
SLIMSTORE: A Cloud-based Deduplication System
for Multi-version Backups

Zihao Zhang1, Huiqi Hu1, Zhihui Xue2, Changcheng Chen2, Yang Yu1, Cuiyun Fu2, Xuan Zhou1, and Feifei Li2

{zach zhang, yuyang}@stu.ecnu.edu.cn, {hqhu, xzhou}@dase.ecnu.edu.cn,
{zhihui.xzh, tianyu, cuiyun.fcy, lifeifei}@alibaba-inc.com

1East China Normal University 2Alibaba Group

Abstract—Cloud backup is becoming the preferred way for
users to support disaster recovery. In addition to its convenience,
users are deeply concerned about reducing storage costs in the
face of large-scale backup data. Data deduplication is an effective
method for backup storage. However, current deduplicate meth-
ods lack the utilization of cloud resources to provide scalable
backup service for cloud backup users, and cannot meet the
biased preference for different backup versions. For new backup
versions, users want higher deduplicate and restore speed to
reduce the waiting time; conversely reducing storage costs is
more necessary for older backup versions.

In this paper, we present SLIMSTORE, with a cloud-based
deduplication architecture that disassembles the system into a
storage layer and a computing layer to support elastic utilization
of cloud resources. We propose two types of processing nodes with
different design focuses to meet the needs of cloud-based backup.
The L-node exploits locality and similarity and with two history-
aware strategies to provide fast online deduplication service. L-
node also optimizes online restoration to realize high restore
efficiency for new backup versions. Meanwhile, the G-node
provides exact deduplication for the old versions offline, and helps
the restore performance of the new versions by optimizing their
physical storage. We compare SLIMSTORE with some state-of-
art deduplicate and restore methods and an open-source system.
Experimental results show that SLIMSTORE can achieve fast
deduplication, efficient restoration, and effective space reduction.
Furthermore, SLIMSTORE achieves scalable deduplication and
restoration capabilities.

I. INTRODUCTION

Enterprises used to store backup data with low cost storage
such as disks and tape libraries. In recent years, as data scale
has increased dramatically and cloud storage has developed,
more and more users have chosen to move backup data
to the cloud because of its quick and convenient disaster
recovery capability. Cloud storage not only means elastic
storage capacity, but its flexible pricing based on backup size
also saves huge expenses by early storage device investment
for users. Therefore, the market for cloud backup services has
attracted more and more attention. But how to manage the
growing backup data and reduce storage costs is a challenge.

Backup data is usually cold and not accessed frequently,
so it is acceptable to adopt storage with low cost and large
capacity but slower access speed. Object Storage Service
(OSS) is a kind of cloud storage that can store and access
massive amounts of data from anywhere in the world such as
Alibaba’s OSS [1] and Amazon’s S3 [2]. Due to its extremely
low price and large storage capacity, OSS is very suitable
for storing infrequently accessed data such as backup data.
Although OSS provides storage at a very low price, we still

need to explore other ways to further reduce storage costs. The
user’s backup requirements are long-term and continuous, they
tend to upload the latest status of files to the cloud on a regular
basis. For instance, database users update the latest snapshots
of data every once in a while for rapid disaster recovery. This
results in multiple consecutive backup versions stored on the
cloud, and incremental modifications cause a lot of duplication
between versions. Data deduplication technology can eliminate
these duplicate data to reduce the amount of data storage.
Therefore, we build a cloud-based backup system, benefiting
from OSS’s low-cost storage and the reduction in data volume
that comes with deduplication.

Data deduplication is a well recognized approach to support
large-scale backup storage systems. We observe that three
main indicators can measure the deduplication system: dedu-
plication speed, restore speed, and deduplication ratio. It is
difficult to perform the best in all three indicators, so most of
the existing work only focuses on one of them. Some research
works like DDFS [3], SiLO [4], and Sparse Indexing [5] make
a trade-off between deduplication speed and deduplication
ratio. HAR [6], CBR [7], and Capping [8] rewrite the fragment
chunks to gain a better physical locality for better restore
performance, but at the expense of some deduplication ratio.
In the industry, because enterprises store backup data in their
limited local storage, the traditional choices are usually backup
methods that maximize the deduplication ratio [9].

Cloud storage makes storage expansion transparent to users,
which results in some changes in the trade-off between three
indicators. Since the backup data source and cloud storage are
physically separated, and accessing OSS is much slower than
local disk, so online deduplication and restoration efficiency
have become more concerned to reduce the processing time.
And we observe that users have biased preferences for the
indicators in the old and new backup versions. As for the older
versions, their data value decreases over time, so it is hoped
that their storage costs can be lower, and the restore process
can be tolerated by consuming more time because they are
less frequently to restore than new versions. Therefore, the
design goals of a cloud-based deduplication system are: for
the new backup version, it can quickly deduplicate and restore;
for old versions, it can achieve exact deduplication to further
reduce storage costs, allowing for a certain amount of restore
efficiency sacrifice.

With these two goals in mind, SLIMSTORE is designed
to build a cloud-based deduplication system, which provides

online deduplicate and restore services. For large-scale, full-
volume backup data uploaded by a user at intervals, it elim-
inates duplicates between versions and supports restoration
for any version. SLIMSTORE can perform fast deduplication
and restoration for new backup versions while ensuring the
effectiveness of deduplication to reduce storage costs. SLIM-
STORE separates storage and computation by storing backup
data on OSS to gain uncapped storage expansion, and using
elastic computing resources to achieve scalable deduplication
and restoration. To make a good compromise between dedupli-
cation speed and deduplication ratio, SLIMSTORE divides the
deduplication into two phases. Firstly, SLIMSTORE exploits
the similarity and locality to provide fast online deduplication
for the new backup, which reduces the performance loss
caused by high latency OSS access. To fully borrow informa-
tion from previous versions, two history-aware strategies are
proposed that use historical information to further accelerate
the online deduplication. Besides this, SLIMSTORE performs
offline reverse deduplication to accurately identify the missed
duplicates to achieve exact deduplication. To keep the restore
efficiency of new versions, reverse reduplication removes any
duplicate data in old versions instead of that in new versions.

For restoration, the system must combat the fragmentation
on its physical storage, especially for the new versions of data.
SLIMSTORE also optimizes restoration at two levels. When
restoring online, it takes an effective cache with full restore
information and a LAW-based (look-ahead window) prefetch-
ing method to achieve the highest time efficiency. Meanwhile,
SLIMSTORE compacts sparse containers that have few useful
data for the new versions in the backend, which can gain a
better locality of data layout, thus reducing the OSS bandwidth
consumption caused by fragmentation. Both offline actions,
reverse deduplication and spare container compaction, reduce
the storage overhead of older versions by transferring part of
its data to new versions. At the same time, this restructuring
will not lose or be more conducive to the restore performance
of new versions. Our contributions are summarized as follows:

• We propose a cloud-based deduplication system archi-
tecture to realize the design goals. SLIMSTORE separates
computing and storage, and makes both of them support
elastic scaling. It further decomposes the functionality
of the computing layer into high-performance online
deduplication and restore services, as well as offline
space optimization under the premise of further reducing
the storage costs of old versions and ensuring restore
efficiency of new version data.

• We propose a hybrid deduplication mechanism. It exploits
the similarity between versions to provide fast online
deduplication, including two history-aware approaches to
improve its efficiency. Meanwhile, offline reverse dedu-
plication is proposed to realize exact deduplication.

• We also holistically optimize restore performance. An
effective restore cache is developed to improve the ef-
ficiency of online restoration, and sparse container com-
paction is executed in the backend to further eliminate
the degradation of restore performance over time.

• We conduct extensive experiments. Experimental results
demonstrate that SLIMSTORE promotes the restoration of
new versions to be as fast as old versions. It also outper-
forms the comparing method by 1.72× in deduplication
efficiency. Besides, SLIMSTORE can also achieve scalable
deduplication and restoration.

The paper is organized as follows: Section II concludes some
related works. Section III descirbes the system architecture.
In Section IV, V, and Section VI, we introduce deduplication,
restoration, and space management of SLIMSTORE in detail.
Experimental results are presented in Section VII.

II. RELEATED WORKS
Many existing works [3]–[5], [10]–[12] adopt chunk-level

(e.g., 4KB) deduplication to identify and eliminate duplicates.
Xia et.al. [13] divides the chunk-level deduplication work-
flow into four key stages, namely, chunking, fingerprinting,
indexing, and storage management. The storage management
includes data restore, garbage collection, etc.

