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Abstract— Optimal location (OL) queries are a type of spatial
queries particularly useful for the strategic planning of resources.
Given a set of existing facilities and a set of clients, an OL
query asks for a location to build a new facility that optimizes a
certain cost metric (defined based on the distances between the
clients and the facilities). Several techniques have been proposed
to address OL queries, assuming that all clients and facilities
reside in an Lp space. In practice, however, movements between
spatial locations are usually confined by the underlying road
network, and hence, the actual distance between two locations
can differ significantly from their Lp distance.

Motivated by the deficiency of the existing techniques, this
paper presents the first study on OL queries in road networks.
We propose a unified framework that addresses three variants
of OL queries that find important applications in practice,
and we instantiate the framework with several novel query
processing algorithms. We demonstrate the efficiency of our
solutions through extensive experiments with real data.

I. INTRODUCTION

An optimal location (OL) query concerns three spatial point

sets: a set F of facilities, a set C of clients, and a set P of

candidate locations. The objective of this query is to identify

a candidate location p ∈ P , such that a new facility built

at p can optimize a certain cost metric that is defined based

on the distances between the facilities and the clients. OL

queries find important applications in the strategic planning of

resources (e.g., hospitals, post offices, banks, retail facilities)

in both public and private sectors [1]–[3]. As an example, we

illustrate three OL queries based on different cost metrics.

Example 1: Julie would like to open a new supermarket in

Gotham city that can attract as many customers as possible.

Given the set F (C) of all existing supermarkets (residential

locations) in the city, Julie may look for a candidate location

p, such that a new supermarket on p would be the closest

supermarket for the largest number of residential locations. �

Example 2: John owns a set F of pizza shops that deliver

to a set C of places in Gotham city. When John wants to add

another pizza shop, a natural choice for him is a candidate

location that minimizes the average distance from the points

in C to their respective nearest pizza shops. �

Example 3: Gotham city government plans to establish a

new fire station. Given the set F (C) of existing fire stations

(buildings), the government may seek a candidate location

that minimizes the maximum distance from any building to

its nearest fire station. �
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Several techniques [1]–[4] have been proposed for pro-

cessing OL queries under various cost metrics. All those

techniques, however, assume that F and C are point sets in

an Lp space. This assumption is rather restrictive because, in

practice, movements between spatial locations are usually con-

fined by the underlying road network, and hence, the commute

distance between two locations can differ significantly from

their Lp distance. Consequently, the existing solutions for OL

queries cannot provide useful results for practical applications

in road networks.

Problem Formulation. This paper presents a novel and com-

prehensive study on OL queries in road network databases. We

consider a problem setting as follows. First, any facility in F
or any client in C should locate on an edge in an undirected

connected graph G◦ = (V ◦, E◦), where V ◦ (E◦) denotes the

set of vertices (edges) in G◦. Second, every client c ∈ C
is associated with a positive weight w(c) that captures the

importance of the client. For example, if each client point c
represents a residential location, then w(c) may be specified

as the size of the population residing at c. Third, there should

exist a user-specified set E◦

c of edges in E◦, such that a new

facility f can be built on any point on any edge in E◦

c , as

long as f does not overlap with an existing facility in F . E◦

c

can be arbitrary, e.g., we can have E◦

c = E◦. We define P as

the set of points on the edges in E◦

c that are not in F , and we

refer to any point in P as a candidate location. For example,

Figure 1 illustrates a road network that consists of 6 vertices

and 8 edges. The squares (crosses) in the Figure denote the

facilities (clients) in the road network. The highlighted edges

are the user-specified set E◦

c of edges where a new facility

may be built.

We investigate three variants of OL queries as follows:

1) The competitive location query asks for a candidate location

p ∈ P that maximizes the total weight of the clients attracted

by a new facility built on p. Specifically, we say that a client

c is attracted by a facility f , and that f is an attractor for c,

if the network distance d(c, f) between c and f is at most the

distance between c and any facility in F . In other words, the



competitive location query ensures that

p = argmax
p∈P

∑

c∈Cp

w(c), (1)

where Cp = {c | c ∈ C ∧ ∀f ∈ F, d(c, p) ≤ d(c, f)}, i.e.,

Cp is the set of clients attracted by p. Example 1 demonstrates

an instance of this query.

2) The MinSum location query asks for a candidate location

p ∈ P on which a new facility can be built to minimize

the total weighted attractor distance (WAD) of the clients.

In particular, the WAD of a client c is defined as â(c) =
w(c) · a(c), where a(c) denotes the distance from c to its

attractor (referred as the attractor distance of c). That is, the

MinSum location query requires that

p = argmin
p∈P

∑

c∈C

w(c) · min
{
d(c, f) | f ∈ F ∪ {p}

}

= argmin
p∈P

∑

c∈C

â(c). (2)

Example 2 shows a special case of the MinSum location query

where all clients have the same weight.

3) The MinMax location query asks for a candidate location

p ∈ P to construct a new facility that minimizes the maximum

WAD of the clients, i.e.,

p = argmin
p∈P

(
max
c∈C

{
â(c) | F = F ∪ {p}

})
. (3)

Example 3 illustrates a MinMax location query.

One fundamental challenge in answering an OL query is

that there exists an infinite number of candidate locations

in P where the new facility may be built. (Recall that P
contains all points on the edges in the user-specified set

E◦

c , except the points where existing facilities are located.)

This necessitates query processing techniques that can identify

query results without enumerating all candidate locations.

Another complicating issue is that the answer to an OL may

not be unique, i.e., there may exist multiple candidate locations

in P that satisfy Equation 1, 2, or 3. We propose to identify

all answers for any given optimal location query, and return

them to the user for final selection. This renders the problem

even more challenging, since it requires additional efforts to

ensure the completeness of the query results.

Contributions. In this paper, we propose a unified solution

that addresses all aforementioned variants of optimal location

queries in road network databases. Our first contribution

is a solution framework based on the divide-and-conquer

paradigm. In this framework, we process a query by first

(i) dividing the edges in G◦ into smaller intervals, then

(ii) computing the best query answers on each interval, and

finally (iii) combining the answers from individual intervals

to derive the global optimal locations. A distinct feature of

this framework is that most of its algorithmic components

are generic, i.e., they are not specific to any of the three

types of OL queries. This significantly simplifies the design of

query processing algorithms, and enables us to develop general

optimization techniques that work for all three query types.

Second, we instantiate the proposed framework with a set of

novel algorithms that optimize query efficiency by exploiting

the characteristics of OL queries. We provide theoretical

analysis on the performance of each algorithm in terms of

time complexity and space consumption.

Third, we demonstrate the efficiency of our algorithms with

extensive experiments on large-scale real datasets. In partic-

ular, in a road network with 174, 955 vertices and 500, 000
clients, our algorithms can answer an OL query in less than

200 seconds on a commodity machine.

II. RELATED WORK

The problem of locating “preferred” facilities with respect

to a given set of client points, referred to as the facility location

problem, has been extensively studied in past years (see [5],

[6] for surveys). In its most common form, the problem (i)

involves a finite set C of clients and a finite set P of candidate

facilities, and (ii) asks for a subset of k (k > 0) facilities in P
that optimizes a predefined metric. The problem is polynomial-

time solvable when k is a constant, but is NP-hard for general

k [5], [6]. Existing work on the problem mainly focuses on

developing approximate solutions.

