
Hiding in the Crowd: Privacy Preservation on Evolving Streams through

Correlation Tracking

Feifei Li‡ Jimeng Sun§ Spiros Papadimitriou† George A. Mihaila† Ioana Stanoi†

‡Boston University, §Carnegie Mellon University, †IBM T.J.Watson Research Center

lifeifei@cs.bu.edu, jimeng@cs.cmu.edu, {spapadim, mihaila,irs}@us.ibm.com

Abstract

We address the problem of preserving privacy in streams,

which has received surprisingly limited attention. For static

data, a well-studied and widely used approach is based on

random perturbation of the data values. However, streams

pose additional challenges. First, analysis of the data has to

be performed incrementally, using limited processing time

and buffer space, making batch approaches unsuitable. Sec-

ond, the characteristics of streams evolve over time. Conse-

quently, approaches based on global analysis of the data are

not adequate. We show that it is possible to efficiently and

effectively track the correlation and autocorrelation struc-

ture of multivariate streams and leverage it to add noise

which maximally preserves privacy, in the sense that it is

very hard to remove. Our techniques achieve much better

results than previous static, global approaches, while re-

quiring limited processing time and memory. We provide

both a mathematical analysis and experimental evaluation

on real data to validate the correctness, efficiency, and ef-

fectiveness of our algorithms.

1. Introduction

Recently, there has been an increasing concern regarding

privacy breaches, especially those involving sensitive per-

sonal data of individuals [15]. As a result, restrictions and

regulations in publishing sensitive personal data have been

tightened [38]; these address data owned by government or-

ganizations [14] as well as corporations [7]. It is therefore

not surprising that the data management community has be-

come increasingly focused on ways to guarantee the privacy

of sensitive data.

Meanwhile, unprecedented massive data from various

sources are providing us with great opportunity for data

mining and information integration. Unfortunately, the pri-

vacy requirement and data mining applications pose ex-

actly opposite expectations from data publishing [15, 36].

The utility of the published data w.r.t the mining appli-

cation decreases with increasing levels of privacy guaran-

tees [24]. Previous work has noticed this important trade-

off between privacy and utility and various techniques have

been proposed to achieve a desired balance between the two

[3, 23, 27, 10, 12, 28, 35, 16].

Prior related work [3, 2, 23, 20] consists of additive

random perturbation for the offline, conventional relational

data model, where the noise is distributed along the prin-

cipal components of the original data in order to achieve

maximum privacy, given a fixed utility. We show that these

offline algorithms are no longer optimal when applied to

numerical, non-stationary (or, time-evolving) data streams.

The dynamic correlations and autocorrelations, if not care-

fully considered, may allow for the reconstruction of the

original streams.

Guaranteeing data privacy is especially challenging in

the case of stream data [6, 29], mainly for two reasons:

1) Performance requirement: The continuous arrival of

new tuples prohibits storage of the entire stream for analy-

sis, rendering the current offline algorithms inapplicable.

2) Time evolution: Data streams are usually evolving, and

correlations and autocorrelations [33, 25] can change over

time. These characteristics make most offline algorithms

for static data inappropriate, as we show later.

To the best of our knowledge, privacy preservation on

streams has not yet been addressed in the literature, despite

the wide use of data streams in a large range of sensitive ap-

plications such as financial, retail, defense, and health care.

For example, consider two financial firms that would like to

collaboratively monitor clusters over their streaming real-

time transactions [39]. However, none of them is willing to

publish the original data streams. The best resolution is to

find ways to guarantee both the utility and privacy of data

in an online fashion. The scheme should general and not

restricted to any specific mining operation.

In this paper we fill the gap in the area of data stream

privacy, by proposing efficient online streaming algorithms

that guarantee the privacy of single or multiple non-

stationary data streams. This work focuses on numerical

data streams, such as environmental sensor data, perfor-

mance measurements, or stock trading prices. Our goal is to

insert random perturbation that “mirrors” the streams’ sta-

tistical properties, in an online fashion. A number of impor-

Symbol Description

v a vector (lowercase bold)

v(i) the i-th element of vector v

X a matrix (uppercase bold)

XT the transpose of X

Xi or X
j i-th row or j-th column of X

X
j
i the entry (i, j) of X

T the number of timestamps up to now

N the number of streams

A original stream collection in R
T×N

A
∗ the perturbed stream collection

Ã the reconstructed stream collection

A
n the n-th stream

At the values from all streams at time t

E the random noise in R
T×N

D(A,A∗) the discrepancy on original and perturbed streams

Table 1. Description of notation.

tant mining operations can still be performed, by controlling

perturbation magnitude. However, the original data streams

cannot be reconstructed with high confidence.

To the best of our knowledge, our work is the first to pro-

vide the basic building blocks sufficient for a general solu-

tion for privacy of numerical streams. More specifically, we

focus on the fundamental cases of correlation across multi-

ple streams and of autocorrelation within one stream.

Our contributions are: 1) define the notion of utility and

privacy for perturbed data streams, 2) explore the effect of

evolving correlations and autocorrelation in data streams,

and their implications in designing additive random per-

turbation techniques, 3) design efficient online algorithms

under the additive random perturbation framework, which

maximally preserve the privacy of data streams given a fixed

utility while, additionally, better preserving the statistical

properties of the data, and 4) provide both theoretical argu-

ments and experimental evaluation to validate our ideas.

