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Abstract

While Processing-in-Memory has been investigated for

decades, it has not been embraced commercially. A number

of emerging technologies have renewed interest in this topic. In

particular, the emergence of 3D stacking and the imminent re-

lease of Micron’s Hybrid Memory Cube device have made it

more practical to move computation near memory. However,

the literature is missing a detailed analysis of a killer applica-

tion that can leverage a Near Data Computing (NDC) architec-

ture. This paper focuses on in-memory MapReduce workloads

that are commercially important and are especially suitable for

NDC because of their embarrassing parallelism and largely lo-

calized memory accesses. The NDC architecture incorporates

several simple processing cores on a separate, non-memory die

in a 3D-stacked memory package; these cores can perform Map

operations with efficient memory access and without hitting the

bandwidth wall. This paper describes and evaluates a number

of key elements necessary in realizing efficient NDC operation:

(i) low-EPI cores, (ii) long daisy chains of memory devices, (iii)

the dynamic activation of cores and SerDes links. Compared to

a baseline that is heavily optimized for MapReduce execution,

the NDC design yields up to 15X reduction in execution time

and 18X reduction in system energy.

1. Introduction

A large fraction of modern-day computing is performed within

warehouse-scale computers. These systems execute workloads

that process large amounts of data, scattered across many disks

and many low-cost commodity machines. A number of frame-

works, such as MapReduce [20], have emerged in recent years

to facilitate the management and development of big-data work-

loads. While current incarnations of these systems rely on disks

for most data accesses, there is a growing trend towards placing

a large fraction of the data in memory, e.g., Memcached [5],

RAMCloud [49], and Spark [62]. The RAMCloud project

shows that if a workload is limited more by data bandwidth than

by capacity, it is better to store the data in a distributed mem-

ory platform than in a distributed HDD/SSD platform. There

are therefore many big-data workloads that exhibit lower cost

and higher performance with in-memory storage [49]. This is

also evident in the commercial world, e.g., SAS in-memory ana-

lytics [58], SAP HANA in-memory computing and in-memory

database platform [57], and BerkeleyDB [14] (used in numer-

ous embedded applications that require a key-value-like storage

engine). Let us consider SAP HANA as a concrete example.

It employs a cluster of commodity machines as its underlying

storage and computation engine, and it relies on the collective

DRAM memory space provided by all nodes in the cluster to

store large data entirely in memory. Each node can provide tera-

bytes of memory, and collectively, they deliver an in-memory

storage space that can hold up to hundreds of terabytes of data,

depending on the size of the cluster [26, 25].

In-memory storage of big-data is also being made possible by

technology innovations such as 3D-stacked memory and mem-

ory blades, and emerging non-volatile cells that focus on im-

proving capacity and persistence. For example, the recent emer-

gence of 3D-stacked memory products [54, 51, 60, 24] will

likely benefit such in-memory big-data workloads.

There is great interest in designing architectures that are cus-

tomized for emerging big-data workloads. For example, a re-

cent paper [43] designs a custom core and NIC for Memcached.

In this work, we make a similar attempt for in-memory MapRe-

duce workloads. We take advantage of emerging 3D-stacked

memory+logic devices (such as Micron’s HybridMemory Cube

or HMC [27]) to implement a Near Data Computing (NDC) ar-

chitecture, which is a realizable incarnation of processing-in-

memory (PIM). A single board is designed to accommodate sev-

eral daisy-chained HMC-like devices, each of which includes a

few low-power cores that have highly efficient access to a few

giga-bytes of data on the 3D stack. MapReduce applications are

embarrassingly parallel and exhibit highly localized memory ac-

cess patterns, and are therefore very good fits for NDC.

While Memcached has the same behavior on every invocation

and can benefit from customization [43], MapReduce functions

can take several forms and therefore require programmability.

We show that efficiency and cost are optimized by using low

Energy Per Instruction general-purpose cores, by implementing

long daisy chains of memory devices, and by dynamically ac-

tivating cores and off-chip SerDes links. Our work is the first

thorough quantitative study analyzing the effect of HMC-like

devices for in-memory Map-Reduce workloads. We lay the

foundation for future studies that can further explore the NDC

architecture and apply it to other big-data workloads that have

high degrees of parallelism and memory locality.

2. MapReduce Background

MapReduce workloads are applied to databases, and are com-

prised of two phases. The Mapper is assigned to work on a slice



of the database, called a database split. In this paper, we assume

128 MB database splits. The Mapper performs its function on

this split and prepares the result to be handed off to a Reducer.

Each Reducer takes as its input a portion of the output from

each Mapper, and performs its function on this set to produce

the final output. Next, we go into some detail about each step.

2.1. Mapper

Map. TheMapper applies the Map function to all records in the

input split, typically producing key-value pairs as output from

this stage. This is a linear scan of the input split, so this phase

is highly bandwidth intensive. The computational complexity

varies across workloads.