OL queries can be regarded as variations of the facility

location problem with three modified assumptions: (i) P is

an infinite set, (ii) k = 1, i.e., only one location in P
is to be selected (but all locations that tie with each other

need to be returned), and (iii) a finite set F of facilities

has been constructed in advance. These modified assumptions

distinguish OL queries from the facility location problem.

Previous work [1]–[4] on OL queries considers the case

when the transportation cost between a facility and a client is

decided by their Lp distance. Specifically, Cabello et al. [3]

and Wong et al. [4] investigate competitive location queries in

the L2 space. Du et al. [2] and Zhang et al. [1] focus on the

L1 space, and propose solutions for competitive and MinSum

location queries, respectively. None of the solutions developed

therein is applicable when the facilities and clients reside in a

road network.

There also exist two other variations of the facility location

problem, namely, the single facility location problem [5], [6]

and the online facility location problem [7], [8], that are related

to (but different from) OL queries. The single facility location

problem asks for one location in P that optimizes a predefined

metric with respect to a given set C of clients. It requires

that no facility has been built previously, whereas OL queries

consider the existence of a set F of facilities.

The online facility location problem assumes a dynamic

setting where (i) the set C of clients is initially empty, and (ii)

new clients may be inserted into C as time evolves. It asks for

a solution that constructs facilities incrementally (i.e., one at

a time), such that the quality of the solution (with respect to

some predefined metric) is competitive against any solutions

that are given all client points in advance. This problem is

similar to OL queries, in the sense that they all aim to optimize

the locations of new facilities based on the existing facilities

and clients. However, the techniques [7], [8] for the online



facility location problem cannot address OL queries, since

those techniques assume that the set P of candidate facility

locations is finite; in contrast, OL queries assume that P
contains an infinite number of points, e.g., P may consist of

all points (i) in an Lp space (as in [1]–[4]) or (ii) on a set of

edges in a road network (as in our setting).

Lastly, there is a large body of literature on query processing

techniques for road network databases [9]–[18]. Most of those

techniques are designed for the nearest neighbor (NN) query

[9], [10], [16] or its variants, e.g., approximate NN queries

[12], [13], aggregate NN queries [14], continuous NN queries

[15], path NN queries [17], etc. None of those techniques can

address the problem we consider, due to the fundamental dif-

ferences between NN queries and OL queries. Such differences

are also demonstrated by the fact that, despite the plethora

of solutions for Lp-space NN queries, considerable research

effort [1]–[4] is still devoted to OL queries in Lp spaces.

III. SOLUTION OVERVIEW

We propose one unified framework for the three variants

of OL queries. In a nutshell, our solution adopts a divide-

and-conquer paradigm as follows. First, we divide the edges

in E◦ into smaller intervals, such that all facilities and clients

fall on only the endpoints (but not the interior) of the intervals.

As a second step, we collect the intervals that are segments

of some edges in E◦

c , i.e, all points in such an interval are

candidate locations in P . Then, we traverse those intervals in

a certain order. For each interval I examined, we compute the

local optimal locations on I , i.e., the points on I that provide

a better solution to the OL query than any other points on I .

The global optimal locations are pinpointed and returned, once

we confirm that none of the unvisited intervals can provide a

better solution than the best local optima found so far.

In the following, we will introduce the basic idea of each

step in our framework; the details of our algorithms will be

presented in Sections IV-VI. For convenience, we define n
as the maximum number of elements in V ◦, E◦, C, and F ,

i.e., n = max{|V ◦|, |E◦|, |C|, |F |}. Table I summarizes the

notations frequently used in the paper.

Construction of Road Intervals. We divide the edges in E◦

into intervals, by inserting all facilities and clients into the

road network G◦ = (V ◦, E◦). Specifically, for each point ρ ∈
C ∪ F , we first identify the edge e ∈ E◦ on which ρ locates.

Let vl and vr be the two vertices connected by e. We then

break e into two road segments, one from vl to ρ and the other

from ρ to vr. As such, ρ becomes a vertex in the network. Once

all facilities and clients have been inserted into G◦, we obtain

a new road network G = (V, E) where V = V ◦ ∪C ∪F . For

example, Figure 2 illustrates a road network transformed from

the one in Figure 1. Transforming G◦ to G requires only O(n)
space and O(n) time, since |C| = O(n), |F | = O(n), and it

takes only O(1) time to add a vertex in G◦. In the sequel, we

simply refer to G as our road network.

Traversal of Road Intervals. After G is constructed, we

collect the set Ec of edges in E that are partial segments

TABLE I

FREQUENTLY USED NOTATIONS

Symbol Description

G◦ =(V ◦,E◦) the road network with vertex (edge) set V ◦ (E◦)

C the set of clients

F the set of existing facilities

E◦

c
the user-specified set of edges on which the new
facility can be built

P the set of candidate locations

d(p1, p2) the network distance between points p1 and p2

w(c) the weight of a client c

a(c) the attractor distance of a client c

ba(c) the weighted attractor distance of a client c

Cp the set of clients attracted by a point p

n n = max{|V ◦|, |E◦|, |C|, |F |}

G = (V, E)
the road network transformed from G◦

(see Section III)

Ec
the set of edges in E that are segments of the
edges in E◦

c (see Section III)

A(v)
the attraction set of a vertex v in G
(see Section III)

m(p) the merit of a point p (see Section IV-B)

of some edges in E◦

c . For example, the highlighted edges in

Figure 2 illustrate the set Ec that correspond to the set E◦

c of

highlighted edges in Figure 1. As a next step, we traverse Ec to

look for the optimal locations. A straightforward approach is

to process the edges in Ec in a random order, which, however,

incurs significant overhead, since the optimal locations cannot

be identified until all edges in Ec are inspected. Section VI

addresses this issue with novel techniques that avoid the

exhaustive search on Ec. The idea is to first divide Ec into

subsets, and then process the subsets in descending order of

their likelihood of containing the optimal locations.

Identification of Local Optimal Locations. In Section IV,

we will present algorithms for computing the local optimal

locations on any edge e ∈ Ec, based on (i) the attractor

distance of each client, and (ii) the attraction set A(v) of

each endpoint v of e. Specifically, the attraction set A(v)
contains entries of the form 〈c, d(c, v)〉, for any client c such

that d(c, v) ≤ a(c). That is, A(v) records the clients that are

closer to v than to their respective attractors (i.e., the respective

nearest facilities). The attraction sets of e’s endpoints are

crucial to our algorithm, since they capture all clients that

might be affected by a new facility built on e (see Section IV

for a detailed discussion). We will present our algorithms for

computing attraction sets and attractor distances in Section V.

IV. LOCAL OPTIMAL LOCATIONS

This section presents our algorithms for computing local

optimal locations on any edge e ∈ Ec, given the attraction

sets of e’s endpoints, and the attractor distances of the clients.

For ease of exposition, we will elaborate our algorithms under

the assumption that none of e’s endpoints is an existing facility

in F , i.e., both endpoints of e are candidate locations in P .

We will discuss how our algorithms can be extended (for the

general case) in the end of the discussion for each query type.



