
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 1

Spell: Online Streaming Parsing of Large
Unstructured System Logs
Min Du, Student Member, IEEE, Feifei Li, Member, IEEE

Abstract—System event logs have been frequently used as a valuable resource in data-driven approaches to enhance system health
and stability. A typical procedure in system log analytics is to first parse unstructured logs to structured data, and then apply data
mining and machine learning techniques and/or build workflow models from the resulting structured data. Previous work on parsing
system event logs focused on offline, batch processing of raw log files. But increasingly, applications demand online monitoring and
processing. As a result, a streaming method to parse unstructured logs is needed.
We propose an online streaming method Spell, which utilizes a longest common subsequence based approach, to parse system event
logs. We show how to dynamically extract log patterns from incoming logs and how to maintain a set of discovered message types in
streaming fashion. Enhancement to find more accurate message types is also proposed. We also propose and evaluate a method to
automatically discover semantic meanings for parameter fields identified by Spell. We compare Spell against state-of-the-art methods
to extract patterns from system event logs on large real data. The results demonstrate that, compared with other log parsing
alternatives, Spell shows its superiority in terms of both efficiency and effectiveness.

Index Terms—Log parsing, Log data, System logs.

F

1 INTRODUCTION

THE increasing complexity of modern computer systems
has become a significant limiting factor in deploying

and managing them. Being able to be alerted and mitigate
the problem right away has become a fundamental require-
ment in many computer systems. As a result, automatically
detecting anomalies upon happening in an online fashion
is an appealing solution. Data-driven methods based on
machine learning and data mining techniques are heavily
employed to understand complex system behaviors, for
example, exploring machine data for automatic pattern dis-
covery and anomaly detection. System logs, as a universal
data source that contains important information such as
execution paths and program running status, are valuable
assets in assisting these data-driven system analytics, in
order to gain insights that are useful to enhance system
health, stability, and usability.

The effectiveness of system log mining has been vali-
dated by recent literature. Logs could be used to detect
execution anomalies [1], [2], [3], monitor network failures
[4], or even find software bugs [5]. Researchers have also
used system logs to discover and diagnose performance
problems [6]. Logs contain intrinsic underlying information
that could help to understand system behaviors [7].

To alleviate the pain of diving into massive unstructured
log data, in most prior work, the first and foremost step is to
automatically parse the unstructured system logs to structured
data [1], [2], [3], [5]. There have been a substantial study on
how to achieve this, for example, using regular expressions
[8], leveraging the source code [5], or parsing purely based
on system log characteristics using data mining approaches
such as clustering and iterative partitioning [1], [9], [10],
[11]. Nevertheless, except the approach that uses regular
expressions which requires domain-specific expert knowl-
edge [8], hence, does not work for general purpose sys-
tem log parsing, or the approach that leverages the source

code [12] which is often unavailable, none of the previous
methods could achieve truly online parsing in a streaming
fashion. Some work claimed “online” processing, but with
the requirement of doing some extensive offline processing
first [13], or using regular expressions to remove certain
fields [14], and only then matching log entries with the data
structures and patterns previously identified.

Furthermore, previous methods that are tuned for a
specific type of system log may work terribly on a new
format or type of system logs. For example, OpenStack is
a very popular open source cloud infrastructure. Its logs
contain various formats that are not present in previous
system logs, such as JSON format. OpenStack log analysis is
important for automatic problem solving but current work
remains manually parsing message types as the first step
[15]. Our method is designed as a general-purpose stream-
ing log parsing method, hence, it’s system, type, or format
agnostic. In our evaluation, we have collected OpenStack
raw log messages as our test data, and we obtain ground
truth message types by parsing them from the source code
of OpenStack; the results show that our method works
substantially better than all previous methods.

There is also an increasing demand to properly manage
and store system logs [16]. Thus log management systems
(LMS) are in great need and becoming widely deployed in
recent years (e.g., ELK by Elastic.co). A typical architecture
of an LMS is shown in Figure 1. On each node, a log shipper
forwards log entries to a centralized server, which often
contains a log parser, a log indexer, a storage engine and
a user interface. In such systems the default log parser only
parses simple schema information such as timestamp and
hostname. The log entry itself is treated as an unstructured
text value (hence, the need for ElasticSearch to support
approximate string search). During peak workloads, it is
common for thousands of log messages to arrive per minute.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 2

This could be overwhelming for an online processing based
on an unstructured, text search approach.

Cluster
Nodes

Raw
Log
Files

Cluster
Nodes

Raw
Log
Files

Cluster
Nodes

Raw
Log
Files

Log Shipper Log ShipperLog Shipper

Internet Parser &
Indexer

Storage User
Interface

User

Fig. 1. A typical modern log management system architecture.

In contrast, a structured approach is to parse the event
logs into structured data that are much easier to query,
summarize and aggregate. Consider raw log messages in
Figure 2, instead of using them as raw, unstructured text
data which is used by the Logstash project for OpenStack, it
is much easier for an end user (and a data-driven analytical
process) to understand and use the structured data presented
in Table 1.

 Logstash Search
QUERY Ü

FILTERING Û

/ \ -915 minutes ago to a few seconds ago Ù () � Ê

ď � |

(-ÈpEVENTS OVER TIME

View Ü | * Zoom Out | ď (64677) count per 10s | (64677 hits)

^

09:39:00 09:40:00 09:41:00 09:42:00 09:43:00 09:44:00 09:45:00 09:46:00 09:47:00 09:48:00 09:49:00 09:50:00 09:51:00 09:52:00 09:53:00
0

2000

4000

6000

8000

10000

(-ÈpALL EVENTS

Fields ĳ

All (44) / Current (28)

Type to filter...

] @timestamp
¨ @version
¨ _id
¨ _index
¨ _type
¨ build_branch
¨ build_change
¨ build_master
¨ build_name
¨ build_node
¨ build_patchset
¨ build_queue
¨ build_ref
¨ build_short_uuid
¨ build_status

0 to 100 of 500 available for paging

v

@timestamp � Ü Û message

2016-06-12T09:53:13.372-07:00 container-server: Started child 15783

2016-06-12T09:53:13.371-07:00 container-server: Started child 15779

2016-06-12T09:53:12.861-07:00 object-server: Started child 15802

2016-06-12T09:53:12.861-07:00 object-server: Started child 15801

2016-06-12T09:53:12.629-07:00 account-server: Started child 15861

2016-06-12T09:53:12.627-07:00 account-server: Started child 15860

2016-06-12T09:53:12.574-07:00 localhost | SUCCESS | rc=0 >>

2016-06-12T09:53:11.952-07:00 localhost | SUCCESS | rc=0 >>

2016-06-12T09:53:11.596-07:00 localhost | SUCCESS | rc=0 >>

^

Ü

-

k

Ü

-

k

Fig. 2. Screen-shot of log messages on http://logstash.openstack.org/.

TABLE 1
An example of structured message type summary.

Message Type Frequency Parameters
container-server: Started child * 2 15779, 15783
object-server: Started child * 2 15801, 15802
account-server: Started child * 2 15860, 15861
...

Log entries are produced by the “print” statements in a
system program’s source code. As such, we can view a log
entry as a collection of (“message type”, “parameter value”)
pairs. For example, a log printing statement printf(“File %d
finished.”, id); contains a constant message type File finished
and a variable parameter value which is the file id. Hence,
the goal of a structured log parser is to identify the message
type File * finished, where * stands for the place holder for
variables (parameter values).
Contributions. In this paper, we propose Spell, a structured
Streaming Parser for Event Logs using an LCS (longest
common subsequence) based approach. Spell parses un-
structured log messages into structured message types and
parameters in an online streaming fashion. The time com-
plexity to process each log entry e is close to linear (to the
size of e).

With streaming, real-time message type and parameter
extraction produced by Spell, not only it provides a concise,
intuitive summary for end users, but the logs are also
represented by clean structured data to be processed and
analyzed further using advanced data analytics methods by
down-stream analysts. Using three state-of-the-art methods
to automatically extract message types and parameters from

raw log files as the competing baseline, our study shows that
compared with state-of-the-art methods, Spell outperforms
them in terms of both efficiency and effectiveness. Further-
more, Spell is also able to infer a semantic meaning for each
parameter field, to help users understand the log data.

The rest of this paper is organized as follows. Section 2
provides the problem formulation and a literature survey.
Section 3 presents our Spell algorithm and a number of
optimizations. Section 4 discusses several limitations and
extensions to Spell. Section 5 evaluates our method using
large real system logs. Finally, Section 6 concludes the paper.

2 PRELIMINARY AND BACKGROUND

2.1 Problem formulation
System event logs are a universal resource that exists prac-
tically in any system. We use system event logs to denote
the free-text audit trace generated by the system execution
(typically in the /var/log folder). A log message or a
log record/entry refers to one line in the log file, which is
produced by a log printing statement in the source code of a
user or kernel program running on or inside the system.

Our goal is to parse each log entry e into a collection of
message types (and parameter values). Here each message
type in e has a one-to-one mapping with a log printing
statement in the source code producing the raw log entry e.
For example, a log printing statement: printf("Temperature
%s exceeds warning threshold \n", tmp); may produce
several log entries such as: Temperature (41C) exceeds

warning threshold and Temperature (43C) exceeds

warning threshold, where the parameter values are 41C
and 43C respectively, and the message type is: Temperature
* exceeds warning threshold.

Formally, a structured log parser is defined as follows:
Definition 1 (Structured Log Parser) Given an ordered set
of log entries (ordered by timestamps), log = {e1, e2, . . . ,
eL}, that contain m distinct message types produced by
m different log printing statements from p different pro-
grams, where the values of m and p (and the printing
statements and the source code of these programs) are
unknown, a structured log parser is to parse log and produce
all message types from those m log printing statements.
We consider each log printing statement contains a single,
unique message type that may have multiple parameters.

