
STORM: Spatio-Temporal Online Reasoning and
Management of Large Spatio-Temporal Data

Robert Christensen1, Lu Wang2, Feifei Li1, Ke Yi2, Jun Tang1, Natalee Villa1

1University of Utah 2Hong Kong University of Science and Technology
{robertc, lifeifei, jtang, villa}@cs.utah.edu {luwang, yike}@cse.ust.hk

ABSTRACT
We present the STORM system to enable spatio-temporal
online reasoning and management of large spatio-temporal
data. STORM supports interactive spatio-temporal analytics
through novel spatial online sampling techniques. Online
spatio-temporal aggregation and analytics are then derived
based on the online samples, where approximate answers
with approximation quality guarantees can be provided im-
mediately from the start of query execution. The quality of
these online approximations improve over time. This demon-
stration proposal describes key ideas in the design of the
STORM system, and presents the demonstration plan.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management –
Systems

Keywords
Spatial online sampling, spatial online analytics, STORM

1. INTRODUCTION
The increasing presence of smart phones and various sens-

ing devices has led to humongous amounts of spatio-temporal
data, and the imperative needs for rich data anlytics over
such data. Many data from a measurement network and
social media data sources are inherently spatial and temporal.
As a result, numerous analytical tasks based on such data
have a spatial and/or temporal extent.

Even though various forms of spatial and spatio-temporal
analytics have been extensively studied, the ever-increasing
size of spatio-temporal data introduces new challenges. In
particular, when the underlying data set is large, reporting
all points that satisfy a query condition can be expensive,
since there could be simply too many points that satisfy
a query. The CPU cost of performing an analytical task
or computing an aggregation using all these points adds
additional overhead, and may not scale well with increasing
number of points. Hence, waiting for the exact analytical or
aggregation results may take a long time.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2735373.

An important observation is that approximate results are
often good enough, especially when approximation guarantees
are provided. It is even more attractive if the quality of
an approximation improves continuously over time until the
exact result is obtained in the end. We dub such an approach
online aggregation and analytics. Online aggregation and
analytics enables interactive analytics and exploration over
large scale spatio-temporal data. A user may terminate
a query whenever s/he is satisfied with the approximation
quality provided by the system. The system can also be asked
to terminate a query whenever the approximation quality
for a query has met a query-specific (user specified) quality
requirement. Alternatively, the system can also operate in
the “best-effort” mode where user specifies the amount of
time s/he is willing to spend on a given task, and the system
will provide a result with the best possible approximation
quality within the amount of time given.

Consider the following example. A user wants to under-
stand the electricity usage in NYC over the first quarter. But
s/he wants to explore different area and time range combi-
nations. So s/he could zoom in to a particular area from
NYC on a map and specify between January 5 to March 5,
and ask for the average electricity usage per unit for units in
this area and measurements in this time period. In interac-
tive exploration, or formally interactive analytics, user can
change his/her query condition without the need of waiting
for the current query to complete. In other words, in the
above example, user may change to a different area in NYC
and/or adjust the time range to between January 15 and
March 12, while the first query is still being executed.

On big spatial and spatio-temporal data sets, waiting for
exact results may take a while. The user faces a dilemma:
either waits for the current query to complete or terminates
the current query and issue the new query. And the number
of possible combinations a user wants to investigate in order
to find interesting patterns, even for a small region like NYC
and first quarter, can be daunting.

The STORM system solves this dilemma. STORM uses
spatio-temporal online reasoning and management to achieve
online aggregation and analytics on large spatio-temporal
data. In the above example, assume that after 1 second
into the execution of the first query, system reports that
the average electricity usage is 973 kWh with a standard
deviation of 25 kWh and 95% confidence, if the user is happy
with the quality of this estimation, s/he can immediately
change the query condition to stop the first query and start
the second query. S/he could also wait a bit longer for
better quality, say, using 1.5 seconds, system now reports

the average electricity usage for the 1st query as 982 kWh
with a standard deviation of 5 kWh and 98% confidence.

