Timon: A Timestamped Event Database for Efficient
Telemetry Data Processing and Analytics

Wei Cao'*, Yusong Gao', Feifei Li', Sheng WangT, Bingchen Lin", Ke Xu’,
Xiaojie Feng', Yucong Wang', Zhenjun Liu’, Gejin Zhang'
{mingsong.cw, jianchuan.gys, lifeifei, sh.wang, bingchen.lbc, ted.xk,
xiaojie.fxj, yucong.wyc, zhenjun.lzj, gejin.zgj}@alibaba-inc.com
T Alibaba Group and #Zhejiang University

ABSTRACT

With the increasing demand for real-time system monitoring
and tracking in various contexts, the amount of time-stamped
event data grows at an astonishing rate. Analytics on time-
stamped events must be real time and the aggregated results
need to be accurate even when data arrives out of order.
Unfortunately, frequent occurrences of out-of-order data
will significantly slow down the processing, and cause a
large delay in the query response.

Timon is a timestamped event database that aims to sup-
port aggregations and handle late arrivals both correctly (i.e.,
upholding the exactly-once semantics) and efficiently. Our
insight is that a broad range of applications can be imple-
mented with data structures and corresponding operators
that satisfy associative and commutative properties. Records
arriving after the low watermark are appended to Timon
directly, allowing aggregations to be performed lazily. To
improve query efficiency, Timon maintains a TS-LSM-Tree,
which keeps the most recent data in memory and contains
a time-partitioning tree on disk for high-volume data accu-
mulated over long time span. Besides, Timon supports ma-
terialized aggregation views and correlation analysis across
multiple streams. Timon has been successfully deployed at
Alibaba Cloud and is a critical building block for Alibaba
cloud’s continuous monitoring and anomaly analysis infras-
tructure.

CCS CONCEPTS

« Information systems — Data management systems;
« Networks — Cloud computing.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6735-6/20/06.
https://doi.org/10.1145/3318464.3386136

KEYWORDS

time series database; cloud computing; data processing sys-
tem; real-time data analytics; out-of-order events

ACM Reference Format:

Wei Cao™#, Yusong Gao', Feifei Lif, Sheng Wang', Bingchen Lin,
Ke Xu, and Xiaojie FengT, Yucong WangT, Zhenjun Liuf, Gejin
Zhang. 2020. Timon: A Timestamped Event Database for Efficient
Telemetry Data Processing and Analytics. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data
(SIGMOD’20), June 14-19, 2020, Portland, OR, USA. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3318464.3386136

1 INTRODUCTION

Large volumes of timestamped event data are found in in-
creasingly more application domains, ranging from online
system monitoring to real-time analysis in IoT projects. Many
of these applications require time series analysis and aggrega-
tions on both new data and historical data. In most scenarios,
aggregation correctness (i.e., count-exactly-once) and low
latency are necessities. For example, our TcpRT [14] system
is a monitoring and diagnosis system for the cloud database
platform, which collects a large amount of event data from
various sources, such as request tracing logs, system perfor-
mance metrics, and network device logs. This information is
gathered and analyzed in real time to detect anomaly events
and derive the root cause, with which the system can recover
from failures as soon as possible by taking actions (like mi-
grating database instances to healthy machines or isolating
the traffic of an overloaded server). If faults are not detected
due to data missing, the availability of cloud service will be
impaired. On the other hand, duplicated events may cause
fake spikes that trigger repair operations like migrations,
wasting huge amounts of system resources.

From the recent emergence of the lambda architecture,
stream processing systems like Storm [11] explore solutions
to address the issues above and have iterated over several
variants (detailed in Section 7). The latest Dataflow Model [2]
supports stream data analytics via the concepts of window,

https://doi.org/10.1145/3318464.3386136
https://doi.org/10.1145/3318464.3386136

trigger and incremental processing model. Events are accu-
mulated to windows when they arrive, and the windows
are flushed into external storage when they reach trigger
conditions. Large scale databases, such as HBase [8] and
Cassandra [7], are usually chosen as the external storage.
Though this architecture can handle and aggregate large
amounts of timestamped events, it exposes three critical
problems.

Delayed visibility. The data is aggregated in the stream-
ing system, and newly arrived data cannot be queried until
it is flushed from the streaming system, which significantly
increases the delay of data visibility.

Read-Modify-Write. When late data arrives, a Read-Modify-

Write operation is required to read and update the previously
aggregated value on external storage. Since the used external
storage is often write-optimized (i.e., using LSM-trees [23]),
this Read-Modify-Write operation is costly due to read am-
plification, significantly affecting the throughput when the
ratio of late events increases. However, the late arrival of
events is a norm in a distributed system due to various rea-
sons, such as clock skew, network delay, and node failover.
Even worse, in our scenario, out-of-order events are born in
nature. Consider a cloud database dashboard that shows av-
erage query execution time grouped by their issue time. This
execution time event cannot be generated until the query
completes. For OLAP-type analytical queries, execution time
may take hours and vary drastically, and hence such events
are disordered in nature.

Analysis on massive and long-term events. In many
scenarios, a massive number of event streams need to be
managed, and at the same time, historical events need to
be diagnosed on purpose, which is challenging to existing
database systems. First, high-rate concurrent writes from a
large number of streams (i.e., sequences of timestamp-value
pairs) exist. For example, TcpRT monitors the machine-to-
machine link channels from tenants, leading to hundreds of
millions of channels in our product system. Each link chan-
nel further contains ten metrics, such as round-trip time and
traffic flow. That results in more than one billion streams.
Second, the fast exploration of long-term event streams is
required. When troubleshooting an anomaly in TcpRT, we of-
ten need to obtain long-term trends of metrics with different
statistical operators (e.g., avg, max/min, and quantile) and
compare them with the problematic period. Similarly, when
an outlier is observed, we need to retrieve historically sim-
ilar behaviors for further investigation. However, existing
databases cannot meet both requirements at the same time.
InfluxDB [20] supports massive-stream writes but lacks fast
long-term time-series exploration. BtrDB [6] supports long-
term time-series exploration through an innovative time-
partitioned tree but does not consider the massive-stream
scenario. More discussions are covered in Section 7.

“machine1”, [bytes], 10:10:00)
“machine1”, [bytes], 03:07:11)

g
¢
¢
¢

Network h “machine2”, [bytes], 10:10:00)
Device 'machine2”, [bytes], 02:13:33
\

o8 Kafka
— —
Instance Streaming System
e [Kqﬁréﬁé@:
\

/" :

Blind-write
Machine /
Aggregate is
processed in TimonDB

TimonDB

A
[Aggregate | | ™ —
‘/ Dashboard
Time Series / \
Correlation
User-Defined
Aggtn;:tly Analysis / Alarm

Figure 1: Inputs are collected from various sources and
processed in Streaming System such as flink by event-
time, and then results are appended to Timon. Out-
puts are consumed by dashboard and anomaly analy-
sis agents. In our architecture, we offload window op-
erations such as aggregate and out-of-order process-
ing (blind-write) down to the storage layer.

Our contributions. We have designed and implemented
Timon, a persistent timestamped event database that sup-
ports high-throughput writes and fast long-term time-series
queries. In particular, it gracefully handles out-of-order events
with low overhead and provides high query efficiency. The
design of Timon takes into account the effective integration
with the Dataflow Model. The late arrivals can be appended
to Timon directly as blind writes without an upper-layer
buffer. Records written to Timon are kept in memory and
periodically merged to special data structures on disk, which
is much more efficient than Read-Modify-Write implemen-
tations. The correctness is theoretically guaranteed by the
associative and commutative properties of operators on these
structures (e.g., statistical structures like Histogram and prob-
abilistic structures like Hyperloglog counter [19]). We ob-
serve that a broad range of applications can be represented
using these data structures. Besides, a monotonically increas-
ing offset attaches to each record, so that duplicated records
can be detected and dropped. This makes insertions idem-
potent in Timon and eases the achievement of exactly-once
semantics in the computation layer.