A structured log parser is the first and foremost step for
most automatic and smart log mining and data-driven log
analytics solutions, and also a useful and critical step for
managing logs in a log management system (LMS).

Our objective is to design a streaming structured log
parser such that it makes only one pass over the log and
processes each log entry in an online, streaming fashion
continuously.

Without loss of generality, we assume that the size of
each log entry is O(n) words.

2.2 Related work
Mining interesting patterns from raw system logs has been
an active research field for over a decade. Two major efforts
in this area include generating features from raw logs to
apply various data analytics, e.g. [2], [3], [5], and building
execution models from system logs followed by comparing
it with future system executions, e.g. [1], [7]. There are also

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 3

efforts in mining workflow models from concurrent logs
[2], [3], [8], by first parsing unstructured logs, and then
building workflow models to identify dependencies and
concurrencies from the interleaved log traces (originated
from different programs).

To achieve effective data-driven log analytics, the first
and foremost process is to turn unstructured logs into
structured data. Xu et al. [5] uses the schema from log
printing statements in the original programs’ source code to
extract message types. In [8], the raw logs are parsed using
pre-defined, domain-specific regular expressions. There are
efforts to make this process more automatic and more accu-
rate. Fu et al. [1] proposes a method to first cluster log entries
using pairwise weighted edit distance, and then use several
heuristics like the number of distinct contents and entropy
at each position for recursively splitting. IPLoM [9] explores
several heuristics to iteratively partition system logs, such
as log size and the bipartite relationship between words
in the same log message. LogTree [10] utilizes the format
information of raw logs and applies a tree structure to
extract system events from raw logs. LogSig [11] generates
system events from textual log messages by searching the
most representative message signatures. HELO [13] extracts
constants and variables from message bodies, by first using
an offline classification step and then performing online
clustering based on the template set by the first step. As
is compared and evaluated in [17], IPLoM represents the
state-of-the-art offline log parser in this direction.

HLAer [18] is a heterogeneous log analysis system which
utilizes a hierarchical clustering approach with pairwise log
similarity measures to assist log formatting. As an extension
of HLAer, LogMine [19] is a hierarchical log parser that
is implemented using map-reduce framework, achieving
hundreds of times speedup compared with the unscalable
method. Different from log parsers like Spell, LogMine has
the flexibility to choose from various levels of granularities
for fixed values and variables. However, it does not guarantee
that the particular message types composed by the con-
stant strings in log printing statements could be generated
at some level. In terms of parallelization, a map-reduce
framework is carefully designed to use in different steps
of LogMine, e.g., in log clustering to compare each pair of
log messages, and in final sequential pattern generation. In
contrast, Spell could be done in parallel using multi-threads
processing, by simply assigning one thread to a new log
entry upon arrival.

All these structured log parsing methods focus on offline
batched processing or matching new log entries with previously
offline-extracted message types or regular expressions (e.g., from
source code). Hence, they cannot be used as an online stream-
ing structured log parser. Drain [14] parses log messages
using a fixed depth tree in an online fashion, but its first
step requires using regular expressions to filter out digits
and other parameter values etc., which requires domain
knowledge to do so. Even so, Drain is outperformed by
Spell which does not require any pre-parsing, as evaluated
in Section 5. As the first truly streaming log parser, Spell is
initially presented in [20]. Based on that, this journal version
has certain unique contributions which mainly include: 1)
an advanced index structure (inverted index) to improve ef-
ficiency; 2) split/merge heuristics to improve effectiveness;

3) parameters semantic inference to help users’ understand-
ing; 4) a parallel implementation of Spell to further speedup
its processing; 5) more detailed analysis and experiments to
fully evaluate different versions of Spell, and to compare
with more previous methods.

There are also commercial and open source softwares on
log management and analysis. Splunk is a leading log man-
agement system that offers a suite of solutions to find useful
information from machine data. ELK offers a rich set of
open-sourced tools that could gather logs from distributed
nodes, and then index, store, for users to query/visualize.
All these tools provide interface to parse logs upon their
arrival. However, their parsers are based on regular ex-
pressions defined by end users. The system itself can only
parse very simple and basic structured schema such as
timestamp and hostname, while log messages are treated
as unstructured text values.

3 Spell: STREAMING STRUCTURED LOG PARSER
We now present Spell, a streaming structured log parser for
system event logs. Since a basic building block for Spell is a
longest common subsequence (LCS) algorithm, hence, Spell
stands for Streaming structured Parser for Event Logs using
LCS. In what follows, we first review the LCS problem.

3.1 The LCS problem
Suppose Σ is a universe of alphabets (e.g., a-z, 0-9). Given
any sequence α = {a1, a2, a3, ..., am}, such that ai ∈ Σ
for 1 ≤ i ≤ m, a subsequence of α is defined as
{ax1

, ax2
, ax3

, . . . , axk
}, where ∀xi, xi ∈ Z+, and 1 ≤ x1 <

x2 < · · · < xk ≤ m. Let β = {b1, b2, b3, ..., bn} be another
sequence such that bj ∈ Σ for j ∈ [1, n]. A subsequence
γ is called a common subsequence of α and β iff it is
a subsequence of each. The longest common subsequence
(LCS) problem for input sequences α and β is to find longest
such γ. For instance, sequence {1, 3, 5, 7, 9} and sequence
{1, 5, 7, 10} yields an LCS of {1, 5, 7}.

The LCS problem has a long history and its variants
were also extensively studied [21], [22], [23], [24], [25]. Its
applications include diff utility used to find the difference
of two files, and version control systems such as Git.

Inspired by the usefulness of finding LCS in these
applications, we observe that an LCS-based method can
be developed to efficiently and effectively extract message
types from raw system logs. This is a seemingly natural
idea, yet has not been explored by existing literature. Our
key observation is that, if we view the output by a log
printing statement (which is a log entry) as a sequence, in
most log printing statements, the constant that represents
a message type often takes a majority part of the sequence
and the parameter values take only a small portion. If two
log entries are produced by the same log printing statement
stat, but only differ by having different parameter values,
the LCS of the two sequences is very likely to be the constant
in the code stat, implying a message type.

The merit of using the LCS formulation to parse system
event logs, compared to previously mentioned clustering
and iterative partitioning methods, is that we could still
derive a particular message type even with very few instances
of log entries produced by its log statement. The other benefit
of using the LCS approach is that, instead of relying on
an offline batched approach that is utilized by all existing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 4

methods, it is possible to parse logs using a streaming
approach, which is the main challenge we will describe next.

3.2 Basic notations and data structure
In a log entry e, we call each word a token. A log entry e
could be parsed to a set of tokens using system defined (or
as user input) delimiters according to the format of the log.
In general common delimiters such as space and equal sign
are sufficient to cover most cases. After tokenization of a
log, each log entry is translated into a “token” sequence,
which we will use to compute the longest common subse-
quence, i.e., Σ = {tokens from e1} ∩ {tokens from e2} · · · ∩
{tokens from eL}. Each log entry is assigned a unique line
id which is initialized to 0 and auto-incremented for the
arrival of a new log entry.

We create a data structure called LCSObject to hold
currently parsed LCS sequences and its related metadata
information. We use LCSseq to denote a sequence that’s the
LCS of multiple log messages (also known as an LCS se-
quence), which, in our setting, is a candidate for the message
type of those log entries. That said, each LCSObject contains
an LCSseq, and a list of parameter positions called paramPos
that indicates where in the LCSseq are the place holders for
parameter values (the positions of *) with respect to each
log entry. Finally, we store all currently parsed LCSObjects
into a list called LCSMap. When a new log entry ei arrives,
we first compare it with all LCSseq’s in existing LCSObjects
in LCSMap, then based on the results of these comparisons,
either assign an existing LCSObject as its message type, or
compute a new LCSObject and insert it into LCSMap.

3.3 Basic workflow
Our algorithm runs in a streaming fashion, as shown in
Figure 3. Initially, the LCSMap list is empty. When a new log
entry ei arrives, it is firstly parsed into a token sequence si,
using a pre-defined set of delimiters. After that, we compare
si with the LCSseq’s from all LCSObjects in the current
LCSMap, to see if si “matches” one of the existing LCSseq’s
or we need to create a new LCSObject and insert it into
LCSMap. This basic workflow is captured in Algorithm 1.
Next we will explain each step in detail.

Algorithm 1 Spell
Input: raw system log entries arriving in a streaming fashion
Output: LCSMap

init LCSMap as a list of LCSObjects and is initially empty;
while a new log entry e arrives do

parse e to a log token sequence s;
newLCS= LCSsearch(s, LCSMap); // details later
if newLCS is not NULL then

updateLCSMap(newLCS, LCSMap);
end if

end while
return LCSMap;

Get new LCS. Given a new log sequence s produced by
the tokenization of a new log entry e, we search through
LCSMap. For the ith LCSObject, suppose its LCSseq is qi, we
compute the value `i, which is the length of the LCS(qi, s).
While searching through the LCSMap, we keep the largest
`i value and the index to the corresponding LCSObject. In
the end, if `j = max(`′is) is greater than a threshold τ
(by default, τ = |s|/2, where |s| denotes the length of a
sequence s, i.e., number of tokens in a log entry e), we consider

the LCSseq qj and the new log sequence s having the same
message type. The intuition is that the LCS of qj and s is
the maximum LCS among all LCSObjects in the LCSMap,
and the length of LCS(qj , s) is at least half the length of s;
hence, unless the total length of parameter values in e is
more than half of its size, which is very unlikely in practice,
the length of LCS(qj , s) is a good indicator whether the log
entries in the jth LCSObject (which share the LCSseq qj)
share the same message type with e or not (which would be
LCS(qj , s)).