Algorithm CompLoc ( e )

1. construct an empty one-dimensional plane R
2. let ℓ be the length of e, and vl (vr) be the left (right)

endpoint of e
3. for each client c that appears in A(vl) but not A(vr)
4. create in R a line segment [0, a(c) − d(c, vl)]
5. assign a weight w(c) to the segment
6. for each client c that appears in A(vr) but not A(vl)
7. create in R a segment [ℓ − a(c) + d(c, vr), ℓ]

with a weight w(c)
8. for each client c that appears in both A(vl) and A(vr)
9. if ℓ ≤ 2 · a(c) − d(c, vl) − d(c, vr)
10. create in R a line segment [0, ℓ] with a weight w(c)
11. else
12. create in R two line segments [0, a(c) − d(c, vl)] and

[ℓ − a(c) + d(c, vr), ℓ], each with a weight w(c)
13. compute the intervals I ⊆ [0, ℓ], such that I maximizes the

total weights of the line segments in R that fully cover I
14. return the intervals identified at Line 13

Fig. 3. The CompLoc Algorithm

A. Competitive Location Queries

Recall that a competitive location query asks for a new

facility that maximizes the total weight of the clients attracted

by it. Intuitively, to decide the optimal locations for such a new

facility on a given edge e ∈ Ec, it suffices to identify the set

of clients that can be attracted by each point p on e. As shown

in the following lemma, the clients attracted by any p can be

easily computed from the attraction sets of e’s endpoints.

Lemma 1: A client c is attracted by a point p on an edge

e ∈ Ec, iff there exists an entry 〈c, d(c, v)〉 in the attraction

set of an endpoint v of e, such that d(c, v) + d(v, p) ≤ a(c).
Proof: Observe that d(c, p) ≤ d(c, v) + d(v, p). Hence,

when d(c, v) + d(v, p) ≤ a(c), we have d(c, p) ≤ a(c), i.e., c
is attracted by p. Thus, the “if” direction of the lemma holds.

Now consider the “only if” direction. Since p is a point on

e, the shortest path from p to c must go through an endpoint v
of e. Observe that d(p, c) ≥ d(v, c). Therefore, if c is attracted

by p, we have a(c) ≥ d(p, c) ≥ d(v, c), which indicates that

〈c, d(c, v)〉 must be an entry in A(v).

Based on Lemma 1, we propose the CompLoc algorithm (in

Figure 3) for finding local competitive locations on an edge

e ∈ Ec. We illustrate the algorithm with an example.

Example 4: Suppose that we apply CompLoc on an edge e0

with a length ℓ = 5. Figure 4(a) illustrates A(vl) and A(vr),
where vl (vr) is the left (right) endpoint of e0. Assume that

each client c has a weight w(c) = 1 and an attractor distance

a(c) = 5.

CompLoc starts by creating a one-dimensional plane R.

After that, it identifies those clients that appear in A(vl) but

not A(vr). By Lemma 1, for any c of those clients, if c is

attracted a point p on e0, then d(p, vl) ∈ [0, a(c)−d(c, vl)], and

vice versa. To capture this fact, CompLoc creates in R a line

segment [0, a(c)− d(c, vl)], and assigns a weight w(c) = 1 to

the segment. In our example, c1 is the only client that appears

in A(vl) but not A(vr), and a(c1) − d(c1, vl) = 1. Hence,

e0 (length=5)vl vr

‹c1, 4›
‹c3, 1›
‹c4, 3›

‹c2, 3›
‹c3, 2›
‹c4, 4›

A(vl) A(vr)

0 1 2 3 4 5

s2

s1

s4 s4'

s3

R

(a) Edge e0 (b) Plane R

Fig. 4. Demonstration of CompLoc

CompLoc adds in R a segment s1 = [0, 1] with a weight

w(c1) = 1, as illustrated in Figure 4(b).

Next, CompLoc examines the only client c2 that is contained

in A(vr) but not A(vl). By Lemma 1, a point p ∈ e0 is an

attractor for c, if and only if d(p, vl) ∈ [ℓ−a(c2)+d(c2, vr), ℓ].
Accordingly, CompLoc inserts in R a segment s2 = [ℓ −
a(c2) + d(c2, vr), ℓ] with a weight w(c2) = 1.

After that, CompLoc identifies the clients c3 and c4 that

appear in both A(vl) and A(vr). For c3, we have ℓ ≤ 2 ·
a(c3) − d(c3, vl) − d(c3, vr), which (by Lemma 1) indicates

that any point on e0 can attract c3. Hence, CompLoc creates

in R a segment [0, 5] with a weight w(c3) = 1. On the other

hand, since ℓ > 2 · a(c4) − d(c4, vl) − d(c4, vr), a point p on

e0 can attract c4, if and only if d(p, vl) ∈ [0, a(c4)−d(c4, vl)]
or d(p, vl) ∈ [ℓ − a(c4) + d(c4, vr), ℓ]. Therefore, CompLoc

inserts in R two segments s4 = [0, 2] and s′4 = [4, 5], each

with a weight 1 (see Figure 4(b)).

As a next step, CompLoc scans through the line segments

in R to compute the local competitive locations on e0. Let p
be any point on e0, and o be the point in R whose coordinate

equals the distance from p to vl. Observe that, a client c ∈ C
is attracted by p, if and only if there exists a segment s in

R, such that (i) s is constructed from c and (ii) s covers o.

Therefore, to identify the local competitive locations on e0, it

suffices to derive the intervals I in R, such that (i) I ⊆ [0, ℓ],
and (ii) I maximizes the total weight of the line segments that

fully cover I . Such intervals can be computed by applying

a standard plane sweep algorithm [19] on the line segments

in R. In our example, the local competitive locations on e0

correspond to two intervals in R, namely, [0, 1] and [4, 5], each

of which is covered by three segments with a total weight 3.

Finally, CompLoc terminates by returning the two intervals

[0, 1] and [4, 5], as well as the weight 3. �

Our discussion so far assumes that no facility in F locates

on an endpoint of the given edge e. Nevertheless, CompLoc

can be easily extended for the case when either of e’s endpoints

is a facility. The only modification required is that, we need

to exclude the facility endpoint(s) of e, when we construct

the line segment(s) on R that corresponds to each client. For

example, if we have a line segment [0, 5] and the left endpoint

of e is a facility, then we should modify segment as (0, 5]
before we compute the local competitive locations on e. The

case when the right endpoint of e is a facility can be handled

in a similar manner.

CompLoc runs in O(n log n) time and O(n) space. First,

constructing line segments in R takes O(n) time and O(n)
space, since (i) there exist O(n) clients in the attraction sets of

the endpoints of e, (ii) at most two segments are created from



each client. Second, since there are only O(n) line segments

in R, the plane sweep algorithm on the segments runs in

O(n log n) time and O(n) space.

B. MinSum Location Queries

For any candidate location p, we define the merit of p
(denoted as m(p)) as

m(p) =
X

c∈C

w(c) · max{0, a(c) − d(c, p)}.

That is, m(p) captures how much the total WAD of all clients

may reduce, if a new facility is built on p. A point is a local

MinSum location on an edge e ∈ Ec, if and only if it has

the maximum merit among all points on e. Interestingly, the

merit of the points on any edge e is always maximized at one

endpoint of e, as shown in the following lemma.

Lemma 2: For any point p in the interior of an edge e ∈ E,

if m(p) is larger than the merit of one endpoint of e, then m(p)
must be smaller than the merit of the other endpoint.