STORM uses spatial online sampling to achieve its ob-
jectives. In particular, spatial online sampling continuously
returns randomly sampled points from a user specified spatio-
temporal query region, until user terminates the process or
enough samples have been obtained to meet an accuracy re-
quirement. An unbiased estimator, tailored towards a given
analytical query, is built using the spatial online samples,
and its approximation quality improves in an online fashion
while more samples are being returned.

To make it easy for users and different applications to
enjoy the benefit of spatio-temporal online analytics and ag-
gregation, STORM also implements a data connector, so that
it can easily import data in different formats and schemas,
and enable spatio-temporal online analytics over such data
without much efforts. Lastly, it features a number of built-
in analytical modules so that a set of common analytical
tasks can be executed without further engineering efforts
once data have been imported. More complex and other
analytical tasks can be built in a customized fashion.

Demonstration proposal. This demonstration proposal
describes the design of STORM, and explains its key technical
ideas. It also presents a detailed demonstration plan, and
some evaluations to illustrate the advantage of STORM.

• We formalize spatial online sampling and online ana-
lytics in Section 2.

• We describe the design of the STORM system in details,
and explain its key technical ideas in Section 3

• We present a small set of performance evaluations to
illustrate the superiority of the STORM design over a
few baselines, and a detailed plan for the demonstration
of the STORM system in Section 4.

Lastly, we review related works in Section 5.

2. OVERVIEW
Random sampling is a fundamental and effective approach

for dealing with large data sets, with a strong theoretical
foundation in statistics supporting its wide usage in a vari-
ety of applications that do not require completely accurate
answers. The use of random sampling for approximate query
processing in the database community also has a long history,
notably with line of work on online aggregation [7].

In online aggregation, instead of evaluating a potentially
expensive query until the very end, we repeatedly take sam-
ples from all tuples that satisfy the query condition, and
continuously compute the required aggregate based on the
sampled tuples returned so far. The accuracy of the com-
puted aggregate gradually improves as we get more and more
samples, which is measured by confidence intervals, and the
user may stop the query processing as soon as the accuracy
has reached a satisfying level. Recently, online aggregation
has received revived attention [11,18], as an effective tool for
answering “big queries” that touch a huge number of tuples
but the user can often be satisfied with just an accurate
enough estimate.

However, past work on online aggregation has focused on
relational aggregates, group-by, and join queries [5, 7, 11, 18],
on relational data. Motivated by the needs for interactive
spatio-temporal exploration and analytics as explained in Sec-
tion 1, we build the STORM system to achieve spatial online
analytics and aggregation over spatial and spatio-temporal

data. Since the statistical side of online aggregation is rela-
tively well understood [5,7, 11,13,18], which we will discuss
briefly in Section 3, the key challenge essentially reduces
to that of spatial online sampling, i.e., how to repeatedly
sample a tuple from a spatio-temporal query until the user
says “stop”. This is formally defined as follows.

Definition 1 (Spatial online sampling) Given a set of
N points P in a d-dimensional space, store them in an index
such that, for a given range query Q, return sampled points
from Q ∩ P (with or without replacement) until the user
terminates the query.

Spatial online aggregation is a direct product of spatial
online sampling, where online estimators for different types
of spatial and spatio-temporal aggregates, like sum or aver-
age, are built using spatial online samples. A spatial online
estimator ideally should be an unbiased estimator, and its
estimation quality, characterized by confidence intervals, im-
proves over time in an online fashion while more spatial
samples are obtained. This concept can be further gener-
alized beyond simple aggregates to spatio-temporal online
analytics that covers a wide range of analytical tasks, like
spatial clustering, spatial kernel density estimate (KDE).
More details on this topic are provided in Section 3.