The rest of the paper is organized as follows: Section 2

introduces definitions and problem formulation and Sec-

tion 3 discusses the related work. Section 4 studies privacy

preservation for multiple streams through correlation track-

ing. Section 5 further exploits the autocorrelation property

to preserve privacy. Finally, the experimental evaluation on

real data streams is performed in Section 6.

2. Preliminaries

2.1 Data Stream Model

Our model assumes that the input consists of multiple

continuous streams. Without loss of generality, we may as-

sume that each tuple consists of a single attribute. Further-

more, we assume that all streams are resampled to a com-

mon rate, which is between the arrival rate of the fastest and

the slowest stream. The common sampling rate can be cho-

sen based on arrival rate, data characteristics and available

processing capacity—details are beyond the scope of this

paper. Subsequently, any standard resampling technique

[30, 19] can be applied such as, for example, linear interpo-

lation (for upsampling) or decimated moving average (aka.

tumbling average, for downsampling). We will thus assume

a time granularity such that, during each time interval, there

is exactly one recorded incoming value from each stream.

Therefore, for the purposes of our analysis and without

loss of generality, the input consist of N data streams, de-

noted as A1, . . . ,AN . For any i-th data stream Ai, its value

at time t is Ai
t. The stream collection is written as A = [Ai

for 1 ≤ i ≤ N]. Formally, the stream collection A can be

considered as a T × N matrix where N is the number of

streams and T is the current timestamp, which grows indef-

initely. The values from all streams at time t are At ∈ R
N ,

i.e., t-th row of A.

2.2 Discrepancy, Utility and Privacy

To ensure privacy of streaming data, the values of in-

coming tuples are modified by adding noise. We denote the

random noise as E ∈ R
T×N where each entry Ei

t is the

noise added to the i-th stream at time t. Therefore, the per-

turbed streams are A∗ = A+E. Without loss of generality,

we assume the noise has zero mean.

Discrepancy: To facilitate the discussion on utility and pri-

vacy, we define the concept of discrepancy D between two

versions of the data, A and B, as the normalized squared

Frobenius norm1,

D(A,B) :=
1

T
‖A − B‖2

F , where A,B ∈ R
T×N .

Utlity: Considering the perturbed versus the original data,

the larger the amplitude of the perturbation (i.e., the vari-

ance of the added noise), the larger the distortion of the

original values. However, as the distortion increases, the

usefulness of the data decreases: a larger distortion hides

the original values better but it also hides more informa-

tion about their relationships. The discrepancy D(A,A∗)
between original and perturbed data measures precisely the

squared distortion. We naturally define the utility to be the

inverse of this discrepancy. However, throughout the paper,

we typically use discrepancy, since the two are essentially

interchangeable.

Privacy: Distorting the original values is only part of the

story. We also have to make sure that this distortion can-

not be filtered out. Thus, to measure the privacy, we have

to consider the power of an adversary in reconstructing

the original data. Specifically, suppose that Ã are the re-

constructed data streams obtained by the adversary, in a

way that will be formalized shortly. Then the privacy is

the discrepancy between the original and the reconstructed

streams, i.e., D(A, Ã).

1The squared Frobenius norm is defined as ‖A‖2

F
:=
P

i,j(A
j
i)

2

2.3 Problem Formulation

We formulate two problems: data reconstruction and

data perturbation. From his side, the adversary wants to

recover the original streams from the perturbed data.

Problem 1 (Reconstruction). Given the perturbed streams

A∗, how to compute the reconstruction streams Ã such that

D(A, Ã) is minimized?

In this paper, we focus on linear reconstruction meth-

ods which have been used by many existing works [23, 20,

27, 10]. Intuitively, the adversary can only use linear trans-

formations on the perturbed data, such as projections and

rotations, in the reconstruction step.

Definition 1 (Linear reconstruction). Given the perturbed

streams A∗, the linear reconstruction is Ã = A∗R, such

that D(A, Ã) is minimized

If both the perturbed streams A∗ and the original streams

A are available, the solution Ã can be easily identified us-

ing linear regression. However, A is not available. There-

fore, in order to estimate Ã, some additional constraints or

assumptions must be imposed to make the problem solv-

able. A widely adopted assumption [22] is that the data

lie in a static low dimensional subspace (i.e, global correla-

tion exists). This is reasonable, since if no correlations are

present, then i.i.d. perturbations are already sufficient to ef-

fectively hide the data. However, real data typically exhibit

such correlations. In this paper, as we will formally show

later, we rely on the dynamic (rather than static) correlations

among streams, as well as on dynamic autocorrelations.

From their side, data owners want to prevent the recon-

struction from happening.

Problem 2 (Perturbation). Given the original streams A

and the desirable discrepancy threshold σ2, how to obtain

the perturbed streams A∗ such that 1) D(A,A∗) = σ2 and

2) for any linear reconstruction Ã, D(A, Ã) ≥ σ2.

Perturbation has exactly the opposite goal from the re-

construction. However, the correlation and autocorrelation

properties of the streams are still the keys in the solution of

both problems, as shown later.