As shown in Figure 1, with Timon, we re-implement mon-
itoring and diagnostic systems like TcpRT [14] in Alibaba
Cloud. There are thousand millions of records written to the
Timon cluster every second. Though sustaining such a high
ingestion rate, the cluster only consists of 16 machines. In this
scenario, read operations come from automated tasks that

detect suspicious machines and instances, as well as from
data visualization systems that display dashboards refreshed
every second. With Timon, advanced analytical functions
can be easily implemented, such as percentile watermarks,
long time-span queries, multiple stream aggregations, and
anomaly detection algorithms (like correlation search). These
functions can be invoked using TQL, an intuitive and expres-
sive query language provided by Timon to ease application
development.
In summary, our contributions are as follow:

o We present a better architecture for timestamped event
data processing and analytics. It offloads window oper-
ations and out-of-order processing down to the storage
layer, which brings lower data visibility delay and en-
hances the analyzing capability for both real-time and
historical events.

e We verify the advantages of blind-write over Read-
Modify-Write for handling out-of-order events and
implement both methods on top of state-of-the-art
databases, including HBase, InfluxDB, BtrDB, and Go-
rilla. Based on this observation, we design and imple-
ment Timon that improves blind-write with a lazy-
merge strategy, relying on associative and commuta-
tive data structures.

e We propose anovel Time-Segment Log-Structured Merge-
Tree (TS-LSM-Tree), which combines the advantages of
LSM-tree and segment-tree. It builds segment-trees us-
ing asynchronous compactions to sustain high through-
put for massive streams and support efficient query
for on-disk time-series. This structure further benefits
our lazy-merge strategy and two typical query types:
monitoring (i.e., scan all recent streams) and diagnosis
(i.e., retrieve a few long-term streams).

e We enhance Timon with user-friendly tools and facili-
ties, such as metric set, materialized view and TQL. We
introduce several industrial scenes and illustrate the
advantages of Timon for monitoring and diagnostic
applications.

The rest of the paper is structured as follows. Section 2 ex-
plains our motivation, i.e., handling out-of-order events with
blind-write, and introduces background on associative and
commutative operators. Section 3 and 4 describe the design
of Timon. Section 5 gives the applications of Timon in our
production environment. Section 6 presents and discusses
our experimental evaluation. Section 7 reviews the related
work, and Section 8 concludes the paper.

2 BACKGROUND AND MOTIVATION

In this section, we explain why blind-write is preferred for
out-of-order events processing. We then introduce two fun-
damental concepts that support the feasibility of blind-write,

i.e., associative and commutative operators, and idempotence
guarantee. We observe that daily-used aggregation opera-
tions are directly (or after some transformations) compliant
with these operators.

2.1 Out-of-order Events Processing

As shown in Figure 1, input events are collected from ma-
chines, network devices and database instances, and then
written to message queues. Out-of-order events occur due to
various reasons, such as machine failures and application na-
tures. These belated events will eventually reach TcpRT [14]
computation nodes, since our infrastructure ensures that a
message is delivered at least once. It is up to the application
to handle these out-of-order data properly and correctly.

2 80000

Processing Delay (ms)

Time (min)

Figure 2: Read-Modify-Write performance on HBase
with different out-of-order event ratios (v.s. Timon).

In practice, two common approaches are widely used. The
first approach is to simply drop out-of-order events. This is
easy to implement, however, it compromises the correctness.
The other approach is known as Read-Modify-Write, in which
results of previously processed windows need be fetched
from external storage. After merging with newly arrived out-
of-order events, the updated results are then written back
to the storage. Although this method ensures correctness, it
brings in significant overhead, since large amount of random
reads and writes are potentially involved. We evaluate this
overhead experimentally using a 4-node HBase cluster as
the external storage. We observe that the processing delay
(i.e., process-time minus event-time) of the stream with a
higher degree of disorder increases faster because of more
frequent Read-Modify-Write, as shown in Figure 2.

Our solution is to adopt a blind write strategy, in which
applications simply append out-of-order events to Timon.
We introduce and implement in Timon a number of data
structures and corresponding operators that satisfy both
associative and commutative properties. Events and their
aggregations in any window are stored in these data struc-
tures. When an out-of-order timestamped record arrives, it
will be converted to one or more of these structures, and
be merged with previous results periodically. We observe
that most application logic can be expressed using these data
structures (detailed in Section 2.2).

2.2 Associative and Commutative
Operators

There is a collection of associative and commutative op-
erators supported in Timon, including sum, max, min, avg,
quantile, stddev and distinct. Among them all, sum, max,
min and avg are basic statistical functions used by a wide
range of applications in monitoring systems. Besides, real-
world applications further desire more sophisticated oper-
ators. For example, database administrators need to check
the 95th and 99th percentiles of query latency to ensure the
quality of their services. Site reliability engineers need to
monitor the number of distinct failed machines to ensure the
availability of clusters. Hence, advanced operators, such as
qguantile, stddev and distinct, are demanded.

In Timon, above operators are implemented on top of sev-
eral data structures, in order to obtain the associative and
commutative properties, which are the essence for achiev-
ing correctness in our system. The formal definitions are
provided below.

DEFINITION 1 (OPERATOR). For a data structure D, an 2-
arity operator o takes two instances x, y of D and produces a
new instance z:

olx,y) > z

DEFINITION 2 (ASSOCIATIVE PROPERTY). A data structure
D meets the associative property, if its operator o follows the
associative law:

o(o(x,y). 2) = o(x,0(y. 2))

DEFINITION 3 (COMMUTATIVE PROPERTY). A data structure
D meets the commutative property, if its operator o follows the
commutative law:

o(x,y) = o(y, x)

LEMMA 1. For two associative structures Dy, Dy with respec-
tive operators o1, 0y, operator o, on the composed structure
[D1, D] is also associative:

oc([x1, X2), [y1, 21) = [01(x1, 11), 02(x2, y2)]

where [x1, X3], [y1, y2| are two instances of the composed struc-
ture.

Based on above definitions and lemmas, we discuss how
operators are implemented using different data structures:

Sum, Max, Min. Implementations of these operators are
straightforward. Computations on value pairs inherently
satisfy the associative and commutative properties.

Avg, Stddev. These operators cannot be directly derived
from partial results, and require additional state information.
For avg, we maintain two fields, i.e., sum and count, in the
data structure, in which average is computed as sum/count.
During an operation, both fields are accumulated separately

1000
95% |

800

300
250
200 600,

150 400

100
200

50

f:45ms

0 20 40 60 80
Latency(ms)

Latency(ms)

Figure 3: Query Latency Histogram

from two partial results. The case for stddev is more com-
plicated, in which three fields are required. To explain, we
show here the definition of standard deviation:

Zﬁ\il(xi - X)?
N-1

where x; is an individual value, X is the mean value, and N
is the total number of values. We denote V = 3N (x; — X)?,
and hence the required tuple is [N, X, V]. Suppose there are
two partial results [Ny, X1, V1] and [Ny, X5, V2], the combined
tuple [N’, X’, V'] can be calculated as follows:

N = N + N,

o N X+ Nox X,

Nl

V' =Ny# (X =X+ Vi + Npx (X = X7 + Vs

The combined standard deviation is hence 4/V’/(N’ — 1).
Quantile. We maintain the estimation of percentiles using
a histogram structure. Figure 3 gives an example of query
latency histogram in a database, where the x-axis is the
query latency in millisecond and the y-axis is the count of
queries. This histogram can be converted (and smoothed) to
a cumulative distribution function, which is shown on the
right side of Figure 3. It is then straightforward to estimate
the 95th percentile of the query latency (e.g., 45ms in this
case). A simplified Histogram data structure is implemented
in Timon with four fields: a low that represents the lower
bound of the value range; a upper that represents the upper
bound of the value range; a bars that contains a vector of
counters, each of which represents the number of values in
a given sub-range; a step that indicates the length of sub-
range covered by each bar. The o operator of Histogram is
essentially the sum of two vectors, i.e. histogram.bars'. Note
that Histogram only provides approximate percentiles, and
the precision depends on the choices of low, upper and step.
Distinct. Calculating the exact count of distinct values in
a collection requires at least linear space w.r.t. its cardinality
(e.g., using a hash table), which is impractical in large-scale

ITwo histograms have the same low, upper and step.

applications. In Timon, we implement distinct count operator
using HyperLogLog [19], which is an approximate algorithm
for the count-distinct problem. It estimates the number of dis-
tinct elements in a multiset using a small number of buckets,
i.e. register sets. Its o operator is:

RegisterSet’[i] = max(RegisterSet,[i], RegisterSet;[i])

where i indicates the i-th register. HyperLogLog is widely
used in daily tasks like tracking the number of unique visitors
(UV) of a website.

2.3 Idempotence

With blind-write and operators satisfying associative and
commutative properties, we only need to store aggregated
values in Timon, and can safely discard original values, which
is the fountain of efficiency. However, this brings a problem
of correctness for the entire data process pipeline. If failovers
occur while the data points are being written, we have to
remove the points that have been successfully written. Oth-
erwise, aggregated values will include the same point twice.