The proposed STORM system (spatio-temporal online
reasoning and management) uses spatial online sampling to
build spatio-temporal online estimators. STORM builds on
a cluster of commodity machines to achieve its scalability.
It uses a DFS (distributed file system) as its storage engine.
As a result, it integrates with many existing distributed data
management systems seamlessly, such as Hadoop and Spark.
In particular, we have based the development of STORM on
top of a distributed installation of MongoDB, which uses a
DFS and the JSON format for its record structures.

The STORM system provides a query interface that sup-
ports a number of commonly encountered analytical queries
on spatio-temporal data sets, such as basic spatio-temporal
aggregations. It also includes a few more complex, advanced
analytical queries such as kernel density estimate, trajectory
reconstruction, semantics analysis (on short-text data) to
illustrate the wide applicability of spatio-temporal online
analytics by building a customized online estimator.

It also uses a data connector to connect to different data
sources in order to import or index data from different storage
engines such as excel spreadsheets, relational databases, a
key value store such as Cassandra or HBase.

Lastly, it exposes a set of library and APIs, and a query
language to enable users to build customized spatio-temporal
online analytical tasks. An overview of the STORM system
is shown in Figure 1.

Demonstration overview. The demonstration consists
of four different components, namely, basic analytics, data
import, updates, and customized analytics.

In basic analytics, we will showcase spatio-temporal online
analytics in STORM using a number of data sets that are
already imported and indexed by STORM. Our data sets
include a massive national atmospheric measurement network
data from nearly 40,000 weather stations from the MesoWest
project, and data from various social media data sources (in
particular, a growing subset of twitter data from July, 2013
to present). Users are able to interactive with the system
by issuing basic analytical queries in a map-based query and
analytical interface such as spatio-temporal aggregations on
MesoWest data (e.g, the average temperature reading from

attribute: Type

− Private Method

attribute: Type

− Private Method

Class

+ Public Method

Protected Method

Parameters

Class

+ Public Method

Protected Method

ParametersSTORM EngineSTORM Engine

STORM Query Language

Cluster of Commodity Machine

STORM Library and API

STORM Analytical Engine

User

STORM Data ConnectorSTORM Query Interface

Figure 1: The STORM system overview.

Data Connector Query Interface

Free Data Module Feature Module ST-Indexing

Query Optimizer

Query and Analytics Evaluator Sampler

Schema Discovery

Data Parser

Update Manager

User Data (may have different formats, schemas, and storage engines)

Query Parser Visualizer

Figure 2: The STORM engine architecture.

a spatio-temporal region), population density estimate for a
spatio-temporal region using KDEs over twitter data.

In data import, a user may import a data set from an
external data source during the demo. Through its data
connector module, STORM supports the import and indexing
of data from a number of different storage engines, such as
excel spreadsheets, MySQL, Cassandra, MongoDB. Users
have the option of either importing the data into the STORM
storage engine which is based on JSON format in a distributed
MongoDB installation, or simply indexing the data through
the data connector (without importing the data into the
STORM storage engine).

In updates, we will demonstrate how STORM supports ad-
hoc data updates efficiently. Its novel spatial online sampling
module is able to update its indexing structure to reflect the
latest state of the underlying data sets, so that a correct set
of online spatio-temporal samples can always be returned
with respect to the latest records in a data set.

Finally, in customized analytics, we will show how to con-
struct a customized online analytical estimator for a spatio-
temporal analytical query.

3. THE STORM SYSTEM
The design of the STORM engine is shown in Figure 2.

In what follows, we explain the key technical ideas behind
the sampler and the ST-indexing in details, and only briefly
introduce the other modules.