3. Related Work

Privacy preserving data mining was first proposed in [3]

and [2]. This work paved the road for an expanding field,

and various privacy preservation techniques have been pro-

posed since. These methods apply to the traditional rela-

tional data model, and can be classified as data perturbation

[3, 2, 27, 10, 16, 4], k-anonymity [24, 35, 1, 28, 38] and se-

cure multiparty computation [26, 37]. Our work focuses on

privacy preservation in the context of the randomized data

perturbation approach and we will focus on discussing re-

lated work in this area.

Data perturbation can be further classified in two groups:

retention replacement perturbation [4, 16] and data value

perturbation [3, 27, 10]. For each element in a column j,

the retention replacement perturbation retains this element

with probability pj and with probability 1 − pj replaces it

with an item generated from the replacing p.d.f. on this col-

umn. This approach works for categorical data as well, and

it has been applied to privacy preserving association min-

ing [16]. Our work focuses on numerical data value per-

turbation. Initial solutions in this category, [3, 2], proposed

adding random i.i.d. noise to the original data and showed

that, with knowledge of the noise distribution, the distribu-

tion of the original data can be estimated from the perturbed

data, and aggregate values are preserved. In [23, 20] the au-

thors pointed out that adding random i.i.d. noise is not op-

timal for privacy preservation. They showed how to recon-

struct the original data (individual data values) using Spec-

tral Filtering (SF) or the equivalent PCA method. The main

conclusion is that random noise should be distributed along

the principal components of the original data, so that linear

reconstruction methods cannot separate the noise from the

original data. Motivated by this observation and in similar

spirit, [10] proposed the random rotation technique for pri-

vacy preserving classification and [27] proposed data per-

turbation based on random projection. The work of [15]

discussed a method to quantify the privacy breach for pri-

vacy preserving algorithms, namely α − β analysis or γ-

amplification. The basic idea is that, on the perturbed data,

the adversaries’ knowledge measured by their confidence

about a given property of the original data should not be

increased more than a certain amount. The work in [5] con-

sidered the problem of setting the perturbation parameters

while maintaining γ-amplification.

All these techniques have been developed for the tradi-

tional relational data model. There is no prior work on pri-

vacy preservation on data streams, except the work on pri-

vate search over data streams [31, 8]. However, the goal

there is to protect the privacy of the query over data stream,

not of the data stream itself. Finally, our data perturbation

techniques rely on PCA for data streams w.r.t both correla-

tions and autocorrelations. Streaming PCA and eigenspace

tracking of correlations (but not autocorrelation) among

multiple data streams has been studied in [32, 18].

4. Privacy with Dynamic Correlations

We first give the insight behind our data perturba-

tion and reconstruction methods, then present methods for

correlation-based noise perturbation and reconstruction.

Insight and intuition Let us first illustrate how the per-

turbation and reconstruction work in detail (see figure 1(a)

At

At*

At
~

Projection

error

Removed

noise

Remaining

noise

Privacy
Principal

Direction

σ2

(a) noise decomposition

−30 −20 −10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20

blue: original data, grean: perturbed data

Stream A
1

S
tr

e
a

m
 A

2

w
1

(b) i.i.d random noise

−30 −20 −10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20

Stream A
1

S
tr

e
a

m
 A

2

blue: original data, green: perturbed data

w
1

(c) correlated noise

Figure 1. Impact of Correlation on Perturbing the Data

for the visualization). For the perturbation process, the

stream measurements At at time t, represented as an N -

dimensional point, are mapped to the perturbed measure-

ments A∗
t with discrepancy σ2. For any reconstruction ef-

fort, the goal is to transform the perturbed measurements,

A∗
t onto Ãt so that, hopefully, D(At, Ãt) is small.

A principled way of reconstruction is to project the data

onto the principal component subspace [20] such that most

noise is removed, while the original data are maximally pre-

served, i.e, not much additional error is included. The idea

is illustrated in figure 1(a). When A∗
t is projected onto the

principal direction, the projection is exactly the reconstruc-

tion Ãt. Note that the distance between A∗
t and Ãt consists

of two parts: 1) removed noise, i.e., the perturbation that is

removed by the reconstruction and 2) projection error, i.e,

the new error introduced by the reconstruction. Finally, the

distance between At and Ãt, i.e., the privacy, comes from

two sides: 1) remaining noise, i.e, the perturbation noise

that has not been removed, and 2) projection error.

When the noise is added exactly along the principal di-

rection, the removed noise becomes zero. However, addi-

tional projection error is included. In this case, the pertur-

bation is robust towards this reconstruction attempt, in the

sense that D(A, Ã) = D(A,A∗). In general, a good prac-

tice is to add correlated noise following the trends present in

the streams. Consider the example shown in Figure 1 where

blue points represent the original data and green points rep-

resent the perturbed data with same amount of noise. Figure

1(b) and 1(c) show the i.i.d. noise and the correlated noise

on the same data, respectively. Clearly, correlated noise has

been successfully “hidden” in the original data and, there-

fore, is hard to remove.

Data streams often present strong correlations and these

correlations change dynamically [39, 33, 32]. Consider the

examples in figure 2, where the principal components are

changing over time. In such case, online PCA is necessary

to better characterize the evolving, local trends. Global, of-

fline PCA will fail to identify these important properties

as we will show later in the experiments. Next, we will

show how to dynamically insert noise using online correla-

tion tracking [32].