Sort. The Mapper next sorts the set of key-value pairs by their

keys, with an in-place quick sort.

Combine. The Combine phase is applied to the local output

of the Mapper, and can be viewed as a local Reduce function.

This phase involves a linear scan through the sorted output data,

applying the Reduce function to each key (with its associated

set of values) in the output set.

Partition. The Mapper’s final action is to divide its sorted-and-

combined output into a number of partitions equal to the number

of Reducers in the system. Each Reducer gets part of the output

from each Mapper. This is done by another linear scan of the

output, copying each item into its correct partition.

2.2. Reducer

Shuffle and Sort. The Reducer’s first job is to gather all of

its input from the various Mapper output partitions, which are

scattered throughout the system, into a single, sorted input set.

This is done by a merge of all the already-sorted partitions into

a single input set (a merge sort).

Reduce. Finally, the Reducer applies the Reduce function to

all of the keys (with their associated sets of values) in its sorted

input set. This involves a linear scan of its input, applying the

Reduce function to each item.

2.3. Computational Requirements

Mappers and Reducers have different computational and band-

width needs. The Map phase is largely bandwidth constrained,

and consumes the bulk of the execution time for our workloads.

It would therefore be beneficial to execute the Mapper on pro-

cessors that have high levels of memory bandwidth, and not

necessarily high single-thread performance.

3. Memory System Background

3.1. Moving from DDR3 to HMC

In a conventional memory system, a memory controller on

the processor is connected to dual in-line memory modules

(DIMMs) via an off-chip electrical DDR3 memory channel

(bus). Modern processors have as many as four memory con-

trollers and four DDR3 memory channels [4]. Processor pin

counts have neared scaling limits [35]. Efforts to continually

Pins Bandwidth Power

DDR3 143 12.8 GB/s 6.2 W

DDR4 148 25.6 GB/s 8.4 W

HMC 128 80.0 GB/s 13.4 W

Table 1: Memory Technology Comparison.

boost processor pin bandwidth lead to higher power consump-

tion and limit per-pin memory capacity, thus it is hard to simul-

taneously support higher memory capacity and memory band-

width.

Recently, Micron has announced the imminent release of its

Hybrid Memory Cube (HMC) [51]. The HMC uses 3D die-

stacking to implement multiple DRAM dies and an interface

logic chip on the same package. TSVs are used to ship data from

the DRAM dies to the logic chip. The logic chip implements

high-speed signaling circuits so it can interface with a processor

chip through fast, narrow links.

3.2. Analyzing an HMC-Based Design

In Table 1, we provide a comparison between DDR3, DDR4,

and HMC-style baseline designs, in terms of power, bandwidth

and pin-count. This comparison is based on data and assump-

tions provided by Micron [27, 36].

HMC is optimized for high-bandwidth operation and tar-

gets workloads that are bandwidth-limited. HMC has better

bandwidth-per-pin, and bandwidth-per-watt characteristics than

either DDR3 or DDR4. We will later show that the MapReduce

applications we consider here are indeed bandwidth-limited,

and will therefore best run on systems that maximize bandwidth

for a given pin and power budget.

4. Related Work

2D Processing-in-Memory: Between 1995-2005, multiple

research teams built 2D PIM designs and prototypes (e.g.,

[32, 50, 38, 48]) and confirmed that there was potential for great

speedup in certain application classes, such as media [29, 38],

irregular computations [15, 32], link discovery algorithms [10],

query processing [32, 47, 38], etc.

None of this prior work has exploited 3D stacking. While

a few have examined database workloads, none have leveraged

the MapReduce framework to design the application and to map

tasks automatically to memory partitions. MapReduce is unique

because the Map phase exhibits locality and embarrassing par-

allelism, while the Reduce phase requires high-bandwidth ran-

dom memory access. We show that NDC with a 3D-stacked

logic+memory device is a perfect fit because it can handle both

phases efficiently. We also argue that dynamic activation of

cores and SerDes links is beneficial because each phase uses

a different set of cores and interconnects. This compelling case

for NDC is made possible by the convergence of emerging tech-

nology (3D stacking), workloads (big-data analytics), and ma-

ture programming models (MapReduce).

3D Stacking: A number of recent papers have employed 3D

stacking of various memory chips on a processor chip (e.g.,



[44, 45, 46, 22, 59, 61, 28, 40]) to reduce memory latencies.

Even a stack of 4 DRAM chips can only offer a maximum ca-

pacity of 2 GB today. Hence, in the high-performance domain,

such memory chips typically serve as a cache [37] and must be

backed up by a traditional main memory system. Loh [44] de-

scribes various design strategies if the memory chips were to

be used as main memory. Kim et al. [40] and Fick et al. [28]

build proof-of-concept 3D-stacked devices that have 64 cores

on the bottom die and small SRAM caches on the top die.