3.1 The Sampler and ST-Indexing
The key objective of the sampler is to return spatial online

samples as defined in Definition 1. Specifically, under the
request of query and analytics evaluator, the sampler contin-
uously returns independent random samples, one at a time,
from a user specified spatio-temporal query region. In most

P The raw data set in Rd.
k The number of samples to report.
N |P |, the size of the raw data set.
Q A range query in Rd.
PQ P ∩Q, elements in the query range.
q |PQ|, the number of elements in the query range.

u, v, · · · Tree nodes.
T (u) The subtree rooted at node u.
P (u) The set of all data points covered by T (u).
RQ The canonical set for Q.

r(N) The size of a canonical set in a R-tree of size N.
B The size of a disk block.

Table 1: Notation used in the paper.

cases, we need a relatively small sample whose size increases
over time, i.e., k samples where k � N . Queries are online
and continuous. The evaluator may keep asking for sam-
ples until satisfied with those returned (to meet an accuracy
or time requirement). This means that k is unknown until
the query is terminated by the system, somewhat like data
stream algorithms. In fact k is never given to the sampler
as a parameter, and we will design methods that efficiently
extract one sample at a time. Hence, this problem can also
be interpreted as asking the sampler to return k samples for
an arbitrary (integer) value of k, from the set of P ∩Q.

The notation listed in table 1 will be used to describe the
sampling procedures. The two most straightforward methods
for this problem would be QueryFirst and SampleFirst:

QueryFirst Calculate P ∩Q first, then repeatedly extract a
sample from the pre-calculated set upon request.

SampleFirst Upon request, pick a point randomly from P
and test if it is within Q. Return the sample if so,
otherwise dispose it and repeat.

The running time of QueryFirst is O(r(N) + q), the same
as a full range reporting query. For SampleFirst, because a
randomly picked point falls inside Q with probability q/N ,
we expect to draw O(N/q) samples in order to see one inside.
Thus, the expected cost of SampleFirst is O(kN/q). This
could be good for very large q, say, a query that covers a
large constant fraction of P . However, for most queries, this
cost can be extremely large. If q = 0, it never terminates.

A better solution is to adapt the random sampling method
of Olken [15] to R-trees. His method takes a sample from PQ

by walking along a random path from the root down to the
leaf level. When deciding which branch to take, the subtree
sizes |P (u)| are considered so that the probabilities can be
set appropriately. This way, a sample can be obtained in
O(logN) time. Over k samples, the total time is O(k logN).
We call this method RandomPath. It is reasonably good, but
only in internal memory. When the R-tree resides on disk,
each random path may involve a traversal in a completely
different part of the R-tree, resulting in at least Ω(k) I/Os
in total, which is very expensive.

To further improve the efficiency and achieve better scala-
bility, STORM uses a ST-indexing module (spatio-temporal
indexing) to facilitate the sampler to retrieve spatial online
samples. Two different indexing schemes are introduced.

The first index structure, LS-tree, is based on the “level
sampling” idea. We independently sample elements from Pi

with probability 1/2 to create Pi+1, and stop when the last
P` is small enough, in expectation ` = O(logN). Then we

build R-tree Ti for each Pi. We set P0 = P . Since their sizes
form a geometric series, the total size is still O(N).

Upon a query Q, we simply execute an ordinary range
reporting query on the R-trees in turn T`, T`−1, . . . , T0. Note
that from Ti, each reported point is sampled with probability
1/2i independently, and all must fall inside Q. Thus, they
form a probability-(1/2i) coin-flip sample of PQ. To turn this
into a sample without replacement, we perform a random
permutation, and start to report the points to the user one
by one, until the user terminates the query, or all samples
are exhausted. In the latter case, we move on to the next
R-tree Ti−1. Since Pj ⊆ Pi if j > i, we need to make sure
no sample is reported twice, by maintaining a set of all the
samples that have been reported for the running query Q.

Suppose the user terminates the query after receiving k
samples. Then in expectation, we have reached tree Tj such
that q/2j ≈ k, i.e., j = log(q/k). Thus, the total query cost

(in expectation) is O(k) +
∑`

j=log(q/k) r
(
N
2j

)
. This solution

works well in external memory, since the query on each R-
tree is just a normal R-tree range query. As a result, the
term O(k) does not lead to O(k) IOs for disk-based data
sets; rather we expect O(k/B) IOs where B is the block size.

