PRttt ¢ |

PMem: A Ful ly Durable
. Volatlle Memory Database

ﬁ,aixin Gong, Chengjin Tian, Zhengheng Wang, Sheng Wang,
- Xiyu Wang, Qiulei Fu, Wu Qin, Long Qian, Rui Chen, Jiang Qi,
" Ruo Wang, Guoyun Zhu, Chenghu Yang, Wei Zhang, Feifei Li

Alibaba Group

Redis Advantages & Disadvantages

The Most

Popular
Memory
Database

5k

Abundant models

High Performance

— Difficult —

Volatile

To
— Achieve —

Expensive

Goals

More Valuable

Information

Larger Cluster

Opportunities and Challenges

)

/

0.1us $16/GB E Enterprise Features

Challenge 2, Redis compatibility B
Latency Cost Abundant models Full durability
100 us

=

VA

High Performance Tair-PMem _
: more economical

Longer access Latency (3x)

. Challenge 3,
Much lower Bandwidth (10x) NVM programming complexity

e%rada{‘on

C(\a\\e“%e lée d
Peﬁofman

Intel Optane PM

Outline

« Core Design Decisions
* The Database Architecture

« Evaluations

Decision 1: Hybrid Memory

» For performance

> Keep index (small in size) in DRAM.
> A small part of index may be stored in NVM.
Most KV read takes only one NVM access.

Data Type size persistent hot location
User data large yes - NVM
MetaData of Allocator small no yes DRAM
Indexes large no - DRAM/NVM
Runtime variables small no DRAM/NVM

The characteristics of different data.

() datainDRAM () datain NVM

The hybrid memory structure.

Decision 2: Log as Data

* What data should be persistent for
durability, and How to organize them?

For Performance: Log plays the role of
user data, which makes user data only
written once.

* How to recover
> Redo the log to reconstruct indexes.

Volatile '~~~

Persistent

(O Volatile data in DRAM [[_] Persistent entry in NVM
(O Volatile data in NVM

Decision 3. No Changes to Read Operation

* For easy programming S e~ o
> User KVs encoded in Log & data pool %
keep the original format.
Index need not be re-implemented, s0 _ voltie - P T

as read operations. Persistent

\4 \J \/ Log&
T T 5t —

() Volatile datain DRAM [[] Persistent entry in NVM
(D Volatile data in NVM

Decision 4: Programming Toolkit

~~——

* A toolkit to hide the complexity of NVM programming
* An allocator to manage both DRAM and NV MV;
* A component (the Log & Data Pool) to store all the persistent data;
* high performance.

volatile data persistent data
I T

\/
Easy Programming o0 ows oo T IE
Memory

Programming

Toolkit (A
Allocator Memory Management

——————————————————————

|
v (" Filesystem with DAX

[DRAM Volatile Data] [NVM Volatile Data \kPersistent Data]
- J

The structure of toolkit

Outline

 Core Design Decisions
» The Database Architecture

« Evaluations

Architecture

* Toolkit
> Allocator; Log & Data pool

e Database Core

» Support abundant models
for compatibility

» Database components

e I N N
Strin Hash List Stream
Models ° Set
Database @ TR S u_ort """"""""""""
Core PP
Database Data c
Components R odec Checkpoint Transaction
volatlle data @ +---- persistent data - - -,
|
! I
|
|
|
| [Log & Data Pool Atomic Durable List]
Hybrid |
Memory s Rt
Programming ~
Toolkit Allocator 5 5

Filesystem with DAX

oo D) (v D) D |

- J

Toolkit

 Allocator

> Manages both DRAM and NVM, and
produces malloc/free style APIs.

> Metadata is volatile
> An allocation can be recovered.

* Log & Data Pool

> Stores all persistent data, which is
organized by an atomic persistent list.

> Supports persistent and atomic append
and delete.

> Supports recovery.

volatile data persistent data

T

: \d

: E.og LRI A omic Durable List j
I

I

Hybrid
Memory
Programming

Toolkit [A
Allocator Memory Management

Filesystem with DAX

[DRAM Volatile Data] [NVM Volatile Data LPersistent Data]
- J

The structure of toolkit

Entry List ||| +| |—>|I| | |—>|I| | |->|I|||+| |”|I| ||”|I| ||”|’\|| | |

The log & data pool is a list-organized structure.
Through scanning it, the allocations can be recovered.