Chunking divides backup data into small chunks so that it
can identify more duplicates. Fixed-size chunking is simple
but it has a low deduplication ratio due to the boundary-shift
problem [14]. Content-Defined Chunking (CDC) can eliminate
the impact of boundary-shift, which is the dominating chunk-
ing method to achieve a high deduplication ratio. Rabin-based
CDC [14] is widely adopted, but the computation of Rabin
hash is time-consuming. Gear [15] and FastCDC [16] use a
simple hash to reduce the computation cost, which achieves
nearly the same deduplication ratio as the Rabin-based CDC,
but significantly speed up the CDC process. After chunking,
each chunk is calculated a fingerprint by a cryptographically
secure hash signature(e.g., SHA-1, SHA-256). Two chunks
are identified as duplicates if they have the same fingerprints.

The fingerprint index is the key component of deduplication
systems to help identify duplicates. In a large-scale deduplica-
tion system, it is considered as the bottleneck because its size
is overgrowing with the explosive growth of backup data so
that it cannot be resident in memory. Many work pays attention
to avoiding the bottleneck of fingerprint-lookup on disk. DDFS
[3], ChunkStash [12], and Sampled Index [17] use physical
locality to accelerate deduplication. When a duplicate chunk
is found, they read the entire container(which stores a bunch of
chunks) into the cache to find more duplicates. DDFS [3] and
ChunkStash [12] store all fingerprints in the index, which can
achieve exact deduplication. Sparse Indexing [5], SiLO [4],
and Extreme Binning [18] are index methods that use logical
locality for deduplication. Sparse Indexing improves memory
utilization by sampling representative fingerprints in memory
and using champions that share the most representative fin-
gerprints to identify deduplicates. SiLO and Extreme Binning
adopt similarity detection to reduce the RAM overhead for
indexing, by exploiting the similarity to achieve single on-disk
index access for a file or segment(a group of chunks), and use
logical locality to enhance deduplication efficiency. DeFrame
[19] explores the tradeoffs among deduplication ratio, index’s
RAM overhead, and restore performance, which provides a
good consideration for the design of deduplication index.

After eliminating duplicates, it is desirable to efficiently
restore data when a backup version is accessed. An inevitable
fact is that restore speed will be hurt because the backup data
is physically scattered to many containers, which is known as
fragmentation and the restore performance severely declines
over time. Existing solutions to this problem is to rewrite the
fragmented duplicate chunks [6]–[8], [20]–[23]. Capping [8],
CBR [7], and LBW [22] identify fragments within a small
range, such as a segment or small part of the buffered backup
stream, and rewrite them during deduplication. HAR [6], [23]
accurately identifies sparse containers by counting the utiliza-
tion of each container in the view of the entire backup, and
saves sparse containers as historical information to rewrites
duplicate chunks in sparse containers when backup the next
version. Another research direction to optimize restoration is
to design efficient caching policies. Kaczmarczyk et al. [7],
Nam et al. [20] used container-based caching. Optimal restore
cache [6] uses a look-ahead window(LAW) to collect chunks’
sequence to achieve Belady’s optimal replacement policy [6].
Some other studies directly store chunks to achieve higher
hit ratio [8], [24]. Lillibridge et al. [8] propose a forward
assembly area (FAA) to assemble the restored data, it directly
copies chunk from container-read buffer to their position in
FAA without caching anything. ALACC [24] combines FAA
and chunk-based cache to reduce cache management overhead
and achieve better restore performance.

Garbage collection (GC) can effectively manage space
in deduplication-based backup storage. The state-of-art GC
approaches can be generally classified into two categories,
namely, reference count and mark-and-sweep. Reference count
records the referenced times for each chunk and reclaims
chunks with the counter value are zero [11], [25], but it is
complicit and suffers from low relability [6], [17]. Mark-
and-sweep consists of two stages. Mark stage traverses all
chunks and marks the referenced chunks. In sweep stage, the
unreferenced chunks will be reclaimed.

Data deduplication is also adopted in some commercial soft-
ware(e.g., HYDRAstor [26], NetBackup [27], Avamar [28]) to
provide enterprise-level deduplication solutions. Open-source
deduplication projects, such as Restic [29] is the most popular
one with more than 11K stars on GitHub, which is designed
for deduplicating on top of the local file system, thereby
cannot provide deduplicate service for the cloud. Therefore,
in this paper, we focus on building a cloud-based deduplica-
tion system named SLIMSTORE, which separate storage and
computation to make full use of elastic recourses of cloud to
achieve scalable deduplication and restoration. SLIMSTORE
exploits the similarity and locality like SiLO [4] and Sparse
Indexing [5] for fast online deduplication, and outperforms
them through two history-aware strategies. SLIMSTORE also
performs global reverse deduplication to accurately eliminate
duplicates. To promote the restore performance, SLIMSTORE
develops a restore cache with full restore information and
LAW-based prefetching, which can realize higher restore effi-
ciency than existing restore caches [6], [17], [24]. SLIMSTORE
also performs sparse container compaction offline to adjust the

data layout for better restore performance of new versions.
III. ARCHITECTURE

A. Design Features
Separated storage and computation. Many conventional

deduplication systems store data and perform deduplicate or
restore jobs on the same machine [3], [17] , which limits the
number of jobs that a node can carry. Besides, it is superfluous
to upgrade compute and storage simultaneously when any one
of their resources is insufficient. Decoupling computation and
storage is inherent in the cloud scenario. The system should
obtain storage of any capacity by storing data on cloud storage,
and flexibly allocates computing resources to handle dynamic
backup or restore workloads. The system is more cost-efficient
because of its elastic expansion capabilities.

Multi-version backups. Our service scenario is that users
have continuous backup requirements for full-volume data.
The changes between versions are incremental, which means
that there are many duplicates between adjacent versions. The
system is designed to make the best of this pattern. It mainly
eliminates duplicates between versions and generates a recipe
for each backup version. The recipe of each file indicates
the sequence of chunks in the file. By exploiting the recipe
content, the information of the historical version can be used
to identify duplicates. When restoring a backup, the system
can also restore the original files through the file recipes.

Fast online deduplication and restoration. Our system
attempts to provide scalable and fast online deduplicate and
restore services for users. Thus we develop the process node
named L-node. L-node does not save any state, so it can be
quickly deployed and execute backup and restore jobs, which
allows the system to dynamically allocate multiple L-nodes to
cater to different users’ workloads. Therefore, different jobs
can be executed in parallel on different L-nodes.

Deduplication systems often suffer from high performance
costs because of the frequent access to the fingerprint index.
In cloud environment, these operations are extremely onerous
since the index is placed on OSS. Thus L-node turns into
a lighter method by avoiding frequent access to data on the
cloud. L-node detects a historical version or similar file for
each backup file, by fetching the recipe and exploiting the
similarity and locality in the detected file, duplicates can be
identified fast, thus avoiding a lot of OSS access. Besides,
historical information can also facilitate the deduplication.

As for restore performance, considering the fact that chunks
of backup are physically scattered after deduplication, espe-
cially for new backup versions, which results in the restore
performance degrades over time. However, new backup ver-
sions are more likely to be accessed, and users expect fast
speed to restore them. We believe improve the physical locality
for newly generated versions by sacrificing their deduplication
ratios (e.g., achieving fast restoration by not deduplicating the
file) is not a desirable solution. Because the user’s restore
needs for those versions are unpredictable, and a version does
not need to be restored in many cases. Therefore, it is not wise
to overstore all versions of data. SLIMSTORE improves the
restore performance of new versions through two efforts. First,

L-node

G-node

Similar File Index

Historical

Version

Detecting

Chunking Deduping Persisting

Recipe Store Container Store

<fp, status, offset>

Container Meta

<chunk data>

Container Data

... ...

Recipe Index Segment Recipe Cache

Dedup Cache

Recipe

Loding
Restoring

Restore Cache

Sparse

Compacting

Reverse

Deduping

Version

Collecting

Bloom Filter Container Meta Cache

Dedup Cache

Global Index

restored databackup data

<fp> <containerID>→

...

<rf> <filename>→

...

HV32RTO5B, P0

IHCXN2GMC, P1

<fp, containerID, ...><rf, offset>
P0

P1

segment

recipe

Recipe Index Recipe

......

History-aware
skip chunking

History-aware
chunk

merging

OSS

Fig. 1: System architecture of SLIMSTORE.
we design a restore cache with full restore information and
LAW-based prefetching to provide efficient online restoration.
On the backend, we compact sparse storage for the new
version without sacrificing deduplication ratios and additional
storage costs, as described in the next paragraph.