0

1000

2000

−40
−20

0
20

−20

−15

−10

−5

0

5

10

15

20

Time tStream A
1

S
tr

e
a

m
 A

2

w
1

w
2

(a) Example one.

0

10

20

30

40

−2

−1

0

1

2

−1

−0.5

0

0.5

1

Time t
A

1
: sin(t)+noise

A
2
:

c
o

s
(t

) w
1

w
2

w
3

(b) Example two.

Figure 2. Dynamic correlations in Data

Streams

Algorithm 1: SCAN

Input : Original tuple At, utility threshold σ2

Old subspace U ∈ R
N×k,Λ ∈ R

k×k

Output: Perturbed tuple A∗
t, new subspace U,Λ

update eigenvector U, eigenvalue Λ based on At)

Initialize δ, η to
⇀

0 k

//add noise in top-k principal component subspace

for 1 ≤ i ≤k do

δ(i)=σ2 × Λ(i)
‖(Λ)‖

η(i) = gaussian noise with variance δ(i)

// rotation back to the original space

Et=η × UT and A∗
t=At+Et

Streaming Correlated Additive Noise (SCAN) SCAN

does two things whenever new tuples arrive from the N in-

put streams: 1) update the estimation of local principal com-

ponents; and 2) distribute noise along the principal compo-

nents in proportional to their eigenvalues.

An important property of the SCAN algorithm is that

when the noise is rotated back to the data space (line 6), its

variance will be equal to the specified discrepancy thresh-

old σ2. Intuitively, SCAN tracks the covariance matrix and

adds noise with essentially the same covariance as the data

streams—proof details are ommited for space.

Theorem 1. At any time instant T , the perturbed data

Algorithm 2: SCOR

Input : Perturbed tuple A∗
t, utility threshold σ2

Old subspace U ∈ R
N×k,Λ ∈ R

k×k

Output: Perturbed tuple Ãt, new subspace U,Λ
update eigenvector U, eigenvalue Λ based on At)1

//project to the estimated online principal components2

Ât=A∗
t × UN×k × UT

N×k

streams A∗ from SCAN satisfy D(A,A∗) = σ2. Addition-

ally, SCAN preserves the eigenvectors of the (uncentered)

covariance matrix of A.

Therefore, the SCAN perturbation will not affect any

mining algorithms that rely on the second moments of the

data (i.e., linear correlations).

Streaming correlation online reconstruction (SCOR):

The privacy achieved by SCAN is determined by the best

linear reconstruction an adversary could perform on A∗ (see

Section 2.2). For evolving data streams as illustrated in fig-

ure 2, the best choice for the adversary is to utilize online

estimation of local principal components for reconstruction.

The ability to estimating the local principal components of

the original data streams depends on how the noise has been

added. For SCAN, we know that the principal component

directions are preserved, since the noise is added along their

direction (Theorem 1). In general, we may assume the noise

is small compared to the data—otherwise, the utility of the

perturbed data is too low to be useful. Then, tracking the

principal components of the perturbed streams A∗ can give

a good estimate of the principal components of the original

streams A. Formally, cov(A∗) ≈ cov(A).
Intuitively, SCOR reconstruction removes all the noise

orthogonal to the local principal components and inserts lit-

tle additional projection error, since local PCA can usually

track the data accurately. In other words, i.i.d. noise can

usually be successfully removed, provided that the streams

are correlated. However, the perturbation from SCAN can-

not be removed at all since the the noise is distributed along

the “instantaneous” correlation in the streams.

Theorem 2. The reconstruction error of SCOR on the per-

turbation from SCAN is ≈ σ2.

Proof. Formally, given a linear reconstruction Ã = A∗R,

the privacy can be decomposed as

D(A, Ã) = ‖A − A∗R‖2
F

= ‖A − (A + E)R‖2
F

= ‖A(I − R) + ER‖2
F .

= ‖A(I− UUT)
︸ ︷︷ ︸

projection error

+ EUUT

︸ ︷︷ ︸
remaining error

‖2
F

where R is a projection matrix, meaning that R = UUT

with U ∈ R
N×k orthonormal. Since the subspaces tracked

by both SCOR and SCAN are the same, the remaining noise

is σ2, i.e., no noise is removed. Therefore, D(A, Ã) ≥ σ2

by the triangle inequality.

Note that the projection error for SCOR is small, pro-

vided that the data are locally correlated. Therefore, the

reconstruction error (i.e., privacy, as defined in Section 2.2)

of SCOR is approximately σ2, i.e., equal to the original dis-

crepancy. Moreover, when σ2 is small compared to the orig-

inal data, other reconstruction methods will result in higher

error, due to the large projection error.

5 Dynamic autocorrelation

So far, we have presented the methods based on correla-

tion across many streams. Now we exploit another impor-

tant property, autocorrelation on a single stream and then

propose the corresponding perturbation and reconstruction.

Intuition: The noise added should mirror the dominant

trends in the series. Consider the following simple exam-

ples: If the stream always has a constant value, the right

way to hide this value is to add the same noise throughout

time. Any other noise can be easily filtered out by simple

averaging. The situation is similar for a linear trend (this is

also an example that cannot be captured by Fourier). If the

stream is a sine wave, the right way to hide it is by adding

noise with the same frequency (but potentially a different

phase); anything else can be filtered out. Our algorithm is

the generalization, in a principled manner, of these notions.