Proof: Let vl (vr) be the left (right) endpoint of e. Recall
that Cp is the set of clients attracted by p. First of all,

m(vl) =
X

c∈C

w(c) · max{0, a(c)−d(c, vl)}

≥
X

c∈Cp

w(c) ·
`

a(c) − d(c, vl)
´

, and similarly,

m(vr) ≥
X

c∈Cp

w(c) ·
`

a(c) − d(c, vr)
´

. (4)

Assume w.l.o.g. that m(p) > m(vl). We have

m(p) =
X

c∈Cp

w(c) ·
`

a(c) − d(c, p)
´

≥ m(vl) ≥
X

c∈Cp

w(c) ·
`

a(c) − d(c, vl)
´

,

which leads to
X

c∈Cp

w(c)(d(c, vl) − d(c, p)) > 0. (5)

Let Cl
p (Cr

p ) be the subset of clients c in Cp, such that
the shortest path from c to p passes through vl (vr). Clearly,
Cr

p = Cp−Cl
p, and d(c, p) = d(c, vl)+d(vl, p) for any c ∈ Cl

p.
By Equation 5,

X

c∈Cr
p

w(c) ·
`

d(c, vl) − d(c, p)
´

>
X

c∈Cl
p

w(c) ·
`

d(c, p) − d(c, vl)
´

= d(vl, p) ·
X

c∈Cl
p

w(c). (6)

Since d(c, vl) ≤ d(c, p) + d(vl, p) for any c ∈ Cr
p , we have

d(vl, p) ·
X

c∈Cr
p

w(c) ≥ LHS of (6) ≥ d(vl, p) ·
X

c∈Cl
p

w(c),

which means that X

c∈Cr
p

w(c) >
X

c∈Cl
p

w(c). (7)

Note that d(c, p) = d(c, vr) + d(vr, p) for any c ∈ Cr
p , and

d(c, vr) ≤ d(c, p) + d(vr , p) for any c ∈ Cl
p. By Eqn. 4 & 5,

m(vr)−m(p)≥−m(p)+
X

c∈Cp

w(c)·(a(c)−d(c, vr))

=
X

c∈Cl
p

w(c)·
`

d(c, p) − d(c, vr)
´

+
X

c∈Cr
p

w(c)·
`

d(c, p) − d(c, vr)
´

≥ d(vr, p) ·
“

−
P

c∈Cl
p

w(c) +
P

c∈Cr
p

w(c)
”

(8)

By Equations 7 and 8, m(vr)−m(p) ≥ 0. Hence, the lemma

is proved.

By Lemma 2, if the endpoints of an edge e ∈ Ec have

different merits, then the endpoint with the larger merit should

be the only local MinSum location on e. But what if the merits

of the endpoints are identical? The following lemma provides

the answer.

Lemma 3: Let e be an edge in E with endpoints vl, vr,

such that m(vl) = m(vr). Then, either all points on e have

the same merit, or vl and vr have larger merit than any other

points on e.

Proof: First of all, by Lemma 2, for any point ρ on e,

it must satisfy m(ρ) ≤ m(vl) = m(vr), given that m(vl) =
m(vr). Now, assume on the contrary that there exist two points

p and q on e, such that m(vl) = m(vr) = m(p) 6= m(q).
This indicates that m(q) < m(vl) = m(vr) = m(p). Assume

without loss of generality that d(vl, p) < d(vl, q). We will

prove the lemma by showing that m(p) = m(vl) cannot hold

given m(p) > m(q).
Let Cp be the set of clients attracted by p. We divide Cp

into three subsets C1, C2, and C3, such that

C1 = {c ∈ Cp | d(c, p) = d(c, q) − d(p, q)},

C2 = {c ∈ Cp | d(c, p) = d(c, q) + d(p, q)},

C3 = Cp − C1 − C2.

It can be verified that, for any client c ∈ C3, the shortest path

from c to p must go through vl. This indicates that,

d(c, vl) = d(c, p) − d(vl, p), ∀c ∈ C3. (9)

Given m(p) > m(q) and Cp ⊆ C, we have
X

c∈C1

w(c) ·
`

d(c, q) − d(c, p)
´

−
X

c∈C2

w(c)
`

d(c, p) − d(c, q)
´

+
X

c∈C3

w(c) · |d(c, q) − d(c, p)| > 0.

This leads to
X

c∈C1∪C3

w(c) −
X

c∈C2

w(c) > 0 (10)

On the other hand, we have

m(vl)−m(p) ≥
X

c∈C1∪C3

w(c) ·
`

d(c, p) − d(c, vl)
´

−
X

c∈C2

w(c) ·
`

d(c, vl − d(c, p)
´

= d(vl, p) ·
“

X

c∈C1∪C3

w(c) −
X

c∈C2

w(c)
”

> 0. (By Equation 10) (11)

Thus, the lemma is proved.
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By Lemmas 2 and 3, we can identify the local MinSum

locations on any given edge e as follows. First, we compute

the merits of e’s endpoints based on their attraction sets. If the

merits of the endpoints differ, then we return the endpoint with

the larger merit as the answer. Otherwise (i.e., both endpoints

of e have the same merit γ), we inspect any point p in the

interior of e, and derive m(p) using the attraction sets of the

endpoints. If m(p) < γ, both endpoints of e are returned as

the result; otherwise, we must have m(p) = γ, in which case

we return the whole edge e as the answer. In summary, the

local MinSum locations on e can be found by computing the

merits of at most three points on e, which takes O(n) time

and O(n) space given the attraction sets of e’s endpoints.

Note that the above algorithm assumes that both endpoints

of e are candidate locations. To accommodate the case when

either endpoint of e is a facility, we post-process the output

of our algorithm as follows. If the set S of local MinSum lo-

cations returned by our algorithm contains a facility endpoint,

we set S = ∅; otherwise, we keep S intact. To understand

this post-processing step, observe that the merit of any facility

point is zero, since building a new facility on any point in F
does not change the attractor distance of any client. Hence,

if S contains a facility point, then the maximum merit of all

points on e should be zero. In that case, the global MinSum

location must not be on e, and hence, we can ignore the local

MinSum locations found on e.

C. MinMax Location Queries

Next, we present our solution for finding the local MinMax

locations on any edge e ∈ Ec, i.e., the points on e where a

new facility can be built to minimize the maximum WAD of

all clients. Our solution is based on the following observation:

For any client c, the relationship between the WAD of c and

the new facility’s location can be precisely captured using a

piecewise linear function.

For example, consider the edge e0 in Figure 4(a). Assume

that there exist only 4 clients c1, c2, c3, and c4, as illustrated

in the attraction sets in Figure 4(a). Further assume that (i) the

clients’ attractor distances are as shown in Figure 5(a), and (ii)

all clients have a weight 1. Then, if we add a new facility on

e0 that is x (x ∈ [0, 5]) distance away from the left endpoint

vl of e0, the WAD of c3 can be expressed as a piecewise linear

function:

g3(x) =

{
x + 1, if x ∈ [0, 3]
7 − x, if x ∈ (3, 5]

Algorithm MinMaxLoc ( e )

1. let ℓ be the length of e, and vl (vr) be the left (right)
endpoint of e

2. construct an empty two-dimensional plane R
3. let C− be the set of clients that appear in neither A(vl) nor A(vr)
4. find the client c0 ∈ C− with the largest WAD

5. construct the WAD function of c0, i.e., draw in R a line segment

from point with coordinate
`

0, ba(c0)
´

to point with coordinate
`

ℓ, ba(c0)
´

6. let C∆ be the set of clients that appear in both A(vl) and A(vr)
7. for each client c ∈ C − C∆ − C−

8. if c appears in A(vl)
9. x1 = 0, y1 = w(c) · d(c, vl)
10. x3 = ℓ, x2 = min{ℓ, a(c) − d(c, vl)}
11. y2 = y3 = w(c) ·