Offline storage space optimization. We further propose
the G-node for two purposes. The first is to achieve a high
deduplication ratio and save the storage cost. Because fast
deduplication on L-node may ignore some duplicates, G-
node augments the deduplication ratio by further filtering the
results with a global fingerprint index, thus achieving exact
deduplication of all backup files. And for another purpose
of protecting the restore efficiency of the new version from
impairing, reverse deduplication is performed to accurately
eliminate duplicates in old versions. To make the system more
effective for new version data, G-node also optimizes the
restore efficiency for new versions by adjusting their physical
storage structure with sparse container compaction, it will
adjust the data layout by transfer part of data in old versions
to new versions to promote the locality of the latter, which
improve the restore performance of new versions and reduce
the storage cost of old versions. All the actions on G-node
are performed offline, independent of online deduplicate and
restore performance.

B. System Components
Fig.1 provides the architecture of SLIMSTORE. The system

is separated into a storage layer and a computing layer.
1) Storage Layer: The storage layer resides on OSS, it

stores backup data, metadata, and indexes.
Container Store. Accessing a chunk from storage at once

is not cost-effective for I/O, especially from remote OSS. A
common solution is to treat the container as the basic storage
and access unit of backup data [13]. While duplicate chunks
are eliminated, the remaining non-duplicate chunks will be
aggregated into fixed-size containers and persisted on OSS. To
access a chunk, the container store also retains the metadata
of each container, which keeps each chunk’s status and offset,
and the proportion of stale chunks (the usage is shown in
Section V) in the container. The container based storage gives
rise to the physical locality. Since a container is a collection of
physical chunks that may have a close position in the backup
file, once a chunk is accessed, other chunks in the container

are also likely to be accessed. Therefore, accessing a container
each time can reduce the number of access to OSS.

Recipe Store. Recipe is the data structure that describes
the logical sequence of chunks of a backup file. A recipe
consists of chunk records, and each chunk record is stored
as a quadruple 〈 fp, containerID, size, duplicateTimes〉, which
represents the fingerprint of the chunk, the container ID that
stores the chunk, the chunk size, and the number of times that
the chunk was confirmed as duplicate in historical versions of
the file (seen usage in Section IV). There is a logical locality
embedded in the recipe. Due to the incremental changes of
the backup files, the chunk sequences of two backup versions
are similar. Thus we exploit the structure called segment to
make use of the property for deduplication. In the backup file,
a number of consecutive chunks constitute a segment. Their
corresponding chunk records in the recipe then constitute the
segment recipe. Based on this, we can speculate that there
are many similar segments between two close versions of
backup. To quickly match the similar segments and locate its
segment recipe, a recipe index is constructed for the recipe of
each file. In the recipe index, we extract several representative
fingerprints for each segment as samples and map them to the
offset of their segment recipe in the recipe.

Similar File Index. Similar index stores the representative
fingerprints of each file, which is used to find similar files.
Accord to Broder’s theorem [30], the similarity of the full set
is highly dependent on the similarity of two randomly sampled
subsets. A file can be considered as a set of fingerprints, so
if two files share some representative fingerprints, they are
considered similar.

Global Index. Global index maintains the information of
all chunks of a user, it saves the mapping from the fingerprint
of chunk to the container where it is stored. Global index is
stored in Rocks-OSS, which is a RocksDB that is adapted
to suit the OSS. Global index will be used for G-node to
accurately identify duplicates in the global scope.

2) Computing Layer: The computing layer is composed of
Alibaba cloud elastic compute services (ECS) with two types
of nodes: L-node and G-node.

L-node. L-node services online jobs including the backup
and restore jobs. When the backup command reaches the L-
node, it starts to receive the input file stream and deduplicate
it. The L-node first detects a historical version or a similar file

via the similar file index. Then it fetches the recipe index of
the detected file from the recipe store. With the help of recipe
index, the recipes of similar segments are fetched, and L-node
exploits the logical locality in them to remove duplicates. Two
optimizations named history-aware skip chunking and chunk
merging are further proposed to improve its efficiency (see
details in Section IV). As for the restore job, L-node first
loads the recipe of the target file, and then reads chunks from
container and splices them together based on the sequence of
chunk records in the recipe (see details in Section V).

Noting that L-node does not save any state, all the in-
formation required in backup and restore is loaded during
the job execution, and both the fetching of the recipe index
and segment recipes are lightweight. Thus L-node can expand
elastically according to the running workload.

G-node. G-node runs offline. G-node is responsible for
managing the storage space. Because L-nodes use similar
segment detecting and logical locality to identify duplicates,
there may be some duplicate data that has not been identified.
In order to further identify duplication and save storage
space, G-node uses reverse deduplication to filter containers
generated by L-node, find and eliminate duplicate chunks
(Section VI-A), to achieve exact deduplication. At the same
time, G-node will also compact the sparse container identified
to ensure that the backup file has a better physical locality
for the newer versions, which improves the restore efficiency
(Section V-B). Besides, G-node collects the deleted old version
to reduce the space occupied by the old version (Section VI-B).

IV. DEDUPLICATION ON L-NODE

We first introduce the process of online deduplication, then
two techniques are further proposed to enhance it.

A. Deduplication Workflow
An input file stream will be deduplicated in three steps.
STEP 1. Detecting a historical version or similar file. For

each input backup file, the latest historical version will be
searched first by file path and file name. Examining the file
name is simple and effective. However, it doesn’t always
match because sometimes users change their file names. In that
case, the input file will be chunked and sampled, and use the
sampling fingerprints to look for a potential historical version
or similar file by querying the similar file index. We use the
straightforward random sampling method adopted in many
deduplication works [5], [19], which selects the fingerprints
that mod R = 0 in a segment, where R is an adjustable
parameter to control the sampling ratio. It is impractical to
process the entire input file that failed to match by name
because it is difficult to save all chunks of a large file in
memory. Therefore, the common solution for large files is to
only sample the header chunks [18]. If the historical version
or similar file is detected, L-node will fetch the recipe index
of the detected file. For those files without historical versions
and similar files, all chunks will be treated as non-duplicate.

STEP 2. Prefetching similar segment and deduplicating.
After fetching the recipe index of the historical version or
similar file, the input file will be chunked and sampled. The

1 2 ~ 2 50
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Tim
e(%

)

B a c k u p V e r s i o n s

 C h u n k i n g F i n g e r p r i n t i n g I n d e x Q u e r y i n g O t h e r s N e t w o r k B u s y N e t w o r k I d l e

1 2 ~ 2 50
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Tim
e(%

)

B a c k u p V e r s i o n s
(a) R a b i n - b a s e d C D C (b) F a s t C D C

Fig. 2: CPU and network time breakdown of CDC.

sampling method is the same as introduced in Step 1. For
each sampled chunk, it looks up the recipe index to find
the similar segment. If a chunk with the same fingerprint
exists, it prefetches the corresponding segment recipe and adds
it to the dedup cache. Once a sampled chunk is matched,
other chunks near it will also appear in this segment with
a high probability because of the logical locality. By using
this feature, a range of duplicate chunks in the vicinity can be
filtered efficiently. During the process, the metadata of a chunk
including its fingerprint, size, container ID, and duplicated
times is generated.

STEP 3. Segmenting and persisting. Based on the sequence
of chunks in the input file, a number of consecutive chunks
will be packed into a segment. Once a segment is processed,
those non-duplicate will be stored in the new container. When
the capacity of a container reaches the upper limit, it will
be directly persisted into the container store on OSS. The
metadata of all the chunks in the segment will form the
segment recipe, which is appended to the recipe in the recipe
store after containers are persisted. Meanwhile, the fingerprints
of the sampled chunks and the offset of the segment recipe
will be preserved and eventually made into the recipe index.

B. History-aware Skip Chunking
Content-defined chunking (CDC) is the dominating chunk-

ing method for deduplication due to its high deduplication
ratio, but it is compute-intensive and time-consuming. Es-
sentially, the CDC algorithm needs to scan the file byte-by-
byte by scrolling a fixed-size sliding window. Each time the
window advances one byte, the method needs to compute the
hash value of the data in the window, and inspect whether
the position is a cut point when the hash value meets certain
conditions. These operations for each byte shift are expensive,
especially for the classic Rabin-based CDC [14] due to the
complexity of Rabin hash. Some other algorithms such as
FastCDC [16] use a simpler hash function, but running the
byte-by-byte checking mechanism is still inefficient.

In Fig 2, we divide CPU time into four parts, chunking,
fingerprinting, index querying, and others. We also monitor
network usage to determine system bottlenecks. For the first
backup version, the network will be the bottleneck because
almost all data needs to be transmitted to OSS. For subsequent
versions, a large amount of deduplicates are removed, resulting
in less data upload, which makes the replacement of network
to CPU becoming the new performance bottleneck. According
to the break down of CPU time, chunking and fingerprinting

......