If there are multiple LCSObjects having the same max
` values, we choose the one with the smallest |qj | value,
since it has a higher set similarity value with s. Then we use
backtracking to generate a new LCS sequence to represent
the message type for all log entries in the jth LCSObject
and e. Note when using backtracking to get the new LCSseq
of qj and s, we mark ‘*’ at the places where the two
sequences disagree, as the place holders for parameters,
and consecutive adjacent ‘*’s are merged into one ‘*’. For
instance, consider the following two sequences:
qj = Command Failed on: node-235 node-236

s = Command Failed on: node-127

Use backtracking to get the new LCSseq of these two, the
result would be: Command Failed on: *. We can easily prove
that this backtracking method gives LCS(qj , s). Once this is
done, we update the LCSseq of the jth LCSObject from qj to
LCS(qj , s), and assign the jth LCSObject to e as its message
type.

If none of the existing qi’s shares an LCS with s that is
at least |s|/2 in length, we create a new LCSObject for e in
LCSMap, and set its LCSseq as s itself. The entire LCSsearch
algorithm for getting new LCS is shown in Algorithm 2.

Algorithm 2 LCSsearch
Input: the new log sequence s and current LCSMap
Output: a new LCS sequence newLCSseq (could be empty)

init max`=0;
init minold`=MAX INT;
init candidate pointer c to NULL;
for each LCSObjecti in LCSMap do

`i = |LCS(qi, s)|; // qi is the LCSseq of LCSObjecti
if (max` < `i) or (max`==`i and minold` > |qi|) then

max` = `i;
minold` = |qi|;
set c = i;

end if
end for
if max` < |s|/2 + 1 or max` < |qc|/2 + 1 then

assign NULL to newLCSseq, −1 to c, and return;
else

use backtracking to get the LCS(qc, s);
return newLCSseq=LCS(qc, s) and c;

end if

Add new LCS to current LCSMap. This step is pretty
straight-forward. After the new LCS sequence has been
calculated from last step, if it exists, the related LCSObject
is update in LCSMap, otherwise we create a new LCSObject
using the new log sequence and add it to LCSMap.

This completes the basic procedures in Spell, and many
standard logs could already be successfully parsed using
this method. Nevertheless, we can further improve its ef-
ficiency and effectiveness, especially for the cases when
message types differ only a little bit, or for logs having many
parameters.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 5

LC
S

O
bj

ec
t

LCSseq: Command has completed
successfully

paramPos: {empty}

new log entry: Command has completed
successfully

new log entry: Temperature (43C) exceeds
warning threshold

LCSMap

new log entry: Temperature (41C) exceeds
warning threshold

LCSMap

LC
S

O
bj

ec
t

LCSseq: Temperature * exceeds
warning threshold

paramPos: {1}

new log entry: no recent update

...
LCSMap

LC
S

O
bj

ec
t

LCSseq: Temperature * exceeds
warning threshold

paramPos: {1}

LCSMap

LC
S

O
bj

ec
t

LCSseq: Temperature (41C)
exceeds warning threshold
paramPos: {empty}

Fig. 3. Basic workflow of Spell.

3.4 Improvement on efficiency
In this section we show how to achieve nearly optimal time
complexity for most incoming log entries (i.e., linear to |s|,
the number of tokens in the token sequence s of a log entry
e). In our basic method in Section 3.3, when a new log entry
arrives, we’ll need to compute the length of its LCS with
each existing message type. Suppose each log entry is of
size O(n) for some small constant n (i.e., n = |s|), it takes
O(n2) time to compute LCS of a log entry and an existing
message type (using a standard dynamic programming (DP)
formulation). Let m′ be the number of currently parsed
message types in LCSMap. The method in section 3.3 leads
to a time complexity of O(m′ · n2) for each new log entry.

Note that since the number of possible tokens in a
complex system could be large, we cannot apply techniques
that compute LCS or MLCS efficiently by assuming a limited
set of alphabets [26], [27], i.e., by assuming small |Σ| values.

A key observation is that, for a vast majority of new log
entries (over 99.9% in our evaluation), their message types
are often already present in currently parsed message types
(stored by LCSMap). Hence instead of computing the LCS
between a new log entry and each exiting message type, we
adopt a pre-filtering step to find if its message type already
exists, which reduces to the following problem:

For a new string σ and a set of current strings
strs = {str1, str2, ...strm}, find the longest stri such that
LCS(σ, stri) = stri, and return true if |stri| >= 1

2 |σ|.
In our problem setting, each string is a set of tokens and

we simply view each token as a character.
1) Simple loop approach. A naive method is to simply

loop through strs. For each stri, maintain a pointer pi
pointing to the head of stri, and another pointer pt pointing
to the head of σ. If the characters (or tokens in our case)
pointed to by pi and pt match, advance both pointers;
otherwise only advance pointer pt. When pt has gone to
the end of σ, check if pi has also reached the end of stri. A
pruning can be applied which is to skip stri if its length is
less than 1

2 |σ|. The worst time complexity for this approach
is O(m · n).

2) Inverted list approach. To avoid going through the
entire strs set, we use an inverted index [28] based approach
which could skip checking many stris. The inverted index
I is built over strs, as shown in Figure 4. For each unique
character in strs, record its position (i, pos in stri) in all
stris that it appears in, sorted by i. Given this index I , the
procedure to find the subsequence of σ is as follows.

i) For each character in σ, find if it presents in I . If not,
then treat that character as a parameter and skip; otherwise
assign a unique, auto-increment id to the matching inverted
list (e.g. 1, 2, 3 on each arrow in Figure 4 for A, B, and C).

Inverted Index for Strs
= {'A B C', 'A C D', 'A D', 'E F'}

B:
C:
D:

A:

(2, 3) (3, 2)

(1, 1) (2, 1) (3, 1)
(1, 2)
(1, 3) (2, 2)

(4, 1)
(4, 2)

E:
F:

? :
A
B
P
C

1
2

3

Not found in Inverted
List, treat as parameter

Fig. 4. Find the subsequence of σ using Inverted Index.
ROOT

A E

B C D

C D

F

? : A B P C

parameter

Prefix tree of Strs:

Fig. 5. Find the subsequence of σ using Prefix Tree.
ii) For such matching lists, scan them using a sort-merge

join style method. Instead of trying to find equal items
across all lists (as that in sort-merge join), we try to find,
by following the order of assigned ids to these lists, if any
column with the same string id i in the inverted index
matrix could form a subsequence of σ. For example in
Figure 4, (1,1) from the list for A, (1,2) from the list for B,
and (1,3) from the list for C follow the order of assigned ids
and share the same string id value 1 and form a stri that’s a
proper subsequence of σ (by checking if the position values
are properly ordered). Note that this step will return all stris
in strs that satisfy stri = LCS(σ, stri).

iii) For all stris returned by last step, find the longest one
and check if its length is greater than 1

2 |σ|. This completes
the inverted index lookup procedure. In this approach, all
stris are considered, and the time complexity is onlyO(c·n),
where c is the average length of each inverted list, i.e. the
average number of duplicated characters in the set strs.

3) Prefix tree approach. Another possible approach is to
use a prefix tree [29]. In particular, we index stris in strs
using a prefix tree, and prune away many candidates.

An example is shown in Figure 5 where strs =
{ABC,ACD,AD,EF}, and they are indexed by a prefix
tree T . Instead of checking σ against every stri in strs, we
first check tree T and see if there is an existing stri that is
a subsequence of σ. If such a stri is identified, we apply the
length filter (i.e., check if |stri| > 1

2 |σ|). As shown in Figure
5, suppose σ=ABPC. Then by comparing each character of
σ with each node of T , we could efficiently prune most
branches in T , and mark the characters in σ that do not
match any node in T as parameters in a message type. In
this case, we will successfully identify ABC as the message
type for σ, and P as its parameter.

For most log entries, it is highly likely that their message
types already exist in tree T , so Spell will stop here, and the
time complexity is only O(n). This is optimal, since we have
to go through every token in a log entry at least once. How-

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 6

ever, this approach only guarantees to return a stri if such
stri = LCS(σ, stri) exists. In contrast to the inverted list
approach, it does not guarantee that the returned stri is the
longest one among all stris that satisfy stri = LCS(σ, stri).
For example, if σ=DAPBC while strs = {DA,ABC}, the
prefix tree returns DA instead of ABC.

In practice, we find that although the prefix tree ap-
proach does not guarantee to find the longest message
type, its returned message type is almost identical to the
results of simple loop and inverted list methods. That’s
because parameters in each log record tend to appear near
the end. In fact one of the state-of-art offline methods [1]
finds message types by using weighted edit distance and
assigns more weight to the token closer to end as parameter
position. In particular, the evaluation results show that for
the Los Alamos HPC log with 433,490 log records, for each
new log entry, the message type returned by the prefix tree
approach (if found), is 100% equal to the results returned
by the simple loop and inverted list methods. But there also
exist cases where the returned message type by prefix tree
is fewer than 1

2 number of tokens (12 |s|) for a new log entry
e while e’s message type still already exists in LCSMap.

That said, the complete pre-filtering step in Spell is, for
each new log entry e, first find its message type using prefix
tree, and if not found, apply the inverted index lookup. In
our evaluation section we compare Spell with pre-filtering
with the naive LCS method (i.e., computing LCS between e
and every existing message type usingO(mn2) time), which
shows that Spell with our pre-filtering step produces almost
equally good results for all logs but with much less cost.

For log entries (fewer than 0.1% in our evaluation) that
do not find message types using the pre-filtering step, we
have to compare the new log entry e with all existing
message types to see if a new message type could be
generated. However, instead of computing LCS between
each message type q and e (and then find the length of this
LCS), we first compute their set similarity score using Jaccard
similarity. Only for those message types that have more than
half common elements (i.e., tokens) with e do we compute
their LCS. Then if their LCS length exceeds 1

2 |s|, we adjust
that message type, and adjust inverted index I and prefix
tree T accordingly. Otherwise e is a new message type, so
we simply create a new LCSObject in LCSMap, as well as
update I and T .