These works do not explore the use of similar future devices

for big-data processing. None of this prior work aggregates

several 3D-stacked devices on a single board to cost-effectively

execute big-data workloads. The 3D-Maps prototype has mea-

sured the bandwidth and power for some kernels, including the

histogram benchmark that resembles the data access pattern of

some Map phases [40]. Industrial 3D memory prototypes and

products include those from Samsung [55, 54], Elpida [23, 24],

Tezzaron [60], and Micron [3, 51]. Many of these employ a

logic controller at the bottom of the stack with undisclosed func-

tionality. Tezzaron plans to use the bottom die for self-test and

soft/hard error tolerance [60]. Micron has announced an interest

in incorporating more sophisticated functionality on the bottom

die [9].

Custom Architectures for Big-Data Processing: Some pa-

pers have argued that cost and energy efficiency are optimized

for cloud workloads by using many “wimpy” processors and re-

placing disk access with Flash or DRAM access [42, 11, 49, 16].

Chang et al. [52, 17] postulate the Nanostore idea, where a 3D

stack of non-volatile memory is bonded to a CPU. They eval-

uate specific design points that benefit from fast NVM access

(relative to SSD/HDD) and a shallow memory hierarchy. Lim

et al. [43] customize the core and NIC to optimize Memcached

execution. Guo et al. [31, 30] design associative TCAM acceler-

ators that help reduce data movement costs in applications that

require key-value pair retrieval. The design relies on custom

memory chips and emerging resistive cells. Phoenix [53] is a

programmingAPI and runtime that implementsMapReduce for

shared-memory systems. The Mars framework does the same

for GPUs [33]. DeKruijf and Sankaralingam evaluate MapRe-

duce efficiency on the Cell Processor [21]. A recent IBM paper

describes how graph processing applications can be efficiently

executed on a Blue Gene/Q platform [19].

5. Near Data Computing Architecture

5.1. High Performance Baseline

A Micron study [36] shows that energy per bit for HMC access

is measured at 10.48 pJ, of which 3.7 pJ is in the DRAM layers

and 6.78 pJ is in the logic layer. If we assume an HMC device

with four links that operate at their peak bandwidth of 160 GB/s,

the HMC and its links would consume a total of 13.4 W. About

43% of this power is in the SerDes circuits used for high-speed

signaling [36, 56]. In short, relative to DDR3/DDR4 devices,

the HMC design is paying a steep power penalty for its superior

bandwidth. Also note that SerDes links cannot be easily pow-

Energy Efficient / ND Core

Process 32 nm

Power 80 mW

Frequency 1 GHz

Core Type single-issue in-order

Caches 32 KB I and D

Area (incl. caches) 0.51 mm2

EE Core Chip Multiprocessor

Core Count 512

Core Power 41.0 W

NOC Power 36.0 W

LLC and IMC 20.0 W

Total CMP Power 97.0 W

Table 2: Energy Efficient Core (EECore) and baseline system

ered down because of their long wake-up times. So the HMC

will dissipate at least 6 W even when idle.

We begin by considering a server where a CPU is attached to

4 HMC devices with 8 total links. Each HMC has a capacity of

4 GB (8 DRAM layers each with 4 Gb capacity). This system

has a memory bandwidth of 320 GB/s (40 GB/s per link) and

a total memory capacity of 16 GB. Depending on the applica-

tion, the memory capacity wall may be encountered before the

memory bandwidth wall.

Memory capacity on the board can be increased by using a

few links on an HMC to connect to other HMCs. In this pa-

per, we restrict ourselves to a daisy-chain topology to construct

an HMC network. Daisy chains are simple and have been used

in other memory organizations, such as the FB-DIMM. We as-

sume that the processor uses its eight links to connect to four

HMCs (two links per HMC), and each HMC connects two of

its links to the next HMC in the chain (as seen in Figure 1b).

While daisy chaining increases the latency and power overhead

for every memory access, it is a more power-efficient approach

than increasing the number of system boards.

For power-efficient execution of embarrassingly-parallel

workloads like MapReduce, it is best to use as large a number

of low energy-per-instruction (EPI) cores as possible. This will

maximize the number of instructions that are executed per joule,

and will also maximize the number of instructions executed per

unit time, within a given power budget. According to the anal-

ysis of Azizi et al. [13], at low performance levels, the lowest

EPI is provided by a single-issue in-order core. This is also con-

sistent with data on ARM processor specification sheets. We

therefore assume an in-order core similar to the ARM Cortex

A5 [1].

Parameters for a Cortex A5-like core, and a CMP built out

of many such cores, can be found in Table 2. Considering that

large server chips can be over 400 mm2 in size. We assume

that 512 such cores are accommodated on a server chip (leav-

ing enough room for interconnect, memory controllers, etc.).

