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ABSTRACT
Shared-nothing, distributed databases scale transactional and ana-

lytical processing over a large data volume by spreading data across

servers. However, static sharding of data across nodes makes such

systems fail to timely adapt to changing workloads and struggle

to obey the cloud pay-as-you-go model. Migrating shards between

nodes online is a key technique to react to dynamic changes of

workloads for cloud elasticity. Existing approaches introduce se-

verely degraded performance and service interruption, resulting

in SLA violation on the cloud; or they are tailor-made to deter-

ministic databases. In this paper, we propose Remus, a new live

migration approach for shared-nothing, distributed databases with

snapshot isolation. Remus migrates shards between nodes with

zero service interruption and minimal performance impact. This

is achieved by an efficient unidirectional dual execution during

migration. We implement Remus on a shared-nothing, distributed

version of PolarDB-PG and evaluate it against state-of-the-art ap-

proaches using standard OLTP workloads TPC-C and YCSB, and

hybrid workloads consisting of long-lived and short transactions.

The results demonstrate Remus is the only effective approach to

achieve the goal of zero transaction interruption, zero downtime

and marginal performance impact, paving the way for applying

the shared-nothing architecture to a cloud database which needs

to provide elasticity while guaranteeing strict SLAs.
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1 INTRODUCTION
Cloud venders provide relational database-as-a-service for appli-

cations to process structured data in a cost-effective way. These

applications often require cloud databases to process requests over

ever-growing data volumes under extremely high concurrency. This

drives an increased demand for large-scale transactional and analyt-

ical processing systems. The shared-nothing distributed databases

can scale both storage and computing capacity beyondwhat a single

node can offer through data sharding [4, 15, 16, 35, 40]. However,

static sharding limits the ability of such systems to adapt to rapid

workload variation. This may result in degraded performance and

service level agreement (SLA) violations due to load imbalance

[23, 29, 43, 49] and insufficient provisioning of cloud resources

in the face of sudden load increases [3, 18]. Live migration that

migrates data between nodes with little impact on the ongoing

services is widely adopted by shared-nothing databases to adapt to

dynamic workloads [8, 16, 23, 29, 34].

Most existing live migration techniques can be classified into two

main categories: push-migration [8, 16, 18, 49] and pull-migration
[23, 24]. Push-migration copies the snapshot of migrating data to the

destination node and then pushes incremental updates iteratively.

Some downtime is enforced to transfer the ownership of migrating

data before running transactions on the destination [18, 49]. Trans-

actions that access migrating data may be aborted on the source

[8, 16], or restarted/resumed on the destination node [18, 49]. Abort-

ing or restarting transactions can cause significant delays in case

of long-running transactions such as large batch insertions. Pull-
migration routes newly arrived transactions to the destination node

during amigration. Missing data chunks are pulled on-demand from

the source node. However, each data pull locks the corresponding
data partitions and takes a long I/O time to complete during which

many contending transactions may be blocked, resulting in consid-

erable performance degradation [34, 49].

The limitations of existing approaches put obstacles in the way

of applying the shared-nothing architecture to general database

productions on the cloud, which may run short OLTP transactions,

long analytical queries and batch transactions, and even a hybrid

of these workloads while requiring strict SLAs. Any transaction

aborts and performance impact induced by a migration may violate

SLAs that must be guaranteed by the cloud vendors.

This paper introduces Remus, a new live migration technique

designed for a shared-nothing database supporting snapshot iso-

lation (SI), which incurs zero service interruption and minimal

performance impact. We developed a shared-nothing, distributed

version of PolarDB for PostgreSQL (aka PolarDB-PG), a commercial

cloud-native database system on Alibaba Cloud [10] and applied

the techniques described in this paper to PolarDB-PG.
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Figure 1: The architecture of PolarDB-PG.

Remus adopts the push-migrationmodel but differs in that it elim-

inates any service interruption and incurs marginal performance

impact during migration under different types of workloads. The

key to Remus is a new technique called ordered diversion that lever-

ages multi-version concurrency control (MVCC) and distributed SI

to enable efficient unidirectional dual execution when transferring

the ownership of migrating data, so as not to disrupt any running

transactions.

During dual execution, newly arrived transactions are routed

to the destination while allowing the existing transactions on the

source to run to completion. We propose a concurrency control

protocol, namely MOCC, that combines multi-versioning with a

variant of optimistic concurrency control (OCC) [31] to maintain

transaction consistency during dual execution. MOCC can piggy-

back on existing timestamp ordering protocols (e.g., centralized

timestamp scheme (GTS) [40] and decentralized timestamp scheme

(DTS)) to guarantee SI during a migration.

We implemented in PolarDB-PG Remus as well as Squall [23],
the state-of-the-art pull approach, and other push approaches that

adopt locking [8, 16] or remastering [1] to transfer data owner-

ship, and evaluated them. Multiple types of workloads are tested in

the experiments, including standard OLTP workload (TPC-C and

YCSB) and hybrid workloads that consist of OLTP and long-lived

transactions (i.e., analytical queries and large batch inserts). The

experimental results demonstrate that Remus is the only approach

that can achieve marginal performance variation, no downtime and

zero migration-induced transaction aborts simultaneously under

a broad spectrum of workloads, paving the way for applying the

shared-nothing architecture to a cloud database which needs to

provide elasticity while guaranteeing strict SLAs.

2 BACKGROUND AND MOTIVATION
2.1 The Target System
Remus is designed for shared-nothing, distributed databases and

implemented in a commercial cloud native database PolarDB-PG,
which is being open-sourced [11]. PolarDB-PG leverages MVCC and

timestamp ordering across nodes to support SI [6, 7, 40]. The overall

architecture is shown in Figure 1. The main components consist of

a control plane node and multiple elastic nodes. The control plane is

responsible for timestamp service of GTS and migration controller.

Each elastic node is a PostgreSQL based instance mainly consisting

of coordination, execution and timestamp ordering based concur-

rency control logic. Clients can submit requests to any one of the

elastic nodes to execute transactions. When a node accepts a client

connection, it starts a coordinator process and acts as a coordinator

node performing distributed query planning and coordinating the

query execution across nodes. Those nodes create worker processes

to execute queries in a transactional way.

In PolarDB-PG, each user table is sharded across nodes by using

consistent hashing [20]. Each shard is managed as a regular table

on one node and the indices and constraints of the user table are

created for its shards. A shard map is maintained on each node and

is used to route queries to appropriate nodes.

2.2 Distributed Snapshot Isolation
SI has become a widely used transaction isolation level because it

allows high concurrency between reads and writes, which is usually

built on top of MVCC and is employed by many modern DBMS

systems (e.g., PostgreSQL,MySQL andOracle) [5, 9, 25, 37]. PolarDB-
PG combines distributedMVCCwith timestamp ordering to provide

SI across nodes [6, 7, 22, 40]. It adopts the multi-version store of

PostgreSQL and extends the tuple header to accommodate commit

timestamp along with the unique id (xid) of the transaction that

creates the version. PostgreSQL uses a commit log (CLOG) to record
each transaction’s status. When one transaction completes, it sets

its status as committed/aborted in the CLOG, which can be looked

up by other transactions during MVCC visibility validation. We

extend the CLOG to record commit timestamps: when committing

one transaction, its commit timestamp is stored in the CLOG.
To guarantee SI, PolarDB-PGmust guarantee that one transaction

𝑇𝑅 can see another transaction𝑇𝑊 ’s writes iff𝑇𝑅 ’s start timestamp is

equal to or larger than𝑇𝑊 ’s commit timestamp. In an asynchronous

network, it is challenging to maintain such timestamp order in a

distributed database as transaction start/commit messages may

arrive at different nodes in any order.