3.4.1 Parallelization

Spell is embarrassingly parallel on a server with multi-
core processors. For instance, the new log entry could be
compared with each message type concurrently.

As previously mentioned, in large scale log datasets
used in our evaluation, which are generated by real world
production systems, for over 99.9% new log entries, their
message types already exist in current LCSMap. Only for
the remaining fewer than 0.1% log entries, does LCSMap
needs to be updated, either by adding a new LCSObject or
updating an existing LCSObject. Therefore, to process all
log entries, LCSMap only needs to have exclusive update
operations for less than 0.1% of the times; all others are
read operations which could be done in parallel. We further
design a parallel version of Spell using readers-writer lock
[30], where a write lock needs to be acquired exclusively

Algorithm 3 Spell (A parallel version)
Input: raw system log entries arriving in a streaming fashion; global
readers-writer lock RWLock
Output: LCSMap

init LCSMap as a list of LCSObjects and is initially empty;
create a thread pool with a fixed size equal to number of CPU cores;
while a new log entry e arrives do

assign a thread from thread pool to execute:
parse e to a log token sequence s;
Acquire read lock RWLock;
newLCS= LCSsearch(s, LCSMap);
Release read lock RWLock;
if newLCS is not NULL then

Acquire write lock RWLock;
updateLCSMap(newLCS, LCSMap);
Release write lock RWLock;

end if
end while
return LCSMap;

while multiple read locks could be acquired simultaneously.
The modified basic workflow is presented in Algorithm 3.
All differences from Algorithm 1 are written in italic. Also,
the inverted list and prefix tree data structures presented in
Section 3.4 only need to be updated when LCSMap does.
Hence, the related write operations could be viewed as
a procedure inside function “updateLCSMap”, while read
operations inside “LCSsearch” in Algorithm 3.

3.5 Improvement on effectiveness
The Spell method as presented already achieves a signif-
icantly better score on all effectiveness measures (e.g. F-
measure and Accuracy), as we will show in evaluation. For a
small portion of message types that Spell fails to recognize,
we further improve its effectiveness through refinement
techniques. Such refinement takes place when the number of
processed log entries has reached a user-defined threshold,
whenever the system is idle or under-utilized (e.g., arrival
rates of new log entries become low), and/or right before
the message type lookup procedure completes. The refine-
ment is achieved via two steps, namely, split and merge.
Split procedure. Consider the following log entries:
boot (command 1880) Error: Console-Busy Port already in use
boot (command 2359) Error: Console-Busy Port already in use
wait (command 3964) Error: Console-Busy Port already in use

By the basic Spell as illustrated so far, the message types
extracted would be a single message type:
* (command *) Error: Console-Busy Port already in use

However the correct message types should be:
boot (command *) Error: Console-Busy Port already in use
wait (command *) Error: Console-Busy Port already in use

We observe that, as stated in previous literature [1],
[9], the token positions that contribute to message types have
fewer number of unique tokens. By utilizing this feature, we
introduce a split method that is applied to each LCSObject
in LCSMap. For this purpose, we introduce another field
in an LCSObject called params which contains key-value
pairs that store all parameter values (as keys), seen from the
history, at each parameter position, and how many times
each parameter value has been seen (as values). These key-
value pairs can be easily produced and/or updated during
the backtracking process to produce LCS.

In particular, for each LCSObject O, O has a paramPos
list that contains the token positions as place holders for
parameters for the message type LCSseq of O. So the basic
idea of split is to leverage the above observation and split

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 7

some existing parameters, and include the parameter values
into message type(s). Specifically, for each LCSObject O
in LCSMap, we go through O.params, its key-value pair
parameter list, and count the number of unique tokens at
each parameter position. We find the position having the
least number of unique tokens. If the number of unique
tokens in that position is less than a split threshold, and
no token contains any digit value, we consider that position
will contribute to a message type. In that case we will split
O to several new LCSObjects, with that parameter position
in O.LCSseq being replaced by a unique token in the same
position in each new LCSObject’s LCSseq.

For example, in the above example, the first parameter
position has only 2 unique tokens, while the second pa-
rameter position has many (in the actual log file). So the
first parameter position has a high probability being part
of a message type. The split procedure will replace the first
parameter ‘*’ in the LCSseq with each unique token (boot
and wait in this example) at the same position, leading to
two new LCSObjects with two new LCSseqs as above.
Merge procedure. Spell works perfectly with well formatted
log messages, where the number of tokens in message types
is more than that in parameters, and parameters vary in
different log messages. Recall that Spell uses a threshold
to distinguish whether the LCS of two sequences is a valid
message type; there could be situations where the number
of parameters in one log entry is so many such that this
threshold based approach cannot extract the message type
properly. Consider the case below:
Fan speeds (3552 3534 3375 4354 3515 3479)
Fan speeds (3552 3534 3375 4299 3515 3479)
Fan speeds (3552 3552 3391 4245 3515 3497)
Fan speeds (3534 3534 3375 4245 3497 3479)
Fan speeds (3534 3534 3375 4066 3497 3479)

Clearly, they should lead to a single message type:
Fan speeds: (*)

However, each of the log messages contains 10 tokens, and
the message type has only 4 tokens (including parentheses).
The message types output by Spell as presented so far is:
Fan speeds (* 3552 * 3515 *)
Fan speeds (3534 3534 3375 * 3497 3479)

Though their LCS has correctly identified Fan speeds, its
length is less than the threshold τ we used to qualify an
LCSseq as a message type. So in this case, Spell will identify
the above example as two distinct message types.

To address this problem (when the number of parame-
ters in a log entry is too many), we introduce a merge pro-
cedure, which first clusters current LCSObjects that might
have the same message type together, and then count the
number of distinct tokens at each position of LCSseqs from
these LCSObjects. In particular, we partition LCSMap into a
set of clusters, until each cluster satisfies the followings:

(i) For a subset of token positions, at each such position,
there is only one unique token for all LCSObject.LCSseq at
this position from this cluster. For example, in previously
mentioned example, for different message types in one
cluster, all log tokens at the first and second positions should
be the same: Fan and speeds.

(ii) For every other token position, the number of unique
tokens of all LCSObject.LCSseq from this cluster exceeds
a merge threshold. The merge threshold is different for
positions having numbers and positions having only strings.

Currently we consider if any token in one position has digits
in it (might be ids or values), then that position could be a
parameter position, which works pretty well in practice. For
instance, in previous example, except Fan speeds (), all other
positions contain different values of digits.

After this partition step, we consider all LCSObjects
inside one cluster have the same message type. So we merge
them into a single LCSObject, assign the positions from (ii)
as parameter positions, and the tokens from (i) are inserted
into LCSseq as part of the message type. As in the above
example, the positions having only one unique token are
positions 1, 2, 3, 10, i.e., Fan speeds: (), and the rest having
many unique tokens are identified as parameter positions.

3.6 Complexity analysis
Originally, with the basic workflow of Spell shown in Figure
3, when a new log entry arrives, we first try to find if
its message type exists in current LCSMap, and update
LCSMap if not. With the improvements proposed in Section
3.4 and Section 3.5, when a new log entry arrives, we first
search if a path in prefix tree (i.e., an existing message
type) serves the purpose of its message type; if not, we
further find its message type in inverted index; finally, if
its message type is still not found, we would compare it
with all message types in LCSMap using naive dynamic
programming approach, and update LCSMap accordingly.
Split and merge procedures could be applied periodically to
clean up current parsed message types, or simply after all
log entries are generated.

In this section, we analyze Spell’s complexities with all
improvements applied.

3.6.1 Time complexity
Spell ensures that the size of LCSMap increases by one only
when a new message type has been identified; otherwise,
an existing LCSObject will be assigned to a new log entry,
with an updated message type if necessary. This guarantees
that LCSMap size is at most the number of total message
types (which is m) that could be produced by the corre-
sponding source code, which is a constant. At the beginning
of Section 3.4, we’ve shown that for the basic Spell, the
time complexity for each new log entry is O(m · n2), since
the naive dynamic programming method to compute LCS
between a log entry and a message type is O(n2) for log
entries of size O(n), whereas our backtracking method is
often cheaper and we only do it with a target message type
in LCSMap which has the longest LCS length with respect to
the new log entry and the length exceeds a threshold, thus
it is computed at most once for each new log message.

With the pre-filtering step, for each log entry, we’ll first
try to find its message type in prefix tree, then inverted
index, and only for the small portion that are still not
located, the LCSMap needs to be compared against. For L
log records, suppose the number of log records that fail
to find message types in pre-filtering step is F , and the
number of log records that are returned in inverted index
step is I . The amortized cost for each log record is only
O(n + (I+F)

L · c · n + F
L · m · n

2), where c is the average
number of duplicated tokens in all message types, m is the
number of message types and n is the log record length.
In our evaluation, (I+F)

L < 0.01 and F
L < 0.001, thus the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 8

cost for each log record to find its message type in Spell is
approximately only O(n) in practice.

For the complexity of the split method, note that the
split threshold is a small constant, so the total size of an
adjusted LCSMap is at most a small constant times of
the previous LCSMap size, which is still O(m). The split
method itself clearly takes only O(m) cost. In the merge
procedure, the LCSMap is first repeatedly partitioned until
each cluster satisfies the conditions to be merged. Note this
is done over currently parsed message types. Hence, the
partition cost is at most the number of currently parsed
message types, O(m), and the LCSMap size only reduces
after a merge step. Note that the split/merge heuristics are
executed very infrequently (only once in our evaluation),
thus their impacts to the amortized cost on each log entry
could be mostly ignored.