Note that distributed R-trees are used when applying the
above idea in a distributed cluster setting.

But LS-tree needs to maintain multiple trees, which can
be a challenge especially in distributed settings and/or with
many updates. We can further improve this method by
maintaining only one R-tree. The key idea is to associate
a set of samples within each R-tree node, and visit as few
nodes as possible. To ensure correctness and scalability, a
number of effective ideas are employed:

Sample Buffering: We associate a set S(u) of samples for
each R-tree node u. S(u) is obtained from the canonical
cover of u. The size of S(u) is properly calculated.

Lazy Exploration: We also maintain a count for each node
u which is the number of data elements covered by
u from the leaf level. Then, we can use a carefully
constructed weighted sampling technique to save un-
necessary exploration of nodes.

Acceptance/Rejection Sampling: Subtrees rooted at
nodes in RQ (the canonical set of Q) vary in size. The
acceptance/rejection sampling is used to quickly locate
large subtrees in RQ. Observe that if we take a small
set of random samples from P ∩Q, the larger subtree
it is, the more likely we will take samples from it. The
smaller subtree it is, the more time is necessary to
locate it. So we want to avoid exploring small subtrees
in RQ which are expensive yet relatively useless.

Integrating the above ideas in a single R-tree leads to the
design of the second indexing structure in the ST-indexing
module, namely, the RS-tree. In particular, we develop
RS-tree based on a single Hilbert R-tree over P . A dis-
tributed Hilbert R-tree is used to work with the underlying
distributed cluster. For brevity, we omit the technical details
for the construction and analysis of the RS-tree.

Lastly, since both LS-tree and RS-tree leverage on R-tree
as its main data structure, supporting ad-hoc updates is easy,
as long as we properly update the associated samples in the
process. These technical details are also omitted for brevity.

3.2 Other Modules
The other modules in STORM are more or less similar to

common modules found in a data management system. Its

query interface supports a keyword based query language
with a query parser, where predefined keywords are used to
specify an aggregation or an analytical task that are already
supported in the system. A temporal range and a spatial
region (on a map) are used to define a spatio-temporal query
range. A set of online estimators for common spatio-temporal
aggregations and analytics are included in the feature module,
which builds these estimators using spatial online samples.

Note that the statistical side is relatively well understood
[5, 7, 11, 13, 18]. Essentially, any aggregate of the whole
population can be estimated from a sample set, and the
accuracy improves as more samples are obtained and the
sample size increases. Suppose each point e in our data
set is associated with an attribute e.x of interest. Then
for example, it is well known that the sample mean is an
unbiased estimator of the real mean, i.e., letting S be the set
of k samples returned and PQ the set of all points in the query
range, we have E[X̄] = E

[
1
k

∑
e∈S e.x

]
= µ = 1

q

∑
e∈PQ

e.x.

Furthermore, by the central limit theorem, X − µ ap-
proaches Normal(0, σ2/k), where σ is the population stan-
dard deviation. This means sample variance is inversely
proportional to sample size, and we expect to have a quality
estimate with even when k is small. We can also estimate
σ2 from the sample, and further compute the confidence
intervals, as in standard online aggregation [7].

In the spatial setting, there are more complicated statistics
than simple aggregates like sum or mean. A widely used one
is the kernel density estimation (KDE), which construct a
continuous spatial distribution from discrete points. Specifi-
cally, the distribution density at some point p is computed
as f(p) = 1

q

∑
e∈PQ

κ(d(e, p)), where d(·, ·) is the distance

between two points, and κ(·) is the kernel function that mod-
els the “influence” of e at p, usually a decreasing function
of distance. Then we can compute f(p) at regularly spaced
points (say, all grid points), and construct a density map
of the underlying spatial distribution. We observe the dis-
tribution density at each point, f(p), is still an average, so
we can compute an approximated density map by drawing a
sample from PQ, and derive the confidence interval (for each
point p).