To construct this table, we calculated the power consumed by

on-chip wires to support its off-chip bandwidth, not including

the overheads for the intermediate routers [39], we calculated

the total power consumed by the on-chip network [41], and fac-



Figure 1: The Near Data Computing Architecture.

tored in the power used by the last level caches and memory

controllers [34]. This is a total power rating similar to that of

other commercial high-end processors [4]

The processor can support a peak total throughput of 512

BIPS and 160 GB/s external read memory bandwidth, i.e.,

a peak bandwidth of 0.32 read bytes/instruction can be sus-

tained. On such a processor, if the application is compute-

bound, then we can build a simpler memory system with DDR3

or DDR4. Our characterization of MapReduce applications

shows that the applications are indeedmemory-bound. The read

bandwidth requirements of our applications range from 0.47

bytes/instruction to 5.71 bytes/instruction. So the HMC-style

memory system is required.

We have designed a baseline server that is optimized for in-

memory MapReduce workloads. However, this design pays a

significant price for data movement: (i) since bandwidth is vi-

tal, high-speed SerDes circuits are required at the transmitter

and receiver, (ii) since memory capacity is vital to many work-

loads, daisy-chained devices are required, increasing the num-

ber of SerDes hops to reach the memory device, (iii) since all

the computations are aggregated on large processor chips, large

on-chip networks have to be navigated to reach the few high-

speed memory channels on the chip.

5.2. NDC Hardware

We next show that a more effective approach to handle MapRe-

duce workloads is to move the computation to the 3D-stacked

devices themselves. We refer to this as Near Data Computing

to differentiate it from the processing-in-memory projects that

placed logic and DRAM on the same chip and therefore had

difficulty with commercial adoption.

While the concept of NDC will be beneficial to any mem-

ory bandwidth-bound workload that exhibits locality and high

parallelism, we use MapReduce as our evaluation platform in

this study. Similar to the baseline, a central host processor with

many EECores is connected to many daisy-chained memory de-

vices augmented with simple cores. The Map phases of MapRe-

duce workloads exhibit high data locality and can be executed

on the memory device; the Reduce phase also exhibits high data

locality, but it is still executed on the central host processor chip

because it requires random access to data. For random data ac-

cesses, average hop count is minimized if the requests originate

in a central location, i.e., at the host processor. NDC improves

performance by reducing memory latency and by overcoming

the bandwidth wall. We further show that the proposed design

can reduce power by disabling expensive SerDes circuits on the

memory device and by powering down the cores that are inac-

tive in each phase. Additionally, the NDC architecture scales

more elegantly as more cores and memory are added, favorably

impacting cost.

3D NDC Package. As with an HMC package, we assume that

the NDC package contains 8 4 Gb DRAM dies stacked on top of

a single logic layer. The logic layer has all the interface circuitry

required to communicate with other devices, as in the HMC. In

addition, we introduce 16 simple processor cores (Near-Data

Cores, or NDCores).

3D Vertical Memory Slice. In an HMC design, 32 banks are

used per DRAM die, each with capacity 16 MB (when assum-

ing a 4 Gb DRAM chip). When 8 DRAM die are stacked on top

of each other, 16 banks align vertically to comprise one 3D ver-

tical memory slice, with capacity 256 MB, as seen in Figure 1a.

Note that a vertical memory slice (referred to as a “vault” in

HMC literature) has 2 banks per die. Each 3D vertical mem-

ory slice is connected to an NDCore below on the logic layer

by Through-Silicon Vias (TSVs). Each NDCore operates ex-

clusively on 256 MB of data, stored in 16 banks directly above

it. NDCores have low latency, high bandwidth access to their

3D slice of memory. In the first-generation HMC, there are

1866 TSVs, of which, 512 are used for data transfers at 2 Gb/s

each [36].

NDCores. Based on our analysis earlier, we continue to use

low-EPI cores to execute the embarrassingly parallelMap phase.

We again assume an in-order core similar to the ARM Cortex

A5 [1]. Each core runs at a frequency of 1 GHz and consumes



80 mW, including instruction and data caches. We are thus

adding only 1.28W total power to the package (and will shortly

offset this with other optimizations). Given the spatial locality

in the Map phase, we assume a prefetch mechanism that fetches

five consecutive cache lines on a cache miss. We also apply

this prefetching optimization to all baseline systems tested, not

just NDC, and it helps the baseline systems more than the NDC

system, due to their higher latency memory access time.

Host CPUs and 3D NDC Packages.

Because the host processor socket has random access to the

entire memory space, we substitute the Shuffle phase with a Re-

duce phase that introduces a new level of indirection for data

access. When the Reduce phase touches an object, it is fetched

from the appropriate NDC device (the device where the object

was produced by a Mapper). This is a departure from the typi-

cal Map, Shuffle, and Reduce pattern of MapReduce workloads,

but minimizes data movement when executing on a central host

CPU. The Reduce tasks are therefore executed on the host pro-

cessor socket and its 512 EECores, with many random data

fetches from all NDC devices. NDC and both baselines follow

this model for executing the Reduce phase.

