Scalable Multi-Query Optimization for SPARQL Wangchao Le, Anastasios Kementsietsidis, Songyun Duan, Feifei Li

Motivation 1: Access Control for RDF data

Two Types of SPARQL Queries for RDF Data

Type 1: Q := SELECT RD WHERE GP

*GP: encoded by conjunctive triples: (sub pred obj).

Type 2: $Q_{OPT} := SELECT RD WHERE GP (OPTIONAL GP_{OPT})^+$

*GP_{OPT}+: left-join in relational database.

An Example to Use Left-Join in SPARQL

subj	pred	obj		
p1	name	"Alice"		
p1	zip	10001		
p1	mbox	alice@home		
p1	mbox	alice@work		
p1	WWW	http://home/alice		
p2	name	"Bob"		
p2	zip	"10001"		
р3	name	"Ella"		
р3	zip	"10001"		
р3	WWW	http://work/ella		
p4	name	"Tim"		
p4	zip	"11234"		
(a) Input data D				

Rewrite 4 queries in 1 SPARQL query.

OPTIONAL $\{?y P_3 ?w, ?w P_4 v_1\}$

OPTIONAL {? $t P_3 ?x$, ? $t P_5 v_1$, ? $w P_4 v_1$ }

OPTIONAL $\{?x P_3 ?y, v_1 P_5 ?y, ?w P_4 v_1\}$

OPTIONAL $\{?y P_3 ?u, ?w P_6 ?u, ?w P_4 v_1\}$

WHERE { $?x P_1 ?z, ?y P_2 ?z,$

SELECT *

SELECT?name,?mail,?hpage WHERE { ?x name ?name, ?x zip 10001, OPTIONAL $\{?x \text{ mbox } ?mail \}$ OPTIONAL $\{?x \text{ www } ?hpage \}\}$

(b)) Example	query Q _{OPT}			
	name	mail	hpage		
	"Alice"	alice@home			
	"Alice"	alice@work			
	"Alice"		http://home/alice		
	"Bob"				
	"Ella"		http://work/ella		
(c) Output Q _{OPT} (D)					

An Example to Evision The Optimization

Structure-base	ed
MQO.	
P_1	?z
P_3 P_2	
$\frac{5}{\text{?w}}$ $\frac{P_3}{\text{?v}}$	\\-\(\)
P ₃ P ₇ P ₃	V ₂
P_6	
w	V
(a) F	

Seletivity				
pattern p	$\alpha(p)$			
?x P ₁ ?z	15%			
?y P ₂ ?z	9%			
?y P ₃ ?w	18%			
$?w P_4 v_1 $	4%			
? $t P_5 v_1$	2%			
$v_1 P_5 ?t$	7%			
?w P ₆ ?u	13%			

(f) Selectivity

(e) Example query Q_{OPT} Blending selectivity in rewriting.

SELECT*
WHERE $\{?w P_4 v_1,$
OPTIONAL $\{?x_1 P_1 ?z_1, ?y_1 P_2 ?z_1, ?y_1 P_3 ?w \}$
OPTIONAL $\{?x_2 P_1 ?z_2, ?y_2 P_2 ?z_2, ?t_2 P_3 ?x_2, ?t_2 P_5 v_1\}$
OPTIONAL $\{?x_3 P_1 ?z_3, ?y_3 P_2 ?z_3, ?x_3 P_3 ?y_3, v_1 P_5 ?y_3\}$
OPTIONAL $\{?x_4 P_1 ?z_4, ?y_4 P_2 ?z_4, ?y_4 P_3 ?u_4, ?w P_6 ?u_4\}$

Finding Maximal Common Connected Substructures for SPARQL MQO

Theorem 1 Given two graphs, finding the maximal common connected subgraphs amounts to finding the maximal common connected induced subgraphs in their linegraphs.

Theorem 2 Given two graphs, finding the maximal common connected induced subgraphs amounts to finding the maximal cliques with strong covering trees in their product graph.

*Challenges: (I) deal with hundreds of graphs in one shot; (II) blend selectivity into the structure-based MQO.

Build & Optimize Linegraphs and Product graph

(e) Subqueries

- Prune by missed matched constants.
- Mask every linegraph edge e with $\cap m^-[e] = \cap m^+[e]' = \emptyset$
- e.g., $\cap m_i^+[P_3] = \cap m_i^-[P_3] = \emptyset$

Clique, Maximal Common Induced Subgraph and Strong Covering Tree

Blend Cost into MQO

$$\mathsf{Cost}(\mathsf{Q}) = \begin{cases} \mathsf{Min}(sel(t)) & \mathsf{Q} \text{ is a Type 1 query, } t \in \mathsf{GP} \\ \mathsf{Min}(sel(t)) + \Delta & \mathsf{Q} \text{ is a Type 2 query, } t \in \mathsf{GP} \end{cases}$$

Observation: >90% of query evaluation time for our MQO is on evaluating the common structure (do it once for all queries), resulting in less time in evaluting the non-common substructures; while the pure strucuture-based MQO (MQO-S) is sensitive to the variances of common substructures rewritten, leading to more overhead in evaluating the non-common substructures.

Experiments on varying selectivity

				No-	-MQO MQO-S MQO	350	-No-MQO-S V MQO
Parameter	Symbol	Default	Range	ျ ့ 100		300	
Dataset size	D	4M	3M to 9M	80 erië		<u>်</u> နာ 250-	
Number of queries	Q	100	60 to 160	onb		0	0 0
Query size (num of trpl. patterns)	Q	6	5 to 9	5 60		\bigcirc 200 \bigcirc	
Number of seed queries	κ	6	5 to 10	19 9 12 40		9 150 E	
Size of seed queries	$ q_{\sf cmn} $	$\sim Q /2$	1 to 5	E 40 E		│	
Max selectivity of patterns in Q	$\alpha_{max}(Q)$	random	0.1% to 4%	20			
Min selectivity of patterns in Q	$\alpha_{min}(Q)$	1%	0.1% to 4%			50 - *	
IQO-S: MQO based on structure;	MQO: Cost-ba	sed MQO; N	o-MQO: No MQ	O. 0 0.1	0.5 1 2	0 0.1	0.5 1 2 4
				0.1	$\alpha_{min}(q_{cmn}) \ (\%)$	- 0.1	$lpha_{min}(q_{cmn})$ (%)