In the context of Timon, our stream processing task reads
events from a message queue system and inserts these events
(i.e., records) into Timon via SDK. Usually, messages are di-
vided into multiple partitions in message queue systems,
such as Apache Kafka, AWS Kinesis [12], and Alibaba Cloud
Loghub [3]. Each partition is an ordered, immutable sequence
of records that can be continuously appended to. Each record
is assigned a local sequential identifier called offset that
uniquely identifies it within the partition. For each partition,
there is a single stream processing worker reads messages in
ascending order on offset, and the worker sends its messages
along with partition/offset information of message queue
system to Timon in batches following the stop-and-wait pro-
tocol. Timon keeps the maximum offset it encountered for
each partition. In this way, duplicated messages can be easily
detected by comparing its offset with the current maximum
value, which makes the whole procedure atomic to ensure
consistency.

3 SYSTEM OVERVIEW

In this section, we present the overview of Timon, including
its data model and design principles.

3.1 Timestamped Data Model

To introduce our data model, we first show in Figure 4 an
example that contains link-channel quality information for
cloud database tenants, collected from our TcpRT system. In
particular, it includes a number of measurements related to
requests/responses from different tenants, such as average
latency, upstream traffic and downstream traffic. Timon’s

Metric Set
Metric Metric Metric

1550294043 100

! 1
! 1
! i
i
Tag Set Tag 1 | 1850294044 200 I 102 8600
i -
i
Tenant Source Target 1 1550294044 23 : 100 8000
i
i
i Stream i
TenantA | 10001 | 10.0.02 !

TenantA 10.0.0.3 10.0.0.2

i
1

i

I

1

1

1

I

|

!

1

1

I

1

1

i

|

1

1 Tag Tag
I

|

1

1

1

I

1

1

1

I

|

1

1

i

! TenantB | 10.0.09 | 10.0.0.3
!
1

Figure 4: Data Model

data model facilitates the expression of application logic, and
has following major concepts:

e Metric. A metric is the name of an attribute, e.g.,
Latency, Upload and Download in our example.

Metric set. A metric set contains a set of metrics that
are always collected together. For example, a metric
set for link quality has Latency, Upload and Download,

while a metric set for memory management has MemTotal,

MemUsed, Buffer, Cached and Dirty.

Stream. A stream is a sequence of numeric data points
collected over time for a single metric.

e Stream set. It is the collection of streams in a metric

set, e.g., memory usage metrics read from /proc/meminfo.

They are collected and stored as a batch to achieve high

write throughput.
e UUID. A stream or a stream set can be identified by a
unique identifier UUID.
Tag. A UUID can be attached with one or more tags
(i-e., tag set). For example, a UUID for a database usu-
ally has tags like host IP, host name, instance ID, dat-
acenter ID, etc. Tags are used as filtering conditions,
e.g., retrieval of the memory usage on an IP address.
e Namespace. Streams and tags that belong to differ-
ent applications are usually isolated under different
namespace.
Materialized aggregate view. A materialized aggre-
gate view is created to pre-compute aggregations of
those streams with the same set of tags. For example,
if an administrator needs to monitor the traffic of all
database instances on a host, he/she may create a ma-
terialized aggregate view of the metric TPS grouped
by hostname tag.

Note that this data model in Timon can be easily mapped
to a relational model, i.e., namespace to table and times-
tamp/metric/tag to columns. In this case, each row contains
a timestamp, values in the metric set, as well as values in
the corresponding tag set. As a result, it is easy to perform

__

Metadata Module [«--------- >

]

I

|

]

' T Tag set > UUID / b\
' Timon

\ :

H v

|

Storage Worker
Storage Worker

1
Storage Worker | |

______________________ Fl

I
I
I
I
I
I
I
I
Storage Module |
I
I
I
I
I
I
I
I

__

SS = Streaming System IMW = In-Memory Worker

APP = Application

Figure 5: High-level Timon Architecture

queries in Timon using SQL or SQL-like languages (illus-
trated in Section 5).

3.2 Design Overview

An overview of Timon architecture is shown in Figure 5,
where we make three important architectural choices for
it. First, we follow the SEDA [25] programming model for
the write path design, which is suitable for continuous high-
pressure writing. SEDA has good scalability and the ability of
load management using backpressure (i.e., by blocking on a
full queue). In Timon, the write process is split into three sub-
stages that communicate with each other via intra-process
message queues: 1) the writer module receives requests, maps
tags to UUID via the metadata module, and then sends (UUID,
stream set) pairs to stage queues according to their UUID
hash values; 2) the in-memory module writes data to WALs
and MemTables in TS-LSM-Trees; 3) when a MemTable is full,
the storage module flushes it to disk.

Second, writes and read-only queries follow different re-
quest paths. We observe that monitoring and telemetry sce-
narios usually generate continuous write pressure to the
underlying storage. However, query requests are of low fre-
quency, some of which require long execution time, e.g.,
scanning a large number of streams to alarm an exception.
These queries will block subsequent write requests if they
are mixed together. In addition, queries are more concerned
about response latency. Hence, it is desired to be able to read
data directly from storage bypassing various stages, which
is completely different from the write path design.

Third, tags and stream sets are stored separately. Their
relations are managed by the metadata module that maps
tags to UUIDs (i.e. stream sets). This design brings in two
advantages. One is that the in-memory module and storage
module are unaware of those tags, which simplifies the im-
plementation logic. The other one is that this design is also
in line with common query patterns of timestamped data, i.e.,
extract target streams through tags and retrieve all points in
these streams within a specific time period.

4 DETAILED DESIGN

Timon divides all data into partitions, each of which is man-
aged by an in-memory worker and a storage worker, as
shown in Figure 5. Each partition has one Time-Segment
Log-Structured Merge-Tree (TS-LSM-Tree), which contains
two MemTables (in in-memory worker) and multiple SSTa-
bles (in storage worker). In this section, we first introduce
TS-LSM-Tree, our core data structure that is designed for
efficient event processing and fast exploration of long-term
time-series. We then propose a lazy merge strategy to handle
out-of-order events with blind writes. Other features, i.e.,
event idempotence and materialized aggregate view, are also
discussed.

4.1 Time-Segment Log-Structured
Merge-Tree

Memifable Data Structures of Operators: Sum, Max, Max

)

Time Interval = [PagelD * 600, (PagelD + 1) * 600)

In Memory]
Pdges Mapping Table(Array-based)

[(1550536202, 30, 80, 90)

([QuD, PageiD) lev] - (1550536201, 90,70, 90) |\
| (3060, 2584227)| —>1 "% (1550536200, 38,16, 70)_|
- ,

(1550536201, 38, 66, 90) |, \

o ves” i | (3060, 2584228) Y
Ny i | (3090, 2584227) E sotavee | 1

; |
|

|

L
Later Events - [(E080125E4260) Sealed Page [y
MemTable { UID Index Table(Tree-based) 9 (1550536200, 38, 16, 70) | 1,
‘1 [(UID, PagelD) X (1550536201, 128, 70, 90)
N (1550536202, 30, 80, 90)
s :
,

SSTables
SSTables Level 0

‘ MemTable

S \
\
SSTable !
ap—
1
- i
'

SSTable of Later Events

I
’’ Compaction
'

SSTables Level 1

‘ SSTable ‘ ‘ SSTable ‘ SSTable

Figure 6: A demonstration of Time-Segment Log-
Structured Merge-Tree.

The structure of TS-LSM-Tree is shown in Figure 6. There
are two MemTables in it, one for late events and one for the
rest. When an event arrives, TS-LSM-Tree first check its event
time, and then insert into the corresponding MemTable. If
the event time is at least a prescribed time earlier than the
end time of the last flushed SSTable, it will be put into the
late-event MemTable. This prescribed time is called wait time,
and is set to 5 minutes in our production environment. In this
manner, the number of MemTables (and SSTables) with long
time span can be reduced, so that overlaps between different
SSTables can be minimized. It improves read performance
(detailed in Section 4.2).

4.1.1 MemTable. In Timon, all newly arrived time-stamped
events (i.e., records), including duplicate, dense and sparse
records, are first stored in an in-memory structure called
MemTable, The goal of MemTable is to execute hot-data
aggregation with low cost. The Page is the basic memory

management unit in MemTable, and can store up to 600
records?. Each active UUID in the partition has at least one
page, and records contained in a page are all from a same
UUID. Newly arrived records are appended to corresponding
pages, leaving them unsorted. When a page is full, it will
be sealed, which means that all records in that page are
sorted by timestamp and those with the same timestamp are
aggregated. The sealed page is implemented using an array
with event timestamp as the index. For example, in a page
starting from time Ty with 1-second resolution, the element x
in the array refers to the record timestamped at Ty + x. In this
way, locating a specific timestamp can be simply achieved
by calculating its offset in the array, while fetching a time
range only involves accessing a contiguous memory space.
This structure also makes the insert (and aggregate) of an
out-of-order record fast, due to its instant timestamp-based
lookup.