As the two-phase commit (2PC) protocol is used in distributed

transactions for atomicity, the 2PC prepare-wait mechanism [22, 40]

is adopted to maintain timestamp order across nodes consistently.

Specifically, each distributed transaction tags its transaction status

as prepared (a reserved special timestamp) in the CLOG in the

prepare phase. In the commit phase, a commit timestamp is assigned

to the transaction. Its prepared status in the CLOG is replaced with

the commit timestamp. For a single-node transaction, it also marks

its status as prepared in the CLOG first before assigning its commit

timestamp. To read a tuple, a transaction (𝑇𝑅 ) traverses its version

chain until finding the latest version that is committed with the

commit timestamp before 𝑇𝑅 ’s start timestamp. For each traversed

version, the status and commit timestamp of the transaction (𝑇𝑊 )

that creates the version is consulted from the CLOG to perform

visibility checking. If the result is a prepared status, 𝑇𝑅 would wait

for 𝑇𝑊 to complete.

The correctness of the prepare-wait mechanism [22, 40] is de-

rived as follows. 𝑇𝑅 performs any MVCC reads after it acquires a

start timestamp. 𝑇𝑊 is assigned commit timestamp after its pre-

pare phase completes. Existing timestamp protocols obey either a

globally increasing property [40] or Lamport’s causality increasing
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property [30, 32]. Hence, if 𝑇𝑅 ’s start timestamp >= 𝑇𝑊 ’s commit

timestamp and they have access dependencies, 𝑇𝑊 must complete

its prepare phase when 𝑇𝑅 starts to perform reads. Then 𝑇𝑅 would

see 𝑇𝑊 ’s commit timestamp or prepared status. In the latter case,

𝑇𝑅 would wait for 𝑇𝑊 to complete and see its writes.

Centralized Coordination: PolarDB-PG supports centralized

coordination for timestamp generation by using a centralized se-

quencer called GTS [6, 40]. The GTS, implemented in the control

plane node, generates monotonically increasing timestamps across

nodes. Each transaction interacts with GTS to request a start times-

tamp as a snapshot to perform reads and a commit timestamp

when committing it. The globally monotonic timestamps guarantee

linearizability.

Decentralized Coordination: To avoid the centralized bottle-

neck, we also use a decentralized timestamp scheme, namely DTS.
Each server maintains a Hybrid Logical Clock (a variant of [30]),

which is a mixture of a logical time (LT ) [32] with a synchronized

physical time (PT ) 1. The key property of DTS is to leverage LT
to track causal ordering among transactions for ensuring SI while

using PT to generate fresh snapshots across nodes.

The choice between GTS and DTS: GTS guarantees lineariz-
ability across sessions. DTS can guarantee linearizability across

sessions that connect to the same node. For sessions starting on

different nodes, DTS allows stale snapshot reads due to physical

clock skew among nodes while ensuring SI like in many other sys-

tems [1, 19, 22, 48]. Users can use DTS for better performance if

their application tolerates such stale reads within clock skew across

sessions.

2.3 Analysis of Existing Migration Approaches
2.3.1 Migration Costs. Data migration usually introduces service

downtime, performance degradation, numerous aborted transac-

tions and transaction restarts [17, 34]. We call them migration costs.

Among them, transaction aborts or restarts result in wasted re-

source consumption and increased execution time, especially in

cases of long-running transactions which are common. In scenarios

such as IoT [26] and hybrid serving/analytical processing [27], the

edge computer nodes or other service systems collect real-time

streaming data generated by edge devices or by online user activi-

ties. The data is then ingested into a database system using long-

running batch transactions. Such data generation and ingestion

happen continuously as these scenarios require real-time computa-

tion: performing analytical queries as well as point lookups over

the latest data, in order to generate business intelligence reports or

to retrain machine learning models [26, 27].

Another type of long-running transactions are analytical queries.

Furthermore, a fusion of analytical queries and large batch inserts,

such as INSERT...SELECT, is often used to insert aggregated results

from one or multiple tables into another table in real-time analytics

[16, 41]. Restarting a transaction inside a database is hard to imple-

ment, and sometimes impossible for interactive transactions, since

partial results may already be sent to applications [45].

2.3.2 Pull Migration. Squall [23] is a state-of-the-art pull based
migration which combines asynchronous background pulling with

1
We can use NTP (Network Time Protocol) or PTP (Precision Time Protocol) to

synchronize physical time between servers.

on-demand pulling to migrate data. The former is used to migrate

the data in the background while the latter pulls missing data ac-

cessed by ongoing transactions during a migration. Squall divides

continuous key ranges into chunks, and migrates a data chunk at

one time for both reactive and background pulls. A migration-status

tracking table is created on both the source and destination to track

each chunk’s on-the-fly location. Once a data chunk is migrated,

transactions that access it on the source node would be aborted

and retried on the destination node. Squall locks the source and

destination data partitions during a pull to prevent any concurrent

access to the migrating chunk, so as to maintain consistency. This

partition locking mechanism is provided by H-store [39], the OLTP

database system where Squall is implemented. Although Squall op-

timizes the pull migration compared to Zephyr [24], it still suffers

severe performance degradation during a migration [34, 49], as also

demonstrated in our evaluation. This is because the lengthy reac-

tive and background pulls can block many concurrent transactions

accessing the migrating data, leading to significant throughput drop.

Meanwhile, Squall does not fit long running transactions as they

may hold partition locks for a long time, blocking other concurrent

access and migration pulls.

2.3.3 Push Migration. Compared to pull migration, push migration

adopts an iterative-state-copying (ISC) method [17, 18, 49] to sup-

port live migration. At the start of a migration, a snapshot of shards

to be migrated is created on the source node and is then copied

to the destination node. Incremental updates are tracked during

snapshot copying since transactions are still routed to the source

node. Those tracked updates are sent to the destination iteratively

during the catch-up phase. When the number of un-synchronized

updates drops below a threshold, ISC enters into the ownership

transfer phase. At this phase, active transactions are blocked and

cannot access the migrating data. The remaining final updates are

copied to the destination before transferring the ownership of mi-

grating data. Recent work [1, 8, 16–18, 49] follows this ISC method.

The main difference among them lies in how to achieve atomic

ownership transfer, which can be classified into lock-and-abort,
suspend-and-resume, and wait-and-remaster techniques.

Lock-and-abort [8, 16]: During the ownership transfer phase,

this approach locks the migrating shards to prevent any writes,

replays the final updates and then modifies the shard map table

on all coordinator nodes to route incoming transactions to the

destination. Any transactions that hold the locks in a conflict mode

are terminated in advance when trying to lock the shards. When

the transfer completes, the blocked transactions are aborted. This

approach can result in many write transaction aborted and may

severely impact the performance of long-running transactions.