Having full-fledged traditional processor sockets on the

board allows the system to default to the baseline system in case

the application is not helped by NDC. The NDCores can remain

simple as they are never expected to handle OS functionality or

address data beyond their vault. The overall system architec-

ture therefore resembles the optimized HMC baseline we con-

structed in Section 5.1. Each board has two CPU sockets. Each

CPU socket has 512 low-EPI cores (EECores). Each socket has

eight high-speed links that connect to four NDC daisy-chains.

Thus, every host CPU core has efficient (and conventional) ac-

cess to the board’s entire memory space, as required by the Re-

duce function.

PowerOptimizations. Given the two distinct phases ofMapRe-

duce workloads, the cores running the Map and Reduce phases

will never be active at the same time. If we assume that the

cores can be power-gated during their inactive phases, the over-

all power consumption can be kept in check.

Further, we maintain power-neutrality within the NDC pack-

age. This ensures that we are not aggravating thermal con-

straints in the 3D package. In the HMC package, about 5.7 W

can be attributed to the SerDes circuits used for external com-

munication. HMC devices are expected to integrate 4-8 external

links and we’ve argued before that all of these links are required

in an optimal baseline. However, in an NDC architecture, exter-

nal bandwidth is not as vital because it is only required in the

relatively short Reduce phase. To save power, we therefore per-

manently disable 2 of the 4 links on the HMC package. This

2.85 W reduction in SerDes power offsets the 1.28 W power

increase from the 16 NDCores.

The cores incur a small area overhead. Each core occupies

0.51 mm2 in 32 nm technology. So the 16 cores only incur a

7.6% area overhead, which could also be offset if some HMC

links were outright removed rather than just being disabled.

Regardless of whether power-gating is employed, we expect

that the overall system will consume less energy per workload

task. This is because the energy for data movement has been

greatly reduced. The new design consumes lower power than

the baseline by disabling half the SerDes circuits. Faster execu-

tion times will also reduce the energy for constant components

(clock distribution, leakage, etc.).

5.3. NDC Software

User Programmability. Programming for NDC is similar to

the programming process for MapReduce on commodity clus-

ters. The user supplies Map and Reduce functions. Behind the

scenes, the MapReduce runtime coordinates and spawns the ap-

propriate tasks.

Data Layout. Each 3D vertical memory slice has 256 MB total

capacity, and each NDCore has access to one slice of data. For

our workloads, we populate an NDCore’s 256MB of space with

a single 128 MB database split, 64 MB of output buffer space,

and 64 MB reserved for code and stack space, as demanded

by the application and runtime. Each of these three regions is

treated as large superpages. The first two superpages can be ac-

cessed by their NDCore and by the central host processor. The

third superpage can only be accessed by the NDCore. The logi-

cal data layout for one database split is shown in Figure 1c.

MapReduce Runtime. Runtime software is required to orches-

trate the actions of the Mappers and Reducers. Portions of the

MapReduce runtime execute on the host CPU cores and por-

tions execute on the NDCores, providing functionalities very

similar to what might be provided by Hadoop. The MapReduce

runtime can serve as a lighweight OS for an NDCore, ensuring

that code and data do not exceed their space allocations, and

possibly re-starting a Mapper on a host CPU core if there is an

unserviceable exception or overflow.

6. Evaluation

6.1. Evaluated Systems

In this work, we compare an NDC-based system to two base-

line systems. The first system uses a traditional out-of-order

(OoO) multi-core CPU, and the other uses a large number of

energy-efficient cores (EECores). Both of these processor types

are used in a 2-socket system connected to 256 GB of HMC

memory capacity, which fits 1024 128 MB database splits. All

evaluated systems are summarized in Table 3.

6.1.1. OoO System On this system, both the Map and Reduce

phases of MapReduce run on the high performance CPU cores

on the two host sockets. Each of the 16 OoO cores must sequen-

tially process 64 of the 1024 input splits to complete the Map

phase. As a baseline, we assume perfect performance scaling

for more cores, and ignore any contention for shared resources,

other than memory bandwidth, to paint this system configura-

tion in the best light possible.

6.1.2. EECore System Each of the 1024 EECores must com-

pute only one each of the 1024 input splits in a MapReduce

workload. Although the frequency of each EECore is much

lower than an OoO core, and the IPC of each EECore is lower



Out-of-Order System

CPU configuration 2x 8 cores, 3.3 GHz

Core parameters 4-wide out-of-order

128-entry ROB

L1 Caches 32 KB I and D, 4 cycle

L2 Cache 256 KB, 10 cycle

L3 Cache 2 MB, 20 cycle

NDC Cores —

EECore System

CPU configuration 2x 512 cores, 1 GHz

Core parameters single-issue in-order

L1 Caches 32 KB I and D, 1 cycle

NDC Cores —

NDC System

CPU configuration 2x 512 cores, 1 GHz

Core parameters single-issue in-order

L1 Caches 32 KB I and D, 1 cycle

NDC Cores 1024

Table 3: System parameters.

than an OoO core, the EECore system still has the advantage of

massive parallelism, and we show in our results that this is a net

win for the EECore system by a large margin.