In the case that data points are sparse, a page may end up
having many empty slots. To avoid the waste of space, we ap-
ply an adaptive approach for memory allocation inside page.
Initially, a page is unsealed, where new data are appended
to the end of it, so that space can be dynamically enlarged
according to the current size. In this stage, as elements are
not ordered, the whole page needs be scanned for answering
a query. Since the length of a page is fixed in Timon, the
scan cost in unsealed page is still bounded (though with high
latency). Before sealing a page, we use a heuristic algorithm
to check whether it is dense enough. For a new dense page,
the entire memory space of the time-indexed array will be
allocated and all elements will be copied to corresponding
slots.

4.1.2 SSTable. For a regular time period, (e.g., every 10 min-
utes), a background task will pack all pages into a SSTable
file and flush it to the external storage. In order to avoid
having too many small SSTable files, they will be merged
periodically, known as the compaction process. A SSTable
is composed of multiple Blocks, each of which stores up to
600 serialized records with the same UUID, similar to a in-
memory page. A UUID’s records can span across multiple
blocks. These blocks are ordered by timestamp and do not
overlap. A time-partitioning tree index is built for each UUID
in a SSTable to accelerate processing queries over a long time
span (discussed in Section 4.1.3).

A SSTable consists of four components: MetaZone, Buck-
etZone, CollisionZone, and DataZone. The MetaZone records
meta information of the SSTable, such as the minimum and
maximum timestamps from contained records. Each Meta-
Zone takes about 0.5KB space, which means that only 50MB
is required for 100,000 SSTables. Therefore, Timon is able to

%If events are collected at the fixed frequency of one second, the capacity of
a page can hold records received for approximate 10 minutes.

cache all MetaZone in memory to efficiently serve queries on
cold data. The BucketsZone together with the CollisionZone
is analogous to a persistent hash map. This structure maps a
UUID to its Time Series Description (TSD), which contains
the summary information of the corresponding time series
(e.g., minimum time/maximum time and offset). For each
UUID, its time series data is stored in DataZone, which is
made up of a time-partitioning tree (Section 4.1.3) and multi-
ple blocks. In terms of the physical layout, both BucketsZone
and CollisionZone are an array of buckets, and each bucket
holds a certain TSD and an optional 64-byte field to address
other collided entries. The primary purpose of this design
is to lower the cost of locating a specific data point, since a
SSTable may contain a huge number of UUIDs where even
binary search can be expensive. With the help of persistent
hash map, UUID lookup in SSTable can be done in constant
time.

Note that, in MemTable, the timestamp and all metric
values that belong to the same metric set are placed consec-
utively in one row, so that these data items can be updated
in one atomic write operation. There are mainly two advan-
tages for this design. First, updates to a metric set are either
visible or invisible as a whole, which guarantees the atomic-
ity. Second, data locality can be utilized, since streams of a
metric set tend to be read together. In contrast, in SSTable,
the timestamp and metric values are stored separately in a
column oriented fashion. Since data in SSTable is less fre-
quently accessed, achieving high compression ratio is more
critical (i.e., to reduce amount of disk IOs) than having better
locality.

SSTable Index Section: Time-partitioning Tree Index
Resolution S time range
P R T T 61" local position
0 A3+—
depth block address
K
t1~t4 t5~t6
K 3 1 I 0 IA1 1 ‘ 1 |A2
K
t1~t2 t3~t4 t5~t6
1 6 -
2loJu] |2[1]e] [2]2]
’ Block

time_bin
field_1 bin

SéTabIe Pata Section,-”
4 |4 y

L1 L2 L3 Al

field_k bin

Figure 7: Time-partitioning Tree Index

4.1.3 Time-partitioning Tree. To support efficient query pro-
cessing in different resolution and time granularity, we de-
sign a time-partitioning tree (Figure 7), which indexes time

intervals as a decomposition of the entire timespan in a hi-
erarchy. In each level of this hierarchy, time intervals are
discrete and disjoint, but jointly cover the entire timespan.
Each level down the hierarchy provides a decomposition of
the timespan in finer granularity and also a finer resolution
for its data items. The entire hierarchical decomposition is
then indexed by a k-ary tree.

When walking down the tree to look for data of desired
granularity and time range, we avoid reading the entire set
of data items, as fetching all detailed data items along the
path introduces unnecessary data access. Instead, we take
an approach where data items and index are separated. In
particular, detailed data items exist in the Blocks, and only
the index and summary information (e.g., min and max time)
are stored in time-partitioning tree. We also ensure that
each node in the tree is of same size, which enables the
easy random access to any node in the tree by calculating
appropriate offset values. This also means that we no longer
need to pay the overhead to link (i.e., store addresses or
node ids) to parent, child, and sibling nodes in any node.
Their addresses can be directly calculated through the tree
structure itself and the constant size of each node. This design
helps reduce the memory footprint of the index.

Once reaching the level with desired granularity, fetch-
ing next data item in this level should try to avoid random
disk access. Therefore, data items from the same granularity
are placed consecutively in the Block. This brings cache-
friendly access when retrieving data items from the Block.
Furthermore, to achieve better compression performance,
raw data items and aggregated values are split into separated
compressed column partitions.

Detailed design. The position of a node at a certain depth
in the tree is called its local position. A node in depth d
(d >= 0) with local position p (p >= 0) is formed by merging
nodes in depth d +1 from positions p* K to min(MaxSizeg.1 ,
(p+1)*K—1), where K is the fanout of the tree. Assume that
the depth of the tree is D (D > 0) and the base resolution is
b. The resolution of nodes in depth d (d >= 0) is b * KP~174,
Time Index Tree is essentially a left-complete k-ary tree,
where every node except the rightest one in each level has K
children. All nodes are placed into an array sorted by their
depths in the tree and then by their local positions in that
level. To distinguish node’s offset in the array from its local
position, we denote it global position. Since each node has
the same size and they form a left-complete tree, we can
easily calculate the global position of a node. Let Sy be the
global position of the leftest node in depth d, Child(d, p, i)
be the global position of the i-th child of the node whose
depth is d and its local position is p. We have Child(d, p, i) =
Sa4 + K * p + i. Hence, we do not need to maintain address
information of any node; all we need is an array of S which

contains Sy , S, ..., Sp_; which allows us to calculate the
address of any node.

4.2 Lazy Merge

Recall that Timon stores data based on its event timestamp.
In our production environment, many services may suffer
from significant out-of-order events due to their business
nature. For example, data generated by TcpRT [14] takes the
start time of the database query being monitored as the event
timestamp, and some queries may last for a long time, which
results in disordered arrival of query completion events.

These latecomers, small in proportion but wide in time
range, expose a great challenge to existing databases. For
persistent tree-structured databases (e.g. MySQL InnoDB,
BtrDB), such out-of-order records (i.e., fragmented and not
compact) is hard to be cached, causing performance degra-
dation from random disk IOs. Some other databases like
Gorrila, simply discard them, which renders data to be in-
complete. Since Timon follows LSM-like storage layout, the
out-of-order records do not affect the insertion performance.
The major downside is that a query may need to touch many
qualified shards and combine qualified records from many
shards to obtain the final query result at runtime. As illus-
trated in Figure 8, if the late-arrival records are mixed with
other newly arrived records in the active SSTable, the time
span of this SSTable will be stretched extremely wide, while
most of the covered time range contains no actual records. As
aresult, a query needs to access many false-positive SSTables,
leading to larger query latency.

In order to solve this problem, we design a delayed (i.e.,
late-arrival) record detection module, which identifies the
delayed record as outliers in the SSTable. During a flush
operation, the outliers will be transferred to a separate Late
SSTable, so that the time range in a standard SSTables is small
and compact. Although, for each Late SSTable, its time range
is large, the total number of Late SSTables is small due to the
rareness of long-delayed records. As a result, the number
of qualified SSTables for a query is significantly reduced, as
shown in Figure 8.

