mentation approach [5]. In the sequel, we simply refer

this baseline approach as the R-tree. Lastly, we have

also implemented the MVB-tree based solution. Our

MVB-tree implementation was based on the TPIE li-
brary, following the guidelines provided in [6]. Note that

there is a small cost, associated with finding the root of

the MVB-tree during its query process. All experiments

were executed on a 64-bit Linux machine with 4GB of

RAM and a 2GHz Intel Xeon(R) CPU.

Data sets. We have run extensive experiments on both
real and synthetic data sets. A sample of five objects in

each data set for some of the data sets used in our ex-

periments are shown in Figure 7. Note that, here, each

object is simply a function as discussed in the formal

problem definition in Section 1. For real data sets, we
used the time series data from Keogh’s CD ROM [26]

and applied the SWAB method [27] to transform them

into piecewise linear line segments. In particular, we

chose the Mallat Techno-metrics (Mallat in short) and
the Lightcurve data sets (see Figure 7(a) and 7(b)), the

two largest data sets in [26] in terms of the number of

objects. The Mallat data set contains 2400 time series

and each has 1024 time instances. The Lightcurve data

set contains 5000 time series and each has 1024 time in-
stances. We used the SWAB method to represent each

time series with 200 line segments.

The real data sets are too small to test the scala-

bility of the indexes, so we also generated a collection

of synthetic data sets, with which we can also control

various important characteristics. We first pick m, the

average number of segments the score functions. Then
for each object’s score function fi, we first randomly

pick a mean value µi ∈ [100, 300], as well as a ran-

dom integer mi from [1, 2m] as the number of segments

it contains. Next, we randomly generate mi time in-
stances t1 < t2 < · · · < tmi

from [0, 1000] along the time

dimension. After that, for each tj , we set fi(tj) ran-

domly following the normal distribution N(µi, σ
2) for
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(c) Synthetic: σ = 10.
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(d) Synthetic: σ = 50.
Fig. 7 Random samples of our data sets: a sample of 5 objects.

some predetermined standard deviation σ. If fi(tj) gets
out of the domain [0, 400], we regenerate a new fi(tj).

In the last step, we simply connect (tj−1, fi(tj−1)) to

(tj , fi(tj)) for all i ∈ [2, m] by a line segment. Clearly,

this way allows us to flexibly adjust the degree of inter-
sections among the objects, as well as the stableness for

the distribution of the top-k at different time instances.

For example, as shown in Figure 7(c) and 7(d), smaller

σ values lead to fewer intersections and larger σ values

result in a significant number of crossovers.

Setup. We explored the main characteristics of the
Seb-tree and its variations, compared to the baseline

approach. The metrics include index size, construction

cost, query cost, and update cost. In particular, we will

investigate how various data characteristics, such as σ,
n (total number of objects), and m (the average num-

ber of segments in each fi), may affect the behaviors of

different indexes. Note that the total number of line seg-

ments for all objects in the database, N , is roughly nm.

For the Seb-tree index, we also studied the Seb-treeλ
that improves its space usage in practice. In particular,

we set λ = 3 and λ = 4 since these two values provide

a nice tradeoff between space consumption and query

cost, as indicated by our experiments. Unless otherwise
specified, the default values for various parameters are:

n =10,000, m = 500, σ = 30, k = 100, kmax = 200.

Hence, by default the size of the database (N) is 5 mil-

lion line segments. Each line segment is represented by

four doubles, and two integers for its object id and seg-
ment id within that object, i.e., 40 bytes in total.

For all experimental figures, except otherwise speci-

fied, the index size, the construction cost and the query

cost are all shown in log scale. Each query cost is ob-

tained by averaging over 10,000 queries at random time
instances. For most results on the query cost, we choose

to report only the I/O cost, as the query time is always

proportional to the I/O cost. The two real data sets give

fairly similar results in all experiments. Hence, we only

report the results from the lager data set Lightcurve.

5.1 Index size and construction cost

In the first set of experiments, we study the index size

and construction cost of various indexes for changing

values of σ, n and m. For the initial construction of the
index, we always bulkload the R-tree as well as the B-

trees within the Seb-tree. The MVB-tree is constructed

using its insertion algorithm. The fill-factor is set to be

90% for the R-tree, the MVB-tree and all the B-trees.
We did not include the cost of finding optimal segmen-

tation before indexing them using the R-tree in the re-

ported times, since this is an optional step. Thus we

are giving full advantages to the R-tree: The construc-

tion time is the minimum possible (it is just the time to
bulkload the R-tree) while we are assuming that the R-

tree’s quality has been optimized by this optional step.