For example, the green and blue curves in figure 3(b)

are the autocorrelated noise and the original stream, re-

spectively, where the noise follows the same trends as the

streams, over time. In comparison, figure 3(a) shows i.i.d.

noise, which can be easily filtered out. The goal is to find

a principled way to automatically determine what is the

“right” noise, which is “most similar” to the stream.

Connection to correlation: In the previous section, we

showed how to track the local statistical properties of the N -

dimensional sequence of the vectors At, indexed over time

t. More specifically, we track the principal subspace of this

matrix, thereby focusing on the most dominant (in a least-

squares sense) of these relationships. We subsequently add

noise that “mirrors” those relationships, making it indistin-

guishable from the original data.

Next, we will show that the same principles used to cap-

ture relationships across many attributes can be used to cap-

ture relationships of one attribute across time. In fact, there

is a natural way to move between the original time domain

and a high-dimensional sequence space, which is formal-

ized next. The t-th window of the time series stream a(t) is

an h-dimensional point,

Wt := [a(t),a(t + 1), . . . ,a(t + h − 1)]T ∈ R
h.

0 1000 2000 3000 4000 5000 6000 7000 8000
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

Data

Noise

(a) iid noise

0 1000 2000 3000 4000 5000 6000 7000 8000
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

Data

Noise

(b) Autocorrelated noise

a = [1 2 3 4 5 6]T 1 2 3

 2 3 4
 3 4 5

 4 5 6

W =
W1

W2

W3

W4

 .1 -.1 .2
 -.1 .2 .3

 .2 .3 .1
 .3 .1 -.2*

E =

W* = W+E

a* = [1.1 1.9 3.2 4.3 5.1 5.8*]T

el er

(c) Streaming autocorrelation additive noise

Figure 3. Dynamic Autocorrelation

The window matrix W has the windows Wt as rows. Thus,

W
j
i = a((i− 1)h + j) by construction. The space spanned

by the sequence of windows Wt is known as the h-th order

phase space of the series a(t) [17]. Subsequently, we can

essentially apply the same technique as before, using W in

place of A. All of the previous discussion and properties of

our algorithm can be directly transferred to the autocorre-

lation case. An example is shown in the top of figure 3(c).

However, there are some additional properties and issues

that need to be resolved.

Hankel Constraint: Notice that the window matrix W

is a Hankel matrix, i.e., the anti-diagonals are constants:

W
j
i = W

j−1
i−1 . Under the assumption that the series is

stationary, the autocovariance matrix WTW is, in expec-

tation is circulant, i.e., it is symmetric with constant diag-

onals. Additionally, if we perform a batch eigen-analysis

on the global window matrix of a static series, the sample

autocovariance matrix computed from the actual data (i.e.,

WTW above) is also circulant. In this case, the eigenvec-

tors of WTW essentially provide the same information as

the Fourier coefficients of the series a. In that sense, our

approach includes traditional Fourier analysis. If these as-

sumptions do not hold, the technique we employ is more ro-

bust and effective. Detailed discussion is beyond the scope

of this paper—interested readers may consult [17, 34, 19]

for more details.

Constraint on autocorrelated noise: Next, we address the

issues that arise from the fact that W is a Hankel matrix.

Similarly, the noise matrix E has to be a Hankel matrix (see

figure 3(c) for an example). Similar to the correspondence

between a and W, the noise matrix E has a corresponding

noise sequence e, such that

Et ≡ [e(t), e(t + 1), . . . , e(t + h − 1)]T ∈ R
h.

We will essentially use the same insight, that Et has to lie in

the subspace of U, but in a different way. Formally stated,

the residual Et − UUTEt must be zero, or

(I− UUT)Et ≡ QEt = 0, (1)

where P = UUT is the projection operator onto the sub-

space of U and Q = I − P = I − UUT is the projector

Algorithm 3: SACAN

Input : Original value a∗(t), utility σ2

Old subspace U ∈ R
h×k,Λ ∈ R

k×k

Output: Perturbed value a∗(t), new subspace U,Λ
Construct window Wt−h+1 = [a(t−h+1), . . . ,a(t)]T1

Update U, V using Wt−h+12

every k arriving values do3

Let [wT

l | wT

r]
T ≡ Wt+h+14

Solve equation 2 to obtain er5

Rescale er based on σ2
6

Perturbed values w∗
r = wr + er7

Publish values a∗(t−k+i−1) = w∗
r(i), 1 ≤ i ≤ k8

onto the orthogonal complement.

Assume that we have chosen the noise values up to time

t − k. Based on these and on the current estimate of U,

we will determine the next k noise values (where k is the

principal subspace dimension)—the reason for determining

them simultaneously will become clear soon. Let

Et−h+1≡ [e(t−h+1), . . . , e(t−k) | e(t−k+1), . . . , e(t)]T

≡ [eTl | eTr]
T,

where | denotes elementwise concatenation (for example,

[1, 2 | 3, 4] results into two row vectors [12] and [34]. The

first block el ∈ R
h−k consists of h − k known values,

whereas the second block er ∈ R
k consists of the k un-

known noise values we wish to determine. Similarly de-

composing Q ≡ [Ql | Qr] into blocks Ql ∈ R
h×(h−k) and

Qr ∈ R
h×k, we can rewrite equation 1 as

Qlel + Qrer = 0 or Qrer = −Qlel. (2)

This is a linear equation system with k variables and k un-

knowns. Since the principal subspace has dimension k by

construction, the linear system is full-rank and can always

be solved. The bottom right of 3(c) highlights the known el

and unknown er (with one principle component k = 1).