Note that not all out-of-order events are placed in Late
SSTable. As shown in Figure 6, only events earlier than the
end time of the last flushed SSTable for at least a wait time
will be placed in Late MemTable, which is flushed to Late
SSTable. This optimization comes from our observation that
the delay of most out-of-order events is not long, so that
events arrive within the wait time can still go to the normal
SSTable, avoiding the rapid growth of the Late SSTable. Usu-
ally, the setting of the wait time is less than half of the time
between two MemTable flushes, thus avoiding the overlap of
more than two normal SSTables for any specific timestamp.
During the compaction process, the overlapping parts of

Late SSTables and normal SSTables are merged, and the rest

remain as Late SSTables in the next level.

arrived
too late

SSTable x

SSTable x+1

SSTable x+13

[701:33:00, [values]
14:00:00, [values]
14:01:00, [values]

14:29:00, [values]

02:33:00, [values]
14:30:00, [values]
14:31:00, [values]

14:59:00, [values]

14:33:00, [values]
20:30:00, [values]
20:31:00, [values]

20:59:00, [values]

min_time: 01:33:00
max_time: 14:29:00

min_time: 02:33:00
max_time: 14:59:00

min_time: 14:33:00
max_time: 20:59:00

Query(14:15:00, 14:45:00) : read about 14 SSTables

Separate late items

in-time SSTables

SSTable x’

SSTable x’+1

late SSTables
SSTable y

14:00:00, [values]
14:01:00, [values]

14:29:00, [values]

14:30:00, [values]
14:31:00, [values]

14:59:00, [values]

01:33:00, [values]
02:33:00, [values]

21:33:00, [values]

min_time: 14:00:00
max_time: 14:29:00

min_time: 14:30:00
max_time: 14:59:00

min_time: 01:33:00
.1 max_time: 21:33:00

Query(14:15:00, 14:45:00) : read about 3 SSTables
(2 in-time SSTables and 1 late SSTables)

Figure 8: Processing late-arrival records. With late
SSTable, query execution will choose just 3 SSTables
in contrast to 14 SSTables without late SSTable when
query from “14:15:00” to “14:45:00”.

4.3 Materialized Aggregate View

The design of Timon makes it easier to implement materi-
alized aggregate views using the metadata module. Once
a materialized view is created, the metadata will assign a
derived UUID to it. When there is a request to insert the
relevant stream set, the writer will request the metadata to
return its UUID. At this time, the metadata can additionally
attach the UUID of materialized view in the response, and
then the writer will update the view accordingly. Whenever
a new sequence of timestamped events arrives, all related
views on that partition will perform real-time in-place up-
dates. Such in-place updates are implemented using block
array techniques described in Section 4.1.1. To query a view,
all sub-sequences from relevant partitions will be fetched
and merged. The consistency issue for materialized aggre-
gate views is covered in Section 2.3. By invoking Timon APIs,
users can manage their aggregation tasks effectively.

5 TQL AND CASE STUDIES

In Timon, we provide a declarative query language called
TQL, which allows users to retrieve and analyze the underly-
ing timestamped event data with rich semantics. Most of the
definitions of TQL are similar to other SQL-like query lan-
guages. The main difference is that TQL supports to connect
many functions and SQL clauses as a pipeline by a pipe char-
acter ’|’. Among them, the output of the previous SQL come
as the input of the next SQL. Due to the space limitation, we

omit its detailed definitions here. With the help of TQL, it is
easy for users to express their application needs in Timon.
In this section, we demonstrate how to use Timon to resolve
practical problems that we encountered in Alibaba Cloud
products. In practice, Timon manages various timestamped
data, including RDS [5] performance data, TcpRT data, net-
work monitoring data, etc, on which we have developed
many application cases as follows.

5.1 Real-Time Dashboard

select sum(QPS) as total_gps from tcprt_view_cluster where role = ‘DB’
group by cluster
window by 1s period 1s interval 360s
with confidence 99% on cluster

Figure 9: Low-latency aggregate view by cluster dimen-
sion using 99th percentile watermark.

To monitor the health of clusters, real-time dashboard
under extreme scale (e.g., real-time health heat map of over
tens of thousands of machines) is required, refer to Figure 9,
so that any faulty behavior can be quickly detected, located
and fixed.

Low latency is the key to real-time diagnosis and recovery.
We need to collect metrics from tens of thousands of hosts
and hundreds of thousands of instances, and then perform
aggregation and display. This process was used to be expen-
sive that takes up to tens of seconds, but now its cost has
reduced to around just 2 seconds by using the materialized
view in Timon. The views are updated as soon as raw data
newly arrives. Besides, Timon also addresses the out-of-order
problem where other systems suffer a significant penalty.

5.2 Aggregation Granularity Adaptation

select * from tcprt_node where ip in ('192.168.1.1', '192.168.1.2")
group by ip
when '2018-08-10 16:30:00','2018-08-17 16:45:00'
with auto-resolution

Figure 10: Read time series with automatic resolution.

Our platform needs to present status information for all
machines and instances in Alibaba Cloud service and allow
users to navigate in an arbitrary time-range. The system
will automatically select the appropriate time granularity to
display based on the selected time range, refer to Figure 10.
e.g., use hour-granularity in week-range to avoid displaying
numerous points. Since the time granularity of raw samples
in our production system is one second, we need to pre-
aggregate results with different granularities in streaming
or batch systems to improve query performance.

However, this method is very troublesome and is difficult
to ensure the consistency of the aggregated results. With

the help of time-partitioning tree index, Timon efficiently
supports multi-granularity aggregation, which is a more
nature for this scenario with consistency guarantee.

5.3 Correlation Analysis

select * from tcprt_dst where ip in ('192.168.1.1', '192.168.1.2") group by ip
window by 5s when '2018-08-17 16:30:00','2018-08-17 16:45:00'

| correlation

| metric_filter (_value > 0.7)

Figure 11: Correlation Analysis

As shown in Figure 11, this query analyzes the correlation
between metrics over a specified time range among a group
of machines. In this example, it obtains sub-sequences from
timestamped data of targeted machines between “2018-08-17
16:30:00” and “2018-08-17 16:45:00”, then applies “correlation”
operator to compute the Pearson correlation. If the number
of input metrics is n, the number of output metrics will be n?.
Each output metric is a Pearson correlation coefficient, whose
tag is the concatenation of a input metric pair. Lastly, “metric
filter” operator is applied to filter metrics whose Pearson
correlation coefficient are above 0.7.

5.4 Machine Anomaly Detection

Machine anomaly detection is used to detect abnormal ma-
chines in real time. For each DB instance, it maintains a time
series of query latency in recent hours, builds a Cauchy distri-
bution, and detects abnormal DB instances that suffer from
long-running queries. Since DB instances are distributed
across multiple machines, if the ratio of abnormal instances
on a machine has exceeded a pre-defined threshold, we de-
clare that machine to be an anomaly.

Part 1

select avg(pt) as pt from tcprt_dst_ins where dst_role = 'dbnode' group by dst, ins
window by 300s period 300s interval 7200s
with confidence 99% on machine, instance

| statistics

| reference ref_dst_ins on dst, ins

Part 2

select avg(pt) as pt from tcprt_dst where dst_role = 'dbnode' group by dst
window by 15s period 15s interval 7200s
with confidence 99% on dst
| statistics
| filter cauchy_cdf(mid_pt, MAD_pt, last_pt) > 0.997
| template "select avg(pt) as pt from tcprt_dst_ins
where dst_role = 'dbnode’
and (%s) when %d,%d group by dst,ins window by 15s ",
or_join(str_fmt('dst=\'%s\", dst)), _endtime -15s, _endtime
| select
sum(cauchy_cdf(
ref('ref_dst_ins', str_fmt('%s,%s", dst, ins), 'mid_pt'),
ref('ref_dst_ins', str_fmt('%s,%s', dst, ins), 'MAD_pt'), pt)
> 0.997) as anomaly_cnt,
sum(1) as total group by dst
| filter anomaly_cnt / total > 0.4
| alarm 'An anomaly occured on machine:' + machine + ' at time: ' + _time
to ‘DBA_group' via ‘SMS'

Figure 12: Machine Anomaly Detection

Figure 12 shows this query composed of two sub-query
tasks. The first task maintains the historical statistics of each
database instance’s query latency, and the other task ingests
these statistics as baseline. In particular, the second task
collects statistics of each machine’s latency in the last 2
hours, constructs Cauchy Distribution base on their median
and MAD, and then uses Cauchy CDF to find machines with
an anomaly. A machine is abnormal if the ratio of abnormal
instances on that machine is significantly large.

5.5 Network Anomaly Detection

The network structure of a large-scale cloud environment is
complex and layered. When a network failure occurs, it is
challenging to locate exactly where the problem is (e.g., faulty
rack interface vs. power failure). Furthermore, the network
switches are subdivided into low-level, medium-level, and
high-level switches. Therefore, it is necessary to obtain the
topology information of the entire network activity.