...

match
check if

macthes

Cut Point

Backup Stream of V
n

Dedup Cache

skip

...

1n

m
c

 1

1

n

m
c





1

2

n

m
c





1
:

n

m
size c


:containerID C:fp m

1

1

n

m
c





1n

m j
c





-2

n

m
c

1n

m
c



1n

x
segment



1n

y
segment



1n

z
segment

 ...

skip skip skip

n

k
c

mismatch

...

unchunked data

❌

…

...

...

n

m
c

1

n

m
c

 2

n

m
c

-1

n

m
c

Fig. 3: History-aware skip chunking.

consume the major CPU resources. Rabin-based CDC occu-
pies about 60% of the CPU time. As for FastCDC, despite the
optimization of computing overhead, it still accounts for al-
most 40% of the CPU consumption. Because the fingerprinting
algorithm must be sufficiently secure to avoid hash collisions,
the CPU overhead of fingerprinting is inevitable. We will focus
on reducing the overhead of chunking.

Considering the incremental modification between backup
versions, many consecutive duplicate chunks exist between
two versions. Therefore, we can speculate that if a chunk
is duplicated with a chunk of the previous version, the next
chunk is likely to be recognized as a duplicate. By using the
historical information in the recipe of the previous version,
we can try to skip some bytes to the next promising cut point,
thus avoiding the CPU consumption of byte-by-byte checking
if the cut condition is met after skipping. We name this CDC
acceleration method as history-aware skip chunking. Once a
chunk is identified as duplicate, we look up the size of the next
chunk in the dedup cache, and skip to the cut point based on
the size. If skip chunking succeeds (i.e., the new chunk is
duplicate), continue to skip to the next cut point, otherwise,
turning off skip chunking and continues chunking by the CDC
algorithm until the next time a chunk is identified as duplicate.

Fig 3 describes the process of history-aware skip chunking.
The n-th version V n of a file is being backed up, where
chunk cnm−1 matches the chunk in segmentn−1

x of V n−1 and
identified as a duplicate. At this time, the size of the next
chunk |cn−1

m | can be obtained through the information stored
in segmentn−1

x , then the current version directly skip |cn−1
m |

bytes to cut the next chunk. If the position after skipping
meets the cut condition, the skip chunking is successful,
thus avoiding the CPU consumption of scrolling the sliding
window, thereby greatly accelerating the chunking. In addition,
when the skip chunking is successful, the fingerprint of the
new chunk cnm can be directly compared with chunk cn−1

m of
the V n−1 to verify whether it is duplicated, thereby avoiding
searches in the dedupe cache to determine duplicates, so the
deduplication speed is further accelerated. The experimental
results in Setcion VII-B show that history-aware skip chunking
can reduce the CPU consumption of CDC to 2%, which
significantly improved deduplication performance.

C. History-aware Chunk Merging
Chunk size has a direct impact on the deduplication speed

and deduplication ratio. Adopting a small chunk size can
find more duplicates, but it also means that there are more
chunks, which increases the overhead of chunking and query-
ing indexes, thereby declining deduplication speed. As for

Algorithm 1: SuperChunking
Input: new chunk cn, cn’s start postion p0, cn’s end

postion p1, the duplicate chunk cn−1

/* start SuperChunking when cn is
duplicate with cn−1

*/
1 Function SuperChunking()
2 if cn−1 is the first chunk of superchunk scn−1 then
3 |scn−1| ← size of scn−1;
4 scn ← new SuperChunk();
5 scn.data← file[p0, p0 + |scn−1|];
6 scn.fp← SHA-1(scn.data);
7 if scn.fp == scn−1.fp then
8 scn.isDuplicate← true;
9 else

10 cn.isDuplicate← true;
11 start CDC from p1;

large chunk size, it leads to a reverse effect. Because the
characteristics of user backup data are varied, it is difficult
to determine an appropriate uniform chunk size to ensure
high performance and high deduplication ratio at the same
time. For example, for a range of data stream with a high
duplication ratio, it means that it contains many consecutive
duplicate data, so a large chunk size can be adopted to speed
up deduplication. But for data with a low duplication ratio,
data changes may occur many times, so it is suitable to use a
small chunk size to find more duplicates. Therefore, we intend
to propose a method which can tune the chunk size according
to the characteristics of data, which improves the deduplication
efficiency without losing the deduplication ratio.

The duplication ratio for an initial backup file is unknown.
To ensure a high deduplication ratio, a small chunk size, such
as 4KB, can be used for the first deduplication. But to achieve
adaptive chunk size, we need to track the deduplication ratio
of the file. Therefore, for each chunk, we use the attribute
duplicateTimes to record the historical duplicate times in
recipe, every time the chunk is identified as a duplicate,
duplicateTimes increased by one; as for unique chunk, it is
set to zero. In the deduplication process of the subsequent
version, consecutive chunks whose duplicateTimes reaching
the threshold are merged into a large chunk, which can speed
up the deduplication of the future backup. Because the merged
chunks are duplicated in a long period, which means that
the probability of this range of data being modified is low,
therefore, it is reasonable to use a large chunk size to accelerate
the deduplication. The large chunk after merging is named
as superchunk, and the merging strategy based on historical
duplicate times is called history-aware chunk merging.

Because the superchunk is merged by a number of chunks,
it cannot be obtained by the CDC algorithm. We propose
a method to use superchunk. Considering that if two su-
perchunks are duplicates, the first chunk they contain must
also be duplicates, so the first chunk can be used to match
the superchunk. The meta-information of superchunk stored
in recipe has an additional attribute firstChunk to record the

fingerprint of the first chunk it contains. If a chunk is duplicate
with the firstChunk of a superchunk, it will start to verify
whether there is a superchunk. Algorithm 1 describes the
process of SuperChunking. When a new chunk cn is duplicate
with a chunk cn−1 of version V n−1, first check whether
cn−1 is the first chunk of a superchunk scn−1 (line 2), if
so, the size of scn−1 is obtained as |scn−1| (line 3), then skip
|scn−1| bytes to cut a new superchunk scn and calculate its
fingerprint (line 4-6), then verify whether the fingerprints of
the scn and scn−1 are the same (line 7). If so, SuperChunking
is successful, a duplicate superchunk is identified (line 8);
otherwise, it is failed to cut a superchunk, then go back to
the current cut point p1, which is also the end position of cn,
and continue to do chunking by CDC algorithm (line 10-11).

According to our analysis, the overhead of superchunking is
narrowed to the overhead of cutting the first chunk by the CDC
algorithm, which significantly improves chunking efficiency.
Meanwhile, because the total number of chunks is reduced
by several times after chunk merging, this means that the
overhead of persisting and prefetching recipes is also reduced
by several times, which further accelerates deduplication. As
for data with low duplication, they are still chunked with
a small chunk size. Therefore, by adopting history-aware
chunk merging, the chunk size is variable according to the
characteristics of data, which can make a good compromise
between deduplication speed and deduplication ratio.

V. RESTORE

As mentioned in Section III-A, restore performance suffers
from the read amplification caused by fragmentation, which
wastes a lot of OSS bandwidth. Meanwhile, restore job spends
much time waiting for reading data from OSS. Therefore, we
focus on optimizing restore performance in terms of low OSS
bandwidth consumption and high time efficiency.

A. Restore Cache
LAW-based prefetching. The restore job needs to read all

data from OSS, but the high access latency of OSS causes
very low restoration efficiency. Although restore cache can
reduce the frequency of OSS access by caching chunks for
future access when reading a container from OSS, it still
needs to wait when the container is accessed for the first time.
Compared to the local file system, a remote I/O blocking on
restoration can significantly reduce its efficiency. The best way
is to avoid this I/O blocking completely by prefetching. If all
the chunks being processed happen to be in the memory of
L-node, the restore job can achieve the highest time efficiency.
We introduce a look-ahead window (LAW) to guarantee this
by exploiting the chunk sequence in recipe. Backend threads
are executed to prefetch containers in the window (which will
be accessed soon), so that chunks are loaded into memory
before restoring them. For example, when restoring chunk G
in Fig 4, the containers to be accessed in the window are C8

and C4 to restore chunk U , V , J , and K. By adopting LAW-
based prefetching, backend threads have already read these two
containers and fill the chunks to be used into the restore cache.
Then when restoring these chunks, they can all be found in

A P C D R S G U V J K T A Q N O H V W

A P C D R S G

A Q

… …

Look Ahead Window

Restored Data

C

A B CC1 D E FC2

G H IC3 J K LC4

M N OC5 P QC6

R S TC7 U V WC8

Container Store

… …

Prefetched
Pos

U V J K

Restore Cache

prefetch

Read G

Restored
Pos

1
0
1
1
2
0
0
1
0
1
2

H

1
2

C

Counting Bloom

Filter

Cachem

Cached

SI
SL
SU

G H W

C

Fig. 4: Restore cache with full vision.
the cache without waiting for reading from OSS, thus greatly
speeds up the restore pipeline.