Database — Data Encode

« Abundant model and indices

Abstract @ ‘

Redis
* The Encode Method Iclia;:ut O ® W
> Abstracted to KV/KKVs. () (»)
> The key/value can be pointed by l O Volatile index in DRAM
index as the original Redis. —
» The implementation of read f
operations remains intact. I’;‘;"c‘)’ut | |

SK1 [V1 SK2 [V2

O Volatile index in DRAM D:| A persistent entry in NVM

Database — User Write Operations

* Write operations generate an
entry to serve as a redo log.

> Both Insert and Update operations
create a user data entry.

> Deletion generates a tombstone entry.

» Take update as an example

* Disaster Recovery

> Sequentially redoes the log to
reconstruct indices.

1. copy-on-update

v v

N

pointer queue for GC

3. delete old entries

i 2 iy
2. commit

txn list

GC and Checkpoint

* Entry deletion is done by the background GC thread.
* The deletion order should be right.

* When taking a snapshot/checkpoint
> The GC thread protects the entries to be deleted.
> Other procedures of checkpoint are the same as the original Redis’.

Volatile

Persistent

Entry List

Programming Skills

» Breaking Large Values into Shards for COW
» Single Tombstone Entry When Possible
* Prefetching

* Pin frequently accessed index in DRAM

Outline

 Core Design Decisions
* The Database Architecture

e Evaluations

Throughputs

Throughputs(IOPS)

250000

200000

150000

100000

50000

T

180000 |

[FD Redis ™ FD TieredMemDB W FD Tair-PMem - FD Redis ™ FD TieredMemDE mmm = FD Tair-PMem
 Za— PD Redis =—=-PD TieredMemDB | 160000 |- —a PD Redis =Z—1PD TieredMemDB

140000 |-

120000

100000

80000

Throughputs(IOPS)

60000

40000

20000

0
Load A B C D F Load A B C D F

The throughputs of string model. The throughputs of hash model.

Tair-PMem is better, compared to fully durable(FD) Redis,

Tair-PMem is comparable, compared to partially durable (PD) Redis,
Tair-PMem is always better, compared to TieredMemDB.

99 Percentile Latencies

99th Percentile Latency(us)

4000

3500

3000

2500

2000

1500

1000

500

I T T T T
| is || ir- B T T T
o ED Redis =9 ED TieredMemDB FD Tair-PMem = FD Redis ® FD TieredMemDB s FD Tair-PMem |

8000 |- —a PD Redis =Z—1PD TieredMemDB
7000

6000
5000
4000

3000

99th Percentile Latency(us)

2000

1000

Load A B C D F 0

Load A B C D F

The 99 percentile latencies of string model. The 99 percentile latencies of hash model.

Much better 99 percentile latency due to no AOF writing.

Maximum Latencies

Maximum Latency(us)

1X108 3 T T T T T T E | L | . 1 I 1 T]
: — is N - i] - I FD Redis ™= FD TieredMemDB == FD Tair-PMem
BT = R SR |
!] 1x107 | E
1x107 | | i
_ _ 2 |
[= 1x10% |
1x108 |) ;
5 o
]
- L
' € 100000 |
100000 ¢ 2 5
i 3
I = !
10000 | 10000 |
1000
Load A B c D F 1000
The maximum latencies of string model. The maximum latencies of hash model.

Much more stable because of no AOF rewriting which incurs fork system call.

Conclusions

E Enterprise Features

Abundant models

&

Abundant models

Volatile

Full durability

i= i
=
Tair-PMem

High Performance more economical

&

Latency stability

O,

High Performance

6

Expensive

Redis

Unstable latency

For More Information

Tair-Pmem service on Alibaba Cloud

https://www.alibabacloud.com/help/en/apsaradb-for-redis/latest/apsaradb-for-redis-enhanced-edition-persistent-memory-optimized-instances