The above equation cannot be applied for initial values

of the noise; we will use i.i.d. noise for those. Initially, we

Algorithm 4: SACOR

Input : Perturbed value a∗(t)
Old subspace U ∈ R

N×k,Λ ∈ R
k×k

Output: Reconstruction ã(t), new subspace U,Λ
Construct window Wt−h+1 = [a(t−h+1), . . . ,a(t)]T1

Update U, V using Wt−h+12

Project onto est. eigenspace W̃ = UUTWt−h+13

Reconstruction is the last element of W̃, ã(t) = W̃h
t4

do not know anything about the patterns present in the sig-

nal, therefore i.i.d. noise is the best choice, since there are

no correlations yet. However, the adversary has also not

observed any correlations that can be leveraged to remove

that noise. The important point is that, as soon as correla-

tions become present, our method will learn them and use

them to intelligently add the noise, before the adversary can

exploit this information.

Figures 3(b) and 6 clearly show that our approach accu-

rately tracks the dominant local trends, over a wide range of

stream characteristics. Algorithm 3 shows the pseudocode.

The algorithm for reconstructing the original data is sim-

pler; we only need to project each window Wt onto the

current estimate of U, exactly as we did for the correlation

case. The pseudocode is shown in Algorithm 4.

The analogues of Theorems 1 and 2 are summarized in

the following theorem (proof ommited for space).

Theorem 3. The perturbed stream from SACAN satisfies

D(A,A∗) = σ2 and preserves the eigenvectors of the au-

tocovariance matrix. The squared reconstruction error of

SACOR on this perturbed stream is approximately σ2.

Preserving the autocorrelation properties, in addition to

the privacy, is desirable, since several fundamental mining

operations, such as autoregressive modelling and forecast-

ing as well as periodicity detection [9], rely on them.

Multi-dimensional extension. If we wish to capture

both correlations as well as autocorrelations on multi-

dimensional streams, we can decompose the problem in a

fashion very similar to [32]. Details are beyond the scope

of this work, but we briefly present the main idea. We track

the eigenspace of the covariance matrix. However, instead

of using it only for adding noise, we also perform PCA on

the stream collection, to obtain k ≪ N streams of “hidden

variables.” Subsequently, we can apply our autocorrelation

tracking scheme independently on each of these uncorre-

lated (across dimension) streams. SPIRIT performs pre-

cisely the same decomposition of the problem (while con-

trolling the PCA approximation error) [32], except it does

so for multi-dimensional autoregression, rather than auto-

correlation tracking.

Data Streams Dimension Description

Chlorine [13] 4310×166 Environmental sensors

Lab [11] 7712×198 Room sensors

Stock [21] 8000×2 Stock price

Table 2. Three Real Data Sets

6. Experiment

We have implemented the proposed algorithms and study

their performance on real data streams. Specifically, we

show that: 1) in terms of preserving the input streams’ pri-

vacy, SCAN and SACAN outperform both i.i.d. noise as

well as noise added based on offline analysis; 2) SCOR and

SACOR achieve smaller reconstruction error than static, of-

fline algorithms; 3) all proposed algorithms have consider-

ably small computation and memory overhead.

6.1 Setup

The real-world data sets we use are summarized in table

2. Chlorine water quality in a drinking water distribution

system and Lab measures light, humidity, temperature and

voltage of sensors in the Intel Research Berkeley lab.

For simplicity, both discrepancy and reconstruction error

are always expressed relative to the energy of the original

streams, i.e., D(A,A∗)/‖A‖F and D(A, Ã)/‖A‖F , re-

spectively. Equivalently, the streams are normalized to zero

mean and unit variance, which does not change their corre-

lation or autocorrelation properties. The random noise dis-

tribution is zero mean Gaussian, with variance determined

by the discrepancy parameter. Maximum discrepancy is

30%, as large noise will destroy the utility of the perturbed

data, making them practically useless for the mining appli-

cation. Without loss of generality and to facilitate presen-

tation, we assume that perturbation and reconstruction use

the same number of principal components—see discussion

in Section 6.5. Our prototype is implemented in Matlab and

all experiments are performed on an Intel P4 2.0GHz CPU.