We collect network activity data through TcpRT [14], and
integrate them into a global network topology graph. Orga-
nized by instance-to-machine, machine-to-cluster, machine-
to-switch, and other mapping relationships, we can perform
real-time diagnosis and pinpoint the exact location of the
machine/switch/cluster with the most packet-loss ratio. We
present the TQL and further explanation in Appendix A.1.

6 EVALUATION

Timonis implemented in C++ from scratch, with about 35,000
lines of code. We have already deployed Timon in the pro-
duction environment at Alibaba that contains data centers
distributed in 21 regions around the world. The most typical
application is the full-state tracking system of Alibaba Cloud
Databases RDS [5] and PolarDB [4, 15, 16], which collects
comprehensive metrics that cover database engine, network
(monitored by TcpRT), operating system, and even each indi-
vidual OS process. 97 Timon nodes support about 500 million
data points writing per second from the system, and the
busiest node serves about 18 million data points per sec-
ond. To thoroughly evaluate the performance of Timon, we
collected test datasets from the production system and com-
pared test results with InfluxDB [20], HBase [8], Beringei [18]
(an open source version of Facebook Gorilla [24]) and BtrDB [6]
(more details are discussed in Section 7).

Experimental Setup. The benchmarks ran on machines
with 512 GB RAM, one 3.8T NVMe Disk, two 10Gb network
cards, and two Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50GHz
processors, each with 16 cores.

Datasets. The datasets include RDS performance dataset
and TcpRT dataset. Each record in them has an 8 bytes times-
tamp, several metrics (each is an 8 bytes number), and a few
tags, e.g., the host IP of performance record or the instance

name of the TcpRT request. The main difference between
these two datasets is the ratio of out-of-order events. In
the performance dataset, there are only 0.29% out-of-order
events comparing to 53.90% in TcpRT dataset. The reason is
that those TcpRT events can’t be collected until TCP requests
complete, however, performance data can be collected in real
time. Hence, in the following experiments, RDS performance
dataset is treated as in-order, while TcpRT dataset is out-of-
order. To simulate the real production environment, the test
sets are unbounded streams read from Apache Kafka [9]. In
particular, the RDS performance dataset nearly has 360,000
metrics per second, while the TcpRT dataset has about 1.7
million metrics per second. We set the parallelism of queries
to 40 and that of writes to 80 if not otherwise specified.

6.1 Blind Write v.s. Read-Modify-Write

In this section, we focus on revealing the effectiveness of
the blind write mechanism in out-of-order scenarios com-
pared with Read-Modify-Write. Generally, we perform time-
window based aggregation in a streaming pipeline, and the
aggregate results are stored to external databases. To make
sure exactly-once semantic, these late events need to be
merged back to results in databases, namely Read-Modify-
Write. It’s easy to implement Read-Modify-Write for all can-
didates because every database supports to read previous
results and write revised results back. The performance of
frequent Read-Modify-Write on out-of-order events is poor,
as shown in Figure 13. Therefore, we are only affordable to
apply this method to in-order scenarios, i.e., the RDS perfor-
mance dataset. For out-of-order scenarios, i.e., TcpRT dataset,
we introduce a naive blind write implementation, i.e., write
raw granularity data directly to the database instead of pre-
aggregating in the pipeline.

2 Il Timon
é] @l InfluxDB
§s)
& s HBase
s
<
Ao
=]
g
=5
=
Read-Modify-Write Blind-Write Blind-Write
(out-of-order) (out-of-order) (in-order)

Figure 13: Throughput with different write mode.

Write performance. We compare the write performance
of blind write between Timon, InfluxDB, and HBase, as shown
in Figure 13. In fact, we also tried on Gorilla and BtrDB. How-
ever, Gorilla doesn’t support blind write of late events due to
its local-time windows. The write performance of BtrDB is ex-
tremely unacceptable in the dataset where is a large number

of streams. Hence, we omit them in this experiment. Besides,
since Read-Modify-Write is only valuable in out-of-order
scenarios, we skip its test on the in-order dataset. We can see
that the write throughput of Timon reaches ten times that
of InfluxDB in the out-of-order scenario. The main reason
includes the following aspects: (a) Timon adopts the staged
event-driven architecture(SEDA) similar to BtrDB, which
can significantly improve system throughput. (b) Timon’s
MemTable design is also optimized for blind-write(detailed
in Section 4.1.1). (c) We observe that InfluxDB spends more
than 35% CPU on garbage collection and r/w locks, although
we have already optimized relevant parameters.

Query Performance. Blind write can resolve the prob-
lem of out-of-order events. However, it hands over the com-
putation of data merging to the query layer, reducing the
query performance. Therefore, Timon adopts hot-data ag-
gregation and lazy merge mechanism to merge data asyn-
chronously in advance, which help to mitigate the decline
of query efficiency. In the experiment, we issue queries to
get aggregated results of 100 streams within one hour at
60-second granularity. Because Read-Modify-Write and lazy
merge are minor in an in-order dataset, we only focus on the
out-of-order dataset. When data is written to the database
in the Read-Modify-Write mode, we can read the aggregate
result from the database directly, whose query latency is
used as the baseline. From Figure 14, we can see that without
lazy merge, the query latency of both Timon and InfluxDB is
much higher than their baselines. Timon improves the query
performance close to its baseline when the lazy merge is
enabled. It can be observed that the query latency of HBase
is very high. It is because HBase does not support server-
side aggregation semantics, and raw data needs to be sent to
clients for aggregation.

2000] HHE Read-Modify-Write
Blind-Write

15001 Time Span: lh
Stream: 100
100 Granularity: 60s

Latency(ms)

500

Timon Timon InfluxDB HBase
(Lazy-Merge On) (Lazy-Merge Off)

Figure 14: Query latency with different write mode.

6.2 Time-Segment Log-Structured
Merge-Tree

In this section, we compare with other candidates to verify
the performance of our TS-LSM-Tree design. We create sev-
eral ordered data sets which consist of 15 billion time-series
points, while the number of streams increases from 100 to
500,000.

Write Performance. We can observe from Figure 15(a)
that in 100-streams case, with write-batch size changing
from 5,000 to 200,000, the throughput of BtrDB rises rapidly,
even reaching the double of Timon. However, as Figure 15(b)
shows, the throughput of BtrDB declines fast when the num-
ber of streams exceeds 5,000. Since BtrDB builds time in-
dex for each stream in real time, the write cost grows lin-
early with the number of streams increases. After a closer
investigation, we notice that BtrDB is very suitable for small
stream-number and large write-batch scenarios, which dif-
fer significantly from our production dataset because large
write-batch can improve the 10 utilization of BtrDB.

As expected, Timon maintains high write performance
stably when the number of streams increases due to the de-
sign of TS-LSM-Tree. The main reason is that Timon only
constructs hash indexes when data is written to MemTable.
Time-partitioning Tree Indexes are only built when MemTa-
bles are flushed as SSTables.

2407 —4— Timon
P Budb
£ Influxdb
¥ 30
g
£20 +— —+ +
2 —t
2
=10
=
5000 10000 50000 100000 200000

Batch Size(points)

(a) Write Throughput as batch size grow

—< Timon

Hbase
== Influxdb
—B— Btrdb
—&— Gorilla

100 500 5000 50000 500000
Stream Number

<}
S

a

Million Data Points / s
@ >

o

(b) Write Throughput as streams grow

Figure 15: Write Throughput

Query Performance. The tree index is multi-layered for
various time granularity, in which each tree node caches pre-
computed aggregate values. We can achieve excellent query
performance when the query results can be read directly
from tree nodes instead of being computed from scratch. In
the experiment, we query on 24-hours (fixed time range)
data from Timon with different aggregate granularity, e.g., 24
data points on 1-hour granularity, and 1,440 data points on
1-minute granularity. Firstly, we execute the query in MemTa-
bles (i.e., warm query). Since there is no pre-aggregated
structure in MemTable, The query latency only depends
on the number of returned points (i.e., larger granularity

means less returned points), as shown in Figure 16(c). Sec-
ondly, we execute the query in SSTables (i.e., cold query).
Figure 16(b) reveals that the query latency drops dramati-
cally when the query granularity matches the granularity of
index-tree nodes, e.g., 1-minute/1-hour queries in the figure.
Finally, we query 1,200 points (40 points per stream and 30
streams per query) from each aggregate granularity to fur-
ther verify the effectiveness of the tree index. Figure 16(a)
shows that when we read 1,200 points from 1-second and
1-minute granularity at the same time, the query latency
on 1-minute is lower. It is because the aggregate results on
1-minute are cached on tree nodes, while the results on 1-
second need to be read from data blocks.

