Scalable Keyword Search on Large RDF Data
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Abstract—Keyword search is a useful tool for exploring large RDF datasets. Existing techniques either rely on constructing a distance
matrix for pruning the search space or building summaries from the RDF graphs for query processing. In this work, we show that existing
techniques have serious limitations in dealing with realistic, large RDF data with tens of millions of triples. Furthermore, the existing
summarization techniques may lead to incorrect/incomplete results. To address these issues, we propose an effective summarization
algorithm to summarize the RDF data. Given a keyword query, the summaries lend significant pruning powers to exploratory keyword
search and result in much better efficiency compared to previous works. Unlike existing techniques, our search algorithms always
return correct results. Besides, the summaries we built can be updated incrementally and efficiently. Experiments on both benchmark
and large real RDF data sets show that our techniques are scalable and efficient.

1 INTRODUCTION

The RDF (Resource Description Framework) is the de-facto
standard for data representation on the Web. So, it is no
surprise that we are inundated with large amounts of rapidly
growing RDF data from disparate domains. For instance, the
Linked Ope n Data (LOD) initiative integrates billions of
entities from hundreds of sources. Just one of these sources,
the DBpedia dataset, describes more than 3.64 million things
using more than 1 billion RDF triples; and it contains numerous
keywords, as shown in Figure

Keyword search is an important tool for exploring and
searching large data corpuses whose structure is either un-
known, or constantly changing. So, keyword search has al-
ready been studied in the context of relational databases [3]],
[7], [15], [19], XML documents [8], [22], and more recently
over graphs [14], [17] and RDF data [11], [23]. However,
existing solutions for RDF data have limitations. Most notably,
these solutions suffer from: (i) returning incorrect answers,
i.e., the keyword search returns answers that do not corre-
spond to real subgraphs or misses valid matches from the
underlying RDF data; (ii) inability to scale to handle typical
RDF datasets with tens of millions of triples. Consider the
results from two representative solutions [14], [23]], as shown
in Figures 2] and [3| Figure 2] shows the query results on
three different datasets using the solution specifically designed
for RDF in [23]], the Schema method. While this solution
may perform well on datasets that have regular topological
structure (e.g., DBLP), it returns incorrect answers for others
(e.g., LUBM [13]] etc.) when compared to a naive, but Exact
method. On the other hand, classical techniques [14] proposed
for general graphs can be used for RDF data, but they assume a
distance matrix built on the data, which makes it prohibitively
expensive to apply to large RDF dataset as shown in Figure [3]

Motivated by these observations, we present a comprehen-
sive study to address the keyword search problem over big
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RDF data. Our goal is to design a scalable and exact solution
that handles realistic RDF datasets with tens of millions of
triples. To address the scalability issues, our solution builds
a new, succinct and effective summary from the underlying
RDF graph based on its fypes. Given a keyword search query,
we use the summary to prune the search space, leading to
much better efficiency compared to a baseline solution. To
summarize, our contributions are:

e We identify and address limitations in the existing, state-
of-the-art methods for keyword search in RDF data [23]]. We
show that these limitations could lead to incomplete and
incorrect answers in real RDF datasets. We propose a new,
correct baseline solution based on the backward search idea.

e We develop efficient algorithms to summarize the structure
of RDF data, based on the fypes in RDF graphs, and use it
to speed up the search. Compared to previous works that
also build summary [11], [23]], our technique uses different
intuitions, which is more scalable and lends significant pruning
power without sacrificing the soundness of the result. Further,



our summary is light-weight and updatable.

e QOur experiments on both benchmark and large real RDF
datasets show that our techniques are much more scalable and
efficient in correctly answering keyword search queries for
realistic RDF workloads than the existing methods.

In what follows, we formulate the keyword search problem
on RDF data in Section [2] survey related work in Section [3]
present our solutions in Sections [] to [7] show experimental
results in Section [8 and conclude in Section [9] Table [I] list
the frequently used symbols.

2 PRELIMINARIES

An RDF dataset is a graph (RDF graph) composed by triples,
where a triple is formed by subject, predicate and object in
that order. When such ordering is important semantically, a
triple is regarded as a directed edge (the predicate) connecting
two vertices (from subject to object). Thus, an RDF dataset
can be alternatively viewed as a directed graph, as shown by
the arrows in Figure |I| W3C has provided a set of unified
vocabularies (as part of the RDF standard) to encode the rich
semantics. From these, the rdfs:type predicate (or type for
short) is particularly useful to our problem (see Section [3)),
since it provides a classification of vertices of an RDF graph
into different groups. For instance in Figure (I} the entity URI3
has type SpaceMission. Formally, we view an RDF dataset as
an RDF graph G = (V, E) where

e I/ is the union of disjoint sets, Vg, Vr and Vi, where
VE is the set of entity vertices (i.e.,URIs), Vr is the set of type
vertices, and Vyy is a set of keyword vertices.

e F is the union of disjoint sets, Fr, F 4, and Er where Er
is the set of entity-entity edges (i.e., connecting two vertices
in Vi), E4 is the set of entity-keyword edges (i.e., connecting
an entity to a keyword), and Er is the set entity-type edges
(i.e., connecting an entity to a type).

ooster

booster URI;3 SpaceMission

" Apollo 11"

URI5 SpaceMission
" Apollo 1"

URI; Rocket
" Saturn-V"

Fig. 4. Condensed view: combining vertices.

For example in Figure[I] all gray vertices are type vertices
while entity vertices are in white. Each entity vertex also has
associated keyword vertices (in cyan). The division on vertices
results in a corresponding division on the RDF predicates,
which leads to the classification of the edge set E discussed
earlier. Clearly, the main structure of an RDF graph is captured
by the entity-entity edges represented by the set Er. As such,
an alternative view is to treat an entity vertex and its associated
type and keyword vertices as one vertex. For example, the
entity vertices URIs, URI; and URI3 from Figure [} with their
types and keywords, can be viewed as the structure in Figure [4]

In general, for an RDF graph G = {V, E}, we will refer
this as the condensed view of G, denoted as G. = {V}, Er}.
While |V} | = |Vg|, every vertex v' € V/, contains not only
the entity value of a corresponding vertex v € Vg, but also
the associated keyword(s) and type(s) of v. For the ease of
presentation, hereafter we associate a single keyword and a
single type to each entity. Our techniques can be efficiently

Symbol Description

G{V, E} the condensed view of an RDF graph.

A(q) top-k answers for a query.

r answer root.

w; the ¢-th keyword.

d(z,y) graph distance between node x and node y.
C(q) a set of candidate answers.

« used to denote the a-hop neighborhoods.

g an answer subgraph of G.

S the summaries of P.

W; the set of nodes containing keyword w;.

P partitions.

M for bookkeeping the candidate answers.
h(v,a), h the a-hop neighborhoods of v, a partition.
h:(v,a), he | the covering tree of h(v, ), a covering tree.
S a path represented by a sequence of partitions.
di, dy, the lower and upper bounds (for a path).

o a one-to-many mapping in converting h to hy.
b)) a set of ¢o’s from a partition h.

TABLE 1: Frequently used notations.

extended to handle the general cases. Also for simplicity,
hereafter, we use G = {V,E} to represent the condensed
view of an RDF graph.

We assume that readers are familiar with the SPARQL query
lanaguge; a brief review of SPARQL is also provided in the
online appendix, in Section [LT]

2.1

Intuitively, a keyword query against an RDF graph looks for
(smallest) subgraphs that contain all the keywords. Given an
RDF graph G = {V, E}, for any vertex v € V, denote the
keyword stored in v as w(v). For the ease of presentation,
we assume each vertex contains a single keyword. However
the solutions we have developed can be seamlessly applied
to general cases where a vertex has multiple keywords or
no keywords. Formally, a keyword search query ¢ against an
RDF data set G = {V, E} is defined by m unique keywords
{wy,we, ..., wn}. A set of vertices {r,v1,...,v,,} from V
is a qualified candidate when:

e r € V is called a root answer node which is reachable

by v; € V for i € [1,m)]

o w(v;) = w.

If we define the answer for ¢ as A(¢q) and the set of all
qualified candidates in G with respect to ¢ as C'(q), then

> odrv) (D

rv; € g,1=1.m

Problem statement

A(q) = argmin s(g), and s(g) =
9€C(q)

where d(r,v;) is the graph distance between vertices r and
v; (when treating G as an undirected graph). Intuitively, this
definition looks for a subgraph in an RDF graph that has
minimum length to connect all query keywords from a root
node 7. In prior works concerning keyword search in RDF
data, the graph distance of d(vi,v2) is simply the shortest
path between v; and v in GG, where each edge is assigned a
weight of 1 (in the case of general graph [[14]], the weight of
each edge could be different). Note that if v; and vy belong
to disconnected parts of G, then d(v1,v2) = +00. Also note
that this metric (i.e., eq.[I) is proposed by [14] and has been
used by prior work on keyword search in RDF data [11], [23].



This definition has a top-k version, where the query asks
for the top k qualified candidates from C(gq). Let the score of
a qualified candidate g € C(q) defined as s(g) in (I), then we
can rank all qualified candidates in C(¢) in an ascending order
of their scores, and refer to the ith ranked qualified candidate
as A(q,7). The answer to a top-k keyword search query ¢ is
an ordered set A(q,k) = {A(q,1),...,A(¢q,k)}. Alq) is a
special case when k = 1, and A(q) = A(g,1). Lastly, we
adopt the same assumption as in the prior works [14], [23]
that the answer roots in A are distinct.

Unless otherwise specified, all proofs in this paper appear
in the online appendix, in Section [12}

3 RELATED WORK

For keyword search on generic graphs, many techniques [14],
[17] assume that graphs fit in memory, an assumption that
breaks for big RDF graphs. For instance, the approaches
in [[14], [17] maintain a distance matrix for all vertex pairs,
and clearly do not scale for graphs with millions of vertices.
Furthermore, these works do not consider how to handle
updates. A typical approach used here for keyword-search is
backward search. Backward search when used to find a Steiner
tree in the data graph is NP-hard. He et al [[14]] proposed
a tractable problem that does not aim to find a Steiner tree
and can be answered by using backward search. In this work
we extend this problem to large RDF graphs with rigorous
analysis, and without depending on the distance matrix.