`

x2 + d(c, vl)
´

12. else /∗if c does not appear in A(vl), but appears in A(vr)∗/
13. x1 = ℓ, y1 = w(c) · d(c, vr)
14. x3 = 0, x2 = max{0, ℓ − a(c) + d(c, vr)}
15. y2 = y3 = w(c) ·

`

ℓ − x2 + d(c, vr)
´

16. construct the WAD function of c, i.e., draw in R two line
segments, from (x1, y1) to (x2, y2), then to (x3, y3)

17. for each client c ∈ C∆ /∗c appears in both A(vl) and A(vr)∗/
18. x1 = 0, y1 = w(c) · d(c, vl)
19. β = 1

2
ℓ − 1

2
d(c, vl) + 1

2
d(c, vr)

20. x2 = min{β, a(c) − d(c, vl)}, y2 = w(c) ·
`

x2 + d(c, vl)
´

21. x3 = max{β, ℓ − a(c) + d(c, vr)}, y3 = y2

22. x4 = ℓ, y4 = w(c) · d(c, vr)
23. construct the WAD function of c, i.e., draw in R three line

segments, from (x1, y1) to (x2, y2), then to (x3, y3), then to
(x4, y4)

24. compute the upper envelope gup of the WAD functions in R
25. identify and return the points on which gup is minimized

Fig. 6. The MinMaxLoc Algorithm

We define g3 as the WAD function of c3. Similarly, we can

also derive a WAD function gi for each of the other client ci

(i = 1, 2, 4). Figure 5(b) illustrates gi (i ∈ [1, 4]).

Let gup be the upper envelope [19] of {gi}, i.e., gup(x) =
maxi{gi(x)} for any x ∈ [0, 5] (see Figure 5(b)). Then, gup(x)
captures the maximum WAD of the clients when a new facility

is built on x. Thus, if the point (on e0) that is x distance

away from vl is a local MinMax location, then gup must be

minimized at x, and vice versa. As shown in Figure 5(b), gup

is minimized when x ∈ [0, 0.5]. Hence, the local MinMax

locations on e0 are the points p on e0 with d(p, vl) ∈ [0, 0.5].

In general, to compute the local MinMax locations on

an edge e, it suffices to first construct the upper envelope

of all clients’ WAD functions, and then identify the points

at which the upper envelope is minimized. This motivates

our MinMaxLoc algorithm (in Figure 6) for computing local

MinMax locations.

Given an edge e ∈ Ec, MinMaxLoc first retrieves two

attraction sets A(vl) and A(vr), where vl (vr) is the left (right)

endpoint of e. After that, it creates a two-dimensional plane R,

in which it will construct the WAD functions of some clients.

Specifically, MinMaxLoc first identifies the set C− of clients

that appear in neither A(vl) nor A(vl). By Lemma 1, for any

client c ∈ C−, the attractor distance of c is not affected by a

new facility built on e. Hence, the WAD function of c can be
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represented by a horizontal line segment in R. Observe that,

only one of those segments may affect the upper envelope gup,

i.e., the segment corresponding to the client c∗ with the largest

WAD in C−. Therefore, given C−, MinMaxLoc only constructs

the WAD function of c∗, ignoring all the other clients in C−.

Next, MinMaxLoc examines each client c ∈ C − C−, and

derive the WAD function of c based on A(vl) and A(vr). In

particular, each WAD function is represented using at most

three line segments in R. Finally, MinMaxLoc computes the

upper envelope gup of the WAD functions in R, and then

identifies and returns the points at which gup is minimized.

MinMaxLoc can be implemented in O(n log n) time and

O(n) space. Specifically, given the attractor distances of the

clients in C, we can identify the client c∗ with O(n) time

and space. After that, it takes only O(n) time and space to

construct the WAD functions of clients, since each function

is represented with O(1) line segments. As there exist O(n)
segments in R, the upper envelope gup should contain O(n)
linear pieces, and can be computed in O(n log n) time and

O(n) space [20]. Finally, by scanning the O(n) linear pieces

of gup, we can compute the local MinMax locations on e in

O(n) time and space.

In addition, MinMaxLoc can also be extended to handle the

case when either endpoint of e is a facility in F . In particular,

if the left endpoint vl of e is a facility, then MinMaxLoc

excludes vl when it computes the upper envelope gup of the

WAD functions. That is, the domain of gup is defined as (0, ℓ]
instead of [0, ℓ]. The case when the right endpoint of e is a

facility can be addressed similarly.

V. COMPUTING ATTRACTION SETS AND ATTRACTOR

DISTANCES

Our algorithms in Section IV require as input (i) the attractor

distances of all clients in C, and (ii) the attraction sets of the

endpoints of the given edge e ∈ Ec. The attractor distances can

be easily computed using the algorithm by Erwig and Hagen

[21]. Specifically, Erwig and Hagen’s algorithm takes as input

a road network G and a set F of facilities. With O(n log n)
time and O(n) space, the algorithm can identify the distance

from each vertex v in G to its nearest facility in F . In the

following, we will investigate how to compute the attraction

sets of the vertices in G, given the attractor distances derived

from Erwig and Hagen’s algorithm.

A. The Blossom Algorithm

By definition, a client c appears in the attraction set of a

vertex v, if and only if d(c, v) is no more than the attractor

distance a(c) of c. Therefore, given the attractor distances of

all clients, we can compute the attraction sets of all vertices

in G in a batch as follows. First, we set the attraction set of

every vertex in G to ∅. After that, for each client c ∈ C,

Algorithm Blossom (G)

1. initialize the attraction set of each vertex v in G as ∅
2. for each client c
3. employ Dijkstra’s algorithm to traverse the vertices in G in

ascending order of their distances to c
4. for each vertex v traversed
5. if d(c, v) ≤ a(c)
6. add an entry

˙

c, d(c, v)
¸

to the attraction set of v

7. else goto Line 2
8. return

Fig. 9. The Blossom Algorithm

we apply Dijkstra’s algorithm [22] to traverse the vertices

in G in ascending order of their distances to c. For each

vertex v encountered, we check whether d(c, v) ≤ a(c). If

d(c, v) ≤ a(c), c is inserted into the attraction set of v.

Otherwise, d(c, v′) > a(c) must hold for any unvisited vertex

v′, i.e., none of the unvisited vertices can attract c. In that case,

we terminate the traversal and proceed to the next client. Once

all clients are processed, we obtain the attraction sets of all

vertices in G. We refer to the above algorithm as Blossom, as

illustrated in Figure 9.

Blossom has an O(n2 log n) time complexity, since it in-

vokes Dijkstra’s algorithm once for each client, and each

execution of Dijkstra’s algorithm takes O(n log n) time in

the worst case [22]. Blossom requires O(n2) space, as it

materializes the attraction set of each vertex in G, and each

attraction set contains the information of O(n) clients. Such

space consumption is prohibitive when n is large. To remedy

this deficiency, Section V-B proposes an alternative solution

that requires only O(n) space.

B. The OTF Algorithm

The enormous space requirement of Blossom is caused by

the massive materialization of attraction sets. A natural idea

to reduce the space overhead is to avoid storing the attraction

sets, and derive them only when needed. That is, whenever we

need to compute the local optimal locations on an edge e ∈ Ec,

we compute the attraction sets of e’s endpoints on the fly, and

then discard the attraction sets once the local optimal locations

are found. But the question is, given a vertex v in G, how do

we construct the attraction set A(v) of v? A straightforward

solution is to apply Dijkstra’s algorithm to scan through all

vertices in G in ascending order of their distances to v. In

particular, for each client c encountered during the scan, we

examine the distance d(v, c) from c to v. If d(v, c) < a(c),
we add c into A(v); otherwise, c is ignored. Apparently, this

solution incurs significant computation overhead, as it requires

traversing a large number of vertices. Is it possible to compute

A(v) without an exhaustive search of the vertices in G? The

following lemma provides us some hints.