To ensure the highest time efficiency, the prefetched pos
must be ahead of restored pos, which means that the prefetch
speed must exceed restore speed. Fortunately, OSS can support
multi-channel parallel read that achieves scalable performance
improvements, despite its single-channel read throughput is
relatively low. Thus SLIMSTORE enables multithreading for
prefetching. Results (see SectionVII-C) show LAW-based
prefetching is extremely helpful. In our implementation, when
prefetch thread number reaches 6, prefetch speed always ex-
ceeds restore speed, which means that all the required chunks
are in memory, SLIMSTORE does not spend time waiting for
reading from OSS, so it achieves the highest time efficiency.

Full vision replacement policy. Due to the fragmentation
issues, the conventional cache replacement algorithm like LRU
has poor performance. For example, considering the LRU
cache size can hold up to 3 containers, when restoring the data
stream in Fig 4, container C6 is read to restore chunk P , but
chunks in C6 are too scattered, a cache miss will occur when
restoring chunk Q, because between P and Q, six different
containers are filled into the cache, causing repeated reading
of C6. We call this kind of container as large-span container.
Another fragment that may cause repeated reading is like
chunk A, which appears multiple times in the data stream.
When the second chunk A is restored, container C1 has been
evicted, results in C1 needs to be read again. This phenomenon
is called self-reference chunk [6]. The read amplification
caused by repeated reading wastes OSS bandwidth. Existing
works [6], [24] use a look-ahead window(LAW) to preserve
these two kinds of fragments that in the window in the cache,
such as chunk Q and A, which reduce the impact of them.

However, the limited size of LAW will not prevent frag-
ments that out of LAW from being evicted, such as chunk H
and C, because they are not in the vision of LAW. To address
this problem, we design a restore cache with a full vision
replacement policy, which is based on the full information
of chunk sequence in recipe, to protect chunks that will
be accessed in the future (includes the large-span and self-
reference fragments that out of LAW) from being evicted, and
make sure all containers only be read once, which completely
avoiding repeated reading from OSS.

Fig 4 shows our restore cache. We established a counting
bloom filter (CBF) for each file to record the chunks it
contains, which is efficient to test whether a chunk is included
in the restoring file. CBF can also count the referenced times of
each chunk, and once a chunk is restored, its count decrement

accordingly. By only evicting the chunks with a zero count, the
chunk that out of LAW can also be preserved. There are three
statuses for chunks: chunks appear in LAW are marked as SI

(e.g., chunk U and V), which indicates that they will be used
soon; chunks only exist in CBF are marked as SL, means that
they will be accessed in the future (e.g., chunk H , C, and W);
others that not appear in LAW and CBF are useless chunks
and marked as SU , like chunk G has been restored and does
not appear in the future. To avoid useless chunks occupy cache
space, when a container is read, only useful chunk (with status
of SI or SL) is placed in the cache. When replacement occurs,
the chunk with a status of SU is swapped out. In extreme
cases, cache may all be occupied by useful chunks, evicting
them will cause repeated reading from OSS to restore them
later. Therefore, the restore cache is designed as a two-layer,
Cachem is kept in memory, and Cached resides on the disk
of L-node. When all chunks in Cachem are useful, the chunk
with status SL will be swapped into Cached because it will
not be used soon. Before it is accessed, it will be swapped back
to Cachem, thus avoiding the OSS access overhead caused by
directly evicting some useful chunks.
B. Sparse Container Compaction

We observe that three kinds of fragments may cause read
amplification. Both large-span container and self-reference
chunk can be handled by the full vision cache as described in
Section V-A. There is another fragment needs to be noticed,
which is named as sparse container. Since the duplicate
chunks in multiple backup versions are eliminated, the chunks
of a new version are scattered among many containers, so
sparse container may only has few chunks that are useful
for the new version. For example, in order to restore chunk
D in Fig 4, container C2 must be read. However, there is
only one chunk in C2 is useful, resulting in a large number
of invalid reads. The read amplification caused by sparse
container wastes a lot of bandwidth read from OSS.

To eliminate the impact of sparse containers, SLIMSTORE
compacts useful chunks in sparse containers to gain a better
physical locality for new versions. We measure the container
utilization as number of useful chunks in the container

total chunk number of the container . During
the deduplication, the utilization of each container referenced
by the backup file of the current version is calculated, and
the container whose utilization is lower than the threshold
(e.g., 30%) is recorded as the sparse container. After the
current backup is finished, G-node starts the sparse container
compaction(SCC) phase, merges chunks of sparse containers
that are referenced by the backup file into new containers,
and updates the file recipe to the new state. After compaction
is completed, the restore job based on the new recipe will
eliminate the impact of sparse containers. The benefit of
SCC is directly applied to the current version, instead of
taking effect in the next version like HAR [6]. Besides, the
compacted chunks that in sparse containers will be deleted
after compaction, which means that SCC transfers some data
of old versions to be stored in the new version, so the storage
cost of old versions degrades over time, which meets our
design goal that spends less money for old backup data.

VI. SPACE MANAGEMENT ON G-NODE

G-node works on the backend to make the storage more
space-efficient by tuning the physical storage of containers.
Meanwhile, the adjustment needs to be more conducive to the
restoration of new versions. While the SCC technique mention
in Section V-B caters to this principle, G-node further provides
a global reverse deduplication technique. G-node also collects
deleted old versions to reclaim the occupied space.

A. Global Reverse Deduplication

Fast deduplication on L-node can not achieve exact dedu-
plication, so some deduplicates still exist between versions,
accurately identify and remove them can maximize the dedu-
plication ratio and reduce storage costs. Considering that
eliminating duplicate chunks that have already been stored
in containers may destroy the layout of the container, which
means that the deleted chunks need to redirect to other
containers, thus exacerbates fragmentation. Therefore, choose
which copy of the duplicate chunk to delete is important,
because it will degrade the restore performance of the version
that references the deleted chunk. With the design goals in
mind, SLIMSTORE needs fast restoration for new versions and
low storage costs for old versions, so reverse deduplication is
adopted. By preserving the data layout of the new version and
deleting the duplicate chunk in containers of the old version,
reverse deduplication reduces the data volume of old versions
without sacrificing the restore performance of the new version.

The global index described in Section III-B is used to
accurately identify duplicates. During the backup, L-node
records all newly generated containers, and G-node initiates
a backend job to filter all chunks in new containers to find if
there is a duplicate stored in a container of the old version. If
so, reverse deduplication starts to delete the duplicate chunk in
old container, and update the location of the chunk in global
index to the new container. So as to speed up filtering, a
global bloom filter is used to quickly filter out unique chunks.
Besides, when two chunks are identified as duplicates, based
on the physical locality of the container, there may be other
duplicates in two containers. Therefore, caching the meta of
the old container can also reduce the access number of Rocks-
OSS to accelerate global deduplication. Because the overhead
of reading and updating the entire container each time to delete
a chunk is unbearable, so global deduplication only marks
the duplicate chunk as deleted in the meta of old container.
When the number of deleted chunks in a container exceeds the
threshold (such as 20%), the container is read out and invalid
chunks will be removed, and then rewritten to OSS.

Global deduplication has no impact on the deduplicate and
restore jobs on L-node because it is executed offline and the
recipes of the latest version are kept unchanged. However,
reverse deduplication deletes duplicate chunks of old versions,
which may cause extra query of the global index to find the
deleted chunks when restoring old versions. But we think it
is worth it, because the space occupied by old versions is
reclaimed and the restore performance of the new version
which is more likely to be restored is also guaranteed.