The construction time of the MVB-tree based solution

includes two parts: the time to find all intersecting ver-
tices and the time to build the MVB-tree afterward.

The size of the Seb-tree and its variants, the Seb-

treeλ, in general increases with the variance in the data-

base gets larger, as shown in Figure 8(a). This is be-
cause as the segments get more “vertical”, they are

likely to intersect more trapezoids in D(Si), and hence

are stored in more conflict lists. The R-tree’s size is not

affected by σ since the size of the data set remains as a
constant, which is obvious. Note that it is well known

that R-tree takes linear space in terms of the size of

the input data set. For example, in this experiment,

each line segment takes four doubles (starting and end-

ing points in the 2D space) and two integers (the object
and line segment ids) to represent, for 5 million line seg-

ments the size of the input data set is approximately

200MB (R-tree takes more space in practice due to the

index level nodes, but theoretically its size is O(N)).
From the figure we see that Seb-tree does take more

space than the R-tree (as well as the input data set),

but not by much. Even in the case when σ = 50 (this is a

considerably large variance for the domain of [0, 400]),

the size of the Seb-tree is still well within twice the
R-tree size. As expected, Seb-tree3 and Seb-tree4 re-

duce the size of the Seb-tree, and in particular, the size

of Seb-tree3 is comparable to that of the R-tree. Seb-

tree4 achieves a size reduction of 1/3 in most cases. The
bumps in the size curves are due to the fact that the

Seb-trees are randomized structures. Lastly, the size of

the MVB-tree is significantly larger (almost one order
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of magnitude) than both the R-tree and the Seb-trees,

which is due to the fact that it has to store significantly

more segments produced by any intersection from the

input segments. Its size also increases quickly when σ

becomes larger, as larger variance means that more in-
tersecting vertices will be produced by input segments.

This means that the MVB-tree solution scales poorly,

compared to the Seb-trees.
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(b) Construction time.
Fig. 8 Effect of σ on index size and construction time,
n =10,000, m = 500, N = n × m.

The construction of the Seb-trees is much faster
that for the R-tree and the MVB-tree solution, as seen

in Figure 8(b), by almost 8 times and two orders of mag-

nitude respectively. The construction cost of the Seb-

tree increases with σ, for similar reasons as explained
above, but the increase is small. In contrast, the con-

struction cost of the MVB-tree solution increases sig-

nificantly as σ for two reasons. Firstly, a larger σ value

implies more intersecting segments and calculating all

intersecting vertices becomes more expensive. Secondly,
more intersecting vertices further leads to a higher num-

ber of insertion operations into the MVB-tree.
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(b) Construction time.
Fig. 9 Effect of n on index size and construction time, m = 500,
σ = 30, N = n × m.

We next study the scalability of the Seb-trees as

n, the number of objects in the database, gets larger.

The results are shown in Figure 9. The R-tree’s size

is strictly linear, which is again obvious. On the other
hand, the MVB-tree’s size is linear to the number seg-

ments produced by intersecting all input segments, which

is much larger than N (in the worse case it could be

O(N2)), as indicated in Figure 9(a). However, the trend
of the Seb-tree’s size is quite interesting. Theoretically

speaking, Corollary 1 indicates that it should also be

almost linear, but the figure suggests a sublinear trend

at first and then becomes linear later. This interesting

trend is the result of the interplay between two oppo-

site forces. As n gets larger, the Seb-tree will sample

more segments, which will push their upper envelope

higher and then reduce the size of the trapezoids in
D(Si). On the other hand, as more segments are sam-

pled, their envelope also tends to have more vertices,

resulting in more trapezoids. Thus, a larger n leads to

more conflict lists (one for each trapezoid) but each list
tends to be smaller. This interplay gives rise to the in-

teresting trend we are observing in Figure 9(a), which is

not captured by the worst-case analysis of Corollary 1.

From the experiments, we see that the Seb-tree’s size

is actually better than the bound in Corollary 1. For
n large enough, the Seb-tree’s size is almost the same

as the R-tree, with the Seb-tree3 and Seb-tree4 being

even smaller. The size of the MVB-tree becomes two

orders of magnitude larger than both the R-tree and
the Seb-trees when n goes beyond 40,000.