3.6.2 Space complexity
Spell keeps certain data structures to store message types
parsed so far, such that incoming new log entries could
be compared against. As mentioned in Section 3.6.1, the
number of message types stored in LCSMap is in the
order of m, which is the number of log printing state-
ments in source code, i.e., a constant. A message type
is a sequence of tokens, e.g. Temperature * exceeds
warning threshold, where the average number of to-
kens per message type is typically fewer than 100, and the
average length of characters per token is typically fewer
than 10. Therefore, suppose the memory allocated for each
character is 1 byte, it only takes less than 1 kilobyte to store
one message type on average. Thus, the total memory to
store all message types in LCSMap is O(m) kilobytes.

Section 3.6.1 proposes to use prefix tree and inverted in-
dex to improve Spell’s efficiency. These are index structures
built on top of all existing message types in LCSMap, which
get updated only when LCSMap does. For prefix tree, many
log tokens are shared across message types. As shown in
Figure 5, to store message types A B C; A C D; A D; E F
(10 tokens in total), the prefix tree only needs to allocate
memory for tokens A B C C D D E F (8 tokens in total).
Although prefix tree introduces new memory usage to store
relevant pointers at each node, the added memory together
is stillO(m) kilobytes. The case is similar for inverted index.
As shown in Figure 4, to store message types A B C; A C D;
A D; E F (10 tokens in total), inverted list only needs to
allocate memory for all distinct tokens across all message
types, which are A B C D E F in this case (a total of 6),
and position values pairs, which have the same amount as
the number of tokens in LCSMap. To summarize, by adding
prefix tree and inverted list for efficiency improvement, the
extra memory introduced is still O(m) kilobytes, i.e., in the
same order of storing all message types in LCSMap.

Besides the essential memory usage to store message
types in LCSMap and other data structures, Spell also needs
certain temporary memory, e.g., in order to use dynamic
programming to compare a new log entry with each existing
message type. Also, for split and merge procedures, Spell
needs to store (parameter value, occurrence) pairs for each
parameter position, as described in Section 3.5, which is only
stored in LCSMap, not prefix tree or inverted index. What’s
more, for the purpose of our paper evaluation, we also store

line ids for each log entry to indicate which message type
it belongs to. The summed memory usage besides message
types could be up to megabytes in our evaluation.

To summarize, the memory cost to store message types
is O(m) kilobytes, which includes all message types storage
in LCSMap, and the whole memory usage of prefix tree
and inverted index, where m is the number of log printing
statements in the source code (a constant), and is typically
up to hundreds. However, the memory cost to store param-
eter values and line ids could be up to megabytes, making
the added memory of prefix tree and inverted index (O(m)
kilobytes) negligible.

3.7 Semantics inference of parameter fields
Besides the ability to accurately extract message types from
raw log messages, Spell is also capable of automatically in-
ferring a semantic meaning for each parameter position. Not
only does this help end users to understand system status
with the summarized view of message types provided by
Spell (as in Table 1), but it also provides insights for root
cause analysis with relevant message types diagnosed by
further data analytics schemes.

A semantic meaning for a parameter position is simply
the type (or nature) of parameter values that position holds.
For example, for log message Temperature (41C) exceeds

warning threshold, the message type is Temperature *
exceeds warning threshold and the semantic meaning for
the parameter position * is temperature. The semantic
meaning for this particular case is easy to infer, as indi-
cated by the noun prior to the parameter position. How-
ever, in many cases it is difficult to infer the semantic
meanings of a parameter field simply based on the asso-
ciated message type itself. For instance, for log message
Command Failed on: node-235 node-236, the message type
is Command Failed on: *. Although human can easily make
a guess in this case for the semantic meaning based on
the parameter values, e.g., the semantic meaning of this
parameter is “node(s)”, it is not obivious for a parsing
algorithm to automatically infer a semantic meaning only
based on the message type (i.e., Command Failed on: *).

To arm Spell with the ability of recognizing parameter
semantics based on parameter values, we adopt the concept
of “named-entity recognition (NER)” [31] from natural lan-
guage processing (NLP), and design a two-step procedure
for Spell to automatically generate semantic meanings for
parameter positions.

Step 1. There are cases where the semantic meaning of
a parameter field could be inferred from the message type
it associates with. For example, temperature in the above
example. The question is which word in a message type
do we pick up as a candidate for parameter semantics,
and under what condition that word could be used as a
semantic meaning. Our observations are as follows. First, it
is obvious that a word next to (prior or after) a parameter
position is mostly related to the meaning of that position,
e.g., temperature * and * seconds. Second, if the word
is a noun or a non-standard English word, it most likely
represents the semantic meaning for that parameter posi-
tion. The reason for “non-standard English word” is that it
might be a system-specific name. For example, in OpenStack
log message type Total usable vcpus: *, “vcpus” means

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 9

“virtual CPUs”, which is a term used for Virtual Machines.
Based on these two observations, if either the word prior
or after a parameter position is a noun or a non-standard
English word, we would add it as a possible semantic mean-
ing for that position. A parameter position may have two
potential semantic meanings if both words prior and after it
satisfy our criteria. This is acceptable because the purpose of
semantic meaning extraction is to help users understand the
summarized message types, hence we should present both
possibilities to users if the algorithm is not certain which
one it should be.

Step 2. For other cases when a semantic meaning cannot
be found using Step 1, such as Command Failed on: *, we
leverage the ideas used in entity resolution to generate
parameter semantics. The concept of entity resolution is to
identify whether two entities are in fact representations of
the same object, by comparing the similarities of underlying
attributes of these two entities. We could treat a parameter
position as an entity and all parameter values at that posi-
tion as its underlying attributes. With that, we could find out
whether two parameter positions have the same semantic
meaning by comparing the similarities of their parameter
values. Then, if two parameter positions have the same
semantic meaning after entity resolution, of which one has
been assigned a semantic meaning in Step 1, the remaining
unknown one could be given the same meaning as the
known one. Specifically, for each parameter position, all
parameter values belong to that position form a group. We
use the semantic meaning of a parameter position to denote
the name of its associated group. Then the task becomes
to find representative names for those unnamed groups.
For example, for message type Targeting nodes: *, the last
parameter position has an associated group with a name
“node” and a group of parameter values, e.g., {node-235,
node-236, node-231}. Our idea is as follows. For each un-
named group, we find possible names by checking its inter-
section with each of the named groups. If an intersection size
is large enough (e.g., more than half of the unnamed group
size), then we use the name of the corresponding named
group as a potential candidate for the unnamed group. For
instance, for message type Command failed on: *, the last
parameter position has an unnamed group C which contains
parameter values of {node-235, node-236, node-230}. By
comparing C with an named group called “node”, which
has values of {node-235, node-236, node-231}, we find the
intersection of the two is {node-235, node-236}, larger
than half of C’s size, so the name “node” could be used to
denote group C, which represents the semantic meaning of
the last parameter position in message type Command failed

on: *. In this step, we compare each pair of groups, and
assign all possible names as potential semantic meanings for
a group, i.e., a parameter position. Similar with Step 1, one
parameter position could have multiple semantic meanings.

We evaluate this two-step procedure in Section 5.3 on
various types of system logs, which shows that it is able
to effectively resolve semantic meanings for most of the
parameter positions.

4 REMARKS
Parsing each log message to extract their message type,
though a vital step for many further data analysis, is not an

easy task. It should be noted that no automatic approach is
perfect for all possible logs. For example, even the approach
that extracts log schema from the source code [5] that
produces the corresponding log in the first place cannot
achieve 100% accuracy. We’ll show in our evaluation that
Spell with split and merge has achieved over 90% accuracy
in most cases, and even close to 100%, without the access to
any source code.

We’d also like to highlight that the LCS-based construc-
tion is not similar to the edit distance based approach as
presented previously in [1]. A crucial difference of the two
is that the LCS sequence of two log messages is naturally a
message type, which makes streaming log parsing possible.

Note that, stack traces and/or minidumps generated
accompanied with system errors compose an important part
of system logs. Although particularly interesting for error
diagnosis, these are not the focus of Spell. The purpose of
Spell log parser is for automatic system log analysis (e.g.,
automatic anomaly detection), or to provide a summarized
view for end users while numerous log entries are being
generated each second. However, stack traces are typically
used for post-analysis after a known error, and are too impor-
tant to be summarized. Thus, although Spell is capable of
summarizing system logs based on their similarity whether
they are event console logs or minidumps, currently we only
focus on event console logs that are automatically generated
by log printing statements in the source code.

It is straight-forward to integrate Spell into the open-
source ELK stack. Instead of parsing logs using user-defined
regular expressions, we could do automatic message type
parsing upon each log entry’s arrival. Existing ELK stack
only works as a key word search engine. With the streaming
structured log parsing feature provided by Spell, ELK has
the potential to become a full-fledged log data warehouse
and is able to provide end-users with much more sophis-
ticated operations such as roll-up and drill-down, as in
a traditional data warehouse setting for structured data,
through its Kibana interface. What’s more, this happens
while new log entries continue to arrive in a streaming
fashion.

We also want to highlight that Spell has been success-
fully applied in an automatic log anomaly detection system
named DeepLog [32]. Because Spell is capable of extracting
message types in an online fashion without any offline
pre-processing, it is a natural fit to such online anomaly
detection systems which are agnostic to log formats.

5 EVALUATION

In this section, we evaluate the efficiency and effectiveness
of Spell, by comparing it with previous popular and state-of-
the-art log parsing algorithms, on multiple real log datasets
with different formats. All experiments were executed on
a Linux machine with an 8-core Intel(R) Core(TM) i7-3770
CPU @ 3.40GHz computer. We’ll show that Spell not only
is able to parse logs in an online streaming fashion using
no prior knowledge like accessing source code, but also has
outperformed the competing offline methods in terms of
both efficiency and effectiveness.