1 2 4 8 1 6 3 2 6 4
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0

De
dup

lica
te T

hro
ugh

put
(M

B/S
)

C h u n k S i z e (K B)

 R a b i n - b a s e d C D C
 R a b i n - b a s e d C D C + s k i p c h u n k i n g
 F a s t C D C
 F a s t C D C + s k i p c h u n k i n g

(a) Throughput: vary chunk size

1 2 4 8 1 6 3 2 6 4
0 . 7 8 0
0 . 7 8 5
0 . 7 9 0
0 . 7 9 5
0 . 8 0 0
0 . 8 0 5
0 . 8 1 0
0 . 8 1 5
0 . 8 2 0
0 . 8 2 5
0 . 8 3 0
0 . 8 3 5
0 . 8 4 0

De
dup

lica
tio

n R
atio

C h u n k S i z e (K B)

 R a b i n - b a s e d C D C R a b i n - b a s e d C D C + s k i p c h u n k i n g
 F a s t C D C F a s t C D C + s k i p c h u n k i n g

(b) Deduplication ratio: vary chunk size

0 . 6 5 0 . 7 0 . 7 5 0 . 8 0 . 8 5 0 . 9 0 . 9 5
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0

De
dup

lica
te T

hro
ugh

put
(M

B/S
)

D u p l i c a t i o n R a t i o o f F i l e

 R a b i n - b a s e d C D C R a b i n - b a s e d C D C + s k i p c h u n k i n g
 F a s t C D C F a s t C D C + s k i p c h u n k i n g

(c) Throughput: vary file characteristics

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Tim
e(%

)

 C h u n k i n g F i n g e r p r i n t i n g I n d e x Q u e r y i n g
 O t h e r s N e t w o r k B u s y N e t w o r k I d l e

R a b i n - b a s e d C D C F a s t C D C

(d) Time breakdowm

Fig. 5: Performance of history-aware skip chunking.
TABLE I: The characteristics of dataset.
Dataset name S-DB R-Data

Total size (TB) 2.44 1.53
of versions 25 13

of files 500 7440
Average duplication ratio 0.84 0.92

Self-reference 20% 0.1%

B. Version Collection
In the backup system, timely reclaiming invalid versions

can manage storage space more effectively. After a backup
version becomes invalid, the container only referenced by it
is recognized as a garbage container, which can be collected
by the system. In SLIMSTORE, there are two categories of
garbage containers. One is the container that referenced in
version N but not referenced by version N+1 and other similar
files. This kind of container is invisible to subsequent versions
and can be collected when deleting version N. During dedu-
plication, by comparing containers in two backup versions,
this type of container can be quickly identified. The other
garbage containers come from the sparse container. Because
sparse containers identified by version N will not appear
in subsequent versions, so these containers are converted to
garbage and associated with version N. Essentially, the Mark
phase in garbage collection is performed when deduplicating
each version. In this way, when the version is reclaimed,
only the Sweep phase is performed by deleting the garbage
containers associated with this version, which significantly
accelerates the speed of version collection and will not stop
the system from executing other jobs.

VII. EVALUATION

A. The Experimental Setup
We deployed SLIMSTORE on a cluster of seven cloud elastic

compute services (ECS), each one is equipped with a 2.50GHz
Intel Xeon processor with 16 cores and 64GB memory. We
use six ECS as L-nodes and one ECS as G-node. And the
cloud storage we adopt is Alibaba’s OSS [1].

We implemented SiLO [4] and Sparse indexing [5] as our
competitor to evaluate the performance of fast online dedu-
plication on L-node, both of these methods use the similarity
and logical locality to identify duplicates. We also implement
HAR+OPT cache [6] and ALACC [24] to demonstrate the
effectiveness of our optimization on restore process. HAR is
the rewriting method that can most accurately identify sparse
containers, and OPT cache is a LAW-based container cache.
ALACC is the most state-of-art restore cache that combines
FAA and chunk-based cache to improve restore performance.

To comprehensively evaluate our design, we also compare
SLIMSTORE with Restic [29], which is the most popular open-
source deduplication system on GitHub. By using OSSFS (a
tool that can operate OSS like the local file system) [31], we
replace Restic’s storage with OSS.

We use two datasets for evaluation as shown in Table I.
S-DB is a set of database files, and each table is simulated
by the insert, update, and delete operations. By adjusting
parameters, we can control the percentage of the modified data,
thereby varying the duplication ratio of each table file between
versions from 0.65 to 0.95, and the average duplication ratio
between versions is 0.84. R-Data is a real backup dataset of
an enterprise. It contains 13 backup versions, and a total of
1.53TB of data.

B. Deduplicate Performance
We evaluate the deduplicate performance on L-node with

S-DB to demonstrate the effect of fast online dedupli-
cation. Deduplicate throughput shows the speed of dedu-
plication, which represents the amount of data processed
per second; the deduplication ratio represents the effec-
tiveness of deduplication, it is measured in terms of the
percentage of deduplicates deleted after deduplication, i.e.,
the size of duplicate data deleted
total size before deduplication .
Fig 5 shows the effect of history-aware skip chunking. We

observe that skip chunking significantly improves deduplicate
throughput in Fig 5(a). To be more precise, Rabin-based
CDC has a 2× performance improvement after adopting skip
chunking, and the throughput of FastCDC also increased by
1.5 times. Base on the observation in Fig 2, CPU is the
bottleneck when deduplicating, history-aware skip chunking
can eliminate the computational overhead of byte-by-byte
verification, so it saves a lot of CPU time and accelerates
deduplication. The CPU time breakdown in Fig 5(d) demon-
strates our analysis. When skip chunking is adopted, the CPU
cost of CDC is reduced to about 2%. Fig 5(b) shows that
skip chunking has no damage on the deduplication ratio, it
achieves the same deduplication ratio as Rabin-based CDC
and FastCDC. Fig 5(c) using files with different duplication
ratio in S-DB to evaluate the effect of skip chunking. We notice
that the increase in performance is related to the duplication
ratio, file with a higher duplication ratio achieves a larger
performance improvement because it has more consecutive
duplicated chunks, so skip chunking is more likely to succeed.

Besides, in Fig 5(a) and 5(b), it can be seen that deduplica-
tion throughput increases as chunk size grows, and become sta-

0 . 6 5 0 . 7 0 0 . 7 5 0 . 8 0 0 . 8 5 0 . 9 0 0 . 9 57 0
8 0
9 0

1 0 0
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0

De
dup

lica
te T

hro
ugh

put
(M

B/S
)

D u p l i c a t i o n R a t i o o f F i l e

 b e f o r e c h u n k m e r g i n g
 a f t e r c h u n k m e r g i n g

6
8
1 0
1 2
1 4
1 6
1 8
2 0
2 2
2 4
2 6
2 8

Av
era

ge
Ch

unk
 Si

ze(
KB

)

(a) Throughput: vary file characteristics

0 . 6 5 0 . 7 0 0 . 7 5 0 . 8 0 0 . 8 5 0 . 9 0 0 . 9 50 . 3 0
0 . 3 5
0 . 4 0
0 . 4 5
0 . 5 0
0 . 5 5
0 . 6 0
0 . 6 5
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

De
dup

lica
tio

n R
atio

D u p l i c a t i o n R a t i o o f F i l e

 b e f o r e c h u n k m e r g i n g
 a f t e r c h u n k m e r g i n g

(b) Deduplication ratio: vary file char-
acteristics

Fig. 6: Performance of history-aware chunk merging.

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0

De
dup

lica
te T

hro
ugh

put
(M

B/S
)

B a c k u p V e r s i o n

 S l i m S t o r e
 S i L O
 S p a r s e I n d e x i n g

(a) Deduplicate throughput

2 ~ 5 6 7 ~ 2 50 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 7 5
0 . 8 0
0 . 8 5

De
dup

lica
tio

n R
atio

B a c k u p V e r s i o n

 S l i m S t o r e S i L O S p a r s e I n d e x i n g

(b) Deduplication ratio

Fig. 7: Comparison of fast online deduplication of SLIM-
STORE, SiLO, and Sparse indexing.

ble after 32 KB. In contrast, the deduplication ratio degrades,
and the downward trend becomes sharper when chunk size is
larger than 16 KB. Therefore, history-aware chunk merging
is proposed to dynamically tune to an appropriate chunk size,
which can achieve a compromise between deduplication speed
and deduplication ratio.

We vary the file duplication ratio to verify the performance
of history-aware chunk merging, and the initial chunk size is
4KB. The result is shown in Fig 6. It is obvious that history-
aware chunk mering can improve the deduplicate throughput.
For the file with a duplication ratio of 0.95, the improvement
is more than 20%, from 125MB/s to 155MB/s, at the expense
of only 0.9% deduplication ratio. But for the file with a lower
duplication ratio, chunk merging has a lower benefit and a
higher deduplication ratio loss. The reason for the difference
is that files with a high duplication ratio will merge more
superchunks, thereby causing the average chunk size is large,
which is demonstrated by the red line in Fig 6(a), and the large
chunks after merging accelerate the deduplication process. In
addition, a high duplication ratio means that the data is less
likely to be modified, so the deduplication ratio loss caused
by the superchunk change is also small for the file with a high
duplication ratio as shown in Fig 6(b).