Suspend-and-resume [17, 18, 49]: During the ownership trans-
fer phase, Albatross [17, 18] suspends all active transactions access-

ing the migrating data on the source. The approach then copies

the final updates as well as the state of active transactions to the

destination, and resumes them on the destination. Such approach,

designed for simple OLTP workloads, is not suitable for queries that

consist of complex operators such as joins and aggregations. Those

queries may build a large amount of intermediate results, such as

hash tables for hash join. Migrating those intermediate results dur-

ing the ownership transfer phase may increase service downtime,
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Lock [8, 16] Suspend [18, 49] Remaster [1] Squall [23] MgCrab [34] Remus

Service Downtime Yes Yes Yes No No No

Transaction Abort Yes No No Yes No No

OLTP Throughput Drop Low Low (Not Always) Low (Not Always) High Low Low

Batch Throughput Drop High Low Low Median Not Sure Low

Support of Interactive transaction Yes Yes Yes Yes No Yes

Concurrency Control MVCC OCC MVCC Partition Lock Determinism MVCC

Table 1: Comparison of existing state-of-the-art migration approaches with Remus. "Batch Throughput Drop" means the
throughput drop of batch write transactions. "Not Always" means the OTLP throughput drop may be high in case of long
lived transactions. Lock, Suspend and Remaster are short for lock-and-abort, suspend-and-resume and wait-and-remaster.

leading to a significant throughput drop. Restarting transactions

on the destination may remedy the above problem. However, it is

not feasible for interactive transactions and introduces significant

cost for long-running transactions.

Wait-and-remaster: DynaMast [1] proposes a light-weight re-

mastering protocol to transfer data ownership among multiple fully

replicated nodes. This remastering protocol can be leveraged to mi-

grate data while introducing no transaction aborts in the migration

scheme. During the ownership transfer phase, wait-and-remaster
suspends routing newly-arrived transactions, waits for ongoing

transactions of writing the migrating shards to complete (wait) and
then updates the shard map table to route incoming transactions to

the destination (remastering). This approach may lead to lengthy

downtime in the case of long-running transactions that are writing

the migrating data. Furthermore, as the transaction write set is of-

ten unknown prior to execution, it needs to wait for any on-the-fly

transactions to complete, even though they would not access the

migrating data.

2.3.4 Dual Execution Migration. In order to eliminate downtime

and interruption, MgCrab [34] proposes a dual-execution based

migration for shared-nothing deterministic databases [46]. In a

deterministic database like Calvin [46], concurrent transactions

are executed in a globally predetermined order on each node via

sequencers. MgCrab leverages such determinism to route each in-

coming transaction during migration to both source and destination

node while maintaining consistency. MgCrab guarantees that each

pair of dual-execution transactions would run on a consistent view

of both nodes because of deterministic execution. The source node

transaction reactively pushes missing data chunks to the destina-

tion to assist its paired transaction in accessing not-yet-migrated

data on the destination. MgCrab [34] is tailor-made for determin-

istic databases, which need to determine a global execution order

for a batch of transactions prior to execution. As a result, MgCrab

cannot support interactive transactions. Moreover, MgCrab relies

on lock-based deterministic concurrency control, which prevents

its application to the widely used MVCC database systems.

2.3.5 Summary. In Table 1, we compare existing state-of-the-art

migration techniques with Remus in six dimensions. Some dimen-

sions such as downtime and transaction aborts have been discussed

in the context of OLTP transactions in prior work [34]. We focus on

the migration impact on complex hybrid workloads consisting of

both short OLTP and long lived transactions. In term of downtime

and transaction aborts, only MgCrab and Remus can achieve both

no downtime and zero transaction abort. For the throughput of

Source Node Dest. Node

Snapshot Copying
Snapshotting

Catching Up
Async Propagation

Dual Execution

Sync Propagation

Sync Barrier

Cleanup

Ordered Diversion

Sync Propagation

Mode Changing

active txns

Completion

Validation Stage
Commit Stage

Figure 2: The migration phases in Remus. The yellow solid
dot denotes the event of sync barrier that makes the source
enter into sync propagation mode. The blue solid dot de-
notes the event of ordered diversion after which newly ar-
riving transactions are redirected to the destination.

short OLTP transactions, most approaches except for Squall intro-

duce insignificant performance degradation. However, only Remus

and lock-and-abort can avoid the impact on OLTP throughput in the

presence of long-live transactions. lock-and-abort can cause large

throughput drop for batch write transactions as it may abort them

during migration. MgCrab is implemented on a deterministic data-

base and cannot support interactive transactions. By comparison,

Remus is based on MVCC and can support more general workloads

with high performance, including interactive transactions, batch

and analytical transactions and stored procedures.

3 DESIGN
3.1 Overview
The primary design goal of Remus is to support live migration

of shards between nodes with zero service interruption and mar-

ginal performance impact. The approach should be applicable to

general-purpose databases under a wide variety of workloads, e.g.,

short OLTP transactions, long batch and analytical transactions

and hybrid workloads. Remus adopts the push-migration method

to migrate shards between nodes. Differing from previous work

on push-migration, Remus supports efficient dual execution when

transferring the ownership of migrating data to the destination

node, so as to avoid any interruption and to minimize performance

impact.
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As shown in Figure 2, the migration process of a shard in Remus
includes four phases: snapshot copying, asynchronous update prop-

agating, sync mode changing and dual executing. In the first phase,

Remus leverages MVCC to create a snapshot of a shard and copies

the snapshot to the destination node without interfering normal

transaction processing. During async propagation phase, changes

committed after the snapshot are propagated continuously to the

destination (async execution phase). When the destination catches

up with the source node, Remus changes the propagation mode

from asynchronous to synchronous mode by using a sync barrier,
thus entering into the sync execution phase. Then the unidirectional

dual execution starts by performing ordered diversion: newly arrived
transactions accessing the migrating data are routed to the desti-

nation node while allowing the execution of existing transactions

on the source node to run to completion without any interruption

and suspension. A concurrency control protocol, namely MOCC,
is adopted to maintain transaction consistency and SI between the

source and destination nodes during dual execution.

We call a transaction that runs on the source node and has its

writes propagated to the destination node as a source transaction.

A transaction that is forwarded to the destination node to access

the migrating data is termed a destination transaction.

3.2 Snapshot Copying
Remus uses multi-versioning to create a snapshot for a shard to be

migrated and then installs the snapshot on the destination. Specifi-

cally, Remus scans the target shard to retrieve valid tuple versions

that are committed before the snapshot timestamp. The retrieved

tuples are then inserted into an empty shard on the destination

node with a reserved minimal commit timestamp. This allows those

data to be visible to any transactions on the destination starting

after the snapshot. The snapshot scan and installation are executed

in a streaming way, such that no extra storage is required for the

migrating shard.

3.3 Asynchronous Update Propagation
In this stage, Remus asynchronously propagates to the destination

node the changes of the migrating shard that are committed after

the snapshot timestamp. This process does not interfere the source’s

transaction processing so as not to impact its performance.

In order to minimize the performance impact on user queries,

Remus uses Write-ahead Log (WAL) [36] of PostgreSQL to track the

changes that need to be propagated. Since each transaction’s up-

dates are logged in the WAL, incremental changes over a snapshot

can be tracked by traversing WAL records.

As shown in Figure 3, Remus starts a propagation (send) process

on the source node to propagate the changes of committed trans-

actions from the WAL to the destination node. The propagation

process reads streaming records from the WAL continuously and

builds a update cache queue for each encountered transaction to

cache its modifications extracted from the WAL. Note that Remus
only extracts changes related to the migrating data. When encoun-

tering a commit record of a transaction, the propagation process

sends all its change records in its update cache queue to the destina-

tion if its commit timestamp is greater than the snapshot timestamp.