We compare Spell with three log parsing methods:
IPLoM [9], [33] (state-of-the-art offline algorithm), an offline
clustering-based log parser [1] which we refer to as CLP,

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 10

and a fixed-depth tree online log parser called Drain [14].
The idea of IPLoM is to partition the entire log into multiple
clusters, where each cluster represents a set of log entries
printed by the same print statement. The partition is done
using a simple 3-step heuristic: first partition by each log
record length; then partition each cluster by the token po-
sition having least distinct tokens; and finally partition by
the bipartite mapping between tokens in each cluster. It is
so far the most lightweight offline automatic log parsing
algorithm. CLP, on the other hand, is a frequently used
algorithm as the first step of multiple log mining efforts
[1], [2], [3], [7]. It also partitions the log into clusters, while
by first clustering using weighted edit distance, and then
repeatedly partitioning until all clusters satisfy the heuristic
- each position either has the same token, or is a parameter
position. Similar to Spell, Drain utilizes a tree structure
to guide log template search. Unlike Spell, its first step is
to preprocess by domain knowledge, i.e., removing tokens
matching specific regular expressions. Drain maintains a
fixed-depth tree where the first layer nodes represent log
entry length, whose subtrees are the paths of first several
tokens (e.g., first 3 tokens) of different log messages. Finally,
each leaf node contains multiple log groups to match with.

TABLE 2
Parameters for all three algorithms

Spell
message type threshold τ = 0.5
split threshold = 8
merge threshold = 10
CLP
edit distance weight ν = 10
cluster threshold ς = 5
private contents threshold % = 4

IPLoM
file support threshold = 0.01
partition support threshold = 0
lower bound = 0.1
upper bound = 0.9
cluster goodness threshold = 0.34
Drain
depth = 3∼4
st (similarity threshold) = 0.3∼0.5

Table 2 shows the default values of key parameters
used for each algorithm. For parameters with recommended
values that were clearly stated in the original papers, such as
all parameters for IPLoM [9], we simply adopt those values.
For others that were not clearly specified, we tested the
corresponding method with different values until we get
the best result (for the same log data) as reported for that
method in the original paper. Note that Drain uses different
parameters for different log datasets, details of which could
be found in [14], whereas Table 2 shows parameter ranges.

TABLE 3
Log datasets (Count: the total number of log entries)

Log type Count Message type ground truth
Los Alamos HPC log 1 433,490 available online2

BlueGene/L log1 4,747,963 available online3

HDFS log 100,000 obtained from Xu etc. [5]
OpenStack Cloud log 106,838 parsed from source code

The log datasets used are shown in Table 3. Besides
the two supercomputer logs that were commonly used for
evaluation by previous work [1], [2], [3], [7], [9], [33], we also
used log datasets from more recent popular systems: HDFS
log and OpenStack log. HDFS is a widely used file system
and its log datasets have been analyzed for automatic log

1. CFDR Data, https://www.usenix.org/cfdr-data
2. Los Alamos National Lab HPC Log message types, https://web.

cs.dal.ca/∼makanju/iplom/hpc-clusters.txt
3. BlueGene/L message types, https://web.cs.dal.ca/∼makanju/

iplom/bgl-clusters.txt

anomaly detection in multiple works [2], [5], [12], where
the log parsing part is done either by using source code
template or offline processing. OpenStack is a popular open
source cloud infrastructure. We setup an experiment in
CloudLab [34], run a script to repeatedly create project,
network, virtual machine, and run various virtual machine
tasks for a week. A total of 106,838 log records are generated
by OpenStack’s four major components: Nova, Neutron,
Keystone and Ceilometer. We find the corresponding mes-
sage types from OpenStack’s source code, and use regular
expressions to match each log entry with its message type
to generate the ground truth to be compared with.

5.1 Efficiency of Spell

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

log size (£ 105, Los Alamos)

10-1

100

101

102

103

104

105

ru
n
ti

m
e
 (

se
co

n
d
s)

5 10 15 20 25 30 35 40 45 50

log size (£ 105, Blue Gene)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ru
n
ti

m
e
 (

se
co

n
d
s
£

 1
0
3
)

Spell (naive LCS)

Spell (with split and merge)

Spell (with split)

Spell (basic)

IPLoM

Drain

CLP (fixed threshold)

CLP (auto threshold)

Fig. 6. Efficiency comparison of different methods.

Figure 6 shows the total runtime of different methods
when log size (the number of log records) grows big-
ger. Note that we tested different alternatives of the Spell
method:
• Spell (naive LCS): compute the LCS of a new log entry

and each existing message type using DP.
• Spell (basic): Spell with the pre-filtering step.
• Spell (with split): Spell with pre-filtering and split.
• Spell (with split and merge): Spell with pre-filtering and

split and merge.
Figure 6 left shows the results on Los Alamos HPC Log.

Note that runtime is measured by logarithm scale. To parse the
entire log with 433, 490 entries, Spell with naive LCS is
about 75 seconds while it’s only 5 seconds with pre-filtering.
For Spell with pre-filtering, adding either split or merge or
both does not introduce significant overhead; their runtime
are nearly identical to Spell with pre-filtering. But running
split/merge, however, helps to improve the effectiveness
measures as we’ll see later.

IPLoM shows the best efficiency which is similar to
Drain, whereas Spell (with pre-filtering) is only slightly
slower (within seconds). The CLP method has the worst
efficiency (2-4 orders of magnitude slower than IPLoM and
Spell). We tested two variants of CLP:

1) CLP (auto threshold): it automatically sets the cluster
threshold ς by k-means clustering. When log size is bigger
than 100,000, it’s already too slow to run to completion.

2) CLP (fixed threshold): it uses a fixed threshold 5 calcu-
lated from smaller log file, which significantly improves the
runtime. However it’s still much slower than other methods.
In later experiments we only use CLP with fixed threshold
if applicable, as CLP with auto threshold is simply too
expensive.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 11

TABLE 4
Amortized cost of each message type lookup step in Spell (unit: milliseconds)

prefix tree inverted index naive LCS
Los Alamos HPC log 0.006 0.015 0.175
BlueGene/L log 0.011 0.077 0.580

TABLE 5
Number (Percentage) of log entries returned by each step

Los Alamos HPC log BlueGene/L log
prefix tree 397,412 (91.68%) 4,457,719 (93.89%)
inverted index 35,691 (8.23%) 288,254 (6.07%)
naive LCS 387 (0.09%) 1,990 (0.042%)

TABLE 6
Runtime on HDFS and OpenStack Logs (unit: seconds. CLP: with fixed threshold;

Spell 1: Spell with split; Spell 2: Spell with split and merge)
CLP IPLoM Drain Spell Spell 1 Spell 2

HDFS 3786.83 5.76 2.12 2.80 2.90 2.99
OpenStack 21053.22 8.34 3.13 4.22 5.23 5.52

Figure 6 right shows the results on Blue Gene Log. The
runtime in this figure is measured in normal decimal scale. We
didn’t include CLP in this experiment: even CLP with fixed
threshold is too slow to finish as the Blue Gene log has
nearly 5 million entries.

Here the advantage of our pre-filtering step is clearly
demonstrated. In particular, Spell with pre-filtering has
outperformed IPLoM in terms of efficiency. With prefix tree,
when the log size grows much faster than the number of
message types, most log entries will find a match in prefix
tree, and return immediately. Then for the majority of the
rest, the message types could be found in inverted index.
Only for a small amount of log records that are not matched
in pre-filtering step, we will compare it with each existing
message type. Noticeably, the runtime of Spell (naive LCS)
increases exponentially. That’s because when log size grows
bigger, more message types also show up, and when each
new log entry comes, it may need to be compared with a
larger number of message types. This result clearly shows
the importance of the pre-filtering step and how it has
effectively mitigated the efficiency issues in the basic Spell
method.

The amortized cost for each log entry to find its message
type using different lookup method in the pre-filtering step
is shown in Table 4 (in milliseconds). Recall that for each
log entry, Spell first tries to find its message type in prefix
tree, then inverted index, and finally uses naive LCS if not
found in previous two steps. Table 5 shows the number
(percentage) of log entries that are returned in each step,
showing that over 91% could be processed in prefix tree
in O(n) time, and over 99.9% in total could be processed
by prefix tree and inverted index combined. The expensive
naive LCS computation is only applied to less than 0.1% of
log entries. Hence much overhead is reduced by pre-filtering
step, we’ll show later that it provides almost identical results
with the costly naive LCS method.

The runtime comparisons on HDFS and OpenStack log
datasets are shown in Table 6, which shows similar results
that Spell is as efficient as IPLoM and Drain, and much more
efficient than CLP.

5.1.1 Parallelization evaluation
To further improve Spell’s efficiency, Algorithm 3 presents a
parallel implementation of Spell, by utilizing CPU’s multi-
core structure. In this experiment, we simply allocate 8
threads to utilize 8 CPU cores on our machine. The thread

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

log size (£ 105, Los Alamos)

1

2

3

4

5

6

ru
n
ti

m
e
 (

se
co

n
d
s) Sequential

Parallel

5 10 15 20 25 30 35 40 45 50

log size (£ 105, Blue Gene)

20

40

60

80

100

120

140

160

ru
n
ti

m
e
 (

se
co

n
d
s) Sequential

Parallel

Fig. 7. Runtime for sequential and parallel implementations of Spell.
pool and readers-writer lock are implemented using Boost
C++ libraries [35]. Figure 7 shows the performance of the
parallel implementation compared with a sequential ver-
sion. This seemingly naive implementation achieves signif-
icant runtime improvement, which shows Spell’s potential
to be improved further with finer granularity locks and on
a more advanced platform.