Techniques for summarizing large graph data to support
keyword search were also studied [9]. The graph data are
first partitioned into small subgraphs by heuristics. In this
version of the problem, the authors assumed edges across the
boundaries of the partitions are weighted. A partition is treated
as a supernode and edges crossing partitions are superedges.
The supernodes and superedges form a new graph, which
is considered as a summary the underlying graph data. By
recursively performing partitioning and building summaries,
a large graph can be eventually summarized with a small
summary and fit into memory for query processing. During
query evaluation, the correspondent supernodes containing
the keywords being queried are unfolded and the respective
portion of graph are fetched from external memory for query
processing. This approach is proposed for generic graphs, and
cannot be extended for RDF data, as edges in RDF data are
predicates and are not weighed. Furthermore, the portion of
the graph that does not contain any keyword being queried is
still useful in query evaluation, therefore, this approach cannot
be applied to address our problem. A summary built in this
manner is not updatable.

Keyword search for RDF data has been recently studied in
[23]], which adopted the popular problem defintion from [14]
as we do in this paper. In this approach, a schema to represent
the relations among entities of distinct types is summarized
from the RDF data set. Backward search is first applied on the
schema/summary of the data to identify promising relations
which could have all the keywords being queried. Then, by
translating these relations into search patterns in SPARQL
queries and executing them against the RDF data, the actual
subgraphs are retrived.

expansion step
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Fig. 5. Backward search.

The proposed summarization process in [23] has a limita-
tion: it bundles all the entities of the same type into one node
in its summary, which loses too much information in data as
to how one type of entities are connected to other types of
entities. As a result, this approach could generates erroneous
results (both false positives and false negatives). We have
given one example in Figure [2] As another example, consider
Figure [I} In this approach, all vertices of the type SpaceMis-
sion are represented by one node named SpaceMission in the
summary. Then, summarizing the predicate previousMission
connecting URI3 and URIg results in a self-loop over the node
SpaceMission in the summary, which is incorrect as such a
loop does not exist in the data. To be more concrete, when
a user asks for all the space missions together with their
previous missions, the search pattern in SPARQL would be
{?X PreviousMission ?x. ?x type SpaceMission.}, which
is resultless in DBpedia. Furthermore, such a summary does
not support updates. While we also built our summarization
using type information, our summarization process uses dif-
ferent intuitions, which guarantees (a) the soundness of the
results; and (b) the support of efficient updates.

There are other works related to keyword search on graphs.
In [[18], a 3-in-1 method is proposed to answer keyword search
on structured, semi-structured and unstructured data. The idea
is to encode the heterogeneous relations as a graph. Similar
to [[14], [[17]], it also needs to maintain a distance matrix. An
orthogonal problem to keyword search on graph is the study
of different ranking functions. This problem is studied in [[11],
[12]. In this work, we adopt the standard scoring function in
previous work in RDF [23]] and generic graphs [[14].

4 THE BASELINE METHOD

A baseline solution is based on the “backward search” heuris-
tic. Intuitively, the “backward search” starts simultaneously
from each vertex in the graph G that corresponds to a query
keyword, and expands to its neighboring nodes recursively
until a candidate answer is generated. A termination condition
is used to determine whether the search is complete.

The state-of-the-art keyword search method on RDF graphs
[23]] has applied the backward search idea. Their termination
condition is to stop the search whenever the expansions
originating from m vertices {v1, ..., v, } (each corresponding
to a distinct query keyword) meet at a node r for the first time,
where {7, v1, ...,V } is returned as the answer. Unfortunately,
this termination condition is incorrect.

Counter example. Consider the graph in Figure [5(a) and a
top-1 query ¢ = {wi,wa,ws, ws}. The steps for the four
backward expansions performed on Figure [5(a) are shown



in Figure [5(b). Using the above termination condition, the
backward expansions from the four vertices {vy,vs,vg, v7}
covering the query keywords {w1,ws,ws,wy} meet for the
first time in the second iteration, so the candidate answer
g = {r=v4,v1,v2,v6,v7} is returned and s(g) = 8. However,
if we continue to the next iteration, the four expansions
will meet again at v, with ¢’ = {r=vs,v1,v2,v6,v7} and
s(¢g’) = 6, which is the best answer. One may argue that the
graph covering the query keywords is still correctly identified.
However, it will be problematic if we also consider the
graph in Figure [5c) as input for the search. There, the best
possible answer would be ¢”" = {r=v12,vs,v10, V14, 15} and
s(¢”) = 7 < s(g). Hence, g" will be declared as the top-
1 answer for ¢ instead of ¢/, which is clearly incorrect.
Furthermore, later we will explain that even if we fix this
error in the terminating condition, their method [23]] may still
return incorrect results due to the limitations in the summary
it builds, as shown by the results in Figure

The correct termination. Next, we show the correct termi-
nation condition for the backward search on RDF data. The
complete algorithm appears in Algorithm

Algorithm 1: BACKWARD
Input: ¢ = {wy,we,...,wy}, G={V,E}
Output: top-k answer A(q)
1 Initialize {W7y,..W,,} and m min-heaps {a1, ..a;, };
2 M+ @; // for tracking potential C(q)
3forve W, and i =1..m do
4 for Vu € V and d(v,u) <1 do
5 a; < (v,p < {v,u},d(p) < 1) ; // enqueue
6 if uw ¢ M then Mu] < {nil,..(v,1)..,nil};
7 else Mu][i] + (v,1); T

Tthe i-th entry

while not rerminated and A not found do

9 | (v,p,d(p)) - pop(arg min;, {top(a;)});

10 for Vu € V and d(v,u) =1 and u ¢ p do

11 a; < (u,pU{u},d(p) +1);

12 L update M the same way as in lines 6 and 7;

=)

3 return A (if found) or nil (if not);

-

Data structures. Given q = {w, ..., w,,} and a (condensed)
RDF graph G = {V, E}, we use W; to denote the set of
vertices in V' containing the keyword w; (line 1). We initialize
m empty priority queues (e.g., min-heaps) {ai,..a,,}, one
for each query keyword (line 1). We also maintain a set
M of elements (line 2), one for each distinct node we have
explored so far in the backward expansion to track the state
of the node, i.e., what keywords are reachable to the node
and their best known distances. In what follows, we use M [v]
to indicate the bookkeeping for the node v. Specifically, in
each element of M, we store a list of m (vertex, distance)
pairs. A (vertex, distance) pair in the j-th entry of M|v]
indicates a (shortest) path from vertex that reaches v in
distance hops and it is the shortest possible path starting
from any instance of w; (recall that there could have multiple
copies of w; in G). Next, we also use M [v][j] to indicate
the j-th pair in M[v]. For instance in Figure [5[a), consider

an element Mvs] = {(v1,1), (v2,1),nil, (v7,1)} in M. The
entry indicates that v3 has been reached by three expansions
from vertices vy, v2 and vz, containing keywords w;, wy and
wy respectively — each can reach vs in one hop. However,
vs has not been reached by any expansion from any vertex
containing ws yet.

The algorithm. With the structures in place, the algorithm
proceeds in iterations. In the first iteration (lines 3-7), for each
vertex v from W; and every neighbor u of v (including v
itself), we add an entry (v,p < {v,u},d(p)) to the priority
queue a; (entries are sorted in the ascending order of d(p)
where p stands for a path and d(p) represents its length).
Next, we look for the newly expanded node w in M. If
u € M, we simply replace M [u][i] with (v,d(p)) (line 7).
Otherwise, we initialize an empty element for M [u] and set
MTu)[i] = (v,d(p)) (line 6). We repeat this process for all
W;’s for i = 1..m.

In the j-th (5 > 1) iteration of our algorithm (lines 8-12),
we pop the smallest top entry of {aj..a,,} (line 9), say an
entry (v,p = {v,...,u},d(p)) from the queue a,. For each
neighboring node ' of u in G such that «/ is not in p yet (i.e.,
not generating a cycle), we push an entry (v, pU{u'}, d(p)+1)
back to the queue a; (line 11). We also update M with v’
similarly as above (line 12). This concludes the j-th iteration.

In any step, if an entry M{u] for a node u has no nil pairs
in its list of m (vertex, distance) pairs, this entry identifies a
candidate answer and w is a candidate root. Due to the property
of the priority queue and the the fact that all edges have a unit
weight, the paths in M|u] are the shortest paths to u from m
distinct query keywords. Denote the graph concatenated by
the list of shortest paths in M[u] as g. We have:

., Vg, } is a candidate answer

m

Lemma 1 g = {r=u,vy,,..
with s(g) = Y, d(u, v).

A node v is not fully explored if it has not been reached
by at least one of the query keywords. Denote the set of
vertices that are not fully explored as V;, and the top entries
from the m expansion queues (i.e., min-heaps) aj..a,, as
(v1,p1,d(P1)), -+ (Vm, Pm, d(Pm)). Consider two cases: (i)
an unseen vertex, i.e., v ¢ M, will become the answer root;
(i1) a seen but not fully expanded vertex v € M will become
the answer root. The next two lemmas bound the optimal costs
for these two cases respectively. For the first case, Lemma [2]
provides a lower bound for the best potential cost.

Lemma 2 Denote the best possible candidate answer as g1,
and a vertex v ¢ M as the answer root of g1. Then it must

have s(g1) > > i, d(p;).

For the second case, it is clearly that v € V;. Assume the list
stored in M [v] is (vp,,d1), ..., (vp,, ,dm). Lemma [3| shows a
lower bound for this case.

Lemma 3 Suppose the best possible candidate answer using

such an v (v € M and v € V) as the answer root is go, then
m

8(92) > Z f(vbz)dl + (1 - f(vlh))d(pl)a 2

where f(wvp,) = 1 if M[v][b;] #nil, and f(vy,) = O otherwise.



Notice that in Lemma [3] if M[v][b;] # nil, then d(p;) > d;
due to the fact that a; is a min-heap. It follows s(g2) < s(g1).