I

Granularity

Latency(ms)
— (53 (=])
o8 o 3

>

Is 15s

(a) Cold Query (40 Points per Stream, 30
Streams per Query)

5

w
8

; hF

=]
%%%% 0 T T == ==

58 155 Im 5m I5m 1h 55 155 Im Sm 15m 1h
Granularity Granularity

Latency(ms)

HIH
h
H

|.4

H

w
8

(b) Cold Query (24 Hours) (c) Warm Query (24 Hours)

Figure 16: Query Latency

In addition, we run another set of tests to compare the
query performance of all candidates, in case of returning a
fixed number of points, e.g., 2,000 in this test. As Figure 17
shows, Timon has remarkable query performance as good as
that of BtrDB, because both of them have the time segment
tree index. They can read aggregation results from tree index
so that their performance is not affected by query granularity.
However, InfluxDB needs to query raw data and aggregates
them on server-side; and HBase even needs to pass raw data
to the client for aggregation. Hence, their query latency rises
dramatically as the query granularity increases.

6.3 Other Features

In this section, we evaluate the effectiveness and perfor-
mance of other features in Timon. Since these features are
independent of the data distribution, we use RDS perfor-
mance data as the test set solely in these experiments.

50000 _4— Timon
Btrdb
- 400007 g Inftuxay
E 300001 O e
z
5 20000 Stream per Query: 1
5 Return Points: 2000
10000
0

Is 5s 15s Im 5m 15m Th
Ganularity

Figure 17: Query latencies between databases as time
granularity changes.

Metric Set. For Alibaba’s RDS performance data set, an
instance/machine record contains dozens of metric values.
Usually, time series databases store these metric values sep-
arately, which causes performance degradation. Timon in-
troduces the concept of Metric Set to represent the set of
metrics values placed consecutively in one row. The locality
of metrics values makes it easy to read and write them in an
atomic operation, lowering amortized cost when the number
of metrics increases.

We first evaluate the metric-set mode and single-metric
mode (i.e., one metric value per row) on Timon and InfluxDB3,

comparing their variations in write throughput. Other databases

do not support the metric set feature and thus are omit-
ted. Figure 18 shows that in the single-metric mode, the
peak throughput is about 15 million. But when we change
to metric-set mode with metric size of 80, the throughput
reaches 60 million. It verifies that the metric set signifi-
cantly improves the throughput in Timon. However, the write
throughput of InfluxDB does not increase much when we
open the field set feature, because it is only a user-friendly
interface with no optimization. In the underlying storage,
InfluxDB still separates each field.

S

S

—»— Timon(With Metric Set)
Timon(Without Metric Set)

—B— Influxdb(With Metric Set)

—¥— Influxdb(Without Metric Set)

Million Data Points / s
- wow & oW
S 38

S

1 5 IVO 2‘0 4}) 80
Metric Set Size

Figure 18: Write throughput as metric set size in-

creases.

Table 1 shows the overhead of metric set in the query
phase. We observe that there is not an obvious read am-
plification when we read a single metric from a metric set,
compared with metric-set-off. The latency of the two cases
is comparable, and we can infer that the overhead of metric
set is negligible.

3InfluxDB has the field set feature that seems to be similar to metric set.

Table 1: Overhead of Query with/without Metric-Set
when 30 instances’ metric were selected for each
query. (time range: 1 hour, granularity: 1s, metric set
size: 36)

Metric-Set On | Metric-Set Off
134.4759 132.4905

Latency [ms]
Query

Materialized Aggregate View. In the production envi-
ronment, we often have the requirement of aggregating data
on a higher abstract level, e.g., the region level. Most of the
time, a region contains thousands of instances, we have to
aggregate data from all instances in the query phase, if we
only maintain the data at instance level in the database. Ti-
mon provides the materialized aggregate view to resolve this
problem. It pre-computes the aggregated values for levels
that users have defined in advance, e.g., one can define host,
user, and region views for RDS performance data if wants to
query these aggregate results directly from Timon.

8000 -

Latency(ms)
B [=2]
o o
o o
o o

N
o
o
o

(38.7)
Timon(View) Timon Hbase Btrdb Influxdb Gorilla

Figure 19: 100-streams query latencies between Timon
(View On/Off) and other databases.

o
'

The first experiment shows how much query performance
is improved by the materialized aggregate view. Figure 19
shows that the query latency of Timon with a materialized
view is much lower than Timon without the view and other
databases. It is because materialized aggregate views help
to read aggregate results directly, instead of reading all data
points and aggregating them at runtime.

Z

Z —8— Perf

£ 251 TepRT

v

8

=

A 20

=

2

= 154

s]]]]]
0 1 7 14 21

View Number
Figure 20: Write throughput as view increases.

The second experiment shows that the write throughput is
not much affected unless more than seven (should be enough
in most cases) materialized views are created, as shown in
Figure 20. The primary reason for performance degradation
is the saturation of the machine resource capacity. Hence,

adding additional resources can help if more views are de-
manded.

7 RELATED WORK

Data Processing Systems. Batch systems such as MapRe-
duce [17] and MicroBatch systems like Spark [26] suffer from
high latency problems, because newly arrived records are
buffered to be processed at a future time. Streaming process-
ing systems like Storm [11] and Samza [22] lack the ability to
provide the exactly-once semantics, i.e., unable to guarantee
correctness. Lambda architecture [21] combines the methods
of batch processing (the batch layer) and steaming processing
(the real-time layer) together as a hybrid approach: the batch
layer generates comprehensive, reliable yet dated results,
while the real-time layer provides immediately available but
less complete and accurate results.

Summingbird [13] is a unified framework for batch and
stream processing, which offers a higher level domain-specific
language to unify the underlying execution environments.
However, similar to the lambda architecture, its correctness
is not guaranteed.

MillWheel [1] ensures that records are delivered exactly
once between computational nodes through checking and
discarding duplicated records against checkpoints. Out-of-
order data is handled with low watermark in MillWheel.
The skew between wall time and low watermark timestamp
determines the latency of overall results, i.e., usually they
should be quite close. However in practice, there may be a
small ratio of late records that arrive behind the low water-
mark. Hence, if users want 100% accuracy, they must handle
late data in other pipelines and correct aggregates. Although
MillWheel implements exactly-once delivery, the program-
ming model itself does not guarantee correctness without
performing user-defined actions to handle late data properly.

The Dataflow Model [2], which is based on MillWheel
and FlumeJava, further supports incremental processing of
out-of-order data in that programming model. It defines trig-
gers as a complement to the windowing model, which allows
to trigger output results for a given window and make re-
finement of previous results when later data arrives. Upon
triggering, earlier results are read from external persistent
databases, merged with newly arrived data, and overwrit-
ten by updated results (i.e., a Read-Modify-Write operation,
which is less efficient than a blind write for databases like
HBase). When the proportion of out-of-order data increases
in the system, database throughput drops and system per-
formance is impacted.

Time Series Databases. InfluxDB [20] is a popular time
series database (TSDB) built from scratch. It uses a Time-
Structured Merge Tree (TSM) as its core index structure,
which is very similar to LSM-tree. The LSM-like structure

helps InfluxDB to support massive-stream writes, but unlike
TS-LSM-Tree, TSM lacks fast long-term time-series explo-
ration and does not optimize for incremental processing,
which is very important for efficient blind-write. Although
InfluxDB supports the metric set feature, it stores each metric
separately.

OpenTSDB [10] is another open source TSDB that is often
used in production environments. It uses HBase [8] as the
storage backend, and designs the storage model of time series
data based on HBase. In many cases, HBase is also used
directly to store time series data based on different custom
data models. HBase’s index structure is LSM-tree, and hence
the problems of OpenTSDB and HBase are similar to those
of InfluxDB.

Gorilla [24] is an in-memory TSDB. It supports massive
streams with high-throughput writes. But it does not per-
mit out-of-order events and lacks fast long-term streams
exploration.

BtrDB [6] is a state-of-the-art TSDB that supports long-
term time-series exploration through an innovative time-
partitioned tree. However, BtrDB is designed for ultra-high
frequency data points (i.e., sub-microsecond precision times-
tamps). In order to ensure high throughput, each write needs
to write batches of data points from one stream, and the
batch size is 10,000 in the evaluation of BtrDB paper. In our
scenario, there are massive streams, but the frequency is one
point per second, which cannot be well handled in BtrDB.