Note that parallelization may change the order of new
log entries’ updates to LCSMap, thus the final accuracy
and F-measure could be different from the results of the
sequential implementation. We compare the results and
find the difference negligible, because of the abundant log
messages there are for each message type.
5.2 Effectiveness of Spell
In this section we evaluate the effectiveness of Spell. After
parsing, the log file is processed into multiple clusters,
where each cluster represents one message type with the
associated log records (as produced by the corresponding
log parsing method). A parsed message type is considered
as correct if all and only if all log records printed by that
message type (as identified through the ground truth) are
clustered together. We run each method, compare the results
with the ground truth generated by matching each log entry
with its true message type from Table 3, and calculate four
measures to evaluate on: Precision, Recall, F-measure and
Accuracy. Precision means among all the message types
generated, how many match the true message types from
ground truth. Recall is the percentage of “number of correct
message types generated” over “total number of true mes-
sage types in ground truth”. F-measure is a combination
of Precision and Recall, which is 2·Precision·Recall

Precision+Recall . Finally,
Accuracy indicates the total number of log entries that are
parsed to correct message types over the number of total
processed log records. Note that, Accuracy measures at
a per log entry level, while all others measure at a per
message type level. As is shown later, Accuracy is in general
higher than Precision, which is intuitive because a message
type is more likely to be parsed correctly if the number of
log entries having that message type is big, due to more
variations for parameter values.

Figure 7 shows the comparison on supercomputer logs.
With more log entries, number of message types also in-
creases; and they don’t necessarily show up uniformly
over time. Hence, the effectiveness of a method does not
necessarily show a steady trend as log grows. We can see
that in almost all charts, Spell without merge/split already
outperforms CLP, IPLoM and Drain. Spell with only split
has further improved the effectiveness (and quite signifi-
cantly in some cases). In the end, Spell with merge and split
has consistently and significantly outperformed all other
methods on the final measures of F-measure and Accuracy
for both data sets.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 12

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

log size (£ 105, Los Alamos)

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

log size (£ 105, Los Alamos)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
ca

ll

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

log size (£ 105, Los Alamos)

0.0

0.2

0.4

0.6

0.8

1.0

F
-m

e
a
su

re

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

log size (£ 105, Los Alamos)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a
cc

u
ra

cy

IPLoM Spell (basic) Spell (with split) Spell (with split and merge) Drain CLP (fixed threshold)

(a) Los Alamos log

5 10 15 20 25 30 35 40 45 50

log size (£ 105, Blue Gene)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p
re

ci
si

o
n

5 10 15 20 25 30 35 40 45 50

log size (£ 105, Blue Gene)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

re
ca

ll

5 10 15 20 25 30 35 40 45 50

log size (£ 105, Blue Gene)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
-m

e
a
su

re

5 10 15 20 25 30 35 40 45 50

log size (£ 105, Blue Gene)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a
cc

u
ra

cy

IPLoM Spell (basic) Spell (with split) Spell (with split and merge) Drain

(b) Blue Gene log
Fig. 8. Effectiveness comparison of different methods.

More specifically, in terms of Precision, Spell with merge
has greatly improved its performance in this measure com-
pared with Spell without merge. That’s because merge
will merge multiple message types into fewer ones, which
reduces the total number of message types generated, the
denominator of the Precision measure. The sudden jump of
IPLoM from point 3.0×105 to 3.5×105 in Figure 8(a) is due
to its clustering method. In IPLoM, if the size of one cluster
is too small compared to the total log size (controlled by
the “file support threshold” in Table 2), that whole cluster
is grouped into an “outlier” cluster, which reduces the total
message types being generated. When log size grows from
3.0 × 105 to 3.5 × 105, for some clusters, the percentage
of each cluster size over whole log size becomes below the
threshold, hence grouped into one cluster, leading to the
boost in Precision. For Drain, since its fixed-depth tree is
constructed on raw log entries, instead of log templates as
in Spell, a significant amount of log messages cannot be
matched and are treated as log templates (clusters) them-
selves. Hundreds of thousands of log clusters are generated
because of this, rendering Precision to almost 0.

In terms of Recall, Spell with split has greatly improved
its performance compared to basic Spell. This is because that
some similar message types are parsed as one message type
by LCS, and split helps significantly in this case.

F-measure shows that Spell without split and merge can
already outperform other methods, and using split/merge
could further improve its score. Spell achieves much better
Accuracy than other methods. Spell with split and merge
could achieve almost 100% accuracy. IPLoM Accuracy is
acceptable in Figure 8(a) for Los Alamos log, and becomes
very poor in Figure 8(b) for Blue Gene log. CLP does not
achieve very good results for these HPC logs due to the facts
that: 1) the cluster threshold ς is fixed to save running time;
2) a large portion of HPC logs only contain one word like
“running” and “down”, so their weighted edit distances
could be small enough to be (wrongfully) clustered into one
group. Drain’s F-measure is close to 0 because of its low
Precision due to too many log templates being generated.

Note that the pre-filtering step in Spell may miss an ex-
isting message type t for a new log entry e if LCS(t, s) 6= t
but |LCS(t, s)| > |LCS(t′, s)| when there is another exist-
ing message type t′ that satisfies t′ = LCS(t′, s), where s is
the token sequence of e. To evaluate such potential degrade
to the effectiveness due to the pre-filtering step, we show a
comparison in Table 7. The result shows that Spell with pre-
filtering has achieved an accuracy nearly the same as that
using only naive LCS. This means the pre-filtering step has
almost no downgrade effect on the parsing results though it
greatly reduces the parsing overhead.

TABLE 7
Comparison of Spell with and without pre-filter

(#TM: number of true message types found)
Los Alamos log BlueGene/L log

Spell pre-filtering #TM Accuracy #TM Accuracy
False 55 0.8228 165 0.8118

basic
True 55 0.8228 164 0.8118
False 73 0.9190 239 0.8955

with split
True 73 0.9190 238 0.8924
False 74 0.9692 247 0.9019with split

and merge True 74 0.9692 242 0.8946

TABLE 8
Effectiveness measures on HDFS and OpenStack Logs

(Spell1: basic version; Spell2: with split; Spell3: with split and merge)
CLP IPLoM Drain Spell1 Spell2 Spell3

H
D

FS

Precision 0.0001 0.0423 0.4063 0.6842 0.6667 0.8421
Recall 0.2353 0.5294 0.6842 0.7647 0.8235 0.9412
F-measure 0.0002 0.0783 0.5098 0.7222 0.7368 0.8889
Accuracy 0.0111 0.7758 0.9948 0.7768 0.7768 0.9994

O
pe

nS
ta

ck Precision 0.0002 0.0000 0.0003 0.5238 0.4167 0.4762
Recall 0.4444 0.0714 0.5 0.7857 0.7143 0.7143
F-measure 0.0003 0.0001 0.0006 0.6286 0.5263 0.5714
Accuracy 0.3687 0.0082 0.8599 0.9886 0.9818 0.9818

The effectiveness comparisons on HDFS and OpenStack
logs are shown in Table 8. Our Spell method works remark-
ably better than CLP and IPLoM on all measures, especially
on OpenStack log. We looked into the log in details to
find out the reason for this giant gap. Here are some typ-
ical log records. 1) [req...] Host * has more disk space

than database expected. CLP fails to recognize the simi-
larity of these logs because of the multiple request ids at

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 13

the beginning of each log entry, and its heuristic believes
parameters happen more likely later. 2) Identity response:

"error": "message": *, "code": *, "title": *. This is a
typical JSON format log message of OpenStack. The param-
eter after message could have variable length, so IPLoM’s
first heuristic which partitions by length splits this cluster
into different parts. Drain has very good accuracy on Open-
Stack dataset but very poor Precision and F-measure, which
is also because a parameter may happen at the beginning
of a log message, thus being used to construct the fixed-
depth tree, leading to more log templates being generated.
Drain has good performance on HDFS dataset, part of the
reason is that Drain removes parameters matching numbers
and block ids first, which are the majority of parameters in
HDFS log datasets.

5.2.1 Sensitivity analysis

0.40 0.45 0.50 0.55 0.60
0.7

0.8

0.9

1.0

a
cc

u
ra

cy

5 6 7 8 9
0.7

0.8

0.9

1.0

10 11 12 13 14
0.7

0.8

0.9

1.0

0.40 0.45 0.50 0.55 0.60
0.5

0.6

0.7

0.8

0.9

F
-m

e
a
su

re

5 6 7 8 9
0.5

0.6

0.7

0.8

0.9

10 11 12 13 14
0.5

0.6

0.7

0.8

0.9

0.40 0.45 0.50 0.55 0.60

threshold ¿

101

102

103

ru
n
ti

m
e

5 6 7 8 9

split threshold

101

102

103

10 11 12 13 14

merge threshold

101

102

103

Los Alamos Blue Gene OpenStack HDFS

Fig. 9. Sensitivity analysis of Spell.

Figure 9 shows how sensitive Spell is to its input pa-
rameters listed in Table 2, by varying one parameter at
a time while fixing the others. We have also tried other
combinations and the observations are similar. First, Spell
is generally stable to split and merge thresholds, in an
evaluated range of [5, 9] and [10, 14] respectively. Second,
some measurements could be sensitive to message type
threshold τ , for example: 1) accuracy of Blue Gene log, and
F-measure of HDFS log, where the difference of the best
and worst results is within 20%; 2) runtime of Blue Gene
log, due to its large size and complex log patterns. Note
that, as τ increases, fewer message types may be generated,
thus it takes less time for a new log entry to find its match
in existing index structures, but more log entries will need
to go through the time-consuming dynamic programming
matching process (i.e., naive LCS). That’s why the runtime
decreases a little as τ increases to 0.50, but increases signifi-
cantly as it grows further.