If a source transaction is found to be aborted in the WAL or its

commit timestamp is smaller than or equal to the snapshot times-

tamp Remus simply drops its modifications and releases its update

cache queue. For transactions with a large write set Remus also
allows their change records being spilled to disk. When starting to

propagate one spilled transaction, Remus would reload and send its
spilled change records in batches.

On the destination node, Remus creates a replay process that

applies the propagated changes of each source transaction in se-

quence. Specifically, for each source transaction the replay process

starts a shadow transaction with the same start timestamp to re-

execute its changes and uses the same commit timestamp to commit.

As all propagated changes are applied in the same order as they

commit on the source node, the data of the migrating shard on the

destination is consistent to that on the source.

In PolarDB-PG, each shard table has a primary unique key. Each

propagated change record includes the primary key value of the

modified tuple. For each propagated record that modifies an existing

tuple, the replay process first locates the tuple by using a primary

index scan and then applies the modification.

Remus uses the above framework for update propagation in

both synchronous and asynchronous modes as shown in Figure

2. In asynchronous propagation mode, any source transaction can

complete immediately after its updates are flushed to the WAL,

which are propagated to the destination node asynchronously. In

synchronous propagation mode, a source transaction needs to wait

for its updates to be applied on the destination and uses MOCC to

commit (§3.5.2).

3.4 Propagation Mode Changing
When the number of changes that have not been applied on the

destination drops below a threshold, the live migration performs

ownership transfer and enters into dual execution phase. During

unidirectional dual execution, a destination transaction should be

able to access the changes of a source transaction that commits

before the destination transaction starts. This requires all updates of

migrating shards to be available on the destination. Remus achieves
it by ensuring that: first, source transactions running through dual

execution have their updates propagated to and applied on the

destination before they commit; second, all updates committed

before dual execution are available on the destination. A mode

changing phase is introduced to achieve this goal.

For the first guarantee, a sync barrier is adopted to change the

asynchronous propagation mode to a synchronous mode. To create

a sync barrier, Remus sets a flag in a shared memory area of the

source node. This flag is checked by source transactions before they
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cts: the commit timestamp of a tuple version.

commit. When the flag is set, the commit progress will wait until

its updates have been propagated to and applied on the destination.

We call these transactions as synchronized source transactions.

Synchronized source transactions use MOCC (§3.5.2) to commit

such that when entering dual execution any source transactions

would have their updates propagated to the destination and write-

write conflicts (WW -conflicts) resolved on the destination before

they can commit.

For the second guarantee, Remus records all transactions on
the source already entering their commit progress before the sync
barrier is set. The set of these transactions is called𝑇𝑆𝑢𝑛𝑠𝑦𝑛𝑐 . After

all the transactions in 𝑇𝑆𝑢𝑛𝑠𝑦𝑛𝑐 complete, the current flush (tail)

position in the WAL is recorded as 𝐿𝑆𝑁𝑢𝑛𝑠𝑦𝑛𝑐 , which can cover all

the updates from 𝑇𝑆𝑢𝑛𝑠𝑦𝑛𝑐 . When all the migrating-shard related

changes till 𝐿𝑆𝑁𝑢𝑛𝑠𝑦𝑛𝑐 have been propagated to and applied on

the destination, the dual execution mode can be started, since all

committed updates from 𝑇𝑆𝑢𝑛𝑠𝑦𝑛𝑐 are available on the destination

and newly arrived source transactions useMOCC to commit. During

the mode changing phase, incoming transactions are routed to the

source node and run without any interruption and suspension.

3.5 Dual Execution
As shown in Figure 2, after the propagation mode changing phase

completes, Remus performs shard ownership transfer to enter into

dual execution. During the dual execution, existing transactions

continue to run on the source node, called source transactions,

while newly arriving transactions accessing the migrating shard,

called destination transactions, are directed to the destination node.

In order to ensure SI between source transactions and destination

transactions, the dual execution phase should address two key

problems: (1) how to ensure that both source and destination trans-

actions run on a consistent view of the migrating data, and (2) how

to resolveWW -conflicts and maintain timestamp order between

source transactions and destination transactions. The former is

solved by using a technique called ordered diversion while the latter

is achieved through a concurrency control protocol termed MOCC.

3.5.1 Ordered Diversion. In order to maintain a consistent snap-

shot of migrating data between concurrent source and destination

transactions, we propose an ordered diversion technique that en-

ables a unidirectional propagation based dual execution with low

overhead. The key to the ordered diversion is to leverage distributed

multi-versioning metadata and SI to steer incoming transactions to

the appropriate node during dual execution.

As shown in Figure 5, Remus organizes the shard map on each

node as a regular multi-versioning table which we call shard map

table. During shard ownership handover, a distributed transaction,

called 𝑇𝑚 , is employed to update the table on each node. The shard

map table records the shard ID, consistent hash range, and node ID

for each shard. To route a query of one transaction𝑇1, the coordina-

tor process parses the query predicates to determine the shards that

the query needs to access and then reads the shard map table using

𝑇1’s start timestamp as a snapshot to determine the nodes where

the target shards lie. As shown in Figure 4, 𝑇𝑚 actually updates the

node ID of the migrating shard and uses 2PC to commit. As a result,

a transaction starting after𝑇𝑚 commits is steered to the destination

node to access the migrating shard. The commit timestamp of 𝑇𝑚
becomes a barrier to divide transactions into two groups: those

starting before the barrier are routed to the source (𝑇𝑠 ) and others

are directed to the destination (𝑇𝑑 ).

For example, as shown in Figure 5, as T2’s start timestamp (10)

is smaller than𝑇𝑚 ’s commit timestamp (12), it would be still routed

to the source node while T1 is directed to the destination as T1’s

start (15) is larger than 𝑇𝑚 ’s commit timestamp. However, within

an asynchronous network,𝑇𝑚 ’s commit message may arrive on the

node handing T1 after T1 starts which leads to T1 not seeing 𝑇𝑚 ’s

updates. Remus relies on existing timestamp protocols as discussed

in §2.2 to ensure timestamp order consistency among transactions

across nodes. Specifically, the prepare-wait mechanism is adopted

to ensure timestamp order.

Theorem 3.1. Using 𝑇𝑚 as an ordering barrier, Remus enables
unidirectional propagation from the source node to the destination
node, as the changes made to the migrating data on the destination
node are invisible to the transactions running on the source node.

Under dual execution, we assume any two transactions 𝑇𝑠 and

𝑇𝑑 , that access the migrating shard, on the source and destination

node, respectively.
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Proof. Although 𝑇𝑠 and 𝑇𝑑 may be coordinated by different

nodes, Remus leverages timestamp ordering to guarantee that 𝑇𝑚 ’s

effect becomes visible across nodes consistently (§2.2). A transaction

is directed to destination if and only if its start timestamp is greater

than or equal to𝑇𝑚 ’s commit timestamp (𝑇𝑚 .commitTS), no matter

which node the transaction is coordinated and routed. As 𝑇𝑑 is

directed to the destination node, it must see 𝑇𝑚 ’s changes made

on the shard map, i.e., 𝑇𝑑 .startTS >= 𝑇𝑚 .commitTS. Similarly, as 𝑇𝑠
runs on the source node,𝑇𝑚 ’s updates are invisible to𝑇𝑠 , indicating

𝑇𝑠 .startTS < 𝑇𝑚 .commitTS. As a transaction’s commit timestamp is

always larger than its start timestamp, we can derive that

𝑇𝑑 .𝑐𝑜𝑚𝑚𝑖𝑡𝑇𝑆 > 𝑇𝑑 .𝑠𝑡𝑎𝑟𝑡𝑇𝑆 > 𝑇𝑠 .𝑠𝑡𝑎𝑟𝑡𝑇𝑆 (1)

Consequently, 𝑇𝑑 ’s writes are invisible to 𝑇𝑠 . □

Consistency of shardmap cache PolarDB-PG builds a fast pri-

vate ordered cache from the shard map table for each coordinating

process to speed up query routing as shown in Figure 5. The pri-

vate cache is ordered by the consistent shard hash ranges and is

organized as an ordered array, so as to enable fast binary searching

to locate the shard for point-lookup and efficient shard pruning for

range-scan.