We also perform the evaluation to see the overall dedupli-
cation performance of SLIMSTORE and compare it with SiLO
and Sparse Indexing. We set the default chunk size is 4KB
for all three methods, and the merge threshold is repeatTimes
exceeds 5 for SLIMSTORE. Fig 7(a) shows that the stateless
deduplication and history-aware skip chunking inspire the
throughput of SLIMSTORE, which is 1.32× than SiLO and
1.39× than Sparse Indexing before version 6, meanwhile,
three methods achieve almost the same deduplication ratio.
When deduplicating version 6, history-aware chunk merging
is triggered, so many superchunks are generated and need to
store on OSS, which causes performance degradation. But
after version 6, benefit from the performance improvement
brought by chunk merging, SLIMSTORE outperforms SiLO
and Sparse Indexing by 1.63× and 1.72× respectively. Be-
cause large chunk size may cause the loss of deduplication
ratio, so SLIMSTORE loses about 1.5% of the deduplication
ratio compared to other two methods.

C. Restore Performance
We optimize restoration with two goals of high time-

efficiency and low OSS bandwidth consumption. Therefore,
we use the restore throughput and read container number per

100 MB to demonstrate our optimization. We backed up 25
versions of S-DB continuously and then restored them under
different cache sizes, and we disable LAW-based prefetching
to evaluate the effect of full vision cache(FV) and sparse
container compaction(SCC). Because before version 5, sparse
container is rare, the restore performance depends on the
ability of the restore cache to solve large-span containers
and self-reference chunks. The partial enlarged views in Fig
8 show the impact of three restore caches. We observe that
our FV cache always performs the best under different cache
sizes. In contrast, because the unit of OPT cache is container,
many useless chunks occupy the precious cache space, thereby
causing a low hit ratio, so the read amplification of OPT cache
is serious, which causes the worst performance as shown in
Fig 8(a). FV cache and ALACC adopted chunk-based cache,
so they perform better than OPT cache when cache is small,
but due to the limited vision of look-ahead window(LAW)
in ALACC, it can not solve the problem of fragments that
exceeds LAW. With full restore information, FV cache can
address these fragments to makes sure all containers only be
read once, so FV cache outperforms ALACC.

When cache size reaches 1024 MB, the large cache can
preserve more useful chunks, so the impact of fragments
like large-span container and self-reference chunk is reduced.
Therefore, the main performance loss comes from sparse
containers. With SCC, the read container number per 100 MB
is stabilizing after version 7, as shown in (2) of Fig 8(c),
which avoids unlimited read amplification, thereby protecting
the restore performance from declining over time. Because
ALACC has no optimization on sparse containers, so the read
amplification continues to increase, resulting in a lot of OSS
bandwidth consumption and impair restore performance. HAR
has the same effect on restore performance stabilizing, but
it rewrites chunks in sparse containers in the next version,
which causes the restore performance is still suffering from
some sparse containers. And because of the disadvantage of
OPT cache in dealing with fragments that exceed LAW, the
restore throughput of HAR+OPT cache is still 10% lower than
SCC+FV cache. Therefore, SCC and FV cache perform best
in combating fragmentation compared with existing methods,
and the restore throughput almost reaches the upper limit of
the single-channel OSS read bandwidth.

Fig 8(d) shows the performance of LAW-based prefetching,
which eliminates the waiting time for reading form OSS by
prefetching the continaers to be accessed soon. The results

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2
2 4
2 6
2 8

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2
2 4
2 6
2 8
3 0
3 2
3 4
3 6

Re
ad

Co
nta

ine
r N

um
ber

 pe
r 1

00
MB

B a c k u p V e r s i o n

 S C C + F V H A R + O P T A L A C C

(2)

c a c h e s i z e : 2 5 6 M B

1 2 3 4 5 6
2 02 22 42 62 83 03 23 43 6

Re
sto

re
Th

rou
ghp

ut(
MB

/s)

B a c k u p V e r s i o n(1)

c a c h e s i z e : 2 5 6 M B

(a) Restore performance with 256 MB cache

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 51 0
1 2
1 4
1 6
1 8
2 0
2 2
2 4
2 6
2 8
3 0
3 2
3 4
3 6

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2

1 2 3 4 5 6
2 0
2 2
2 4
2 6
2 8
3 0
3 2
3 4
3 6

Re
sto

re
Th

rou
ghp

ut(
MB

/s)

B a c k u p V e r s i o n(1)

 S C C + F V H A R + O P T A L A C C
c a c h e s i z e : 5 1 2 M B

Re
ad

Co
nta

ine
r N

um
ber

 pe
r 1

00
MB

B a c k u p V e r s i o n(2)

c a c h e s i z e : 5 1 2 M B

(b) Restore performance with 512 MB cache

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5
1 2
1 4
1 6
1 8
2 0
2 2
2 4
2 6
2 8
3 0
3 2
3 4
3 6

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5
6
8

1 0
1 2
1 4
1 6
1 8
2 0

1 2 3 4 52 2
2 4
2 6
2 8
3 0
3 2
3 4
3 6

Re
sto

re
Th

rou
ghp

ut(
MB

/s)

B a c k u p V e r s i o n(1)

 S C C + F V H A R + O P T A L A C C
c a c h e s i z e : 1 0 2 4 M B

Re
ad

Co
nta

ine
r N

um
ber

 pe
r 1

00
MB

B a c k u p V e r s i o n(2)

c a c h e s i z e : 1 0 2 4 M B

(c) Restore performance with 1024 MB cache

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5
1 5
2 0
2 5
3 0
3 5

2 0 0
2 0 5
2 1 0
2 1 5

2 5 6 5 1 2 1 0 2 4 2 0 4 85
1 0
1 5
2 0

2 0 0
2 0 5
2 1 0
2 1 5

Re
sto

re
Th

rou
ghp

ut(
MB

/s)

B a c k u p V e r s i o n

Re
sto

re
Th

rou
ghp

ut(
MB

/s)

C a c h e S i z e (M B)

 S C C + F V + P r e f e t c h i n g H A R + O P T A L A C C

(1) (2)

(d) Restore performance with LAW-based prefetching

Fig. 8: Comparison of restore performance.

TABLE II: Vary prefetching thread number
Prefetching Thread Number 0 1 2 4 6 8 10

Restore Throughput (MB/s) 36 38 75 154 207 208 208

show that excellent performance is achieved when SCC + FV
enables LAW-based prefetching, which is 9.75× and 16.35×
of HAR+OPT and ALACC respectively. Besides, LAW-based
prefetching achieves the same restore throughput of new and
old versions, thereby avoiding restore performance degrades
for new versions. We further explore the relationship between
prefetch speed and restore speed by varying the prefetching
thread number in Table II. After the number of threads reaches
6, restore performance stabilizes, which means that all chunks
can be obtained directly in memory, so the highest time-
efficiency of restore job is achieved.
D. Space Cost

G-node can effectively manage space by strategies like
sparse container compaction, global reverse deduplication, and
version collection. Fig 9 demonstrates the effect of space
management after backing up 25 versions of S-DB. We use
L-dedupe to represent deduplication on L-node and G-dedupe
as global reverse deduplication. In (a), when deduplication is
not applied, a total of 2.44 TB data are stored. L-dedupe can
eliminate duplicate data, thus resulting in a 4.8× reduction
in space consumption, occupying only 516.6 GB of storage
space, which proves the effectiveness of fast deduplication
on L-node. G-dedupe can achieve exact deduplication, so it
further reduces the occupied space by 2.4% to 504.2 GB. To
measure the effect of version collection, we only preserve the
last 10 versions. We can observe that after version 10, the
growth of space usage has slowed down, it is because many
old containers become garbage and are reclaimed. Therefore,
version collection can significantly reduce the space occupa-
tion of old versions and improve space efficiency.

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 50
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0
2 0 0 0
2 2 0 0
2 4 0 0
2 6 0 0

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5

4 0

5 0

6 0

7 0

8 0
Oc

cup
ied

 Sp
ace

(G
B)

B a c k u p V e r s i o n

 b e f o r e d e d u p e
 L - d e d u p e
 L - d e d u p e + G - d e d u p e
 v e r s i o n c o l l e c t i o n

Oc
cup

ied
 Sp

ace
(G

B)

B a c k u p V e r s i o n(a) (b)

Fig. 9: Effect of space management

Fig 9(b) shows the space occupied by version 0 as time goes
by, and the version collection is not enabled. It can be seen
that the occupied space is gradually decreasing. Because sparse
container compaction will merge some duplicate chunks into
new containers to gain a better physical locality, which means
that some data are moved into new versions, thus reducing
the occupied space of old versions. Moreover, global reverse
deduplication also eliminates duplicate chunks in old versions
to reduce their data volume. Therefore, the occupied space of
old versions is decreasing over time, which meets user needs
that spend less money to store old backup data.