As far as the construction cost is concerned w.r.t.

n, Figure 9(b) indicates that the Seb-trees are much

cheaper to build than the R-tree and the MVB-tree
solutions, by 5 to 8 times and two orders of magnitude

respectively, as also observed previously in Figure 8(b).
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(b) Construction time.
Fig. 10 Effect of m on index size and construction time,
n =10,000, σ = 30, N = n × m.

Finally, we study the effect of m, the average num-

ber of segments per object, on the index size and con-
struction cost, while fixing n =10,000. Figure 10 shows

the results. In this case, both the size and construc-

tion cost are almost linear for the R-tree and the Seb-

trees, following the theoretical analysis. Here the inter-
play mentioned above for the Seb-trees does not exist

because the effect of m is only to increase the scale

of the data horizontally: The number of sampled seg-

ments at any particular time instance is not affected by

m. The MVB-tree’s size and construction cost could be
quadratic to m (since N = mn) in the worst case, and

they increase with m in practice. We observe that its

size and construction cost are significantly higher than

both the R-tree and Seb-trees as shown in Figure 10(a)
and Figure 10(b), by one to two orders of magnitude.

Figure 10(a) shows that the Seb-tree is larger than the

R-tree, which agrees with the n =10,000 point in Fig-
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(b) Construction time.
Fig. 11 Results on Lightcurve, n =5000, m = 200, N = n × m.
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(a) IO: k = 100, vary σ.
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(b) IO: σ = 30, vary k.
Fig. 12 Effect of σ on query: n =10,000, m = 500, N = n × m.

ure 9(a). However, note also that the n =10,000 point

is actually the worst case for the Seb-tree as seen in

Figure 9(a); the Seb-tree’s size gets better for larger

n. Once again, the Seb-trees have significantly better
construction time than the R-tree (Figure 10(b)).

We also investigated the index size and construction

cost over real data sets. Figure 11(a) and 11(b) show

that the Seb-trees have comparable sizes to the R-tree
and much better (almost one order of magnitude better)

construction cost. Both of them clearly outperform the

MVB-tree solution. In terms of the index size, both of

them are roughly one order of magnitude smaller than

the MVB-tree solution. In terms of the construction
cost, the R-tree solution is one order of magnitude more

efficient and the Seb-trees are two orders of magnitude

more efficient, than the MVB-tree solution.

These results indicate that the MVB-tree solution
is not practical for applications with large data sets,

due to its extremely poor scalability. The only viable

alternatives are the Seb-trees and the R-tree solution.

5.2 Query cost

We next shift our attention to the query cost, a fun-

damental metric of any index structure. Even though

previous results have already exclude the practicality

of the MVB-tree solution, for completeness, we still in-

clude its query performance in the comparison.

The query cost for varying σ, n and m are shown in

Figures 12, 13 and 14 respectively. Within each setting,

we also tested an experiment for varying k while fixing

σ, n and m. A general trend shown from all these exper-
iments is that the Seb-tree indexes are faster than the

R-tree by usually more than an order of magnitude, and

have similar query performance as the MVB-tree solu-
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(a) IO: k = 100, vary n.
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(b) IO: n =10,000, vary k.
Fig. 13 Effect of n on query: m = 500, σ = 30, N = n × m.
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(a) IO: k = 100, vary m.
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(b) IO: m = 500, vary k.
Fig. 14 Effect of m on query: n =10,000, σ = 30, N = n × m.

tion. In particular, the performance of the Seb-tree4

is almost indistinguishable from that of the Seb-tree,
making it an ideal candidate for reducing the space con-

sumption (by as much as 1/3). The performance of the

Seb-tree3 lies in between of the Seb-tree and the Seb-

tree4, but is still clearly better than the R-tree. These
experiments confirm the superior query efficiency of the

Seb-tree. For example, for n =50,000 and m = 500 in

Figure 13(a), i.e., 25 million line segments in the data-

base, the Seb-tree takes less than 10 I/Os to answer

a top-k(t) query for k = 100, and the MVB-tree takes
about 15 I/Os, while the R-tree has to take close to

1000 I/Os. Another nice feature of the Seb-tree is that

the effect of increasing any of σ, n, m, or k on the query

performance is really small, while they have a relatively
larger impact on the R-tree. Figures 12, 13 and 14 only

show the query I/O cost; the query time is always pro-

portional to the I/O cost.
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(b) Query time.
Fig. 15 Query on Lightcurve, n =5000, m = 200, N = n × m.

Since the Seb-tree is a randomized structure, and

Theorem 1 just bounds the expected query cost. One

concern is that query cost may have a large variance.