Other spatial analytics tasks, such as clustering, can also
be performed on a sample of points. Intuitively, the cluster-
ing quality also improves as the sample size increases. The
STORM APIs allow a user to access the sampler and fea-
ture module directly to build complex, advanced, customized
online estimators, with user-derived, operator-specific guar-
antees for confidence interval and approximation quality.

The data connector uses schema discovery and data parser
for a number of data sources that are supported in STORM
in order to import and index a data source from a specified
storage engine. Additional storage engines can be added by
extending the code-base for the data connector.

The query optimizer implements a set of basic query opti-
mization rules for deciding which method (as we have dis-
cussed in Section 3.1) the sampler should use when generating
spatial online samples for a given query. The visualizer im-
plements a number of basic visualization tools to enable
visualizing the results from an online estimator, such as
visualizing density estimate from KDE. The update man-
ager handles data updates for data sets currently indexed
by STORM. Lastly, the free data module is used to convert
between different record formats and JSON format, as used
by the storage engine of STORM.

4. EVALUATION AND DEMONSTRATION

4.1 The performance of STORM
We carried out extensive experiments to evaluate the

performance of STORM. In particular, the performance of
STORM is compared against competing baselines for gener-
ating spatial online samples and executing spatio-temporal
online analytics. A detailed report of these results is beyond
the scope of this demonstration proposal.

We only report two results, concerning the query efficiency
and the estimation accuracy respectively, both in an online
fashion, using the full open street map (OSM) data set.

100

101

102

103

104

105

0% 2% 4% 6% 8% 10%

ti
m

e
(s

)

k/q

RandomPath
RS-tree

RangeReport
LS-tree

(a) query efficiency: vary k.

0%

10%

20%

30%

40 60 80 100 120 140

re
la

ti
v
e

er
ro

r

time (ms)

RS-tree
LS-tree

(b) query accuracy: relative error
on avg(altitude).

Figure 3: Query performance in STORM.

Figure 3(a) shows the time taken for different methods (as
discussed in Section 3.1) to produce spatial online samples
of increasing size, where we fixed a spatio-temporal range
query Q with q = 1 billion (q = |PQ|). Clearly, LS-tree and
RS-tree perform much better than competing baselines.

Figure 3(b) shows how the relative error improves with
respect to the increase in query execution time for a spatio-
temporal aggregate query where it estimates the avg(altitude)
for all points in a user-specified spatio-temporal query range.
It clearly indicates that STORM is able to produce online
estimations whose approximation quality improves over time.

4.2 The demonstration of STORM
The STORM system is available at http://www.estorm.

org with username guest and password guest@storm.
Figure 4 shows the user interface of STORM. As intro-

duced in Section 2, the demonstration of STORM consists
of four components. In basic analytics, users may select
different built-in analytical queries and data sources that are
already indexed by STORM, to experience the benefits of
spatio-temporal online analytics. For example, using the twit-
ter data set and the online KDE estimator, we can estimate
population density over an arbitrary spatio-temporal regions
based on the location and timestamp of the underlying tweets
interactively in real time in an online fashion, as shown in
Figure 5 when user zooms out from Salt Lake City to the
entire United States for tweets in last 30 days. The den-
sity estimate improves its accuracy with better visualization
results as query time increases.

The user is also able to interact with the MesoWest data to
issue spatio-temporal online aggregations over the MesoWest
data (http://mesowest.utah.edu/).

In data import, we allow a user to import data from an
external data source. Currently, STORM supports import-
ing and indexing data from excel spreadsheets, text files,
Cassandra, MySQL, and MongoDB. In particular, we will
walk through the steps for importing a new data source from
a plain text file and a MySQL database respectively. Once

Figure 4: Overall query interface in STORM.