Lemma 4: Given two vertices v and v′ in G, such that

d(v, v′) is larger than the distance from v′ to its nearest facility

f ′. Then, ∀c ∈ A(v), the shortest path from v to c must not

go through v′.



Algorithm OTF (v)

1. initialize the attraction set A(v) of v as ∅
2. employ Dijkstra’s algorithm to traverse the vertices in G in

ascending order of their distances to v
3. for each vertex v′ examined
4. let λ be distance from v′ to its closest facility

5. if d(v, v′) ≤ λ and v′ is a client point
6. insert an entry 〈v′, dist(v′, v)〉 into A(v)
7. if d(v, v′) > λ

8. ignore all edges adjacent to v′, i.e., regard them as
deleted

9. if none of the unvisited vertices can be reached from v
10. return A(v)
11. return A(v)

Fig. 10. The OTF Algorithm

Proof: Assume on the contrary that the shortest path

from v to c goes through v′. Then, we have

d(v, c) = d(v, v′) + d(v′, c) > d(v′, f ′) + d(v′, c)

≥ d(f ′, c).

This contradicts our assumption that c is attracted by v.

Consider for example the road network in Figure 7, which

contains three subgraph G1, G2, and G3 that are connected

by a facility f1 and two vertices v1 and v2. In addition,

d(v1, v2) = 2, d(v2, f1) = 1, and f1 is the facility closest

to v2. Since d(v1, v2) > d(v2, f1), by Lemma 4, v2 must not

be on the shortest path from v1 to any client attracted by v1.

This means that no client in G2 or G3 can be attracted by

v1, because all paths from v1 to G2 or G3 go through v2.

Therefore, if we are to compute A(v1), it suffices to examine

only the clients in G1.

Based on Lemma 4, we propose the OTF (On-The-Fly)

algorithm (in Figure 10) for computing the attraction set of

a vertex v in G. Given v, OTF first sets A(v) = ∅, and

then applies Dijkstra’s algorithm to visit the vertices in G
in ascending order of their distances to v. For each vertex

v′ visited, OTF retrieves the distance λ from v′ to its closest

facility (recall that λ is computed using Erwig and Hagen’s

algorithm [21]). If d(v, v′) ≤ λ and v′ is a client, then OTF

adds v′ into A(v). On the other hand, if d(v, v′) > λ, then

OTF ignores all edges adjacent to v′ when it traverses the

remaining vertices in G. This does not affect the correctness

of OTF, since, by Lemma 4, deleting v′ from G does not

change the shortest path from v to any client attracted by v.

After v is processed, OTF checks whether any of the unvisited

vertices in G is still connected to v. If none of those vertices is

connected to v, OTF terminates by returning A(v); otherwise,

OTF proceeds to the unvisited vertex that is closest to v.

It is not hard to verify that OTF runs in O(n log n) time

and O(n) space. Therefore, if we employ OTF to compute

the local optimal locations on every edge in G, then the

total time required for deriving the attraction sets would be

O(n2 log n), and the total space needed is O(n) (as OTF does

not materialize any attraction sets). In contrast, computing

the attraction sets with Blossom incurs O(n2 log n) time and

O(n2) space overhead. Hence, OTF is more favorable than

Blossom in terms of asymptotic performance.

VI. PRUNING OF ROAD SEGMENTS

Given the algorithms in Sections IV and V, we may answer

any OL query by first enumerating the local optima on each

edge in Ec, and then deriving the global optimal solutions

based on the local optima. This approach, however, incurs

a significant overhead when Ec contains a large number of

edges. To address this issue, in this section we propose a fine-

grained partitioning (FGP) technique to avoid the exhaustive

search on the edges in Ec.

A. Algorithm Overview

At a high level, FGP works in four steps as follows. First,

we divide G into m edge-disjoint subgraphs G1, G2, . . . , Gm,

where m is an algorithm-specific parameter. Second, for each

subgraph Gi (i ∈ [1, m]), we derive a potential client set Ci

of Gi, i.e., a superset of all clients that can be attracted by a

new facility built on any edge in Gi.

As a third step, we inspect each potential client set Ci

(i ∈ [1, m]), based on which we derive an upper-bound of

the benefit of any candidate location p in Gi. Specifically,

for competitive location queries, the benefit of p is defined

as the total weight of the clients attracted by p; for MinSum

(MinMax) location queries, the benefit of p is quantified as the

reduction in the total (maximum) WAD of all clients, when a

new facility is built on p.

Finally, we examine the subgraphs G1, G2, . . . , Gm in

descending order of their benefit upper-bounds. For each

subgraph Gi, we apply the algorithms in Sections IV and V

to identify the local optimal locations in Gi. After processing

Gi, we inspect the set S of best local optima we have found

so far. If the benefits of those locations are larger than the

benefit upper-bounds of all unvisited subgraphs, we terminate

the search and return S as the final results; otherwise, we move

on to the next subgraph.

The efficacy of the above framework rely on three issues,

namely, (i) how the subgraphs of G are generated, (ii) how

the potential client set Ci of each subgraph Gi is derived,

and (iii) how the benefit upper bound of Gi is computed. In

the following, we will first clarify how FGP derives benefit

upper-bounds, deferring the solutions to the other two issues

to Section VI-B. We begin with the following lemma.

Lemma 5: Let Gi be a subgraph of G, Ci be the potential

client set of Gi, and p be a candidate location in Gi. Then,

for any competitive location query, the benefit of p is at most∑
c∈Ci

w(c). For any MinSum location query, the benefit of

p is at most
∑

c∈Ci
â(c). For any MinMax location query, the

benefit of p is at most maxc∈C â(c) − maxc∈C−Ci
â(c).

Proof: The lemma follows from the facts that (i) Ci

contains all clients that can be attracted by p, and (ii) for any

client in Ci, its WAD is at least zero after a new facility is

built on p.

The benefit upper-bounds in Lemma 5 require knowledge

of all clients’ attractor distances, which, as mentioned in



Algorithm GPart (G, θ)

1. construct a set V ′ that contains all the endpoints of the edges
that appear in both G and Ec

2. randomly sample a set V∆ of vertices from V ′ with a sampling
rate θ

3. create |V∆| empty subgraphs, and assign each vertex in V∆ as
the “center” of a distinct subgraph

4. feed G and V∆ as input to Erwig and Hagen’s algorithm [21] to
compute, for each vertex v in G, (i) the vertex v′ ∈ V∆ that is
closest to v, as well as (ii) the distance d(v, v′) from v to v′

5. insert each edge in G to the subgraph whose center is the
closest to either endpoint of the edge

6. return all subgraphs

Fig. 11. The GPart Algorithm

Section V, can be computed in O(n log n) time and O(n)
space using Erwig and Hagen’s algorithm [21]. We can further

sort the attractor distances in descending order in O(n log n)
time and O(n) space. Observe that, given the sorted attractor

distances and the potential client set Ci of a subgraph Gi,

the benefit upper-bound of Gi (for any OL query) can be

computed efficiently in O(|Ci|) time and O(n) space.

