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Motivation 1: Access Control for RDF data

Type 1:

Data base

Q := SELECT RD WHERE GP
Type 2: Qupr := SELECT RD WHERE GP (OPTIONAL GPger) ™

Two Types of SPARQL Queries for RDF Data

An Example to Use Left-doin in SPARQL

subj pred  obj SELECT ?name, ?mail, ?hpage

pl  name "Alice" WHERE { 2z name ?name, ?z zip 10001,

pl zip 10001 OPTIONAL {?z mbox ?mail }

pl ~ mbox alice@home OPTIONAL {?z www ?hpage }}

pl mbox alice@work

pl www  http:/ /home/alice (b) Example query Qopr

p2 hame "Bob” name  mail hpage

p2 21p 10001 "Alice" alice@home

p3 name ‘Ella” "Alice" alice@work

p3  zip '10001" "Alice" http:/ /home/alice
p3 www  http://work/ella "Bob"

p+  name “lim’ "Ella’ http://work/ella
p4 Z1p 11234 (c) Output Qopr(D)

(a) Input data D

An Example to Evision The Optimization

Structure-based

Rewrite 4 queries in 1 SPARQL query.

SELECT *

OPT
OPT
OPT
OPT

ONAL
ONAL
ONAL
ONAL

() Example query Qopr

Blending selectivity in rewriting.
SELECT *
WHERE { ?w P4 vy,

Motivation 2: Web Data Integration on Query Endpoints
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*GP. encoded by conjunctive triples: (sub pred obj).
*GPopr 71 left-join in relational database.

Seletivity
patternp | a(p)
2¢ Py ?2 | 15%
?y P Pz 9%
2y P3s 2w | 18%

2w P v1 4%
?t P5 V1 2%
U1 P5 ?t 7%
13%

(f) Selectivity

{?y P3 ?w, 2w P4 U1 }

{?t P3 ?LL‘, ?t P5 V1, 7w P4 V1 }
{?x P3 ?y, v1 Ps ?y, 2w P4 v1 }
{?y P3 ?u, ?w Pe ?u, 2w P4 v1 }

PTIONAL {?x4
PTIONAL {?x4
PTIONAL {?x5
PTIONAL {?x

ONORON®
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Pl ?21, ?y1
Pl ?ZQ, ?yg
Pl ?23, ?yg

Pl ?24, ?y4

Py 721, ?y1 P3 2w }
PQ ?ZQ, ?tQ P3 ?332, ?tQ P5 V1 }
Py ?z3, ?x3 P3s ?ys, v1 Ps ?ys |

Pz ?24, ?y4 P3 ?’LL4, ?w P6 ?U4 }
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Finding Maximal Common Connected Substructures for SPARQL MQO

Theorem 1 Given two graphs, finding the maximal common connected subgraphs amounts to finding the maximal
common connected induced subgraphs in their linegraphs.

Theorem 2 Given two graphs, finding the maximal common connected induced subgraphs amounts to finding the max-
imal cliques with strong covering trees in their product graph.

*Challenges: (I) deal with hundreds of graphs in one shot; (II) blend selectivity into the structure-based MQO.

(b) £(Q2)

Igraph query pattern 1

A

graph query pattern 2

Build & Optimize Linegraphs and Product graph

e Prune by missed matched constants.

e Mask every linegraph edge e
with Nm =~ [e]=Nm ™ [e]’=0

e 6.9, Nm; [P3] =

Nmy [P3] = 0)

(d) £(Qq)

(e) Subqueries
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The triangle (clique) highlights the common subgraph composed by @ X @

Blend Cost into MQO

Min is a Type 1 r P ' ' '
Cost(Q) i (sel(t)) Qis a Type 1 query, t € G EFMQO_SMAo
Min(sel(t)) + A Qis a Type 2 query, t € GP 100}
2 90} v Vo v Vg

Observation: >90% of query evaluation time for our ®

MQO is on evaluating the common structure (do it % 80 g

once for all queries), resulting in less time in evalut- I -

ing the non-common substructures; while the pure -

strucuture-based MQO (MQO-S) is sensitive to the o0
variances of common substructures rewritten, leading 5o . 777 No-OPTIONAL

to more overhead in evaluating the non-common sub- 1 S °
structures.
Experiments on varying selectivity
BINo-MQOMEMQO-S[L IMQO 350 ©No-MQO-EMQO-SZMQO

Parameter Symbol Default Range o 300/

Dataset size D 4M 3M to 9OM £ g0l 8 ool

Number of queries | Q| 100 60 to 160 ) S @/9 S
Query size (num of trpl. patterns) | |Q] 6 5t09 S 60| = 78209

Number of seed queries K 6 5to 10 2 @ 150/

Size of seed queries | Gemn | ~ |Q|/2 | 1to5 E n = 100}

Max selectivity of patterns in Q Amaz(Q) random 0.1% to 4% | < o0l

Min selectivity of patterns in Q Amin (Q) 1% 0.1% to 4% S0r

MQO-S: MQO based on structure; MQO: Cost-based MQO; No-MQO: No MQO. 0~ 0.5 ( 1 i > . 9953 01(5 | (1% 5 p

Umin\demn 0 Omin\demn 0