(a) SLC KDE. (b) USA KDE.

Figure 5: Interactive, online analytics.

imported, users are able to interact with the new data sets
with the basic analytical queries supported in the system.

In update, we will make updates to an existing data set
(e.g., the twitter data set in STORM is constantly updated
with new tweets using the twitter API), and illustrate that
STORM has successfully incorporated their impacts to ana-
lytical results by issuing analytical queries with time range
that narrows down to the most recent time history.

Lastly, in customized analytics, we will showcase how to
build advanced and more complex online analytics in STORM
by accessing its feature module and sampler directly. We will
use two examples for this purpose.

In the first example, we show how to build an online, ap-
proximate trajectory using spatial online samples for a given
twitter user for a specified time range, using location and
timestamp information from his/her tweets. The end result
is shown in Figure 6(a). In the second example, we show
how to perform online short-text understanding using online
samples of tweets for an arbitrary spatio-temporal query
range. There was a highly anomalous heavy snow in the
Atlanta area in the days between February 10 and February
13, 2014. To see how the citizens of Atlanta reacted, we used
a spatio-temporal window on downtown Atlanta during that
period, and used our short-text understanding online estima-
tor for twitter data in STORM; shown in Figure 6(b). We
can quickly observe that the population was quite unhappy
and frustrated, particularly considering the highlighted terms
snow, ice, outage, shit, hell, why. Another interesting obser-
vation from this example is that STORM enables integrated
online data analytics from multiple data sources; in this
case, user can interactively explore both MesoWest data (to
confirm the heavy snow) and the twitter data.

In both examples, we will show how to program a cus-
tomized analytical task using the built-in feature module
and spatial online samples returned from the sampler. Users

http://www.estorm.org
http://www.estorm.org
http://mesowest.utah.edu/

(a) online approximate trajec-
tory construction.

(b) spatio-temporal short-text
understanding.

Figure 6: Advanced, customized online analytics.

may also import third party libraries to facilitate the imple-
mentation of a customized analytical task.

5. RELATED WORK
The concept of online aggregation was first proposed by

Hellerstein et al. in [7], and has been revisited for different
operators (e.g., join [5], group-by [19]) for relational data
models, and computation models (e.g., MapReduce [18]).
The standard approach is to produce online samples and
build estimators that improve accuracy gradually over time
using more and more samples [5–7,18]. The connection from
query accuracy (especially for standard aggregations) and es-
timation confidence to sample size is mostly well understood,
see [5–7,13, 18, 20] and many other work in the literature on
building various kinds of estimators using random samples.
Nevertheless, to the best of our knowledge, a comprehensive
system such as STORM that supports spatio-temporal online
analytics has not been investigated before.

Our work is closely related to online sampling and sampling
from a database in general. Olken proposed the idea of taking
a random sample from PQ by walking along a random path
from the root down to the leaf level in his PhD thesis [15].
This idea works for both B-tree in one dimension and R-
tree in higher dimensions [15–17]. However, as explained
in Section 3 and confirmed by experiments in Section 4.1,
this method is too expensive for generating online samples
in large spatial databases.

Hu et al. [8] recently showed how to produce samples for
range queries with a new constraint that samples must be in-
dependent with respect to both intra-query and inter-queries.
Their result is purely theoretical, and is too complicated to
be implemented or used in practice. It holds only for one-
dimensional data and their external memory data structure
is static and does not support dynamic updates.

There is an increasing interest in integrating sampling as
an operator in a database management system; see recent
efforts in [1, 2, 9, 10, 12, 14, 21, 22]. Nevertheless, none have
investigated spatial and spatio-temporal databases.

Finding samples from a set of geographic points for better
map visualizations is described in [3]. Samples are taken from
the data set such that the samples will be evenly distributed
when the sampled data is drawn on a map. This differs from
STORM, as their definition of spatial sampling has a different
objective, which is to produce better visual representation
of the underlying data.