The adoption of private ordered cache would sabotage the trans-

action semantic of 𝑇𝑚 that the ordered diversion relies on to enable

unidirectional dual execution. After 𝑇𝑚 commits, the cache in each

coordinator process would be invalidated and reloaded. However,

there is a vulnerable time window between the event of 𝑇𝑚 ’s com-

mit and that of invalidation. As a result, stale shard map values

in the cache may still be used to route one transaction 𝑇1 with

start timestamp larger than 𝑇𝑚 ’s commit timestamp after 𝑇𝑚 com-

mits. To amend this, Remus adopts a strategy that marks each node

as cache-read-through state with migrating shard IDs temporarily

before the execution of 𝑇𝑚 and clears the state after 𝑇𝑚 commits.

When one coordinator process starts to route a transaction (e.g.,

T1) during cache-read-through, it first uses T1’s start timestamp to

read the tuples corresponding to the migrating shard IDs from the

shard map table. Then its cache is updated if there are new visible

tuple versions. If the cache-read-through state ends up with one

process’s cache entries having not yet been updated, the process

will refresh its cache entries to the new version from the shard

map table after completing the current transaction. This is safe as

subsequent transactions would be assigned start timestamps larger

than 𝑇𝑚 .commitTS.

As shown in Figure 5, since T1. startTS is larger than𝑇𝑚 .commitTS,

the process coordinating T1 refreshes its cache with 𝑇𝑚 ’s updates

and then routes T1 to the destination node. In contrast, the cache

of the process routing T2 is stale as 𝑇𝑚 ’s updates are invisible to

T2 and T2 is still directed to the source.

3.5.2 MOCC. We propose MOCC, a concurrency control protocol

combining multi-versioning with a variant of OCC [31], to ensure

SI between source and destination transactions. For a source trans-

action𝑇𝑠 and a destination transaction𝑇𝑑 ,𝑇𝑑 ’s updates are invisible

to 𝑇𝑠 under SI according to Theorem 3.1. There are no write-read

(WR) dependencies from 𝑇𝑑 to 𝑇𝑠 . MOCC does not need to validate

the read set of each source transaction. Hence, only WW -conflicts

between 𝑇𝑑 and 𝑇𝑠 need to be processed. MOCC allows concurrent

read and write accesses to the migrating shard on both nodes during

dual execution whileWW -conflicts are resolved on the destination.

In MOCC, the destination node starts a shadow transaction for

each source transaction to execute its propagated changes. The

shadow transaction is assigned the same start timestamp as its

source transaction and runs as a normal transaction conducting

reads and writes to versioned tuples and following SI. Its updates

can be read by destination transactions following MVCC visibility

validation. Constraint checking and tuple locking are also main-

tained for each change on the destination node.

In MOCC, each source transaction is committed by using two

stages: validation stage and commit stage.MOCC utilizes the frame-

work offered by the 2PC protocol to manage source transactions

and their shadow transactions, e.g., when a shadow transaction

rolls back, its source transaction does so.

Validation stage: During this stage, the source transaction

writes a validation record, a special 2PC prepare log record to the

WAL, and waits for the validation outcome from the destination.

Upon a special prepare log record of a source transaction, the prop-

agation process sends its changes in its update cache queue to the

destination node.

For each propagated write of𝑇𝑠 , its shadow transaction𝑇𝑑𝑢𝑎𝑙 re-

executes its change on the destination. Specifically, 𝑇𝑑𝑢𝑎𝑙 inserts a

new tuple for an insertion record from𝑇𝑠 . For any record of update,

delete or explicit row-level lock, a valid tuple version according to

𝑇𝑠 ’s start timestamp is first retrieved. Then the retrieved tuple ver-

sion is checked whether it is has been marked as dead (i.e., deleted)

or there are newer versions (updated). If so, both 𝑇𝑑𝑢𝑎𝑙 and 𝑇𝑠 are

aborted as the tuple is being or has been modified by other desti-

nation transactions, indicating a WW -conflict. Otherwise, 𝑇𝑑𝑢𝑎𝑙
re-executes the operation according to the propagated record. After

all changes are validated and re-executed successfully, both 𝑇𝑑𝑢𝑎𝑙
and 𝑇𝑠 can be committed.

Commit stage: If anyWW -conflict occurs during the validation

stage, Remus aborts both the source and its shadow transaction.

Otherwise, the replay process uses 2PC to first prepare the shadow

transaction and sends an ack of validation-ok back to the source

node. Then the source transaction determines a commit timestamp

and writes a commit record to theWAL, which would be propagated

to the destination node asynchronously. Upon receiving the commit

record, the destination node commits the corresponding prepared

shadow transaction with the same commit timestamp.

When the source transaction is a distributed transaction and

uses 2PC to commit, Remus combines its validate stage with the

2PC prepare phase. If the source transaction finally decides to abort

due to failures on other nodes, the source node writes a rollback

prepared record in the WAL, which would be propagated to the

destination to roll back the shadow transaction. Otherwise, a com-

mit prepared record for the source transaction would be written

to the WAL on the source node, which would be propagated to the

destination to commit the prepared shadow transaction with the

same commit timestamp. The destination node starts a separate

apply process to handle commit/rollback (prepared) records.

Distributed SI: MOCC can piggyback on existing timestamp

ordering protocols (e.g., GTS and DTS) to provide SI during mi-

gration. Recall that PolarDB-PG adopts prepare-wait mechanism

[22, 40] to maintain timestamp order between transactions across
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nodes as discussed in §2.2. During dual execution, the validation

stage propagates the prepare event of each source transaction to

the destination which uses 2PC to prepare its shadow transaction.

The commit timestamp of one source transaction is assigned after

both the source and its shadow transaction complete the prepare

phase. And the shadow transaction would commit with the same

timestamp with its source transaction. The prepared status of a

shadow transaction would block concurrent MVCC reads over its

writes on the destination to maintain timestamp order between

source and destination transactions.

3.6 Performance Impact
The main cost induced by Remus is the increased latency of source

transactions as they need to wait for their shadow transactions to

complete during synchronous propagation. The latency depends

on two factors: (a) the speed of replaying propagated changes, i.e.,

assuming 𝑠𝑝𝑒𝑒𝑑𝑟𝑒𝑝𝑙𝑎𝑦 ; (b) the update speed to the migrating data,

i.e., 𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑑𝑎𝑡𝑒 . If 𝑠𝑝𝑒𝑒𝑑𝑟𝑒𝑝𝑙𝑎𝑦 exceeds 𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑑𝑎𝑡𝑒 , the destina-

tion node can catch up with the source during the asynchronous

propagation phase, making the performance impact minimal dur-

ing the dual execution as demonstrated in our experiments (§4).

Otherwise, the destination node would fail to catch up with the

source and the mode changing phase can result in significantly

increased latency during this phase.

