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Opportunities and Challenges
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Decision 1: Hybrid Memory

» For performance

> Keep index (small in size) in DRAM.
> A small part of index may be stored in NVM.
Most KV read takes only one NVM access.

Data Type size  persistent hot location
User data large yes - NVM
MetaData of Allocator small no yes DRAM
Indexes large no - DRAM/NVM
Runtime variables small no DRAM/NVM

The characteristics of different data.

() datainDRAM () datain NVM

The hybrid memory structure.



Decision 2: Log as Data

* What data should be persistent for
durability, and How to organize them?

For Performance: Log plays the role of
user data, which makes user data only
written once.

* How to recover
> Redo the log to reconstruct indexes.
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Decision 3. No Changes to Read Operation

* For easy programming S e~ o
> User KVs encoded in Log & data pool %
keep the original format.
Index need not be re-implemented, s0 _ voltie - P T

as read operations. Persistent
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Decision 4: Programming Toolkit

~~——

* A toolkit to hide the complexity of NVM programming
* An allocator to manage both DRAM and NV MV;
* A component (the Log & Data Pool) to store all the persistent data;
* high performance.
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Architecture

* Toolkit
> Allocator; Log & Data pool

e Database Core

» Support abundant models
for compatibility

» Database components
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Toolkit

 Allocator

> Manages both DRAM and NVM, and
produces malloc/free style APIs.

> Metadata is volatile
> An allocation can be recovered.

* Log & Data Pool

> Stores all persistent data, which is
organized by an atomic persistent list.

> Supports persistent and atomic append
and delete.

> Supports recovery.
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The structure of toolkit

Entry List ||| +| |—>|I| | |—>|I| | |->|I|||+| |”|I| ||”|I| ||”|’\|| | |

The log & data pool is a list-organized structure.
Through scanning it, the allocations can be recovered.




Database — Data Encode

« Abundant model and indices

Abstract @ ‘

Redis
* The Encode Method Iclia;:ut O ® W
> Abstracted to KV/KKVs. () (»)
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Database — User Write Operations

* Write operations generate an
entry to serve as a redo log.

> Both Insert and Update operations
create a user data entry.

> Deletion generates a tombstone entry.

» Take update as an example

* Disaster Recovery

> Sequentially redoes the log to
reconstruct indices.

1. copy-on-update
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3. delete old entries

i 2 iy
2. commit

txn list



GC and Checkpoint

* Entry deletion is done by the background GC thread.
* The deletion order should be right.

* When taking a snapshot/checkpoint
> The GC thread protects the entries to be deleted.
> Other procedures of checkpoint are the same as the original Redis’.
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Programming Skills

» Breaking Large Values into Shards for COW
» Single Tombstone Entry When Possible
* Prefetching

* Pin frequently accessed index in DRAM
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Throughputs

Throughputs(IOPS)
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The throughputs of string model. The throughputs of hash model.

Tair-PMem is better, compared to fully durable(FD) Redis,

Tair-PMem is comparable, compared to partially durable (PD) Redis,
Tair-PMem is always better, compared to TieredMemDB.




99 Percentile Latencies

99th Percentile Latency(us)

4000

3500

3000

2500

2000

1500

1000

500

I T T T T
| is || ir- B T T T
o ED Redis =9 ED TieredMemDB FD Tair-PMem = FD Redis ® FD TieredMemDB s FD Tair-PMem |

8000 |- —a PD Redis =Z—1PD TieredMemDB
7000

6000
5000
4000

3000

99th Percentile Latency(us)

2000

1000

Load A B C D F 0

Load A B C D F

The 99 percentile latencies of string model. The 99 percentile latencies of hash model.

Much better 99 percentile latency due to no AOF writing.



Maximum Latencies

Maximum Latency(us)
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The maximum latencies of string model. The maximum latencies of hash model.

Much more stable because of no AOF rewriting which incurs fork system call.
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For More Information

Tair-Pmem service on Alibaba Cloud



https://www.alibabacloud.com/help/en/apsaradb-for-redis/latest/apsaradb-for-redis-enhanced-edition-persistent-memory-optimized-instances