In the experiments, we found that the query cost distri-
bution is actually concentrated around the average. To

illustrate this point clearly, we used the real data set

Lightcurve. In Figures 15(a) and 15(b), we plot both



16

100 150 200 250 300
10

2

10
3

10
4

k
max

 Value

In
de

x 
S

iz
e 

(M
B

)

 

 

MVB−tree R−tree SEB−tree
 

SEB−tree3 SEB−tree4

(a) Index size.

100 150 200 250 300
10

1

10
2

10
3

10
4

k
max

 Value
C

on
st

ru
ct

io
n 

T
im

e 
(s

ec
s)

 

 

MVB−tree R−tree SEB−tree
 

SEB−tree3 SEB−tree4

(b) Construction time.
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(c) Query IO (k = kmax).
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(d) Query IO: kmax=200 vary k.
Fig. 16 Effect of kmax: n =10,000, m = 500, σ = 30, N = n × m.

the average query cost curve, the 95% curve, i.e., 95%

of the queries have a cost lower than this curve, and the
100% curve (i.e., the worst case query cost), for the R-

tree and Seb-trees. We omitted the MVB-tree solution

from this Figure, since it has similar query performance

as the Seb-tree and its construction cost and index size
are orders of magnitude worse. From these results, we

see that the 95% curve for the Seb-tree is still better

than the average cost of the R-tree, and the worst case

curve (100% curve) for the Seb-tree becomes slightly

worse the average cost of the R-tree, but both of these
curves are still an order of magnitude better than the

corresponding 95% and 100% curves of the R-tree.

5.3 Effect of Kmax

Recall from Section 3.2, the construction of the Seb-

tree depends on the value of kmax. So far, we have set

the kmax to its default value 200. In this section, we

explore the impact of kmax on the performance of the

Seb-tree and its variants.

Specifically, we first vary kmax from 100 to 300 and

build the Seb-trees correspondingly. The results are
shown in Figures 16(a), 16(b) and 16(c). As far as the

index size is concerned, larger kmax value in general

will increase the space requirement for Seb-trees: One

more B-tree is needed whenever kmax/B doubles. This

means that before a small number of levels has been
added, kmax will reach an extremely large value, .i.e.,

for typical kmax values, this will not introduce a large

overhead. And the size of Seb-trees is still well within

the comparable range to the size of the R-tree and one
order of magnitude smaller than the MVB-tree, as indi-

cated by Figure 16(a). For example, in most real-world

applications, ranking queries typically ask for a small

number of objects in the underlying database. In fact,

most existing works on top-k or kNN queries use a k
no more than 100. On the other hand, kmax does not

seem to have a big impact on the construction time

and the query performance (Figure 16(b) and Figure

16(c)). Hence, the Seb-trees still maintain their supe-
rior performance against the R-tree in these two cate-

gories, both by almost an order of magnitude. W.r.t. the

MVB-tree solution, the Seb-trees are always almost two

orders of magnitude more efficient to construct for dif-

ferent kmax values, and have achieved the similar query
performance.

We next study the query performance of the Seb-

tree when k becomes larger or even significantly larger
than the kmax value used in its construction. Figure

16(d) shows the results where we test the query cost by

varying the k value to as large as 6× kmax (kmax = 200

in this case), when the query performance of the basic
Seb-tree eventually catches the query cost the R-tree

for the first time.

We observed that the basic Seb-tree is highly ro-
bust. Even if k is significantly larger than kmax (as

large as 3 × kmax), the Seb-tree still has an impres-

sive query performance and outperforms the R-tree so-

lution by approximately one order of magnitude. The

reason is that the Seb-tree is a randomized index struc-
ture. Our theoretical analysis on the size of the conflict

list for each trapezoid built from the sampled envelope

is based on the asymptotic result for the expectation.

The constant in the big-O notation in this analysis has
achieved a comfortable “cushion” effect. So that even

if k is considerably larger than kmax, in most cases, a

conflict list retrieved from the B+ tree in the Seb-tree

still has more than k objects.

We did notice that the Seb-tree variants, namely

Seb-tree3 and Seb-tree4, are less robust towards large

k values that are way beyond kmax. Obviously, Seb-

tree3 will be the least robust one since it keeps less
number of layers. Our new experiments indicate that

when k reaches 2kmax, Seb-tree3 becomes as bad as

the R-tree solution. Seb-tree4’s query performance also

degrades as k keeps increasing beyond kmax, however,

even when k = 2kmax, Seb-tree4 still outperforms the
R-tree solution by a considerable margin (Figure 16(d)

is plotted in the log-scale on the y-axis).