The termination condition. These v’s represent all nodes
that have not been fully explored. For case (i), we simply
let s(g1) = Yo, d(p;); for case (ii), we find a vertex with
the smallest possible s(g2) value w.rt. the RHS of (2), and
simply denote its best possible score as s(g2).

Denote the kth smallest candidate answer identified in
the algorithm as g, our search can safely terminate when
s(g) < min(s(g1),s(g2)) = s(g2). We denote this algorithm
as BACKWARD. By Lemmas we have Theorem [T}

Theorem 1 The BACKWARD method finds the top-k answers
Al(g, k) for any top-k keyword query q on an RDF graph.

5 TYPE-BASED SUMMARIZATION

The BACKWARD method is clearly not scalable on large RDF
graphs. For instance, the keyword “Armstrong” appears 269
times in our experimental DBpedia dataset, but only one is
close to the keyword “Apollo 117, as in Figure |1} If we are
interested in the smallest subgraphs that connect these two
keywords, the BACKWARD method will initiate many random
accesses to the data on disk, and has to construct numerous
search paths in order to complete the search. However, the
majority of them will not lead to any answers. Intuitively, we
would like to reduce the input size to BACKWARD and apply
BACKWARD only on the most promising subgraphs. We ap-
proach this problem by proposing a type-based summarization
approach on the RDF data. The idea is that, by operating our
keyword search initially on the summary (which is typically
much smaller than the data), we can navigate and prune large
portions of the graph that are irrelevant to the query, and
only apply BACKWARD method on the smaller subgraphs that
guarantee to find the optimal answers.

The intuition. The idea is to first induce partitions over
the RDF graph G. Keywords being queried will be first
concatenated by partitions. The challenge lies on how to safely
prune connections (of partitions) that will not result in any
top-k answer. To this end, we need to calibrate the length
of a path in the backward expansion that crosses a partition.
However, maintaining the exact distance for every possible
path is expensive, especially when the data is constantly
changing. Therefore, we aim to distill an updatable summary
from the distinct structures in the partitions such that any path
length in backward expansion can be effectively estimated.
The key observation is that neighborhoods in close proximity
surrounding vertices of the same type often share similar
structures in how they connect to vertices of other types.

Example 1. Consider the condensed view of Figure |1} The
graph in Figure [6[a) is common for the 1-hop neighborhoods
of URI3 and URI; with the type SpaceMission. B

This observation motivates us to study how to build a type-
based summary for RDF graphs. A similar effort can be seen
in [23], where a single schema is built for all the types of
entities in the data. However, this is too restrictive as RDF
data is known to be schemaless [10], e.g., entities of the same
type do not have a unified property conformance.

SpaceMission

A,

=== = T

%)
Z

(a) (b)

Fig. 6. Graph homomorphism across summaries.

5.1 Outline and preliminaries

Our approach starts by splitting the RDF graph into mul-
tiple, smaller partitions. Then, it defines a minimal set of
common type-based structures that summarizes the partitions.
Intuitively, the summary bookkeeps the distinct structures from
all the partitions. In general, the keyword search can benefit
from the summary in two perspectives. With the summary,

e we can obtain the upper and lower bounds for the distance
traversed in any backward expansion without constructing the
actual path (Section [6); and

e we can efficiently retrieve every partition from the data by
collaboratively using SPARQL query and any RDF store without
explicitly storing the partition (Section [I3)).

We first introduce two notions from graph theory: graph
homomorphism and core.

Homomorphism across partitions. As in Figure [6[a), type
vertices at close proximity are a good source to generate
induced partitions of the data graph. However, if we were
to look for such induced partitions that are exactly the same
across the whole graph, we would get a large number of them.
Consider another type-based structure in Figure [6{b), which is
extracted from 1-hop neighbors around the vertex URIs in
Figure [I] Notice the two graphs are different, however Fig-
ure[6fa) is a subgraph of Figure [|b). We consider discovering
such embeddings between the induced partitions, so that one
template can be reused to bookkeep multiple structures.

Definition 1 A graph homomorphism f from a graph G =
{V,E} to a graph G' ={V', E'}, writtenas f : G — G, isa
mapping function f : V. — V' such that (i) f(x) = x indicates
that x and f(x) have the same type; and (ii) (u,v) € E
implies (f(u), f(v)) € E' and they have the same label. When
such an f exists, we say G is homomorphic to G'.

Intuitively, embedding G to G’ not only reduces the number
of structures we need to keep but also preserve any path from
G in G’, as shown by Figure[6] (more expositions in Section [6).
Finally, notice that homomorphism is transitive, i.e., G — G’
and G’ — G" imply that G — G".

Cores for individual partitions. A core is a graph that is
only homomorphic to itself, but not to any one of its proper
subgraphs (i.e., there is no homomorphism from a core to any
of its proper subgraphs).

Definition 2 A core ¢ of a graph G is a graph with the
following properties: there exists a homomorphism from c to
G; there exists a homomorphism from G to ¢; and c is minimal
(in the number of vertices) with these properties.

Intuitively, a core succinctly captures how different types
of entities are connected, e.g., the partition in Figure b) is
converted to its core in Figure [7(a) by eliminating one branch.



Fig. 7. Build a core (a) from (b).
5.2 Partition

The summarization process starts with splitting the data
graph into smaller but semantically similar and edge-disjoint
subgraphs. Given our observation that nodes with the same
type often share similar type-neighborhoods, we induce a
distinct set of partitions for G based on the types in G, using
small subgraphs surrounding vertices of the same type. Our
partitioning algorithm treats an input RDF dataset as a directed
graph G concerning only the type information, i.e., we use the
condensed view of an RDF graph. For any vertex that does not
have a type specified by the underlying dataset, we assign an
universal type NA to them. Notice that graph partitioning is a
well studied problem in the literature, here we do not propose
any new technique in that respect but rather focus on how
to build semantically similar partitions for our purpose. The
partitioning algorithm is shown in Algorithm [2]

Algorithm 2: Partition
Input: G ={V,E}, «
Output: A set of partitions in P

1 Let T ={Tq,...,T,} be the distinct types in V;
2 P+ 0
3for T, €T do
4 for v € V; do
5 identify h(v, ) — the a neighborhood of v;
6 E + E — {triples in h(v,a)} and
P <+ PUh(v,a);
7 return P;

In Algorithm [2] suppose G has n distinct number of types
{T1,...,Tn}, and we use the set V; to represent the vertices
from V that have a type T, (line 4). We define the a-
neighborhood surrounding a vertex, where « is a parameter
used to produce a set of edge disjoint partitions P over
G. Formally, for any vertex v € V and a constant «, the
a-neighborhood of v is the subgraph from G obtained by
expanding v with o hops in a breadth-first manner, denoted as
h(v, @) (line 5), but subject to the constraint that the expansion
only uses edges which have not been included by any partition
in P yet. We define the i-hop neighboring nodes of v as the set
of vertices in G that can be connected to v through a directed
path with exactly ¢ directed edges. Note that since we are using
directed edges, it is possible the i-hop neighboring nodes of
v is an empty set. Clearly the nodes in h(v,«) are a subset
of the a-hop neighboring nodes of v (since some may have
already been included in another partition).

To produce a partition P, we initialize P to be an empty set
(line 2) and then iterate all distinct types (line 3). For a type T,
and for each vertex v € V;, we find its a-neighborhood h(v, &)
and add h(v,«) as a new partition into P. The following

lemma summarizes the properties of our construction:

Lemma 4 Partitions in P are edge disjoint and the union of
all partitions in P cover the entire graph G.

It is worth pointing out that Algorithm 2] takes an ad hoc
order to partition the RDF data, i.e., visiting the set of entities
from type 1 to type n in order. A different order to partition
the data could lead to different performance in evaluating a
keyword query. However, finding an optimal order to partition
the RDF data set is beyond the scope the paper, therefore we
decide not to expand the discussion on this issue.
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Fig. 8. Partitions P of the RDF data in Figure[1] a = 1.

B:building

Note that the order in which we iterate through different
types may affect the final partitions P we build. But no matter
which order we choose, vertices in the same type always
induce a set of partitions based on their a-neighborhoods. For
example, the partitions P of Figure[I] (as condensed in Figure
M) are always the ones shown in Figure [8] using o = 1.

5.3 Summarization

The intuition of summarization technique is as follows. The
algorithm identifies a set of templates from the set of partitions
‘P. Such templates serve as a summary for the partitions. In
addition, the summarization algorithm guarantees that every
partition in P is homomorphic to one of the templates in the
summary. As we will show in section [6] this property allows
the query optimizer to (i) efficiently estimate any path length in
the backward expansion without frequently accessing the RDF
data being queried; and (ii) efficiently reconstruct the partitions
of interest by querying the RDF data without explicitly storing
and indexing the partitions.

We first outline our approach to summarize the distinct
structures in a partition P. Then, we discuss how to make
it more practical by proposing our optimizations. Finally,
we discuss the related indices in Section [5.4] The general
framework of our approach is shown in Algorithm [3]

Given a partition P, Algorithm [3| retrieves all the distinct
structures and stores them in a set S. Algorithm [3| begins
with processing partitions in P in a loop (line 2). For a
partition h;, we use its core ¢ to succinctly represent the
connections between different types in h; (line 3). Once a core
c is constructed for a partition, we scan the existing summary
structures in .S to check (a) if ¢ is homomorphic to any existing
structure s; in S; or (b) if any existing structure s; in S is
homomorphic to c. In the former case, we terminate the scan
and S remains intact (without adding c), as in lines 5-6; in



the latter case, we remove s; from S and continue the scan,
as in lines 7-8. When S is empty or c is not homomorphic to
any of the structures in S after a complete scan on S, we add
c into S. We repeat the procedure for all partitions in P.