B. Graph Partitioning

We are now ready to discuss how FGP generates the

subgraphs from G and computes the potential client set of each

subgraph. In particular, FGP generates subgraphs from G by

applying an algorithm called GPart (as illustrated Figure 11),

which takes as input G and a user defined parameter θ ∈ (0, 1].
GPart first identifies the set V of vertices in G that are adjacent

to some edges in Ec. As a second step, GPart computes a

random sample set V∆ of the vertices in V with a sampling

rate θ, after which it splits G into subgraphs based on V∆.

Specifically, GPart first constructs |V∆| empty subgraphs,

and assigns each vertex in V∆ as the “center” of a distinct

subgraphs. After that, for each vertex v in G, GPart identifies

the vertex v′ ∈ V∆ that is the closest to v, and computes

d(v, v′). This step can be done by applying Erwig and Ha-

gen’s algorithm [21], with G and V∆ as the input. Next,

for each edge e in G, GPart checks the two endpoints vl

and vr of e, and inserts e into the subgraph whose center

v′ minimizes min{d(v′, vl), d(v′, vr)}. After all edges in G
are processed, GPart terminates by returning all subgraphs

constructed. For example, if G equals the graph in Figure 8

and V∆ = {v1, v2, v3}, then GPart would construct three sub-

graphs {e1, e2, e3}, {e4, e5, e6}, and {e7, e8}, whose centers

are v1, v2, and v3, respectively. In summary, GPart ensures

that the edges in the same subgraph form a cluster around

the subgraph center. As such, the edges belonging to the

same subgraph tend to be close to each other. This helps

tighten the benefit upper-bounds of the subgraph because,

intuitively, points in proximity to each other have similar

benefits. Regarding asymptotic performance, it can be verified

that GPart runs in O(n log n) time and O(n) space.

Given a subgraph Gi obtained from GPart, our next step

is to derive the potential client set for each Gi. Let EGi
be

the set of edges in Gi that also appear in Ec, and VGi
be

Algorithm P-OTF (G, Gi)

1. let V ′

i be the set of endpoints of the edges in Gi ∩ Ec

2. insert a new vertex v0 in G
3. connect v0 to each vertex in V ′

i via an edge with a length 0
4. compute the attraction set of v0 in G using the OTF algorithm
5. return the set of clients in the attraction set of v0

Fig. 12. The P-OTF Algorithm

the set of endpoints of the edges in EGi
. By Lemma 1, for

any candidate location p on an edge e in Gi, the set of clients

attracted by p is always a subset of the clients in the attraction

sets of e’s endpoints. Therefore, the potential client set of Gi

can be formulated as the set of all clients that appear in the

attraction sets of the vertices in VGi
. In turn, the attraction

sets of the vertices in VGi
can be derived by applying either

the Blossom algorithm or the OTF algorithm in Section V. In

particular, if Blossom is adopted, then we feed the graph G
as the input to Blossom1. In return, we obtain the attraction

sets of all vertices in G, based on which we can compute the

potential clients set of all subgraphs in G. In addition, the

attraction sets can be reused when we need to compute the

local optimal locations on any edge in G.

On the other hand, if OTF is adopted, then we feed each

vertex in VGi
to OTF to compute its attraction set, after which

we collect all clients that appear in at least one of the attraction

sets. The drawback of this approach is that it requires multiple

executions of OTF, which leads to inferior time efficiency. To

remedy this drawback, we propose the P-OTF algorithm (in

Figure 12) for computing the potential client set of a subgraph

Gi. Given the graph G, P-OTF first creates a new vertex v0

in G, and then constructs an edge between v0 and each vertex

in VGi
, such that the edge has a length 0. After that, P-OTF

invokes OTF once to compute the attraction set of v0 in G.

Observe that, if a client c is attracted by v0, then there must

exist a vertex in VGi
that attracts c, and vice versa. Hence, the

potential client set of Gi should be equal to the set of clients

in the attraction set A(v0) of v0. Therefore, once A(v0) is

computed, P-OTF terminates by returning all clients in A(v0).
In summary, P-OTF computes the potential client set of Gi

by invoking OTF only once, which incurs O(n log n) time and

O(n) space overhead.

Before closing this section, we discuss how we set the input

parameter θ of GPart. In general, a larger θ results in smaller

subgraphs, which in turn leads to tighter benefit upper-bounds.

Nevertheless, the increase in θ would also lead to a larger

number of subgraphs, which entails a higher computation cost,

as we need to derive the potential client set for each subgraph.

Ideally, we should set θ to an appropriate value that strikes

a good balance between the tightness of the benefit upper-

bounds and the cost of deriving the bounds. We observe that,

when the potential client sets of the subgraphs are computed

using Blossom, θ should be set to 1. This is because, Blossom

derives potential client sets by computing the attraction sets of

1Note that we cannot apply Blossom on Gi directly, since a candidate
location in Gi may attract a client outside Gi.



all vertices, regardless of the value of θ. As a consequence, the

computation cost of the benefit upper-bounds is independent

of θ. Hence, we can set θ = 1 to obtain the tightest benefit

upper-bounds without sacrificing time efficiency. On the the

hand, if P-OTF is adopted, then the overhead of computing

potential client sets increases with the number of subgraphs.

To ensure that this computation overhead does not affect the

overall performance, θ should be set to a small value. We

suggest setting θ = 1h across the board.

VII. EXPERIMENT

This section experimentally evaluates the proposed solu-

tions. For each type of OL queries, we examine two ap-

proaches for traversing the edges in Ec, (i) the Basic approach

that computes the local optimal locations on every edge in

Ec before returning the final results and (ii) the Fine-Grained

Partitioning (FGP) approach. For each approach, we combine

it with two different techniques for deriving attraction sets,

i.e., Blossom and OTF. We implement our algorithms in C++,

and perform all experiments on a Linux machine with an

Intel Xeon 2GHz CPU and 4GB memory. Our implementation

uses the widely adopted road network representation proposed

by Shekhar and Liu [23]. The running time reported in

our experiments includes the cost of all steps, including the

overhead for computing attractor distances using Erwig and

Hagen’s algorithm [21] (see Section V).

Datasets. We use two real road network datasets, SF and

CA, obtained from the Digital Chart of the World Server. In

particular, SF (CA) captures the road network in San Francisco

(California), and contains 174,955 nodes and 223,000 edges

(21,047 nodes and 21,692 edges). We obtain a large number of

real building locations in San Francisco (California) from the

OpenStreetMap project, and use random sample sets of those

locations as facilities and clients on SF (CA). We synthesize

the weight of each client by sampling from a Zipf distribution

with a skewness parameter α > 1.

Default Settings. We vary five parameters: (i) the number of

facilities |F |, (ii) the number of clients |C|, (iii) the percentage

τ = |E◦

c |/|E
◦| of edges (in the given road network) where the

new facility can be built, (iv) the input parameter θ of the FGP

algorithm (see Figure 11), and (v) the skewness parameter α
of the Zipf distribution from which we sample the weight of

each client. Unless specified otherwise, we set |F | =1000 and

|C| =300,000, so as to capture the likely scenario in practice

where the number of clients is much larger than the number

of facilities. We also set τ = 100%, in which case the OL

queries are most computationally challenging, since we need

to consider every point in the road network as a candidate

location. The default value of θ is set to 100% (1h) when

Blossom (OTF) is used to derive attraction sets, as discussed

in Section VI-B. Finally, we set α = +∞ by default, in which

case all clients have a weight 1.