6.1.3. NDCore System We assume the same type and

power/frequency cores for NDCores as EECores. The only dif-

ference in their performance is the way they connect to memory.

EECores must share a link to the system of connected HMCs,

but each NDCore has a direct link to its dedicated memory, with

very high bandwidth, and lower latency. This means NDCores

will have higher performance than EECores.

In order to remain power neutral compared to the EECore sys-

tem, each HMC device in the NDC system has half of its 4 data

links disabled, and therefore can deliver only half the bandwidth

to the host CPU, negatively impacting Reduce performance.

6.2. Workloads

We evaluate the Map and Reduce phases of 5 different MapRe-

duce workloads, namely Group-By Aggregation (GroupBy),

Range Aggregation (RangeAgg), Equi-Join Aggregation (Equi-

Join), Word Count Frequency (WordCount), and Sequence

Count Frequency (SequenceCount). GroupBy and EquiJoin

both involve a sort, a combine, and a partition in their Map

phase, in addition to the Map scan, but the RangeAgg work-

load is simply a high-bandwidth Map scan through the 64 MB

database split. These first three workloads use 50 GB of the

1998 World Cup website log [12]. WordCount and Sequence-

Count each find the frequency of words or sequences of words

in large HTML files, and as input we use 50 GB of Wikipedia

HTML data [7]. These last two workloads are more computa-

tionally intensive than the others because they involve text pars-

ing and not just integer compares when sorting data.

6.3. Methodology

We use a multi-stage CPU and memory simulation infrastruc-

ture to simulate both CPU and DRAM systems in detail.

To simulate the CPU cores (OoO, EE, and NDC), we use the

Simics full system simulator [8]. To simulate the DRAM, we

use the USIMM DRAM simulator [18], which has been modi-

fied to model an HMC architecture. We assume that the DRAM

core latency (Activate + Precharge + ColumnRead) is 40 ns.

Our simulations model a single Map or Reduce thread at a time

and we assume that throughput scales linearly as more cores

are used. While NDCores have direct access to DRAM banks,

EECores must navigate the memory controller and SerDes links

on their way to the HMC device. Since these links are shared

by 512 cores, it is important to correctly model contention at

the memory controller. A 512-core Simics simulation is not

tractable, so we use a trace-based version of the USIMM simula-

tor. This stand-alone trace-based simulation models contention

when the memory system is fed memory requests from 512

Mappers or 512 Reducers. These contention estimates are then

fed into the detailed single-thread SIMICS simulation.

We wrote the code for the Mappers and Reducers of our

five workloads in C, and then compiled them using GCC ver-

sion 3.4.2 for the simulated architecture. The instruction mix

of these workloads is strictly integer-based. For each workload,

we have also added 1 ms execution time overheads for begin-

ning a new Map phase, transitioning between Map and Reduce

phases, and for completing a job after the Reduce phase. This

conservatively models the MapReduce runtime overheads and

the cost of cache flushes between phases.

We evaluate the power and energy consumed by our systems

taking into account workload execution times, memory band-

width, and processor core activity rates. We calculate power for

the memory system as being equal to the the sum of the power

used by each logic layer in each HMC, including SerDes links,

the DRAM array background power, and power used to access

the DRAM arrays for reads and writes. We assume that the

four SerDes links consume a total of 5.78 W per HMC, and the

remainder of the logic layer consumes 2.89 W [56]. Total max-

imum DRAM array power per HMC is assumed to be 4.7 W

for 8 DRAM die [36]. We approximate background DRAM ar-

ray power at 10% of this maximum value [6], or 0.47 W, and

the remaining DRAM power is dependent on DRAM activity.

Energy is consumed in the arrays on each access at the rate of

an additional 3.7 pJ/bit (note that the HMC implements narrow

rows and a close page policy [36]). For data that is moved to

the processor socket, we add 4.7 pJ/bit to navigate the global

wires between the memory controller and the core [39]. This is

a conservative estimate because it ignores intermediate routing

elements, and favors the EECore baseline. For the core power

estimates, we assume that 25% of the 80 mW core peak power

can be attributed to leakage (20 mW). The dynamic power for

the core varies linearly between 30 mW and 60 mW, based on

IPC (since many circuits are switching even during stall cycles).



Figure 2: Execution times of a single Mapper task, measured in
absolute time (top), and normalized to EE execution
time (bottom).

7. Performance Results

7.1. Individual Mapper Performance

We first examine the performance of a single thread working

on a single input split in each architecture. Figure 2 shows the

execution latency of a single mapper for each workload.