Algorithm 3: Summarize structures in P
Input: P = {h(v1, ), h(ve,c),...}
Output: A set of summaries in .S

15«0

2 for h, € P,i=1,...,|P| do

3 ¢ < core(h;); //see discussion on optimization
4 fors; €S, j=1,...,|5| do

5 if f:c— s; then

6 L goto line 2; // also bookkeep f:c—s;

~

else if f:s; — c then
8 L S <+ S—{sj}; //also bookkeep f:s; —=c

9 | S« Su{ch

0 return S;

-

Improving efficiency and reducing |S|. There are two prac-
tical problems in Algorithm [3] First, the algorithm requires
testing subgraph isomorphism for two graphs in lines 3, 5
and 7, which is NP-hard. Second, we want to reduce |S| as
much as possible so that it can be cached in memory for query
processing. The latter point is particularly important for RDF
datasets that are known to be irregular, e.g., DBpedia.

The optimization is as follows. Before line 3 of Algorithm[3]

consider each partition h(v,a) in P, which visits the a-
neighborhood of v in a breadth-first manner. We redo this
traversal on h(v, ) and construct a covering tree for the edges
in h(v, @), denoted as h¢(v, o). In more detail, for each visited
vertex in h(v, @), we extract its type and create a new node in
h¢(v, ) (even if a node for this type already exists). By doing
so, we build a tree h;(v, ) which represents all the distinct
type-paths in h(v, «). In the rest of the algorithm (lines 3-10),
we simply replace h(v,a) with h:(v, @).
Example 2. As in Figure 0] a tree hy(v1,2) is built for the
partition h(v1,2). Notice that the vertex vy is visited three
times in the traversal (across three different paths), leading to
three distinct nodes with type T4 created in hy(vy,2). In the
same figure, a tree hy(vs, 2) is built from the partition h(vs, 2)
and isomorphic to h;(v1,2). B

hi(v1,2)/he(vs, 2)

Fig. 9. A tree structure for two partitions.
There are two motivations behind this move. First, using

the covering tree instead of the exact partition potentially
reduces the size of the summary S. As seen in Figure [0

two partitions with distinct structures at the data level (e.g.,
h(v1,2) and h(vs,2)) could share an identical structure at the
type level. Taking advantage of such overlaps is the easiest way
to reduce the number of distinct structures in .S. The second
reason is efficiency. Whereas testing subgraph isomorphism is
computationally hard for generic graphs, there are polynomial
time solutions if we can restrict the testing on trees [21] —
leading to better efficiency. For instance, to find the core of
a covering tree h;, it simply amounts to a bottom-up and
recursive procedure to merge the homomorphic branches under
the same parent node in the tree.

5.4 Auxiliary indexing structures

To facilitate the keyword search, along with the summary S,
we maintain three auxiliary (inverted) indexes.

A portal node ¢ is a data node that is included in more
than one partitions (remember that partitions are edge-disjoint,
not node disjoint). Intuitively, a portal node joins different
partitions. A partition may have multiple portals but usually
much less than the total number of nodes in the partition.
Portal nodes allow us to concatenate different partitions. In
the first index, dabbed portal index, for each partition h(v, ),
we assign it a unique id, and associate it with the list of portals
in the partition. In practice, since the partition root node v is
unique in each partition, we can simply use it to denote the
partition h(v, «) when the context is clear.

Recall that we use hi(v, @) to represent h(v,«), where a
vertex in h(v, &) could correspond to more than one vertex in
hi(v, @). o(v;) registers the fact that there are more than one v;
in hy(v, @) and o (v;) also denotes the set of all v;s in hy(v, ).
Without loss of generality, let ¥ = {o(v1),0(v2),...} denote
all the one-to-many mappings in a partition. For instance,
consider h(vy,2) and hy(v1,2) in Figure B} X « {o(v4)
{Ty}}. The second index, dabbed partition index, is to map
the partition root v of h(v, ) to its X. Intuitively, this index
helps rebuild from h(v, «) a graph structure that is similar to
h(v, ) (more rigorous discussion in section [6).

The third index, dabbed summary index, maps data nodes
in partitions to summary nodes in S. In particular, we assign a
unique id sid to each summary in S and denote each node in S
with a unique id nid. For any node « in a partition h(v, a), this
index maps the node u to an entry that stores the partition root
v, the id sid of the summary and the id nid of the summary
node that u corresponds to. Notice that since h:(v, «) is built
in a breadth-first traversal, we can easily compute the shortest
path from v to any node in h;(v, ) using this index.

To obtain the homomorphic mappings from each h;(v, a)
to a summary in .S, one needs to maintain a log for all the
homomorphisms found during the construction of S, as in lines
6 and 8. Once S is finalized, we trace the mappings in this
log to find the mappings from data to summaries. As each
partition (represented by its core) is either in the final S or is
homomorphic to one other partition, the size of the log is linear
to the size of G. An example for the log is in Figure |10/ (h! is
the covering tree for the i-th partition). It shows sets of trees
(and their homomorphic mappings); each set is associated with
a summary in S, that all trees in that set are homomorphic to.
To find the final mappings, we scan each set of trees in the



log and map the homomorphisms of each entry in a set to the

corresponding entry in S, i.e., the blue arrows in Figure h f1 ht f2 3 0 N 0 A

We remove the log once all the mappings to .S are found.
S(@G): M hi hi hi
7.;?‘\?1 A *
AN
hy  h§ R RY RO R
log: f ) f ,
hiz” his’

Fig. 10. All the homomorphism in building S.

6 KEYWORD SEARCH WITH SUMMARY

Next, we present a scalable and exact search algorithm. It
performs a two-level backward search: one backward search
at the summary-level, and one at the data-level. Only for
identified connected partitions that are found to contain all
the distinct keywords at the summary-level and whose score
could enter the top-k answers, do we initiate a backward search
at the data-level on the selected partitions. Remember that
path-length computation is at the heart of backward search
and pruning. While working at the summary-level, exact path
lengths are not available. Therefore, we first show how to
estimate the path length of the actual data represented by our
summary. Then, we proceed to describe the algorithm in detail.

6.1

At the summary-level, any shortest path in the underlying RDF
graph must go through a number of partitions, and for each
intermediate partition the path connects two of its portals, i.e.,
an entrance and an exit node. By construction, the shortest
distance from the partition root v of a partition to any vertex u
in the same partition can be computed with the summary index.
By triangle inequality, the shortest distance d(v1,v9) for any
two vertices vy and vs in a partition with a partition root v can
be upper bounded by d(v1,v2) < d(v,v1)+d(v, v2), and lower
bounded by d(vy,v2) > |d(v,v1) — d(v,v2)|. Yet, a possibly
tighter lower bound can be found by using the correspondent
summary of the partition that is rooted at v and Lemma [3]

Bound the shortest path length

Lemma 5 Given two graphs g and h, if f : g — h, then Y,
vy € g and their homomorphic mappings f(v1), f(v2) € h,
d(v1,v2) = d(f(v1), f(v2)).

The homomorphic mappings between a partition h, its
covering tree h;, and its summary s in S are shown in
Figure [[T|a). Notice that due to the optimization we employ
in Section there is no homomorphism from A to s, so that
we can not apply Lemma [5] directly. To obtain a lower bound
for the distance of any two vertices in h, we need to rebuild
a homomorphic structure for A from its summary s and h;.

To do so, we first define a mapping function Join, which
takes as input a graph g, a list of disjoint sets of ver-
texes {V;,V/,...} and outputs a new graph g’, written as
g' = Join(g(V, E),{V{ ,V/ ,...}). In particular, V/ CV and
vertexes in V;' are all of type ¢;. The function Join constructs
g’ as follows:

1. Initialize ¢’ as g;

A summary

w bil
intermediate data h S

to build s, not kept

(2)

h: partition

h p) g Apply Lemma 5
t —

(b)

hy: tree S summary —: homomorphism

Fig. 11. Homomorphic mappings

2. For the vertexes in V/ of g’, merge them into a single
node v} of type t;, and all edges incident to the vertexes
in V;, are now incident to vj;

3. Repeat step 2 for all is.

Notice that the function Join itself is a homomorphic mapping,
which constructs a homomorphism from g to g’. Also recall
o(x) of a partition h registers the fact that a type node z in h
has more than one replicas in h; and hence o(z) is a one-to-
many mapping from x in h to the set of all vertexes of type
x in hy and X of h; is the set of all such mappings.

Example 3. Use the examples in Figure [9 for illustra-
tion. Join(hy(vy,2),{c(T4)}) rebuilds h(vi,2) in Figure [9]
and hence there is a homomorphism from h(vi,2) to
Join(h¢(v1,2),{0(T4)}), i.e, isomorphism. On the other
hand, Join(h¢(vs,2),{c(T4)}) equals h(vy,2). Although it
does not reconstruct h(vs, 2) this time, the Join function in this
case still produces a homomorphic mapping from h(vs,2) to
Join(hy(vs, 2), {o(T4)}) since it is not hard to see that h(vs, 2)
is homomorphic to h(v1,2) in Figure [0} m

More formally, we have:

Lemma 6 For a partition h and its covering tree hy, there is
a homomorphism from h to Join(hy,X).

In what follows, we show how to build a homomorphism
from Join(h;, X) to a graph s’ derived from the summary
s of h;. With this and by the transitivity of homomorphism
and Lemma [6] it follows h is homomorphic to s’ and hence
Lemma [5] can be applied (as shown in Figure [TT[b)).

By Algorithm 2] every h; from a partition / is homomorphic
to a summary s in S (see the relations in Figure [T1{a)).
Assume the homomorphism is fo : hy — s. Given the ¥
of a partition h, define f2(X) = {f2(0(v)) | o(v) € £} where
folo(v)) ={fa(uw) |u € o(v) Au € hy A fo(u) € s}, ie., the
set of the mapped vertexes of o(v) in s by the homomorphism
f2. Further, we have the following result:

Lemma 7 For a partition h, its covering tree h; and its
summary s that has fo : hy — s, there is a homomorphism
Sfrom Join(hy, X) to Join(s, f2(X)).

By Lemmas [6] [7] and the transitivity of homomorphism,
a partition h is homomorphic to Join(s, f2(2)), as shown in
Figure [T1[b). Notice f is a part of our summary index, which
maps a vertex in data to a vertex in summary. Finally, given
any two vertices in a partition h, their shortest distance can
be (lower) bounded by combining Lemmas [3} [6] [7] and using
any shortest path algorithm, e.g., Dijkstra’s algorithm, to find
the shortest distance between the correspondent mappings on
Join(s, f2(X)). In practice, we use the larger lower bound from
either the summary or the triangle inequality.