Finally, when k keeps increasing, the query costs
for all solutions will increase. However, the query cost

of the Seb-tree increases at a faster pace when k goes

beyond 3 × kmax, and it eventually catches the query

cost of the R-tree when k = 6 × kmax. However, a too
large k value is not useful in practice for most ranking

applications. And, if this is really the case, any solution

will become inefficient (as just to read and write the
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output will be expensive). Hence, by choosing a kmax

value that is comfortably larger than any foreseeable,

useful k value will make sure that k ≫ kmax rarely

happens. Note that this has little effect on the Seb-

tree’s performance as our experiment (Figures 16(a),
16(b) and 16(c)) shows that the choice of kmax does not

have a significant impact on the size, the construction

cost and the query cost of the Seb-tree and its variants.

Furthermore, the result in Figure 16(d) ensures that
even if k becomes considerably larger than kmax the

basic Seb-tree will still have good performance. And,

there will not be much room for k becoming one or two

orders of magnitude larger than kmax before it already

exceeds the number of objects in the database.

5.4 Update cost

Since the MVB-tree solution does not support the up-

date operations, our final experiments study the up-
date cost of the Seb-trees and compare it to the R-

tree. Since insertions and deletions have similar results,

we choose to report the results on the insertions here.

We randomly generated 100 objects, each with 500 line
segments, namely a total of 50,000 line segments for in-

sertion. The results in Figure 17 report the average cost

per insertion when we vary the total number of existing

objects in the database before the insertions.
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Fig. 17 Update I/O cost: vary n, m = 500, σ = 30, N = n×m.

We observe an interesting results in Figure 17. First,

inserting into an already larger R-tree is more costly,

which is intuitive. However, the cost of inserting into the

Seb-tree drops first and then starts to increase later.
This counter-intuitive behavior can be explained by the

following reasons. First of all, most of new segments to

be inserted into the Seb-tree will not be in the sam-

pled set. Hence, they will not update the envelope and

the hierarchical trapezoidal decomposition. The chance
that they do is only roughly 1/B. Hence, the average

insertion cost is dominated by these majority records.

For each of these records, we simply need to insert it to

the conflict lists of those trapezoids that it is conflicting
with. That being said, the explanation to the trend in

Figure 17 is similar to the reasons we have given for

the index size behavior in Figure 9(a). As n gets larger,

the trapezoids get smaller but we have more trapezoids.

The former tends to reduce the number of conflicting

trapezoids of a newly inserted segment, but the latter

increases it. The former force is stronger for smaller n

while the latter is stronger for larger n, which results
in the interesting phenomenon we are observing in Fig-

ure 17. Nevertheless, the update cost of the R-tree and

the Seb-tree is similar and both are less than 20 I/Os

even for a database with N = 25 million line segments.

5.5 Summary of experimental results

These extensive experimental results have convincingly

illustrated the superior performance of the Seb-tree for

answering top-k(t) queries, compared to the approaches

that adopt existing indexing structures. In particular,
the MVB-tree solution suffers from poor scalability for

its index size and construction cost, and thus cannot

be applied in real, large data sets. It also does not sup-

port general updates. The R-tree solution, on the other

hand, suffers from the high query cost (by more than
one order of magnitude) compared to the Seb-tree. In

contrast, not only the Seb-tree achieves good construc-

tion cost, index size, query cost and update cost, but

also it has a very simple structure. In fact, it is simply
a collection of B-trees, which paves its way to practi-

cal deployments in existing DBMSs (no need to worry

about locking and concurrency control issues that have

been well addressed in commercial engines for B-trees).

6 Conclusion

This work studies ranking queries on temporal data.

We introduce the Seb-tree that answers any top-k(t)

query with the optimal I/O cost in expectation. The

Seb-tree takes near-linear time to construct and occu-
pies near-linear space. It also supports dynamic updates

efficiently. A nice feature of our approach is the fact

that the Seb-tree employs the widely deployed B-tree

as its only building block. This makes it not only easy to

implement and deploy, but also extremely practical in
practice, for supporting concurrency control, recovery

and transactions. A number of interesting and impor-

tant research directions are open, e.g., ranking queries

within a temporal range rather than just at one time in-
stance, ranking queries on original times series without

segmentations, etc.
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