5.3 Parameter semantics inference

We implement the 2-step procedure described in Section
3.7 to learn semantic meanings of parameter positions.
Upon the arrival of each log message, Spell first extracts
its message type, and then adds its parameter values to
the corresponding sets of parameter positions, i.e., each
parameter position has a set (group) of parameter values
appearing at that position. Finally, Spell applies the 2-step
procedure on parsed message types and parameter value

groups to generate a semantic meaning for each parameter
position.

In step 1, we analyze all message types. For each parame-
ter position in each message type, if the word before or after
it is a noun or non-English word, we assign the word as one
of its parameter meanings. To find out whether a word is a
noun or non-English word, we leverage NLTK corpus [36].
After this step, some parameter positions are labeled with
meaningful semantics (i.e., corresponding parameter value
groups are “named”) and others are not.

Next in step 2, for each of the remaining parameter
positions, we check the intersection between its parameter
value group and each of the named parameter value groups.
If an intersection size is larger than half of the unnamed
group size, then Spell assigns the semantic meaning of the
named group to that unnamed parameter position.

We apply this approach to all log datasets in Table 3. A
parameter position could have multiple semantic meanings
since an unnamed group may have large intersections with
multiple named groups (e.g., “src”, “dest” and “IP”), and we
treat a parameter position as correctly parsed if at least one
semantic meaning makes sense. The evaluation results are
shown in Figure 10, which include inference results using
only step 1, and results using both step 1 and step 2. Y
axis denotes the percentage of parameter positions that are
assigned with correct semantics. Figure 10 illustrates that
the 2-step procedure we propose could reveal meaningful
semantics for most of the parameter positions, where step
2 largely boosts the accuracy. For OpenStack log, there is
a “request id” at the beginning of each log message which
could be treated as a parameter position. Spell fails to find
a semantic meaning for this because there’s no meaningful
word next to it in each message type, and no other param-
eter positions contain similar identifiers. Thus, if we treat
such cases as un-discovered parameter positions, the pars-
ing accuracy is only 65%. However, since such identifiers
only appear at the beginning and have the same format
“req-***”, if we apply this prior knowledge, the parsing
accuracy could be as high as 99%.

Los Alamos Blue Gene OpenStack HDFS
system log type

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

0.20

0.70
0.60 0.62

0.99

0.81

0.99 0.97

0.20

0.70
0.60 0.62

0.99

0.81

0.65

0.97

inferred only from message types

inferred with key clustering

Fig. 10. Percentage of parameter semantics that are correctly inferred.

This component serves as a post analysis after all mes-
sage types are parsed out by Spell main log parser. A python
implementation takes on average about 10 seconds for Los
Alamos log, and about 1 minute for Blue Gene log, of which
8 seconds are used to load NLTK word repository.

6 CONCLUSIONS
We present a streaming structured log parser, Spell, for
parsing large system event logs in a streaming fashion. Spell
works perfectly for online system log mining and monitor-
ing. We propose pre-filtering to improve Spell’s efficiency,

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 14

and split and merge to improve Spell’s effectiveness. Ex-
periments over real system logs have clearly demonstrated
that Spell has outperformed the state-of-the-art methods in
terms of both efficiency and effectiveness. For future work,
we plan to investigate deep learning and natural language
processing techniques for advanced log parsing and log
understanding.
ACKNOWLEDGMENT
Authors thank the support from NSF SaTC grants 1801446
and 1514520. Feifei Li is also supported in part by NSFC
grant 61729202.

REFERENCES

[1] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection
in distributed systems through unstructured log analysis,” in Proc.
IEEE International Conference on Data Mining (ICDM), 2009.

[2] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants
from console logs for system problem detection.” in Proc. USENIX
Annual Technical Conference (ATC), 2010.

[3] J.-G. Lou, Q. Fu, S. Yang, J. Li, and B. Wu, “Mining program work-
flow from interleaved traces,” in Proc. ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (SIGKDD),
2010.

[4] K. Yamanishi and Y. Maruyama, “Dynamic syslog mining for
network failure monitoring,” in Proc. ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (SIGKDD),
2005.

[5] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proc.
ACM Symposium on Operating Systems Principles (SOSP), 2009.

[6] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative
analysis of systems logs to diagnose performance problems,” in
Proc. USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2012.

[7] Q. Fu, J.-G. Lou, Q. Lin, R. Ding, D. Zhang, and T. Xie, “Contextual
analysis of program logs for understanding system behaviors,”
in Proc. Working Conference on Mining Software Repositories (MSR),
2013.

[8] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy,
“Inferring models of concurrent systems from logs of their be-
havior with csight,” in Proc. International Conference on Software
Engineering (ICSE), 2014.

[9] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Cluster-
ing event logs using iterative partitioning,” in Proc. ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(SIGKDD), 2009.

[10] L. Tang and T. Li, “Logtree: A framework for generating system
events from raw textual logs,” in Proc. IEEE International Conference
on Data Mining (ICDM), 2010.

[11] L. Tang, T. Li, and C.-S. Perng, “Logsig: Generating system events
from raw textual logs,” in Proc. Conference on Information and
Knowledge Management (CIKM), 2011.

[12] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Online
system problem detection by mining patterns of console logs,” in
Proc. IEEE International Conference on Data Mining (ICDM), 2009.

[13] A. Gainaru, F. Cappello, S. Trausan-Matu, and B. Kramer, “Event
log mining tool for large scale hpc systems,” in Euro-Par, 2011.

[14] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log
parsing approach with fixed depth tree,” in Proc. IEEE International
Conference on Web Services (ICWS). IEEE, 2017, pp. 33–40.

[15] X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang, “Cloudseer:
Workflow monitoring of cloud infrastructures via interleaved
logs,” in Proc. ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2016.

[16] Z. Cao, S. Chen, F. Li, M. Wang, and X. S. Wang, “LogKV:
Exploiting key-value stores for event log processing,” in Proc.
Conference on Innovative Data Systems Research (CIDR), 2013.

[17] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study
on log parsing and its use in log mining,” in Proc. International
Conference on Dependable Systems and Networks (DSN). IEEE, 2016,
pp. 654–661.

[18] H. C. Xia Ning, Geoff Jiang and K. Yoshihira, “HLAer: A system
for heterogeneous log analysis,” in SDM Workshop on Heterogeneous
Learning, 2014.

[19] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen,
“Logmine: fast pattern recognition for log analytics,” in Proc.
Conference on Information and Knowledge Management (CIKM), 2016,
pp. 1573–1582.

[20] M. Du and F. Li, “Spell: Streaming parsing of system event logs,”
in Proc. IEEE International Conference on Data Mining (ICDM).
IEEE, 2016, pp. 859–864.

[21] D. S. Hirschberg, “A linear space algorithm for computing maxi-
mal common subsequences,” CACM, pp. 341–343, 1975.

[22] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing
longest common subsequences,” CACM, pp. 350–353, 1977.

[23] D. S. Hirschberg, “Algorithms for the longest common subse-
quence problem,” JACM, vol. 24, no. 4, pp. 664–675, 1977.

[24] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest
common subsequence algorithms,” in SPIRE, 2000.

[25] Y. Wu, L. Wang, D. Zhu, and X. Wang, “An efficient dynamic
programming algorithm for the generalized lcs problem with
multiple substring exclusive constraints,” JDA, pp. 98–105, 2014.

[26] Y. Li, H. Li, T. Duan, S. Wang, Z. Wang, and Y. Cheng, “A
real linear and parallel multiple longest common subsequences
(MLCS) algorithm,” in Proc. ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (SIGKDD), 2016.

[27] Y. Li, Y. Wang, Z. Zhang, Y. Wang, D. Ma, and J. Huang., “A
novel fast and memory efficient parallel mlcs algorithm for longer
and large-scale sequences alignments,” in Proc. IEEE International
Conference on Data Engineering (ICDE), 2016.

[28] Wikipedia contributors, “Inverted index — Wikipedia,
the free encyclopedia,” 2017, [Online; accessed 17-July-
2018]. [Online]. Available: https://en.wikipedia.org/w/index.
php?title=Inverted index&oldid=815397313

[29] ——, “Trie — Wikipedia, the free encyclopedia,” 2018,
[Online; accessed 17-July-2018]. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Trie&oldid=848098286

[30] ——, “Readerswriter lock — Wikipedia, the free encyclopedia,”
2018, [Online; accessed 9-July-2018]. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Readers%E2%
80%93writer lock&oldid=844122301

[31] D. Nadeau and S. Sekine, “A survey of named entity recognition
and classification,” Linguisticae Investigationes, vol. 30, no. 1, pp. 3–
26, January 2007, publisher: John Benjamins Publishing Company.

[32] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly
detection and diagnosis from system logs through deep learning,”
in Proc. ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017, pp. 1285–1298.

[33] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A
lightweight algorithm for message type extraction in system ap-
plication logs,” Proc. IEEE Transactions on Knowledge and Data
Engineering (TKDE), vol. 24, no. 11, pp. 1921–1936, 2012.

[34] CloudLab. https://www.cloudlab.us/.
[35] B. Schäling, The boost C++ libraries. Boris Schäling, 2011.
[36] NLTK, “nltk.corpus package,” [Online; accessed 28-September-

2017]. [Online]. Available: http://www.nltk.org/api/nltk.corpus.
html

Min Du received the PhD degree from the
School of Computing, University of Utah in 2018,
as well as the bachelor’s degree and the mas-
ter’s degree from Beihang University. She is cur-
rently a postdoctoral scholar in EECS depart-
ment, UC Berkeley. Her research interests in-
clude big data analytics and machine learning
security.

Feifei Li received the BS degree in computer en-
gineering from the Nanyang Technological Uni-
versity in 2002 and the PhD degree in computer
science from the Boston University in 2007. He is
currently an associate professor in the School of
Computing, University of Utah. His research in-
terests include database and data management
systems and big data analytics.