We show both normalized and absolute execution times to

show the scale of each of these workloads. When executing

on an EECore, a RangeAgg Mapper task takes on the order of

milliseconds to complete,GroupBy and EquiJoin take on the or-

der of seconds to complete, andWordCount and SequenceCount

take on the order of minutes to complete.

RangeAgg, GroupBy, and EquiJoin have lower compute re-

quirements than WordCount and SequenceCount, so in these

workloads, because of its memory latency advantage, an ND-

Core is able to nearly match the performance of an OoO core.

The EECore system falls behind in executing a single Mapper

task compared to both OoO and NDCores, because its HMC

link bandwidth is maxed out for some workloads, as seen in

Section 7.3.

7.2. Map Phase Performance

Map phase execution continues until all Mapper tasks have been

completed. In the case of the EE and NDC systems, the number

of Mapper tasks and processor cores is equal, so all Mapper

tasks are executed in parallel, and the duration of the Map phase

is equal to the time it takes to execute one Mapper task. In

the case of the OoO system, Mapper tasks outnumber processor

Figure 3: Execution times of all Mapper tasks, measured in ab-
solute time (top), and normalized to EE execution time
(bottom).

cores 64-to-1, so each OoO processor must sequentially execute

64 Mapper tasks.

Because of this, the single-threaded performance advantage

of the OoO cores becomes irrelevant, and both EE and NDC

systems are able to outperform the OoO system by a wide mar-

gin. As seen in Figure 3, compared to the OoO system, the

EE system reduces Map phase execution times from 69.4%

(RangeAgg), up to 89.8% (WordCount). The NDC system im-

proves upon the EE system by further reducing execution times

from 23.7% (WordCount), up to 93.2% (RangeAgg).

7.3. Bandwidth

The NDC system is able to improve upon the performance of

the OoO and EE systems because it is not constrained by HMC

link bandwidth during the Map phase. Figure 4 shows the read

and write bandwidth for each 2-socket system, as well as a bar

representing the maximum HMC link bandwidth, which sets an

upper bound for the performance of the OoO and EE systems.

The OoO system is unable to ever come close to saturating

the available bandwidth of an HMC-based memory system. The

EE system is able to effectively use the large amounts of avail-

able bandwidth, but because the bandwidth is a limited resource,

it puts a cap on the performance potential of the EE system. The

NDC system is not constrained by HMC link bandwidth, and is

able to use an effective bandwidth many times that of the other

systems. While the two baseline systems are limited to a maxi-

mum read bandwidth of 320 GB/s, the NDC system has a maxi-



Figure 4: Bandwidth usage during Map phase for an entire 2-
socket system. Maximum HMC link read and write
bandwidth are each 320 GB/s for the system.

Figure 5: Execution time for an entire MapReduce job normal-
ized to the EE system.

mum aggregate TSV bandwidth of 8 TB/s. In fact, this is the key

attribute of the NDC architecture – as more memory devices are

added to the daisy-chain, the bandwidth usable by NDCores in-

creases. On the other hand, as more memory devices are added

to the EE baseline, memory bandwidth into the two processor

sockets is unchanged.

7.4. MapReduce Performance

So far we have focused on the Map phase of MapReduce work-

loads, because this phase typically dominates execution time,

and represents the best opportunity for improving the overall

execution time of MapReduce workloads. Figure 5 shows how

execution time is split betweenMap and Reduce phases for each

workload, and shows the relative execution times for each sys-

tem.

The OoO and EE systems use the same processing cores for

both Map and Reduce phases, but the NDC system uses ND-

Cores for executing the Map phase, and EECores for executing

the Reduce phase. Performance improves for both Map and

Reduce phases when moving from the OoO system to the EE

system, but only Map phase performance improves when mov-

ing from the EE system to the NDC system. Reduce phase per-

formance degrades slightly for the NDC system since half the

SerDes links are disabled (to save power).

Overall, compared to the OoO system, the EE system is able

to reduce MapReduce execution time from 69.4% (GroupBy),

up to 89.8% (WordCount). NDC further reduces MapReduce

execution times compared to the EE system from 12.3% (Word-

Count), up to 93.2% (RangeAgg).

7.5. Energy Consumption

We consider both static and dynamic energy in evaluating the en-

ergy and power consumption of EE and NDC systems. Figure 6

shows the breakdown in energy consumed by the memory sub-

system, and the processing cores. Figure 6a shows the energy

savings whenmoving from an EE system to an NDC system that

uses a full complement of HMC links (NDC FL). Compared to

the EE system, the NDC FL system reduces energy consumed to

complete an entire MapReduce task from 28.2% (WordCount),

up to 92.9% (RangeAgg). The processor and memory energy

savings primarily come from completing the tasks more quickly.