6.2 Dynamic Correlation

The perturbation and reconstruction methods investi-

gated in our experiments are summarized in Table 3, where

“N” stands for noise and “R” for reconstruction. The of-

fline algorithms, for both perturbation and reconstruction,

are essentially the existing work on the static, relational

data model, using PCA on the entire stream history to iden-

tify correlations and add or remove noise accordingly. Ex-

cept otherwise specified, we set the number of principal

components k to 10. Although the offline algorithms may

not be applicable in a streaming setting due to large stor-

age requirements, they are included for comparison and we

Perturbation i.i.d-N offline-N online-N:SCAN

Reconstruction baseline offline-R online-R:SCOR

Table 3. Perturbation/Reconstruction Method

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

i.i.d-N offline-N online-N

R
e
c
o

n
s
tr

u
c
ti

o
n

 E
rr

o
r

SCOR

offline-R

(a) Reconstruction Error: SCOR vs.

offline-R

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of principal components k

R
e

co
n

st
ru

ct
io

n
 e

rr
o

r

i.i.d−N

offline−N

online−N

dash: offline−R

solid: online−R

(b) Reconstruction Error: vary k

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

Discrepancy

P
ri
va

cy

i.i.d−N

offline−N

SCAN

baseline

(c) Privacy vs. Discrepancy, online-R:

Lab data set

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

Discrepancy

P
ri
va

cy

i.i.d−N

offline−N

SCAN

baseline

(d) Privacy vs. Discrepancy, online-R:

Chlorine data set

Figure 4. Privacy Preservation for Streams with Dynamic Correlations

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

Discrepancy

P
ri
va

cy

i.i.d−N

SACAN

baseline

(a) Privacy vs. Discrepancy: Chlorine

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

Discrepancy

P
ri
va

cy

i.i.d−N

SACAN

baseline

(b) Privacy vs. Discrepancy: Stock

Figure 5. Privacy vs. Discrepancy: Online
Reconstruction

show that, besides high overheads, their performance is sub-

optimal due to the time-evolving nature of streams. Finally,

baseline reconstruction is simply the perturbed data them-

selves (i.e., no attempt to recover the original data).

Reconstruction Error Figure 4(a) shows the reconstruc-

tion error of online and offline reconstruction, w.r.t all types

of noise. The figure presents results from Lab data with dis-

crepancy is set to 10%. In all cases, SCOR clearly outper-

forms the offline method. The main reason is that offline-R

has considerable projection error for streams with dynami-

cally evolving correlation, whereas SCOR has almost neg-

ligible projection error and its reconstruction error is domi-

nated by the remaining noise. Similar phenomena were ob-

served for other discrepancy values. Threfore, online recon-

struction should be the candidate for measuring the privacy

of the perturbed data.

Effect of k The number of principal components k will

affect both the projection error and the remaining noise,

which in turn have an impact on the overall reconstruction

error. Figure 4(b) studies the effect of k on both offline-

R and online-R on the Lab data with discrepancy fixed at

10%. For both approaches, reconstruction errors decrease

as k increases. Two interesting facts are reflected. First,

online-R requires smaller k to reach a “flat,” stable recon-

struction error. This is beneficial since both the computation

and memory cost increase in proportion to k, as we will see

in Section 6.4. Second, online-R achieves smaller recon-

struction error than offline-R, for all types of noise. This

reinforces our decision measure to the privacy of the per-

turbed data using online-R (SCOR).

Perturbation Performance Next, we measure the ability

of different perturbation methods to preserve privacy of data

streams with dynamic correlations. Results on the Lab and

Chlorine data are presented in figures 4(c) and 4(d). Clearly,

for both data streams, SCAN achieves the best privacy over

all discrepancy values. SCAN effectively achieves the best

privacy w.r.t. the allowed discrepancy. Compared to the

baseline method, online-R removes no noise at all from

SCAN.

6.3 Dynamic Autocorrelation

This section presents the results that demonstrate the cor-

rectness and effectiveness of our algorithms for data pertur-

bation in streams with autocorrelation. In all experiments,

except otherwise specified, the window size h is set to 300
and the number of principal components k is 10. Since there

is no previous work that explores autocorrelation in the of-

fline case for privacy preservation, we compare our method

against i.i.d. noise and we use the online reconstruction al-

gorithm proposed in this paper, SACOR, in order to mea-

sure privacy.

Effectiveness of SACAN The key idea of SACAN is to

track the data stream’s autocorrelation in an online fashion

and produce noise with similar autocorrelation. To illus-

trate the effectiveness of SACAN, we apply SACAN and

i.i.d. noise on different types of streams. We show the re-

sults from the Chlorine and Stock data sets in figure 6. The

discrepancy is set to 10% for all experiments. We observe

from figure 6(a) and 6(c) that SACAN initally produces

i.i.d. noise but it is quickly able to estimate and track the

autocorrelation of the input stream. Hence, SACAN adds

random noise that closely follows the estimated autocorre-

lation. Intuitively, the noise generated by SACAN exhibits:

1) the same frequency as the input data stream; 2.) ampli-

tude that is determined by the discrepancy. Thus, since the

SACAN perturbation follows the same trend as the input

stream, it is hardly distinguishable or separable once added.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−3

−2

−1

0

1

2

3

4

Time

Data

Noise

(a) Chlorine: SACAN

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−3

−2

−1

0

1

2

3

Time

Data

Noise

(b) Chlorine: i.i.d

0 1000 2000 3000 4000 5000 6000 7000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time

Data

Noise

(c) Stock: SACAN

0 1000 2000 3000 4000 5000 6000 7000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time

Data

Noise

(d) Stock: i.i.d.