E. Comparison with Open-source Deduplication System
We compare the performance of SLIMSTORE with Restic by

adopting the real backup workload R-Data. We use concurrent
jobs to deduplicate and restore the files of R-Data, with
each job processing one file. Because Restic recommends
using large chunks with 1MB, so we increase the chunk
size of SLIMSTORE, which ranging from 256KB to 2MB by
adopting history-aware chunk merging. In Fig 10(a), SLIM-
STORE achieves a linear increased throughput as the number
of concurrent backup jobs increases. We notice that one job
of SLIMSTORE outperforms Restic by 25%. Moreover, when
the number of concurrent backup jobs exceeds 13, multiple L-

1 1 2 2 4 3 6 4 8 6 0 7 2
1 0 0
2 0 0
4 0 0

1 0 0 0
2 0 0 0
4 0 0 0

1 0 0 0 0

1 8 1 6 2 4 3 2 4 0 4 8

5 0
1 0 0
2 0 0
4 0 0

1 0 0 0
2 0 0 0
4 0 0 0

De
dup

lica
te T

hro
ugh

put
 (M

B/s
)

N u m b e r o f C o n c u r r e n t B a c k u p J o b s

 R e s t i c
 S l i m S t o r e

(a) S c a l a b i l i t y o f d e d u p l i c a t i o n (b) S c a l a b i l i t y o f r e s t o r a t i o n (c) O c c u p i e d s p a c e

0
1
2
3
4
5
6
7
8
9
1 0

Nu
mb

er o
f L

-no
des

Re

sto
re T

hro
ugh

put
 (M

B/s
)

N u m b e r o f C o n c u r r e n t R e s t o r e J o b s

 R e s t i c
 S l i m S t o r e

0
1
2
3
4
5
6
7
8
9
1 0

Nu
mb

er o
f L

-no
des

1 4 7 1 0 1 30
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0

Oc
cup

ied
 Sp

ace
(G

B)

B a c k u p V e r s i o n

 b e f o r e d e d u p e
 R e s t i c
 S l i m S t o r e

Fig. 10: Comparsion of SLIMSTORE and Restic
nodes can be allocated for parallel deduplication as the red line
in Fig 10(a) shown. Therefore, SLIMSTORE achieves scalable
deduplication according to the actual backup workload, and
reaches 9102 MB/s when 72 deduplicate jobs are executed
in parallel. However, because multiple Restic deduplication
jobs need to access the same fingerprint index to identify
duplicates, so Restic cannot carry out multiple backup jobs
concurrently, which limits its deduplication throughput to 170
MB/s. Restore performance shows the same trend. We set
the prefetching thread number as two for SLIMSTORE. Due
to network bandwidth limitations, each L-node can execute
up to eight restore jobs at the same time. Fig 10(b) shows
SLIMSTORE achieves linear scalable restore throughput, which
reaches 3676 MB/s when six L-nodes execute concurrently.
As for Restic, limited by the fingerprint index access to get
the data locations, it only gets a maximum restore throughput
of 102 MB/s. Fig 10(c) shows the occupied space. Because
SLIMSTORE can adjust the chunk size according to the ac-
tual data characteristics, ranging from 256KB to 2MB, so it
achieves a higher deduplication ratio, and saves about 20% of
the space than Restic. Besides, the shaded part of SLIMSTORE
shows the effect of global reverse deduplication, which can
further reduce the space occupation by 4.6%.

VIII. CONCLUSION
This paper presents SLIMSTORE, a cloud-based dedupli-

cation system that provides online deduplicate and restore
services for large-scale multi-version backups. It perform
fast deduplication and restoration for new backup versions
while ensuring the effectiveness of deduplication to reduce
storage costs. Several techniques are proposed to improve its
efficiency. In isolation, each of these technique is fairly simple.
The novelty comes from designing and combining these ideas
into an effective and coherent system that meets design goals.
Experimental results demonstrate that SLIMSTORE achieves
very high-speed deduplication and restoration, and can effec-
tively eliminate duplicate data to reduce the storage costs.

REFERENCES

[1] “Alibaba oss,” https://www.alibabacloud.com/product/oss/.
[2] “Amazon s3,” https://aws.amazon.com/s3/.
[3] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck in the

data domain deduplication file system,” in FAST, 2008, pp. 269–282.
[4] W. Xia et al., “Silo: A similarity-locality based near-exact deduplication

scheme with low RAM overhead and high throughput,” in ATC, 2011.
[5] M. Lillibridge, K. Eshghi et al., “Sparse indexing: Large scale, inline

deduplication using sampling and locality,” in FAST, 2009, pp. 111–123.
[6] M. Fu, D. Feng, Y. Hua et al., “Accelerating restore and garbage col-

lection in deduplication-based backup systems via exploiting historical
information,” in ATC, 2014, pp. 181–192.

[7] M. Kaczmarczyk, M. Barczynski et al., “Reducing impact of data
fragmentation caused by in-line deduplication,” in SYSTOR, 2012, p. 11.

[8] M. Lillibridge, K. Eshghi et al., “Improving restore speed for backup
systems that use inline chunk-based deduplication,” in FAST, 2013.

[9] Understanding data deduplication ratios, Storage Networking Industry
Association, 2008.

[10] C. Dubnicki, L. Gryz et al., “Hydrastor: A scalable secondary storage,”
in FAST, 2009, pp. 197–210.

[11] J. Wei, H. Jiang et al., “MAD2: A scalable high-throughput exact
deduplication approach for network backup services,” in MSST, 2010.

[12] B. K. Debnath, S. Sengupta, and J. Li, “Chunkstash: Speeding up inline
storage deduplication using flash memory,” in ATC, 2010.

[13] W. Xia, H. Jiang et al., “A comprehensive study of the past, present,
and future of data deduplication,” Proceedings of the IEEE, vol. 104,
no. 9, pp. 1681–1710, 2016.

[14] A. Muthitacharoen, B. Chen et al., “A low-bandwidth network file
system,” in SOSP, 2001, pp. 174–187.

[15] W. Xia, H. Jiang et al., “Ddelta: A deduplication-inspired fast delta
compression approach,” Perform. Evaluation, 2014.

[16] W. Xia, Y. Zhou et al., “Fastcdc: a fast and efficient content-defined
chunking approach for data deduplication,” in ATC, 2016, pp. 101–114.

[17] F. Guo and P. Efstathopoulos, “Building a high-performance deduplica-
tion system,” in ATC, 2011.

[18] D. Bhagwat, K. Eshghi et al., “Extreme binning: Scalable, parallel
deduplication for chunk-based file backup,” in MASCOTS, 2009.

[19] M. Fu, D. Feng et al., “Design tradeoffs for data deduplication perfor-
mance in backup workloads,” in FAST, 2015, pp. 331–344.

[20] Y. Nam, G. Lu et al., “Chunk fragmentation level: An effective indicator
for read performance degradation in deduplication storage,” in HPCC,
2011, pp. 581–586.

[21] Y. Nam, D. Park et al., “Assuring demanded read performance of data
deduplication storage with backup datasets,” in MASCOTS, 2012.

[22] Z. Cao, S. Liu et al., “Sliding look-back window assisted data chunk
rewriting for improving deduplication restore performance,” in FAST,
2019, pp. 129–142.

[23] M. Fu, D. Feng et al., “Reducing fragmentation for in-line deduplication
backup storage via exploiting backup history and cache knowledge,”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 3, pp. 855–868, 2016.

[24] Z. Cao, H. Wen et al., “ALACC: accelerating restore performance of
data deduplication systems using adaptive look-ahead window assisted
chunk caching,” in FAST, 2018, pp. 309–324.

[25] D. N. Simha, M. Lu et al., “A scalable deduplication and garbage
collection engine for incremental backup,” in SYSTOR, 2013.

[26] “Hydrastor,” https://www.necam.com/hydrastor/.
[27] “Netbackup,” https://www.veritas.com/protection/netbackup-appliances.
[28] “Avamar,” https://www.delltechnologies.com/en-us/data-protection/data-

protection-suite/avamar-data-protection-software.htm.
[29] “Restic,” https://restic.net/.
[30] A. Z. Broder, “On the resemblance and containment of documents,” in

Compression and Complexity of SEQUENCES, 1997.
[31] “Alibaba ossfs,” https://github.com/aliyun/ossfs.