In addition, these TSDBs cannot support incremental pro-
cessing after a data point is written, which is important for
efficient implementation of blind write.

8 CONCLUSIONS

Timon is a timestamped event database that has been devel-
oped and deployed at Alibaba Cloud. It is optimized for heavy
blind writes and analytic queries in an incremental process-
ing system and can handle out-of-order data correctly and
efficiently. The correctness is guaranteed by the associative
and commutative properties of operators on data structures
inside Timon. With the design of the architecture and TS-
LSM-Tree, Timon can support low latency queries and fast
long-term time series exploration, even in the case of mas-
sive stream writes and massive out-of-order arrivals. Besides,
Timon provides rich features and an expressive query lan-
guage TQL for analytic tasks, like correlation analysis, and
anomaly detection. We have rebuilt the continuous monitor-
ing and anomaly analysis infrastructures and applications
like TepRT (the performance monitoring system of Alibaba
RDS and PolarDB) on top of Timon, and have gained a lot of
benefits from its features.

A APPENDIX
A.1 Network Anomaly Detection

Part 1

select sum(sum.pktloss) as src_pktloss from tcprt_graph group by src, dst
window by 60s period 60s interval 60s
| select sum(src_pktloss > 0) as src_pktloss_node_cnt, sum(1) as src_node_cnt
group by src as ip window by 60s
| join "select sum(sum.pktloss) as dst_pktloss from tcprt_graph
group by dst, src window by 60s when %s, %s
| select sum(dst_pktloss > 0) as dst_pktloss_node_cnt, sum(1) as dst_node_cnt
group by dst as ip window by 60s ", _start_time, _start_time + 60s on ip
| select sum(src_node_cnt) + sum(dst_node_cnt) as total,
sum(src_pktloss_node_cnt) + sum(dst_pktloss_node_cnt) as count
group by ip window by 60s
| send_to_channel "net_analyze_task"

Part 2

cascade "net_analyze_task"

| joinmeta from external_DB_meta with
“select ip, tor_switch_pair from meta_table" on ip refresh_period 300s

| select sum(total) as total, sum(count) as count group by tor_switch_pair

| top 10 of pow(count, 1.5) / total

| alarm “An anomaly occurred on switch:" + tor_switch_pair + " at time:" + _time
to “DBA_group" via “SMS"

Figure 21: Network Anomaly Detection

Figure 21 shows the query in two parts. The first part
computes the packet-loss extent of each network activity.
For each vertex, to count its total connected nodes and ones
suffering from packet-loss, a join operator is used to merge
packet-loss information from the head end and tail end in
the directed network graph. The processed data is sent to
the middleware named Channel, which allows other tasks to
consume data from it. The second part aggregates to derive
the most abnormal machines/switches. The second query
reads data from Channel, joins metadata to expand raw tags,
then aggregates based on switch level, and finally computes
the top 10 faulty switches. The cascade operator reads from a
certain Channel; it allows data to be reused for different jobs.
In this case, to find troubled machines, switches, and racks,
we create three queries, all of which consume data from the
same basic-level Channel, for machine-level, switch-level,
rack-level aggregation respectively.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable comments and helpful suggestions. We would also
like to thank the monitoring and full-state tracking team
(Zuorong Xu, Lingyun Li, Yu Yu, Yunlong Mu, Yintong Ma,
Jiabang Pan, Bowen Cai, Zhe Wang, Jing Li, Yongshuai Li,
Mengjie Jin), who are our users from the very beginning of
Timon and gave us much precious advice.

REFERENCES

[1] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle. Millwheel: Fault-
tolerant stream processing at internet scale. PVLDB, 6(11):1033-1044,
2013.

[2] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Fernandez-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and

S. Whittle. The dataflow model: A practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-
order data processing. PVLDB, 8(12):1792-1803, 2015.

AlibabaCloud. Loghub. https://www.alibabacloud.com/product/log-

service.

AlibabaCloud. Polardb. https://www.alibabacloud.com/products/

apsaradb-for-polardb.

AlibabaCloud. Rds. https://www.alibabacloud.com/product/apsaradb-

for-rds-mysql.

[6] M. P. Andersen and D. E. Culler. Btrdb: Optimizing storage system
design for timeseries processing. In FAST, pages 39-52, 2016.

[7] Apache. Cassandra. http://cassandra.apache.org/, 2008.

[8] Apache. Hbase. https://hbase.apache.org/, 2008.

[9] Apache. Kafka. https://kafka.apache.org/, 2011.

[10] Apache. Opentsdb. http://opentsdb.net/, 2011.

[11] Apache. Storm. https://storm.apache.org/, 2017.

[12] AWS. Kinesis. https://aws.amazon.com/kinesis/.

[13] O.Boykin, S. Ritchie, I. O’Connell, and J. Lin. Summingbird: A frame-
work for integrating batch and online mapreduce computations. Pro-
ceedings of the VLDB Endowment, 7(13):1441-1451, 2014.

[14] W. Cao, Y. Gao, B. Lin, X. Feng, Y. Xie, X. Lou, and P. Wang. Tcprt:
Instrument and diagnostic analysis system for service quality of cloud
databases at massive scale in real-time. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD ’18, pages
615-627, New York, NY, USA, 2018. ACM.

[15] W.Cao, Y. Liu, Z. Cheng, N. Zheng, W. Li, W. Wu, L. Ouyang, P. Wang,
Y. Wang, R. Kuan, et al. {POLARDB} meets computational storage:
Efficiently support analytical workloads in cloud-native relational
database. In 18th {USENIX} Conference on File and Storage Technologies
({FAST} 20), pages 29-41, 2020.

[16] W. Cao, Z. Liu, P. Wang, S. Chen, C. Zhu, S. Zheng, Y. Wang, and
G. Ma. Polarfs: an ultra-low latency and failure resilient distributed
file system for shared storage cloud database. Proceedings of the VLDB
Endowment, 11(12):1849-1862, 2018.

[17] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107-113, 2008.

[18] Facebook. Beringei. https://github.com/facebookarchive/beringei,
2017.

[19] P.Flajolet, E. Fusy, O. Gandouet, and et al. Hyperloglog: The analysis
of a near-optimal cardinality estimation algorithm. In AOFA, 2007.

[20] influxdata. Influxdb. https://github.com/influxdata/influxdb, 2013.

[21] M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja. Lambda
architecture for cost-effective batch and speed big data processing. In
IEEE Big Data, pages 2785-2792, 2015.

[22] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
1. Gupta, and R. H. Campbell. Samza: stateful scalable stream processing
at linkedin. Proceedings of the VLDB Endowment, 10(12):1634-1645,
2017.

[23] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured
merge-tree (Ism-tree). Acta Informatica, 33(4):351-385, 1996.

[24] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and
K. Veeraraghavan. Gorilla: A fast, scalable, in-memory time series
database. Proceedings of the VLDB Endowment, 8(12):1816-1827, 2015.

[25] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for well-
conditioned, scalable internet services. In ACM SIGOPS Operating
Systems Review, volume 35, pages 230-243. ACM, 2001.

[26] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and L. Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In
Proceedings of the 9th USENIX conference on Networked Systems Design
and Implementation, pages 2—2. USENIX Association, 2012.

3

[t

[4

flaa)

5

[

https://www.alibabacloud.com/product/log-service
https://www.alibabacloud.com/product/log-service
https://www.alibabacloud.com/products/apsaradb-for-polardb
https://www.alibabacloud.com/products/apsaradb-for-polardb
https://www.alibabacloud.com/product/apsaradb-for-rds-mysql
https://www.alibabacloud.com/product/apsaradb-for-rds-mysql

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Out-of-order Events Processing
	2.2 Associative and Commutative Operators
	2.3 Idempotence

	3 System overview
	3.1 Timestamped Data Model
	3.2 Design Overview

	4 Detailed Design
	4.1 Time-Segment Log-Structured Merge-Tree
	4.2 Lazy Merge
	4.3 Materialized Aggregate View

	5 TQL and Case Studies
	5.1 Real-Time Dashboard
	5.2 Aggregation Granularity Adaptation
	5.3 Correlation Analysis
	5.4 Machine Anomaly Detection
	5.5 Network Anomaly Detection

	6 Evaluation
	6.1 Blind Write v.s. Read-Modify-Write
	6.2 Time-Segment Log-Structured Merge-Tree
	6.3 Other Features

	7 Related Work
	8 Conclusions
	A Appendix
	A.1 Network Anomaly Detection

	Acknowledgments
	References