The most closely related work is SpatialHadoop [4], which
is a comprehensive system for building spatial and spatio-
temporal analytical tasks on large spatio-temporal data, us-
ing the MapReduce computation framework. However, a
fundamental difference between STORM and SpatialHadoop
is online versus batched offline analytics. As a result, STORM

and SpatialHadoop nicely complement each other and satisfy
different application scenarios and user needs.

6. ACKNOWLEDGMENT
Robert Christensen, Feifei Li, Jun Tang, and Natalee Villa

are supported in part by NSF grants 1443046 and 1251019.
Feifei Li is also supported in part by NSFC grant 61428204
and a Google research award. Lu Wang and Ke Yi are
supported by HKRGC under grants GRF-621413 and GRF-
16211614, and by a Microsoft grant MRA14EG05.

7. REFERENCES
[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,

and I. Stoica. BlinkDB: queries with bounded errors and
bounded response times on very large data. In EuroSys,
2013.

[2] S. Agarwal, A. Panda, B. Mozafari, A. P. Iyer, S. Madden,
and I. Stoica. Blink and it’s done: Interactive queries on
very large data. In PVLDB, 2012.

[3] A. Das Sarma, H. Lee, H. Gonzalez, J. Madhavan, and
A. Halevy. Efficient spatial sampling of large geographical
tables. In SIGMOD, 2012.

[4] A. Eldawy and M. F. Mokbel. A demonstration of
SpatialHadoop: An efficient mapreduce framework for
spatial data. PVLDB, 2013.

[5] P. Haas and J. Hellerstein. Ripple joins for online
aggregation. In SIGMOD, pages 287–298, 1999.

[6] P. J. Haas. Large-sample and deterministic confidence
intervals for online aggregation. In SSDBM, 1997.

[7] J. Hellerstein, P. Haas, and H. Wang. Online aggregation. In
SIGMOD, 1997.

[8] X. Hu, M. Qiao, and Y. Tao. Independent range sampling.
In PODS, 2014.

[9] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and
P. J. Haas. The monte carlo database system: Stochastic
analysis close to the data. ACM TODS, 36(3):18, 2011.

[10] P. Jayachandran, K. Tunga, N. Kamat, and A. Nandi.
Combining user interaction, speculative query execution and
sampling in the DICE system. PVLDB, 2014.

[11] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable
approximate query processing with the dbo engine. ACM
Transactions on Database Systems, 33(4), Article 23, 2008.

[12] A. Klein, R. Gemulla, P. Rösch, and W. Lehner. Derby/s: a
DBMS for sample-based query answering. In SIGMOD,
2006.

[13] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[14] S. Nirkhiwale, A. Dobra, and C. M. Jermaine. A sampling
algebra for aggregate estimation. PVLDB, 2013.

[15] F. Olken. Random Sampling from Databases. PhD thesis,
University of California at Berkeley, 1993.

[16] F. Olken and D. Rotem. Random sampling from B+ trees.
In VLDB, 1989.

[17] F. Olken and D. Rotem. Sampling from spatial databases. In
ICDE, 1993.

[18] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie.
Online aggregation for large mapreduce jobs. In PVLDB,
2011.

[19] F. Xu, C. M. Jermaine, and A. Dobra. Confidence bounds
for sampling-based group by estimates. ACM TODS, 33(3),
2008.

[20] Y. Yan, L. J. Chen, and Z. Zhang. Error-bounded sampling
for analytics on big sparse data. PVLDB, 7(13), 2014.

[21] K. Zeng, S. Gao, J. Gu, B. Mozafari, and C. Zaniolo. ABS: a
system for scalable approximate queries with accuracy
guarantees. In SIGMOD, 2014.

[22] K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. The
analytical bootstrap: a new method for fast error estimation
in approximate query processing. In SIGMOD, 2014.