Figure 6b assumes NDC FL as a baseline and shows the ef-

fect of various power optimizations. NDC Half Links is the

NDC system configuration we use in all of our other perfor-

mance evaluations, and is able to reduce energy consumed by

up to 23.1% (RangeAgg) compared to NDC Full Links. Dis-

abling half the links reduces performance by up to 22.6% be-

cause it only affects the Reduce phase (as seen in the dark bars

in Figure 5). NDC-PD is a model that uses all the SerDes links,

but places unutilized cores in power-downmodes. So NDCores

are powered down during the Reduce phase and EECores are

powered down during the Map phase. We assume that a tran-

sition to low-power state incurs a 1.0 ms latency and results

in core power that is 10% of the core peak power. Note that

the transition time is incurred only once for each workload and

is a very small fraction of the workload execution time, which

ranges between dozens of milliseconds to several minutes. This

technique is able to reduce overall system energy by up to 10.0%

(SequenceCount). Finally, combining the Half Links optimiza-

tion with core power-down allows for energy savings of 14.7%

(GroupBy) to 28.3% (RangeAgg).



Figure 6: Energy consumed by the memory and processing re-
sources. Top figure normalized to EE processor en-
ergy; bottom figure normalized to NDC FL processor
energy.

7.6. HMC Power Consumption and Thermal Analysis

In addition to a system-level evaluation of energy consumption,

we also consider the power consumption of an individual HMC

device. In the EE system, the HMC device is comprised of a

logic layer, including 4 SerDes links, and 8 vertically stacked

DRAM dies. An NDCHMC also has a logic layer and 8 DRAM

dies, but it only uses 2 SerDes links and also includes 16 NDC

cores. As with the energy consumption evaluation, we consider

core and DRAM activity levels in determining HMC device

power. Figure 7 shows the contribution of HMC power from

the logic layer, the DRAM arrays, and NDC cores, if present.

The baseline HMCs do not have any NDC cores, so they see

no power contribution from that source, but they do have twice

the number of SerDes links, which are the single largest con-

sumer of power in the HMC device.

The NDC design saves some power by trading 2 SerDes links

for 16 NDCores. However, we also see an increase in DRAM

array power in NDC. In the EECore baseline, host processor pin

bandwidth is shared between all HMCs in the chain, and no one

HMC device is able to realize its full bandwidth potential. This

leads to a low power contribution coming from DRAM array

Figure 7: Breakdown of power consumed inside an HMC stack
for both EE and NDC systems. The HMC in the EE sys-
tem contains no NDC cores, and the HMC in the NDC
system uses half the number of data links.

Figure 8: Heatmap of the logic layer in the NDC system (best
viewed in color).

activity, because each HMC device can contribute on average

only 1/8th the bandwidth supported by the SerDes links. The

NDC architecture, on the other hand, is able to keep the DRAM

arrays busier by utilizing the available TSV bandwidth. Overall,

the NDC HMC device consumes up to 16.7% lower power than

the baseline HMC device.

We also evaluated the baseline HMC and NDC floorplans

with Hotspot 5.0 [2], using default configuration parameters,

an ambient temperature of 45◦ C inside the system case, and

a heat spreader of thickness 0.25 mm. We assumed that each

DRAM layer dissipates 0.59 W, spread uniformly across its

area. The logic layer’s 8.67W is distributed across various units

based on HMC’s power breakdown and floorplan reported by

Sandhu [56]. We assumed that all 4 SerDes links were active.

For each NDCore, we assumed that 80% of its 80 mW power is

dissipated in 20% of its area to model a potential hotspot within

the NDCore. Our analysis showed a negligible increase in de-

vice peak temperature from adding NDCores. This is shown

by the logic layer heatmap in Figure 8; the SerDes units have



much higher power densities than the NDCore, so they con-

tinue to represent the hottest units on the logic chip. We carried

out a detailed sensitivity study and observed that the NDCores

emerge as hotspots only if they consume over 200 mW each.

The DRAM layers exceed 85◦ C (requiring faster refresh) only

if the heat spreader is thinner than 0.1 mm.

8. Conclusions

This paper argues that the concept of Near-Data Computing is

worth re-visiting in light of various technological trends. We ar-

gue that the MapReduce framework is a good fit for NDC archi-

tectures. We present a high-level description of the NDC hard-

ware and accompanying software architecture, which presents

the programmer with a MapReduce-style programming model.

We first construct an optimized baseline that uses daisy-chains

of HMC devices and many energy-efficient cores on a tradi-

tional processor socket. This baseline pays a steep price for

data movement. The move to NDC reduces the data movement

cost and helps overcome the bandwidth wall. This helps reduce

overall workload execution time by 12.3% to 93.2%. We also

employ power-gating for cores and disable SerDes links in the

NDC design. This ensures that the HMC devices consume less

power than the baseline and further bring down the energy con-

sumption. Further, we expect that NDC performance, power,

energy, and cost will continue to improve as the daisy chains

are made deeper.
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