One way to control performance impact is to integrate parallel

replay mechanism [19] to increase 𝑠𝑝𝑒𝑒𝑑𝑟𝑒𝑝𝑙𝑎𝑦 . On the other hand,

shards can be managed in a flexible way as Akkio [2] and Spanner

[15] to control 𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑑𝑎𝑡𝑒 . Remus implements a transaction-level

parallel apply approach based on SI by tracking timestamp order.

3.7 Crash Recovery
As described in §3.5.1, Remus adopts a distributed transaction 𝑇𝑚
to update the shard map table on each node. If any failure occurs

during a migration, Remus decides to continue or roll back the

unfinished migration according to whether 𝑇𝑚 commits. If any

failure occurs during 𝑇𝑚 , the migration controller first recovers

𝑇𝑚 by using 2PC recovery. If 𝑇𝑚 is not committed, no transactions

are directed to the destination node. The source node contains

all updates to the migrating data. Remus terminates the ongoing

migration and cleans up the partially migrated data on the desti-

nation node. The uncompleted migration can be initiated again.

If 𝑇𝑚 is found committed, Remus continues the migration as the

destination node contains some latest updates of the migrating data.

For both cases, Remus should first clean up residual shadow and

source transactions.

Our recovery mechanism is based on the key property ofMOCC:
each source transaction is committed only after its shadow trans-

action has been prepared successfully. After a crash, PolarDB-PG
follows normal recovery process of a distributed database system

that cleans up residual distributed transactions. A 2PC transaction

would be committed only if it enters into the second phase before

a crash. This process can recover any prepared source transactions.

Then the recovery of each prepared shadow transaction takes the

same action as its source transaction. If its source transaction is

committed, Remus queries its commit timestamp from the source

node and commits the shadow transaction using the same times-

tamp. Otherwise, the shadow transaction would be rolled back.

Note that any source transaction waiting for its validation stage

result would be terminated first in the case of a crash occurred on

the destination node. After recovering transactions in dual execu-

tion, Remus cleans up either the migrated data on the destination

node or on the source node according to whether Tm commits.

Our approach is orthogonal to the fault-tolerant model (such as

consensus-based and primary-backup replication) adopted by the

database. Each node can have several synchronized replicas. In the

event of failures occurred on the source and/or destination nodes, its

one replica will take over as the new primary (leader) node. Then the

above recovery process can be performed to clean up residual source

and shadow transactions and complete the unfinished migration.

3.8 Collocated Migration
In order to improve the performance of analytic queries, distributed

databases usually support collocated sharding between tables such

that joins on the sharding keys between collocated tables can avoid

expensive data shuffling [16, 38, 44]. Migrating one shard can sab-

otage such collocation, thus harming the performance of analytic

queries. One way to amend such issue is to migrate collocated

shards one by one. However, collocated joins still suffer from data

shuffling during the period of migration.

To address this problem, Remus supports collocatedmigration,i.e.,

migrating collocated shards together. Specifically, Remus copies the
snapshots of collocated shards in parallel to the destination node

and then propagates their updates continuously during the async
and sync execution phases. The update propagation scheme and

dual execution remain the same with that of migrating one shard.

Remus also supports migrates more than one shards that may be

non-collocated at one time in a similar way.

4 EXPERIMENTAL EVALUATION
4.1 Setup
Our experiments were conducted on Alibaba Cloud using a cluster

of six i2.16xlarge ECS (server) with CentOS 8.0 Linux. Each server

contains 64 vCPU, 512 GB DRAM and NVMe SSDs and connects to

other servers through a 10 Gbps network. We deploy one elastic

node of PolarDB-PG on each server. Synchronous WAL logging and

periodic checkpoints are enabled for all experiments. We run the

benchmark workload clients on a separate server with the same

hardware configuration. The migration controller node is deployed

on a standalone server. As DTS shows much better performance

than GTS, all the experiments are conducted on PolarDB-PG with

DTS supporting SI. In all the experiments, 18 threads are started to

apply changes in parallel on the destination node. Such parallelism

is large enough to make 𝑠𝑝𝑒𝑒𝑑𝑟𝑒𝑝𝑙𝑎𝑦 exceed 𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑑𝑎𝑡𝑒 (§3.6) in

our experiments.

4.2 Approaches in Comparison
We compare Remuswith some state-of-the-art approaches discussed

in §2: lock-and-abort, wait-and-remaster and Squall. For fair compar-

ison, we implemented them in PolarDB-PG. Both lock-and-abort and
wait-and-remaster adopt the same snapshot copying, update propa-

gation, and parallel apply protocols as Remus. Forwait-and-remaster,
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in order to support general transactions, our implementation waits

for all ongoing transactions to complete during the ownership

transfer phase. As Squall leverages partition-locks in H-store [39]

to maintain consistency during pulling, an equivalent shard lock-

ing mechanism is implemented on top of MVCC to support pull
migration. We call this approach as PolarDB-Squall or Squall for
short. The pull chunk size is set to 8 MB, as suggested in the Squall

paper [23]. We split ranges into 8 MB approximately. To speed up

multi-shard migration, Squall starts multiple asynchronous work-

ers, each of which pulls one migrating shard in the background. We

do not implement MgCrab [34] since it is specifically designed for

deterministic databases, such as Calvin[46].

4.3 Workloads
The TPC-C [47] workload: We create a TPC-C database of 480

warehouses which are partitioned into shards across nodes. Each

shard contains a table’s data belonging to one warehouse. Shards

of different tables are collocated on the same node according to

their warehouse ID. Transactions accessing only one warehouse are

executed in one single node so as to avoid distributed transactions.

The same number of clients as warehouses are started to perform

TPC-C transactions. The default TPC-C configuration is used and

the workload mainly consists of 45% New-order and 43% Payment
transactions, among them around 10% of which are distributed

transactions. Each client selects a warehouse as its home ware-

house and randomly chooses a different remote warehouse for a

distributed transaction. TPC-C thinking time between transactions

is eliminated to produce high throughput as in OLTP-Bench [21].

The YCSB [14] workload: In the experiments, we create a

YCSB database that consists of 100 million tuples. Each tuple has

a 8 Byte primary key and is of around 1 KB size, resulting in a

total of 100 GB data. We generate a YCSB workload consisting of

50% reads and 50% updates with a uniform or a skewed access

pattern. The YCSB transactions are executed in a multi-statement

interactive mode where each read/update statement is wrapped

with explicit transaction BEGIN and COMMIT statements. As a

result, the write-set of each YCSB transaction is unknown prior to

execution.wait-and-remaster needs to wait for all the ongoing YCSB
transactions to complete during the ownership transfer phase. For

the YCSB database, we create 360 shards across 6 nodes by default.

Each node owns 60 shards to simulate 60 partitions per node in

H-Store, enabling a fine-grained parallelism for Squall.

Hybrid workload A: This hybrid benchmark runs a uniform

YCSB workload with 400 clients while starting a batch ingestion

client which issues 10 batch insert transactions to one coordina-

tor node in a tight loop, simulating a mixed workload of point

queries/updates and real-time data ingestion [26, 27]. Each batch

insert transaction appends one million tuples into the YCSB table

by using PostgreSQL’s COPY command. The coordinator node exe-

cuting a COPY command extracts stream data from a given file into

tuples, routes them to the corresponding shards and finally uses

2PC to commit all ingestion. The batch client is collocated with the

coordinator node and uses scripts to generate data files in advance.