6.2 The algorithm
The algorithm is in Algorithm [} dabbed the SUMM method.

Algorithm 4: SUMM

Input: ¢ = {wy,ws,...,w,}, G={V,E}
Output: top-k answer A
1 initialize {W1,..W,,} and m min-heaps {a1, ..am};
2 M < 0; // for tracking partitions
3 foru e W, and i = 1..m do
if u € h(v,a) then
t < (u, {0}7 0,0);
a; < (v,t); // enqueue
if v ¢ M then M[v] < {nil, ..., ¢,...,nil};
else M[v][i] < t;

L N & s

Tthe i-th entry

9 while not terminated and A not found do

10 (v, (u, 8,d;,dy)) + pop(argminl®,{top(a;)});

u Denote the last entry in S as (¢, vy) and

L ={l,0,...} be the portals in the partition rooted

at v,
12 for V¢ € L do
13 compute d; and d;, for d(¢,¢") or d(u,¢');
14 lett « (u, SU (¢, v), di +dj, dy, +d.);
15 update M|v,| with t; // see discussions
16 if M|v,] is updated and nil ¢ M [v,] then
17 a; <= (v, t); // enqueue
18 for each new subgraph g incurred by t do
19 retrieve g from data;
20 L apply BACKWARD on ¢ and update A;

21 return A (if found) or nil (if not);

Data structures. Like the BACKWARD method in section 4]
we define {Wy, Wa, ..., W,,}, where W; is the set of vertexes
containing the keyword w;. We also initialize m priority
queues {ay,...,a,} and maintain a set M of entries, one
for each visited partition. Each entry in M stores a unique
partition root followed by m lists. The i-th list records all the
reachable vertexes containing keyword w; and through which
other partitions they connect to the current partition in the
search. An entry of M is in the form of quadruples — each can
be represented as (U, S, d;, d,,). Here, the node u is the first
vertex in the backward expansion and contains the keyword
w;. The expansion reaches the current partition by routing
through a sequence of the portals from some partitions, stored
in S as a sequence of (portal, partition root) pairs. A sequence
S defines a path (of partitions) that starts at u. Denote the
lower and upper bounds for the path in S as d; and d,,.

Example 4. A sub-sequence {(¢,v,), (¢',vp)} of S indicates
that the path first enters the partition rooted at v, and exits the
partition from one of its portals ¢. From the portal ¢, this path
then enters a partition rooted at v;, and leaves the partition from
the portal ¢/. We are interested in (lower and upper) bounding
the shortest distance that connects two adjacent portals in S,
e.g., d(£,¢") in the partition rooted at vj,. B

Example 5. In Figure [12] assume m = 2 (i.e., the query has
two keywords) and an entry in M for a partition rooted at v

is shown as below. The entry records that there is a path (of

w1 w2
t1=(vq, {(€2,v0)}, 5, 7)  ta=(vp, {(£1,v4), (lo,vs)}, 3, 5)
ts=(ve, {(¢3,v2)}, 5, 6)

Fig. 12. An entry in M for the partition rooted at v

partitions) from w; that reaches the current partition rooted at
v. This path starts at v,, enters the concerned partition from
portal /5 and has a length of at least 5 hops and at most 7 hops.
To reach the partition rooted at v, the path has already passed
through a partition rooted at vg. Same for ws, the concerned
partition is reachable from two paths starting at v, and v,
respectively, both contain the keyword w,. B

The algorithm. With the data structures in place, the algorithm
proceeds in iterations.

e In the first iteration. For each vertex u from W;, we retrieve
the partition root v that u corresponds to, from the summary
index. Next, if there is an entry for v in M, we append a
quadruple t=(u, {0}, 0, 0) to the i-th list of the entry; otherwise
we initialize a new entry for v in M (with m empty lists) and
update the ¢-th list with £, as in lines 7-8. We also add an entry
(v, t) to the priority queue a; (entries in the priority queue are
sorted in ascending order by their lower bound distances in
t’s). We repeat this process for all W;’s for ¢+ = 1,...,m,
which completes the first iteration (lines 3-8).

e In the j-th iteration. We pop the smallest entry from all a;’s,
say (v, (u, S,d;,dy)) (line 10). We denote the partition rooted
at v as the current partition. Denote the last pair in S as (¢, vg),
which indicates that the path leaves the partition rooted at vy
and enters the current partition using portal ¢. Next, for the
current partition, we find its portals £ = {¢,¢5, ...} from the
portal index. For each ¢’ in £, we compute the lower and upper
bounds for d(¢, ') (or d(u, ¢) if =nil) in the current partition
using the approach discussed in section denoted as d; and
d!, (line 13). A portal ¢ can connect the current partition to
a set P’ of neighboring partitions. For each partition in P,
denoted by its partition root v,-, we construct a quadruple t=(u,
S U (¢, v), di +dj, d, +d},) as in line 14. We also search
for the entry of v, in M and update its i-th list with ¢ in the
same way as in the first iteration. However, if either of the
following cases is satisfied, we stop updating the entry for v,
in M: (i) adding ¢’ to S generates a cycle; and (ii) d; + dj
is greater than the k-th largest upper bound in the i-th list.
Otherwise, we also push (v,,t) to the queue a;.

At any iteration, if a new quadruple ¢ has been appended
to the i-th list of an entry indexed by v in M, and all
of its other m — 1 lists are non-empty, then the partition
rooted at v contains potential answer roots for the keyword
query. To connect the partitions containing all the keywords
being queried, we find all the possible combinations of the
quadruples from the (m — 1) lists, and combine them with ¢.
Each combination of the m quadruples denotes a connected
subgraph having all the keywords being queried.

Example 6. In Figure denote the new quadruple just
inserted to the first list of an entry in M as ¢;. Since both of its
lists are now non-empty, two combinations can be found, i.e.,
(t1,t2) and (t1,t3), which leads to two conjunctive subgraphs.
Using the partition information in the quadruples, we can




easily locate the correspondent partitions. B

We study how to access the instance data for a partition in
Section [/} Once the instance data from the selected partitions
are ready, we proceed to the second-level backward search by
applying the BACKWARD method to find the top-k answers on
the subgraph concatenated by these partitions (line 20). In any
phase of the algorithm, we track the top-k answers discovered
in a priority queue.
e Termination condition. The following Lemmas provide a
correct termination condition for the SUMM method.

Lemma 8 Denote an entry in the priority queue as (v, (u, S,
dy, dy)), then for any v' in the partition rooted at v and the
length of any path starting from u and using the portals in S
is d(u,v") > d;.

Lemma 9 Denote the top entry in the priority queue a; as
(v, (u, S, d;, dy)), then for any explored path p from w; in
the queue a;, the length of p, written as d(p), has d(p) > d;.

We denote the set of all unexplored partitions in P as P;.
For a partition A rooted at v that has not been included in M,
clearly, h € P;. The best possible score for an answer root in
h is to sum the d;’s from all the top entries of the m expansion
queues, i.e., ai, ..., a,,. Denote these m top entries as (v1, (u1,
St d}, dy)), ..., (U, (Um, S™, d™, d)), tespectively. Then,
Lemma 10 Let g1 be a possible unexplored candidate answer
rooted at a vertex in a partition h, with h € Py,

s(g) > > di. (3)
=1

Next, consider the set of partitions that have been included in
M, i.e., the set P — P;. For a partition h € P — P, let the
first quadruple from each of the m lists for its entry in M be:
t = (61, S1, dp, db), .. tm = (Gm, Sm. d), d7) (note that due
to the order of insertion, each list has been implicitly sorted
by the lower bound distance (fl in ascending order), where
t; = nal if the j-th list is empty. Then, we have:

Lemma 11 Denote the best possible unexplored candidate
answer as go, which is rooted at a vertex in the partition
h, where h € P — Pt,nihen

s(g2) > Z Ft)d; + (1= f(ta))d;, @)

where f(t;)=1 if t;#nil otherwise f(t;)=0.
Finally, we can derive the termination condition for the search.

The termination condition. We denote the score of the best
possible answer in an unexplored partition as s(g1), as defined
by the RHS of (3); and the score of the best possible answer
in all explored partitions as s(g>), as defined by the RHS of
(). Denote the candidate answer with the k-th smallest score
during any phase of the algorithm as g. Then, the backward
expansion on the summary level can safely terminate when

s(g9) < min(s(g1),s(g2)). By Lemmas [10] and [11] we have:

Theorem 2 SUMM finds the top-k answers A(q, k) for any
top-k keyword search query q on an RDF graph.

Sections [I3] and [[4] in the online appendix discuss the
complexity of SUMM and further elaborate its correctness.

7 ACCESSING DATA AND UPDATE

The SUMM algorithm uses the summary of the RDF data
to reduce the amount of data accessed in the BACKWARD
method. For the algorithm to be effective, we should be able to
efficiently identify and retrieve the instance data from selected
partitions. One option is to store the triples by partitions
and index on their partition ids, i.e., adding another index to
the algorithm. But then whenever an update on the partition
happens, we need to update the index. Furthermore, the
approach enforces a storage organization that is particular to
our methods (i.e., not general). In what follows, we propose an
alternative efficient approach that has no update overhead and
requires no special storage organization. Our approach stores
the RDF data in an RDF store and works by dynamically iden-
tifying the data of a partition using appropriately constructed
SPARQL queries that retrieve only the data for that partition.

Since graph homomorphism is a special case of homo-
morphism on relational structure (i.e., binary relations) [[16]]
and the fact that relational algebra [20]] is the foundation of
SPARQL, we can use the Homomorphism Theorem [1] to
characterize the results of two conjunctive SPARQL queries.

Theorem 3 Homomorphism Theorem |[|I]]. Let q and q' be
relational queries over the same data D. Then ¢'(D) C q(D)
iff there exists a homomorphism mapping [ : q — ¢'.