Effect of θ. Our first sets of experiments focus on competitive

location queries (CLQ). Figure 13 shows the effect of θ on the
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Fig. 13. Running Time vs. θ (CLQ)

running time of our solutions that incorporate FGP. Observe

that, when Blossom is adopted to compute attraction sets, our

solution is most efficient at θ = 1. This is consistent with the

analysis in Section VI-B that θ = 1 (i) leads to the tightest

benefit upper-bounds, and thus, (ii) facilitates early termination

of edge traversal. In contrast, when OTF is adopted, θ = 1
results in inferior computational efficiency. This is because,

when OTF is employed, a larger θ leads to a higher cost

for deriving benefit upper-bounds, which offsets the efficiency

gain obtained from the tighter upper-bounds. On the other

hand, θ = 1h strikes a good balance between the overhead

of upper-bound computation and the tightness of the upper-

bounds, which justifies our choice of default values for θ.

The OTF-based solution outperforms the Blossom-based

approach in both cases. The reason is that, regardless of the

value of θ, the Blossom-based approach requires computing

the attraction sets of all vertices. In contrast, the OTF-based

solution only needs to derive the attraction sets of the vertices

in each subgraph it visits. Since the OTF-based solution

visits only subgraphs whose benefit upper-bounds are large,

it computes a much smaller number of attraction sets than the

Blossom-based approach does, and hence, it achieves superior

efficiency.

For brevity, in the following we focus on the SF dataset

(since it is larger). The results on CA are qualitatively similar.

Effect of α. Figure 14 shows the effect of α on the perfor-

mance of our solutions, varying α from 2 to +∞. Evidently,

the memory consumptions and running time of our solutions

are insensitive to the clients’ weight distributions.

Effect of |F |. Next, we vary the number of facilities (|F |) from

250 to 4000. Figures 15(a) illustrates the memory consump-

tions of our solutions on SF. The methods based on Blossom

incur significant space overheads, and run out of memory when

|F | <1000. This is due to the O(n2) space complexity of

Blossom. In contrast, the memory consumptions of OTF-based

methods are always below 20MB, since OTF incurs only O(n)
space overhead.

Figure 15(b) shows the running time of each of our solutions

as a function of |F |. The methods that incorporate FGP

outperform the approaches with Basic in all cases, since FGP

provides much more effective means to avoid visiting the

edges that do not contain optimal locations. In addition, when

FGP is adopted, the OTF-based approach is superior to the

Blossom-based approach, as is consistent with the results in

Figure 13. Finally, the running time of all solutions decreases
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Fig. 14. Effect of α (CLQ on SF)
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Fig. 15. Effect of |F | (CLQ on SF)

with the increase of |F |. The reason is that, when |F | is large,

each client c tends to have a smaller attractor distance a(c).
This reduces the number of road network vertices that are

within a(c) distance to c, and hence, c should appear in a

smaller number of attraction sets. Therefore, the attract set

of each vertex in the road network would become smaller, in

which case that Blossom and OTF can be executed in shorter

time. Consequently, the overall running time of our solutions

is reduced.

Effect of |C|. The next set of experiments investigate the

scalability of our solutions by varying the number of clients,

|C|, from 100,000 to 500,000. Figures 16(a) (16(b)) shows

the space consumptions (running time) of our solutions as

functions of |C|. As in the previous experiments, Blossom-

based approaches consume enormous amounts of memory,

while the method that incorporates both FGP and OTF consis-

tently outperform all the other methods in terms of both space

and time. The running time of all solutions increases with |C|,
because a larger |C| leads to (i) more edges in the transformed

network G and (ii) more clients in each attraction set, both of

which complicate the computation of optimal locations.

Effect of τ . Figure 17 illustrates the memory consumptions

and running time of our solutions when τ changes from 1% to

100%. Blossom-based approaches require less memory when τ
decreases, since (i) a smaller τ leads to fewer edges in Ec and

(ii) Blossom stores only the attraction sets of the endpoints of

the edges in Ec. In contrast, the space overheads of OTF-based

methods do not change with τ , since they always compute

attraction sets on the fly, regardless of the value of τ .

On the other hand, the running time of Blossom-based

approaches is not affected by τ . This is because, Blossom

computes attraction sets, by invoking Dijkstra’s algorithm for

each client c ∈ C, and putting c in the attraction set of every

vertex v ∈ V such that d(c, v) ≤ a(c). Observe that, even if we

require only a single attraction set of a vertex v0 ∈ V , Blossom
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Fig. 16. Effect of |C| (CLQ on SF)
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Fig. 17. Effect of τ (CLQ on SF)

still needs to execute Dijkstra’s algorithm once for each client

c; otherwise, it is impossible to decide whether d(c, v0) ≤ a(c)
holds or not. As a consequence, the efficiency of Blossom-

based approaches does not improve with the decrease of τ .

In contrast, OTF-based solutions incur much less computation

overhead when τ is reduced, since they compute attraction

sets by invoking OTF only on the vertices of the edges in

Ec. The decrease in τ renders |Ec| smaller, in which case

the OTF-based solutions require fewer executions of the OTF

algorithm, and hence, their running time decreases.

MinSum and MinMax Location Queries. The rest of our

experiments evaluate the performance of our solutions for

MinSum location queries (MinSumLQ) and MinMax location

queries (MinMaxLQ). In general, the experimental results are

mostly similar to those for competitive location queries. This

is not surprising, because our solutions for the three types

of queries follow the same framework, and adopt the same

algorithmic components (e.g., Blossom and OTF).

Figures 18 and 19 show the effects of |F | and |C| on the

performance of our solutions for MinSum location queries.

Again, the method that combines FGP and OTP achieves

the best space and time efficiency in all cases. In addition,

Blossom-based approaches entails excessively high memory

consumption, especially when |F | <1000 or |C| >300,000.

Figures 20 and 21 plot the memory consumptions and

running time of our solutions for MinMax location queries.

The relative performance of each method remains the same

as in Figures 18 and 19. Interestingly, each method incurs a

higher computation time for MinMax location queries than

for the other two types of OL queries. This is caused by

the fact that, our solutions identify local MinMax locations

on any given edge e, by computing the upper envelope of a

set of WAD functions (see Section IV-C). This procedure is

more costly than computing the local competitive (MinSum)

locations on e.
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Fig. 18. Effect of |F | (MinSumLQ on SF)
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Fig. 19. Effect of |C| (MinSumLQ on SF)

Summary. Our results show that the solutions incorporating

FGP and OTF consistently achieve the best performance for

all three types of OL queries, in term of both space and time.

In particular, they require less than 20MB memory and 200

seconds to answer OL queries in a road network with 174,955

nodes, 223,000 edges, up to 500,000 clients, and down to 250

facilities (recall that the performance of the solutions improve

with the number of facilities). The experimental results from

the datasets we have tested suggest that setting θ = 1h seems

to provide a good performance.

VIII. CONCLUSION

This work presents a comprehensive study on optimal

location queries in road network databases, closing the gap

between previous studies and practical applications in road

networks. Our study covers three important types of optimal

location queries, and introduces a unified framework that ad-

dresses all three query types efficiently. Extensive experiments

on real datasets demonstrate the scalability of our solution in

terms of running time and space consumption. Interesting di-

rections for future work include (i) the incremental monitoring

of the optimal locations when the facility or the client set has

been updated, and (ii) the optimal location queries for moving

objects in road networks.
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