Data tuples are generated with monotonically increasing primary

(sharding) keys starting from the maximum key value in the YCSB

table plus one and are of 1 KB tuple size. For migration-induced

aborts, we add repeatable retry logic for the batch insert client.

Hybrid workload B: The hybrid benchmark runs a uniform

YCSBworkload with 400 clients while executing an analytical query

over the YCSB table, simulating hybrid transactional and analyti-

cal processing (HTAP) workload. The analytical query is defined

as follows: Begin; with checkresult as (select count(*)=1 as x from
accounts group by aid) select count(*) from checkresult where x!=’t’;
Commit. This query checks whether there are duplicated primary

keys (aid) in the YCSB table accounts across nodes. We use it to

verify database consistency during a migration.

4.4 Cluster Consolidation
We compare Remus to the baselines under a scenario of cluster

consolidation. The cluster consolidation removes one node from a

six-node cluster. All of the shards on the source node (60 shards)

are migrated to other nodes evenly.

4.4.1 Hybrid Workload A. The cluster consolidation is conducted

after a 30-second run of the batch insertion workload. Two shards

are migrated together each time, resulting in 30 consecutive mi-

grations. As shown in Table 2, 97% of the batch insert transactions

are aborted by lock-and-abort during the period of consolidation,

resulting in significant throughput drop during consolidation for

the batch insert workload, around 1/33 of that before consolidation.

The batch ingestion takes 3X more time to complete in lock-and-
abort than in Remus. The abort ratio of lock-and-abort is related
to the average elapse time of each batch transaction and the inter-

val time between consecutive migrations. If the former is longer,

lock-and-abort can result in most batch transactions to fail.

During consolidation, Squall aborts 13% of batch transactions

when they try to insert tuples into migrated ranges on the source

node. Note that the ingestion throughput of Squall is higher than

those of other approaches. Batch insert transactions run faster on

Squall since they hold the locks of all inserting shards, at the cost of

blocking YCSB transactions and having much lower YCSB through-

put. Remus and wait-and-remaster do not cause any transaction

aborts. They maintain a steady insertion throughput during cluster

consolidation.

As shown in Figure 6, YCSB throughput varies slightly during

consolidation for both Remus and lock-and-abort. This is because
Remus adopts dual execution to transfer data ownership without

any wait and downtime. lock-and-abort instead aborts long-running
batch insert transactions and YCSB transactions to achieve the

same goal. As a comparison,wait-and-remaster causes several sharp
drops, even reaching zero for a short time. The reason is that wait-
and-remaster waits for long-running batch transactions to complete

during the ownership transfer phase. This blocks newly arrived

YCSB transactions until the ownership is transferred. Such lengthy

downtime occurs for each migration. After the batch insertion

completes, wait-and-remaster renders marginal throughput drops

as it only needs to wait for ongoing short YCSB transactions to

complete.

The YCSB throughput of Squall reaches zero for most of the time

during batch insertion. This is because each batch insert transaction

acquires all the locks of shards to insert, resulting in significant
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(a) Lock-and-abort (b) Wait-and-remaster (c) Squall (d) Remus

Figure 6: The YCSB throughput under hybrid workload A during consolidation. The vertical solid lines delimitate the entire
migration start and end. The red dashed lines delimitate the start and the end of the batch insert workload.

(a) Lock-and-abort (b) Wait-and-remaster (c) Squall (d) Remus

Figure 7: The YCSB throughput under hybrid workload B during consolidation. The vertical solid lines delimitate the entire
migration start and end. The red dashed lines delimitate the start and the end of the analytical transaction.

(a) Lock-and-abort (b) Wait-and-remaster (c) Squall (d) Remus

Figure 8: The YCSB throughput during load balancing.

Lock-and-abort Wait-and-remaster Squall Remus

Abort Ratio During Consolidation 97% 0% 13% 0%

Avg. Throughput During/Before Consolidation 1.8/59 59/59 67/80 55/59

Table 2: The batch insert throughput (K tuples/s) under hybrid workload A (Ingested tuple size: 1KB).

blocking time for YCSB transactions and Squall’s pulls. After the
batch inserts complete, Squall still renders large throughput fluctu-

ation as each migration pull takes tens of milliseconds to pull one

data chunk of around 8 MB size from the source node and to store

it on the destination. This pull latency leads to many transactions

to be blocked and delayed. The overall YCSB throughput of Squall

in Figure 6c is much smaller than the other approaches as Squall

adopts shard-lock for concurrency control which achieves much

lower concurrency than MVCC.

Overall, under hybrid workload of batch insert transactions and

short transactions, Remus is the only approach incurring zero trans-

action interruption, zero downtime, and slight throughput drop

during cluster consolidation.

4.4.2 Hybrid Workload B. Figure 7 shows the YCSB performance

under hybrid workload B. Four shards are migrated together each

time, resulting in 15 consecutive migrations. For Squall, the YCSB

throughput drops to zero when the analytical transaction runs. The

latter locks all the shards, thus blocking all the YCSB clients as

well as migration pulls. After the analytical transaction completes,

the YCSB throughput starts to increase but fluctuates largely. This

is mainly caused by the conflict between YCSB transactions and

Squall migration pulls. The consolidation in Squall completes much

faster than the other approaches as the pull migration does not

transfer any extra data during migration while the catch-up phase

in push migration propagates a number of incremental updates.

The throughput on wait-and-remaster drops to zero after the

consolidation starts, which lasts until the analytical transaction com-

pletes. As both the analytical and YCSB transactions are executed as

multi-statement interactive transactions, wait-and-remaster needs
to wait for them to complete before transferring ownership and

blocks incoming transactions, resulting in downtime.

This experiment indicates that both Squall andwait-and-remaster
are not suitable for HTAP workloads. In contrast, both Remus and
lock-and-abort shows marginal performance impact during cluster

consolidation under hybrid workload B.
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Workload Remus lock-and-abort Txn Latency

Hybrid A 1.9 27 2.1

Hybrid B 1.7 33 2.1

Load balancing 6.6 51 2.8

Scale-out 4.1 94 4-15

Table 3: Average latency increase (ms) caused by Remus and
lock-and-abort. Txn Latency: average latency (ms) of TPC-
C/YCSB write transactions.

4.5 Load Balancing
In this experiment, the YCSB workload is skewed and generates

50 hotspot shards on one of six nodes. The load balancing process

migrates 40 of those 50 hotspot shards to the other five nodes evenly,

during which four shards are migrated together each time.

As shown in Figure 8, for Remus, lock-and-abort and wait-and-
remaster, the YCSB throughput increases gradually and varies slightly

during load balancing. However, for lock-and-abort, our experiment

recorded several thousand transaction aborts caused by migration

and a few hundred ones fromWW -conflicts. In contrast, both Re-
mus and wait-and-remaster incurs zero transaction interruption

from migration. The throughput of Squall drops considerably and

has significant fluctuation due to YCSB transactions blocked by

pulls. The reason resulting in the throughput varying considerably

after load balancing on Squall is mainly due to the severe shard-lock

contention on hotspot shards.

4.6 Scaling Out
In this scenario, we use a 480-warehouse TPC-C workload and start

with a five-node cluster. Initially, one overloaded node contains 160

warehouses, twice of that of the other nodes (80 warehouses). The

scaling-out experiment migrates 80 warehouses of the overloaded

node to one newly added node. We migrate 3 warehouses (a total of

24 shards given 8 TPC-C distributed tables) together from the source

node to the destination node at one time, resulting in 27 consecutive

migrations. Squall is not shown in this evaluation because our

implementation does not support multi-key range partitioning.