Recall that f; : hy — h (see Figure [IT(a)) and for each hy,
we extract a core ¢ from h;. By definition, ¢ is homomorphic
to hy, thus ¢ is homomorphic to h (transitivity). Using c as a
SPARQL query pattern can extract h due to Theorem

SELECT * WHERE{URI5 name "Al1". URI5 type S.
OPTIONAL{URI5 launchPad ?x. ?x type B.}
OPTIONAL{URI; booster ?y. 7y type R}
OPTIONAL{URI5 crew ?z. ?z type C} .
OPTIONAL{URIs5 previousmission ?m. ?m type S} . }

Fig. 13. A query to retrieve the targeted partition.

There are two practical issues the need our attention. First,
there is usually a many-to-one mapping from a set of h;’s to
the same core ¢ — leading to a low selectivity by using c as
the query pattern. To address this issue, we can bind constants
from the targeted partition to the respective variables in query
pattern. These constants include the root and the portals of
the targeted partition which are retrievable from the indexes.
The second issue is that in our construction of S, we do not
explicitly keep every c. Instead, a core c is embedded (by
homomorphism) to a summary s € .S, where c is a subtree of
s. To construct a SPARQL query from s, we first need to find
a mapping for the partition root in s, then the triple patterns
corresponding to the subtree in s are expressed in (nested)
OPTIONALs from the root to the leaves. For example, the
SPARQL query for the partition rooted at URI5 in Figure [8 can
be constructed by using the summary in Figure [7(a). Notice
that URI5 is bound to the root to increase selectivity.

Our approach also supports efficient updates, which is
addressed in Section [I5]in the online appendix.



8 EXPERIMENTS

We implemented the BACKWARD and SUMM methods in
C++. We also implemented two existing approaches proposed
in [23] and [14]. We denote them as SCHEMA and BLINKS
respectively. All experiments were conducted on a 64-bit
Linux machine with 6GB of memory.

LUBM Wordnet Barton BSBM DBpedia Infobox
14 15 30 1520 5199

Fig. 14. Number of distinct types in the datasets

LUuBM  Wordnet Barton BSBM DBpedia Infobox
5 2 40 70 30

Fig. 15. Number of triples in the datasets (x10°)

Datasets: We used large sythetic and real RDF data sets for
experiments. Sythetic data sets are generated by popular RDF
benchmarks. The first is the Lehigh University Benchmark
(Luem) [13]], which models universities with students, depart-
ments, efc. With its generator, we created a default dataset of 5
million triples and varied its size up to 28 million triples. The
second is the Berlin SPARQL Benchmark (BssMm) [5]], which
models relationships of products and their reviews. Unlike
LusM where data are generated from a fixed set of templates,
BSBM provides interfaces to scale the data on both size and
complexity of its structure. In particular, it provides means
for adding new types in the data. The rest of the data sets are
popular real RDF data sets, i.e., Wordnet, Barton and DBpedia
Infobox. The number of distinct types for the data sets are
shown in Figure [T4] and their sizes are reported in Figure [T}
Notice DBpedia and BSBM are very irregular in structure, i.e.,
both have more than 1,000 distinct types. BSBM is also large
in size (70 million triples by default).

Implementation and setup: We used the disk-based BT -tree
implementation from the TPIE library to build a Hexstore-
like [24]] index on the RDF datasets. For subgraph isomorphism
test, we used the VFLib. We assume each entity in the data
has one type. For an entity that has multiple types, we bind the
entity to its most popular type. To store and query RDF data
with SPARQL, we use Sesame [6]]. In all experiments, if not
otherwise noted, we built the summary for 3-hop neighbors,
i.e., =3, and set kK = 5 for top-k queries.

8.1

Time on the summarization process. We start with a set
of experiments to report the time (in log scale) in building
a summary. For LuBM, we vary the size of the data from
100 thousand triples to 28 million triples. In Figure [T6(a)]
we plot the total time for building the summary, which
includes: the time spent to find homomorphic mappings (i.e.,
performing subgraph isomorphism tests) and the time spent
for the rest of operations, e.g., partitioning the graph, and
constructing the inverted indexes. The latter cost dominates
the summarization process for all the cases in LUBM datasets.
The same trend can also be observed in all the other datasets,
as shown in Figure [[6(b)] Notice that the summary used by
SUMM is built once and thereafter incrementally updatable
whenever the data get updated. For comparison, we study
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Number of triples
=
-

the summarization performance for the SCHEMA method. The
comparisons are shown in Figure[T7] Regardless of the quality
of the summary, the SCHEMA method in general performs an
order of magnitude faster than our SUMM method across all
the data sets we experimented. However, as it will become
more clearly shortly, while the summary built by SCHEMA
might be useful in some settings, it does not yield correct
results in all our experimental data sets.

Size of the summary. As the SCHEMA method generates one
(type) node in the summary for all the nodes in the data that
have the same type, the size of summary (in terms of number
of nodes) is equal to the number of distinct types from the data,
as shown in Figure [T4] For our summarization technique, we
plot the number of partitions and the number of summaries

in Figures [T8(a) and [I8(b) In Figure [I8(a)| for LusM, the

summarization technique results in at least two orders less



distinct structures comparing to the number of partitions. Even
in the extreme case where the dataset is partitioned into about
a million subgraphs, the number of distinct summaries is still
less than 100. In fact, it remains almost a constant after we
increase the size of the data set to 1 million triples. This is
because LUBM data is highly structured [10].

Not all RDF data sets are as structured as LUBM. Some
RDF datasets like BsBM and DBpedia are known to have a
high variance in their structuredness [10]. In Figure [I8(b)} we
plot the number of distinct summaries for other datasets after
applying the SUMM method. For Wordnet and Barton, SUMM
distills a set of summaries that has at least three orders less
distinct structures than the respective set of partitions. Even in
the case of DBpedia and BSBM, our technique still achieves at
least one order less distinct structures than the number of the
partitions, as shown in Figure [T8(b)]

In Figures [19(a)] and [T9(b)] we compare the number of
triples stored in the partitions and in the summary. Clearly, the
results show that the distinct structures in the data partitions
can be compressed with orders-of-magnitude less triples in the
summary, e.g., at least one order less for DBpedia Infobox,
and at least three orders less for LuBM, Wordnet, Barton and
BSBM. Since the summaries are all small, this suggests that we
can keep the summaries in main memory to process keyword
query. Therefore, the first level of backward search for SUMM

method can be mostly computed in memory.
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Impact from the distinct number of types. Adding new
types of entities in an RDF data set implicitly adds more
variances to the data and hence makes the summarization
process more challenging. To see the impact on SUMM, we
leverage the BsBM data generator. In particular, we generate
four BsBM data sets with the number of distinct types ranged
from 100 to 1, 500. The results from SUMM on these data sets
are shown in Figures 20fa) and (b). As we are injecting more
randomness into the data by adding more types, the size of the
summary increases moderately. Consistent to our observations
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Fig. 22. Size of the auxiliary indexes.
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for DBpedia in Figures and [I9(b)] SumM efficiently
summarizes the BSBM data sets with orders less triples, even

when the data set has more than a thousand distinct types.

Impact of «. Since trends are similar, we only report the
impact of o on two representative data sets, i.e., LUBM and
DBpedia. In Figures 21(a)]and 21(b)] we report the impact of «
(a parameter on the max number of hops in each partition, see
Section [5.2) on the size of summary. Intuitively, the smaller
« is, the more similar the a-neighborhoods are, leading to
a smaller size of summary after performing summarization.
This is indeed the case when we vary « for all the data
sets. The smallest summary is achieved when @ = 1 in
both Figures 21(a)] and 21(b)] Notice that there is a trade-off
between the size of the summary and the size of the auxiliary
indexes. A smaller partition implies that more nodes become
portals, which increases the size of the auxiliary indexes.
On the other hand, increasing « leads to larger partitions in
general, which adds more variances in the structure of the
partitions and inevitably leads to a bigger summary. However
in practice, since the partitions are constructed by directed
traversals on the data, we observed that most of the directed
traversals terminate after a few hops. For instance, in LUBM,
most partitions stop growing when o > 3. A similar trend is
visible in Figures 21(b)] When we increase «, the number of
distinct structures increases moderately.

Overheads of auxiliary indexes. In Figures [22(a)| and [22(b)]
we study the size of the auxiliary indexes. Figure 22(a)] shows

that for LuBM, the size of the auxiliary indexes is one order less
than the respective data when we vary its size up to 28 million
triples. Similar trends can be observed in Figure 22(b)| for the
other datasets. This is because that for all indexes, we do not
explicitly store the edges of the RDF data that usually dominate
the cost in storing large graphs. In Figure 23] we report the
breakdown of the inverted indexes for all the datasets. The
most costly part is to store the mappings in the summary
index (i.e., SUMMIDX in the figure) and the other indexes are all
comparably small in size. Thus, to efficiently process query,



Query # nodes Dataset

Q1 [Pubig, Lecg] (20,13) L
Q2 [Researchs, FullProfg, Puby7] (9,4,83) L
Qs [FullProfg, Gradg, Pubig, Lecg] (4,15,40,5) L
Q4 [Depo, Grad;, Pubyg, AssocProfy] (1,15,40,15) L
Q5 [Afghan, Afghanistan, al-Qaeda, al-Qa’ida] (6,3,3,2) W
Qg [3base, 1%tbase, baseball team, solo dance]  (14,13,17.4) W
Q7 [Knuth, Addison-Wesley, Number theory] (1,1,35) B
Qg [Data Mining, SIGMOD, Database Mgmt.] (166,1,4) B
Qg [Bloomberg, New York City, Manhattan] (1,7,108) D
Q10 [Bush, Hussein, Iraq] (1,1,48) D
Q11 [deflation, railroaders] (32,70) S
Q12 [ignitor, microprocessor, lawmaker] (3,110,43) S

L:LUBM W:Wordnet B:Barton D:DBpedia Infobox S:BSBM

Fig. 25. Sample query workload

we can keep all but the summary index in main memory.

We also compare in Figure [24] the indexing overhead of
different methods as we vary the data size for Lusm. Notice
that BLINKS is the most costly method in terms of storage
(i.e., it demands at least one order of magnitude more space),
as its distance matrix leads to a quadratic blowup in indexing
size. BLINKS is no doubt the faster method for small data, but
it clearly does not scale with large RDF datasets. Therefore, we
do not report BLINKS in the evaluation of query performance.