Figure 10 shows the TPC-C throughput increases and reaches a

higher number after scale-out for all approaches. The figure also

shows many throughput fluctuations, which are caused by 27 mi-

gration operations and data ownership transfers. Among these

approaches, Remus achieves much smaller throughput variation

than lock-and-abort and wait-and-remaster as it adopts dual execu-
tion to transfer ownership smoothly. The throughput fluctuation

of these two approaches becomes much larger than that under the

YCSB workload. For wait-and-remaster, since TPC-C transactions

are longer than YCSB transactions, the approach takes longer time

to wait for all on-the-fly transactions to complete during the owner-

ship transfer phase, resulting in significant throughput fluctuation.

For lock-and-abort, this is because the ownership transfer phase

takes much longer time to complete under such heavy workload.

The performance impact of lock-and-abort is sensitive to the du-

ration of the ownership transfer phase during which migrating

shards are locked and accessing transactions are blocked.

4.7 Latency Increase
Remus may increase the latency of synchronized source transac-

tions, as they need to wait for their updates to be applied. Mean-

while, lock-and-abort incurs some downtime during the ownership

transfer phase, which locks the migrating shards to prevent any

writes, replays all the remaining final updates and then modifies the

shard map table on each coordinator node using 2PC to route trans-

actions to the destination. This introduces latency to the source

transactions which are blocked during the ownership transfer phase

and then are aborted and retried after this phase completes.

Table 3 shows the average latency increase of Remus and lock-
and-abort under the four workloads in our experiments. Remus
only incurs several milliseconds (1.7 to 6.6 ms) latency increase

on average. In contrast, lock-and-abort’s latency increase is more

significant, reaching tens of milliseconds (27 to 94 ms). This is

mainly because for Remus each synchronized transaction can com-

mit immediately after its own updates have been replayed. Instead,

lock-and-abort’s latency increase includes the time to replay all the

remaining final updates during the ownership transfer phase. In

addition, this latency increase also includes the time to update the

shard map table across all the nodes using a 2PC transaction.

Table 3 also shows the average latency of TPC-C/YCSB transac-

tions in the four experiments. For TPC-C (only in the scale-out test),

the table column shows a range value, which presents the latency

numbers of the single-node/distributed new-order and payment
transactions. The average latency increase during the sync phase in

Remus is within the same order of magnitude as the TPC-C/YCSB

transaction latency, and the sync execution phase usually lasts for

quite a short time (tens of milliseconds), leading to insignificant

performance impact for latency-sensitive applications.

4.8 High Contention Workload
We evaluate the CPU usage and the performance impact of Re-
mus using a high-contention YCSB workload on a hot shard to be

migrated. The workload starts 200 clients to read and update 100

tuples randomly in this shard, which leads to almost one million

WW -conflicts during the five-minute test. Figure 10 shows the

throughput and the CPU usage of the source node and the destina-

tion node. The throughput suffers from a sharp drop (around 26%)

caused by the snapshot copying. Such long-running transaction

prevents the stale tuple versions before its snapshot timestamp

from being timely reclaimed on the source node. When the heavy

update workload happens to a small number of tuples, the length

of their version chains can increase quickly, slowing down tuple

access [28, 33]. Note that the performance impact of long-running

transactions is marginal in §4.4, because the YCSB update load is

dispersed over 100-million tuples and no lengthy version chains are

built up. Correspondingly, during the snapshot copying, the CPU

usage of the source node increases by up to 15%. After the snapshot

copying completes, the throughput is restored, and the CPU usage

increases around 6% on the source node, mainly for propagating

update records continuously. On the destination, Remus introduces
around 8% CPU usage during migration, which is consumed by

transaction-level parallel replay. This experiment shows few WW -

conflicts (8) between shadow and destination transactions during

dual execution. The main reason is the dual execution lasts for quite
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(a) Lock-and-abort (b) Wait-and-remaster (c) Remus

Figure 9: The TPC-C throughput during scaling out.

(a) The YCSB throughput (b) Source CPU usage (c) Destination CPU usage
Figure 10: The throughput and CPU usage under the high contention YCSB workload with Remus migration.

a short time, which starts after 𝑇𝑚 commits and ends quickly after

the existing source transactions complete.

5 DISCUSSION
Our approach can be applied to many other PostgreSQL based dis-

tributed DBMS products [4, 8, 13, 16]. The main features needed

by Remus are 2PC, timestamp based MVCC, SI and table sharding.

Some of these features are implemented in all those products, such

as 2PC and SI. The missing features can be supported with manage-

able efforts. CockroachDB [45] adopts the push migration model

based on its timestamped MVCC [12]. CockroachDB can adopt our

dual execution model to transfer the ownership of migrating data

without aborting transactions.

6 FURTHER RELATEDWORK
Albatross: Albatross [18] proposes a suspend-and-resume migra-

tion design for databases with a computation and storage indepen-

dent architecture. Such approach may incur a lengthy downtime

when migrating a large transaction state as discussed in §2.3. Our

approach designed for a shared-nothing architecture can be ex-

tended for shared-storage databases to eliminate any downtime.

For example, we can use copy-on-write (CoW) to build a snapshot

over shared storage, and then transfer the ownership of migrating

data through our update propagation scheme and dual execution

model. Such extension will be our future work.

Zephyr: Zephyr [24] proposes a pull-based live migration ap-

proach that supports synchronized dual execution during migration.

Newly arrived transactions are routed to the destination node and

pull missing data pages from the source node on demand. Once

a page is migrated, transactions that access it on the source node

would be aborted. Zephyr also incurs significant performance drops

like Squall [23] due to interleaved pull blocking.

ProRea: ProRea [42] adopts pull-migration and uses bi-directional
synchronization during dual execution to ensure SI. Compared with

our unidirectional synchronization, the bi-directional synchroniza-

tion may lead to frequent bouncing of migrating pages between

the source and destination, deteriorating database performance.

Industrial Solutions: CockroachDB [45] supports data migra-

tion by using snapshot copying and catching up phases [12]. During

the ownership transfer phase, CockroachDB hands over the lease to

the new node and aborts access to the old leaseholder. Greenplum

[13] and Amazon Redshift [4] adopt a stop-and-copy strategy to

support data redistribution (migration), during which the whole

system stops processing write transactions (read-only), resulting in

a much longer downtime than the lock-and-abort approach adopted

by Microsoft Citus [16] and Huawei LibrA [8]. None of these in-

dustrial approaches can achieve the goal of zero downtime, no

transaction aborts and minimal performance impact which our

approach targets.

Migration for non-transactional store: Prior work such as

[29] also proposes live migration approaches for key-value stores.

However, these approaches do not need to consider fully transac-

tional support required by traditional relational databases, which

also simplifies their design.

Update propagation scheme: Prior work [19] proposes a lazy

update propagation scheme for database replication and maintains

consistency between the primary node and its replica nodes under

SI. The asynchronous propagation phase of Remus is similar to the

lazy replication [19] as well as PostgreSQL’s logical replication.

7 CONCLUSION
This paper presents Remus, a new live migration technique for gen-

eral, shared-nothing distributed databases, which migrates data be-

tween nodes with no service interruption and minimal performance

impact. We implement Remus in a PostgreSQL based distributed

database PolarDB-PG. Extensive experimental results demonstrate

the ability of Remus in adapting to changing workloads while in-

curring marginal performance impact, zero downtime and zero

transaction aborts under a broad spectrum of workloads.
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