8.2 Query performance

In this section, we study the performance of top-k key-
word search using SUMM and BACKWARD. In particular, we
compare the proposed methods with SCHEMA, which is the
only existing method that can apply to large RDF datasets.
To this end, we design a query workload that has various
characteristics. Figure 23]lists 12 typical queries, together with
the number of keyword occurrences in the datasets. For LuBM,
all the keywords are selected from the first university in the
data set, except for keywords with respect to publications 17
and 18. For the two indicated keywords, we select one copy of
each publication from the first university and pick the rest of
them randomly from other universities. This is to simulate the
cases in real data sets where not all the keywords in a query
are close to each other. Notice that in LUBM, keywords such
as publications 17 or professor 9 are associated with multiple
entities. For the other data sets, we pick two representative
queries for each of them. The queries are shown in Figure 23]
In particular, the second column # nodes shows the number of
occurrences for the keywords being queried in the respective
data set. For long running queries, we terminate the executions
after 1000 seconds. The response times are in log scale.

We first use SCHEMA to answer the queries in Figure 23]
SCHEMA generates a set of k SPARQL queries for each
keyword query. Evaluating these queries are supposed to return
k answer roots ranked by the scores. However, even if we
have fixed the incorrect termination condition in SCHEMA
(as discussed in Section , our observation is that SCHEMA
still returns incorrect results for all of the queries, as we
have indicated in Figure 2] This can be explained by the
way it summarizes the data, as all nodes of the same type
are indistinguishably mapped to the same type node in the
summary. For instance, every FullProfessor has a publication
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in LUBM, whereas this does not mean that FullProfessor9 has
a Publication17 for Q. Nevertheless, we report the response
time of the SCHEMA method together with other methods for
comparison. In what follows, we focus on discussing the query
performance for the BACKWARD and SUMM methods, both of
which have provable guarantees on the correctness of the query
results. Their performance on the sampled query workload are
plotted on Figures [26(a)] and 26(b)| respectively.

The efficiency of a keyword search is determined by a
collection of factors [[14f], with no single factor being the most
deterministic one. In particular, we observe that for selective
keywords (i.e., keywords that have fewer occurrences in the
data) and especially those that are close to each others, e.g.,
Q;, Qs5, both BACKWARD and SUMM answer the queries
efficiently. In some cases, e.g., Qs, BACKWARD outperforms
SUMM since SUMM uses a lower bound to decide when to
terminate. This inevitably requires SUMM to access more data
than what is necessary to correctly answer the query.

However, being selective alone does not necessarily lead
to better query performance, especially if the keyword being
queried corresponds to a hub node that has a large degree, e.g.,
the Department0 in Q4. On the other hand, as the keywords
being queried become non-selective, e.g., Q3 or Qq1, or the
keywords are far away from one another, e.g., the solo dance
and the baseball team in Qg, the SUMM approach generally
performs much better than the BACKWARD method. This
is because only when the connected partitions are found to
contain all the keywords, the SUMM needs to access the
whole subgraph on disk. This leads to savings in dealing with
keywords that are resultless, e.g., most of the occurrences for
publications 17 and 18 in Qu—Q fall into this category. In
addition, at the partition level, the backward expansion in the
SUMM approach can be done almost completely in memory
as the major indexes for expansion are lightweight (as shown
in Section [8.I) and therefore can be cached in memory for
query evaluation. In such cases, i.e., Qa—Q4 and Qg—Q12, we
observe that the SUMM approach performs much better.

In Figures [27] (a) and (b), we investigate the query perfor-



mance while varying the size of the LuBM data set. As shown in
the figure, for both SUMM and BACKWARD, the cost of query
evaluation generally becomes more expensive as the size of
the data increases. In contrast to BACKWARD, the difference
in time for the SUMM method is relatively moderate as the size
of the data changes. This is because for SUMM, keywords that
are far apart can be pruned in the first level of the backward
search. Unlike SUMM, BACKWARD has to pay equal effort
in dealing with each copy of every keyword being queried,
leading to a much slower convergence.

9 CONCLUSION

We studied the problem of scalable keyword search on big
RDF data and proposed a new summary-based solution: (i)
we construct a concise summary at the type level from RDF
data; (ii) during query evaluation, we leverage the summary
to prune away a significant portion of RDF data from the
search space, and formulate SPARQL queries for efficiently
accessing data. Furthermore, the proposed summary can be
incrementally updated as the data get updated. Experiments on
both RDF benchmark and real RDF datasets showed that our
solution is efficient, scalable, and portable across RDF engines.
An interesting future direction is to leverage the summary for
optimizing generic SPARQL queries on large RDF datasets.
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11 SPARAQL QUERY

SPARQL, a W3C recommendation, is a pattern-matching query
language. For instance, to extract the vertices that are con-
nected by predicates launchPad and booster in Figure |1} one
could issue a SPARQL query of two conjunctive triple patterns
as in Figure [28] The actual bindings for the variables (whose
names begin with “?”) will be retrieved by evaluating the
query on the dataset. Notice that there is an optional triple
pattern in the query, where its matching is not enforced in
the evaluation of the query. Evaluating the query on the data
in Figure |1 will retrieve two spacemissions, 7x=URIl3; and
?72=URl5. Note that the state-of-the-art RDF stores do not

SELECT * WHERE{ ?x launchPad ?y. ?x booster 7z .
OPTIONAL{?x previousMission ?w}}

Fig. 28. A SPARQL query.

support keyword queries, especially for keyword queries that
try to find subgraphs connecting all the query keywords.

12 PROOFS

Lemma 1 g = {r = u,vp,,...,
with s(g) = >_iv, d(u, vg,).

Proof: By our construction for entries in M, w(vy,) = w;
and d(u,vp,) is the length for shortest path from vy, to wu,
which completes the proof. O

vy, } is a candidate answer

Lemma 2 Let g1 be the best possible candidate answer, with
v & M being the root node of gi. Then s(g1) > > v, d(p;).

Proof: Since v is not in M, indicating that v has not
yet been included in any expansion path from any entries in
these m queues, we need to expand at least one neighboring
node to the end node in a path from at least one of these top
m entries to possibly reach v. Furthermore, all m expansion
queues sort their entries in ascending order of the distance of
the corresponding paths, hence, any candidate answer using v
as the root node must have at least a distance of d(p;) + 1
to reach a vertex v’ with w(v') = w;. That shows s(g1) >
>, d(pi), which completes the proof. O

Lemma 3 Suppose the best possible candidate answer using
such an v € M as the root node is go, then

8(92) > Zf(vbl)dl + (1 - f(vbi))d(pi)7 2

i=1

where f(vp,) = 1 if M[v][b;] #nil, and f(vs,) = O otherwise.

Proof: When v, is not nil, that means this vertex v
has been reached by an expansion from a vertex v, where
w(w,) = w; (e, v, € W;), and d; = d(vs,,v). More
importantly, d; is the shortest possible distance from any vertex
in W; to reach v, since we expand paths in a; in the ascending
order of their distances.

When vp, is nil, that means no expansions initiated from
any vertices from W; has yet reached v. Following the same
argument from the proof for Lemma [2} the shortest distance
to reach any vertex in W; from v is at least d(p;) + 1.

Finally, by combining these two arguments, we can establish
Equation (). O

Theorem 1 The BACKWARD method finds the top-k answers
Alq, k) for any top-k keyword query q on a RDF graph.

Proof: This is a straightforward result by Lemma [I] and
the termination conditions stated in Lemmas 2] [3] O

Lemma 4 Partitions in P are edge disjoint and the union of
all partitions in P cover the entire graph G.

Proof: The edge disjoint property trivially holds by our
construction of h(v,«). By visiting the vertices in each
type, we have effectively included the a-neighborhoods of all
vertices in (G into P, which leads to the conclusion that the
union of the resulting partitions covers G. O

Lemma 5 Given two graphs g and h, if f : g — h, then Yy,
vy € g and their homomorphic mappings f(v1), f(ve) € h,
d(vlvv2) > d(f(’Ul)7 f(UQ))

Proof: By definition, V(u,v) € g, (f(u), f(v)) € h. Since
every edge in g is mapped to an edge in h by homomorphism,
the shortest path p that leads to d(v1,v2) in g can be mapped
to a path in h that starts at f(v1) and ends at f(vy) by applying
f on each of the edges on p. Thus, d(f(v1), f(v2)) is at most
d(Uh ’UQ). |

Lemma 6 For a partition h and its covering tree hy, there is
a homomorphism from h to Join(h;, ¥).

Proof: We construct such a homomorphic function f :
h — Join(h, 3). Notice that by the objective of building
summaries, we only consider the types of nodes. For a node
v € h, if it is not registered by any mapping o € 3, i.e., it
does not appear in two different paths, then let f(v) = v, since
Join(hy, X) has no effect on v; else if a node v is registered
by some o; € X, then by the property of Join, all vertices in
h: that have the type o;(v) will be combined into one node.
Let this node be u, then f(v) = u. Now consider the edges in
h, by construction, h; records all the paths from the partition
root in h to every other node in h and Join does not add or
delete edges or change their labels. Thus, if there is an edge
(v1,v2) € h, then there is an edge in h; with the same label
and the same types of the starting and ending nodes in h;.
Since Join will not alter the type of a node as well, it follows
(f(v1), f(v2)) must be an edge in Join(h;, X) with the same
label and the same starting and ending types. O



Lemma 7 For a partition h, its covering tree hy and its
summary s that has fo : hy — s, there is a homomorphism
Sfrom Join(hy, X) to Join(s, f2(X)).

Proof: We will construct such a homomorphism by the
function f : Join(he, 3) — Join(s, f2(X)).

For a node v € hy, consider the correspondent fo(v) in s.
If v is not registered by any o € X, then Join(h;, X) has no
effect on v and Join(s, f2(X)) has no effect on fz(v), hence
v € Join(hy, X)) and fa(v) € Join(s, f2(X)). Define f = fo
for such v’s. If v is in some o; € X, all nodes in h; that
have the same type as v will be combined into one node.
Let this node be u. On the other hand, by Join(s, f2(%)),
all nodes that have the same type as f2(v) will be combined
into one node. Let this node be u'. Define f(u) = u'. Now
consider the edges. Notice that Join has no effect on edges
and for every (v1,v2) € ht, (f2(v1), f2(v2)) € s. This follows
that for every (f(v1), f(v2)) € Join(hy,X), there is an edge

(f(f2(01)), £ (f2(v2))) € Join(s, f2(%)). 0

Lemma 8 Ler (v, (u, S, d;, dy)) be an entry in the priority
queue, then for any v' in the partition rooted at v and for
any path starting from u and using the portals in S, its length
d(u,v") > d.

Proof: Let S={(¢1,v1),(l2,v2),..., (g, vg)}. It has
d(u,v") > d(u, L) + d(lg,v") > d(u,l), where ¢, is the
portal in S that the path uses to enter the partition rooted
at v and d(u, fy) is the length for the sub-path that reaches
the portal ¢; from wu. Let d(¢;,¢;1+1) be the fragment of the
path that is in the partition rooted at v;4+; (¢ =0,...,k —1)
and ¢y = u, we have d(u, ) = d(u,€1) +d(l1,02) + ... +
d(lg—1,0) > di(u, 01) + di (€1, 02) + ...+ di(bg—1, lr) = di.

]

Lemma 9 Ler (v, (u, S, d;, d,)) be the top entry in the
priority queue a;, then for any explored path p from w; in
the queue a;, the length of p, written as d(p), has d(p) > d;.

Proof: Let (v/, (v/, &', d}, d.,)) be any entry in a; that
represents a path starting at ' and reaches partition rooted
at v’. Denote this path as p’ and its length as d(p’). From
Lemma(8] d(p’) > dj. By the property of priority queue (min-
heap), d} > d; for any entry in a;. O

Lemma 10 Let g be the possible unexplored candidate an-
swer rooted at a vertex in partition h, with h € P;,

s(gr) > ) dj. (3)
=1

Proof: Since h ¢ M, in order to reach h, we need at least
one expansion from some partition to its neighboring partition
from at least one of the top m entries in the priority queues.
By Lemma [9] the length for the shortest possible path from
a keyword w; is lower bounded by di. Therefore, to reach
partition A, it requires a distance of at least d! + 1. This shows

s(gr) > 320, dj. H

Lemma 11 Let the best possible unexplored candidate answer
as go, which is rooted at a vertex in the partition h, where
h € P —P;, then

s(g2) > Y f(t)d; + (1= f(t:))dj, &)
i=1
where f(t;)=1 if t;#nil otherwise f(t;)=0.

Proof: The candidate subgraph formed by (¢1,...,%)
from the entry h in M has the smallest (aggregated) lower
bound from combining the lower bounds in all m lists, due
to the fact that each list is sorted in ascending order by the
lower bound distance d;.

When some t; = nil, no expansion from any vertex
associated with the keyword w; has reached the partition h yet.
Following the same argument from the proof for Lemma [10}
the shortest distance to reach a vertex in W; is at least df +1.
For the others where t; # nil, the best possible unexplored
path from any keyword w; to reach some node in A will have
a distance that is no less than CZ} due to the property of the
priority queue and the fact that it is a lower bound. O

Theorem 2 The SUMM method correctly finds the top-k an-
swers A(q, k) for any top-k keyword search query q on an
RDF graph.

Proof: By combining Lemmas [TI0] and [T1] it suffices to
derive the termination condition. Together with Theorem [I} it
guarantees the correctness of the SUMM method. O

13 COMPLEXITY

Our analysis will be carried out in the standard external
memory model of computation [2]. In this model, a disk has
been formatted into blocks of size B. An I/O operation either
reads a block from the disk to memory, or conversely, writes
a block in memory to the disk. Under the external memory
model, we analyze the complexity of the SUMM method in
the number of I/Os.

Unlike the problems defined in [4], [[17] where their objec-
tives amount to finding a minimum Steiner tree, the problem
we have settled in this paper is tractable (see eq[I)). The same
definition has also been adopted in [[14]], [23]]. For any keyword
query ¢ = {w1, ws, ..., wn, }, denote the total number matches
for w;s in the data graph G as T'. For a valid query ¢, i.e.,
w; € G (i = 1..m), we have T > m (since a keyword
w; might appear more one time in G); otherwise Jw; ¢ G,
the query is invalid and our method returns in O(m) I/Os
after checking the inverted indexes. Hereafter, we focus our
discussion on the first case, where the query ¢ is valid.

In the worst case, the whole data set G is useful in finding
the best score and the baseline BACKWARD method has to
traverse every triple in G for each of the T' copies of the
matched keywords, i.e., incurring 7" backward expansions and
leading to a overall cost of O(T-|E|/B) I/Os. We dab this cost
O(WORST(T, E)). To save the cost spent on the expansions that
are resultless, the SUMM method employs a two-level branch-
and-bound procedure to answer the keyword query. Assume
that the summaries are small enough such that they can be



kept in memory for query evaluation (see section [§| for the
empirical evaluations on this assumption). On the first level
of backward expansion, SUMM method identifies and connects
partitions that are promising in answering ¢. This amounts to
retrieving the portals and the triples in the relevant partitions.
Denote the fraction of vertexes accessed in retrieving the
portals as 0 < o < 1, and the fraction of triples accessed for
reconstructing the partitions as 0 < v < 1. The second level
of backward expansion then performs search on the identified
partitions, calculates the minimum cost(s) and looks for the
best answer root(s), all of which can be done in memory,
e.g., the exact distance between portals across partitions can
be computed incrementally. Therefore, the dominant cost for
the SUMM method is from the first level of backward search,
which has a cost of O(o-|V'|/B+~-T-|E|/B) I/Os. The actual
values for o and ~ are data and query dependent. We dab
this cost O(0OPT(c,V,~, E)). Therefore, the SUMM method
outperforms the BACKWARD method if O(0PT(c,V, v, E)) <
O(WORST(T), E)).

14 MORE ON CORRECTNESS

Regarding the correctness of the solution framework, we
have rigorously shown in Theorem [2] that the SUMM method
correctly finds the Top-k answers for a given keyword query.
There is another angle to examine the correctness of the SUMM
method.

Let us first consider the case where the summary is not used
in Algorithm 4] It is worth pointing out that the SUMM method
in this case can still produce the correct Top-k answers without
using the summary. To achieve this, we can simply twist two
lines in Algorithm [ Firstly, in line 13, we always set the
lower bound to zero and the upper bound to infinity. By doing
so, the first level of backward search will eventually connect
all possible partitions by the using the portal index; secondly,
in line 19, we can simply use brute-force search to find the
subgraph ¢ in the RDF data. Regardless of its performance, it
is not hard to see that this solution produces correct answers
as the SUMM method degenerates to a brute-force backward
search.

Then, consider the case where the summary and the sum-
mary index are employed for early termination and a better
efficiency. By using Lemmas 5] [6] [7]and the triangle inequality,
we have shown that line 13 in Algorithm {4| is correct. By
Lemmas[8] [9]and[10] we have shown the termination condition
in Algorithm [ is correct. The concern for the correctness of
the SUMM method will diminish if we can show that line 19
is correct. This amounts to showing that the SPARQL query
compiled from the summary can indeed retrieve all the data in
every possible partition. Recall that there is a homomorphism
from the covering tree h; to the original partition h, and there
is a second homomorphism from the core ¢ of h; to h; (by
the definition of a core). Therefore, ¢ is homomorphic to the
original partition h. By Theorem [3| the SPARQL query that
uses ¢ as its search pattern can retrieve the partition ~ from
the RDF data set. If the SPARQL query does use c as its search
pattern to get the original partition h from the data, then the
correctness of the SUMM method is justified. To compile such

a SPARQL query, we first use the summary index to find a
summary node v, in some summary s that corresponds the
partition root r of h (c has been embedded in s); then by
construction, the whole subtree ¢ rooted at v, in s is used as
the query pattern to (indirectly) retrieve h. Notice that ¢ is a
supergraph of ¢ and the root of ¢ colocates with the root of ¢.
By construction, level by level, we express each triple pattern
of ¢ below v, in a (nested) OPTIONAL clause (i.e., left-outer
join). Consider the root v, and its n children, the fragment of
the search pattern contains n OPTIONAL clauses, each for one
of the children (see Figure [I3). By the property of left-outer
join, evaluating this fragment of query against the RDF data set
yields results that correspond to 2™ different combinations of
the children. By induction, using (nested) OPTIONAL clauses
can express all possible search patterns rooted at v,.. Therefore,
the results by using the core ¢ as the search pattern can be
retrieved. This completes the proof.

Finally, notice that although the query pattern we con-
structed from the summary is always a tree, the actual sub-
graphs in the data that match the search pattern could have
arbitrary structures — as long as there is a homomorphism
from the search pattern to the respective subgraph in the data.
Thanks to Theorem [3| the SPARQL engine can fetch all the
homomorphic subgraphs from the data.

15 DEALING WITH UPDATES

One important limitation of previous work on summarizing
RDF data is their inability to handle updates in the data in an
incremental way. Here, we show that our summaries can be
incrementally updated. In more details:

Insertion. Insertions can be handled efficiently. A new sub-
graph (a set of triples) is simply treated as a data partition that
has not been traversed. Indexing structures and the summary
can be updated accordingly.

Deletion. Let ¢ be the triple deleted. Then all the partitions
that visit the subject/object of ¢ will be updated. As a deletion
only affects the nodes in the a-neighborhood of ¢’s subject and
object, this can be done efficiently. To update S, there are two
cases to consider: (i) if the core of an updated partition is
not in S, i.e., it is homomorphic to a core in S, we simply
rebuild its core and update the corespondent inverted indexes;
(ii) if the core of an updated partition is in .S, this will lead
to a removal for the core in S. In addition, we retrieve all the
partitions homomorphic to the deleted core and summarize
them (together with the updated partition) as if they are new
data. To access these partitions efficiently, we can leverage the
technique in Section [/| and use the (to be) deleted core as the
query pattern.