Figure 6. Online Random Noise for Stream with Autocorrelation

50 100 150 200
3

4

5

6

7

8

9

10

11

12

Number of streams

T
im

e
 p

e
r

tu
p

le
 (

m
s)

SCAN on Lab Data Set

(a) Time vs. Number of Streams

5 10 15 20 25 30
5

6

7

8

9

10

11

12

Number of principal components

T
im

e
 p

e
r

tu
p

le
 (

m
s)

SCAN on Lab Data Set 100 streams

(b) Time vs. Number of Principal

Components

Figure 7. Running Time of SCAN

The advantage of SACAN becomes clear when comparing

the results shown in figures 6(b) (SACAN) and 6(d) (i.i.d

noise).

Privacy of SACAN and Effectiveness of SACOR Using

SACOR for online reconstruction, more than 1
3 of the i.i.d.

noise added to the Chlorine and Stock streams can be re-

moved. However, the noise produced by SACAN could not

be removed at all. Figure 5 demonstrates these results, for

varying discrepancy. The reconstruction error from SACOR

is used to measure privacy. Baseline is the discrepancy be-

tween perturbed and input streams (i.e., no attempt at re-

construction). Since SACAN produces noise that follows

the same trend as the input data stream, it is hard to remove

any such noise from the perturbed data.

6.4 Cost Analysis

The cost metrics include the computational require-

ments, measured in seconds, and the memory consump-

tion, measured in bytes. Figure 7 shows the running time of

SCAN on the Lab data set. Figure 7(a) investigates the ef-

fects of increasing the number of input streams N while fix-

ing k = 10, whereas the second experiment studies the im-

pact of keeping different number of principal components

with N = 100 input streams. In both cases, we take the av-

erage processing time per tuple, consisting of N elements,

one from each input stream. The running time of SCAN is

linear w.r.t. the number of input streams and almost linear

w.r.t. the number of principal components. This indicates

that it has good scalability. On average, SCAN is able to

process input from hundreds of streams in a few millisec-

onds. The same experiments performed for other online

algorithms (SCOR, SACAN, SACOR) lead to similar ob-

servations.

Memory consumption for all of our algorithms is domi-

nated by two factors: 1) the online estimation of local prin-

cipal components, either for correlation or for autocorre-

lation; 2) the number of tuples that need to be buffered.

For SCAN and SCOR no buffering is required. Hence,

memory consumption memory is required only for the k
local principal component directions, each of which is rep-

resented by an N -dimensional vector, where N is the num-

ber of input streams. Therefore, the total memory required

is Nk|R|, where |R| is the floating point representation

size. For SACAN/SACOR, each principal direction is an

h-dimensional vector. Additionally, the last h values need

to be buffered, since the entire window is needed to update

the principal direction estimates. Hence, the total memory

consumption is hk|R| + h|R|.

6.5 Discussion

The experimental evaluation validates the superiority of

our approaches. Essentially, for both correlations and au-

tocorrelation, our algorithms are able to produce random

noise that follows the same trend as the input streams, in a

online fashion. In addition, our algorithms have small com-

putation and memory overhead. Finally, we should point

out that, with relatively small amount of noise injected into

the original data streams, regardless of the type of the noise,

the principal components of the perturbed data will be a

good approximation of input data streams. Of course, there

are ways to mathematically infer the principal components

of the input data streams, given the perturbed data streams

and some knowledge of the noise properties, such as its dis-

tribution and variance. However, in this paper, we do not

consider releasing any knowledge about the noise. In fact,

we believe this is the right choice as the goal is to maxi-

mally preserve the privacy, while maintaining certain utility.

Releasing information about the noise might seriously com-

promise privacy. The assumption that injected noise cannot

be too large is automatically guaranteed by the utility re-

quirement of the target mining application. Hence, the esti-

mates for the number of dominant principal components at

reconstruction will be similar to that of perturbation. This

justifies using the same number of principal components for

both reconstruction and perturbation. However, different k
in perturbation and reconstruction does not affect the trend

and phenomena in our experiments.

7. Conclusion

Data streams in the real world typically exhibit both sig-

nificant correlations as well as autocorrelation, thereby pro-

viding ample opportunities for adversaries to breach pri-

vacy. In this paper we develop the basic building blocks

for privacy preservation on numerical streams. In particu-

lar, we focus on the fundamental cases of correlation across

multiple streams and of autocorrelation within one stream.

We present methods to dynamically track both and subse-

quently add noise that “mirrors” these statistical properties,

making it indistinguishable from the original data. Thus,

our techniques prevent adversaries from leveraging these

properties to remove the noise and thereby breach privacy.

We provide both a mathematical analysis and experimen-

tal evaluation on real data to validate the correctness, effi-

ciency, and effectiveness of our algorithms. Our techniques

track the evolving nature of these relationships and achieve

much better results than previous static, global approaches.

Furthermore, to the best of our knowledge, autocorrelation-

based attacks have not been previously addressed.

References

[1] C. C. Aggarwal and P. S. Yu. A condensation approach to

privacy preserving data mining. In EDBT, 2004.
[2] D. Agrawal and C. C. Aggarwal. On the design and quan-

tification of privacy preserving data mining algorithms. In

PODS, 2001.
[3] R. Agrawal and R. Srikant. Privacy preserving data mining.

In SIGMOD, 2000.
[4] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving

olap. In SIGMOD, 2005.
[5] S. Agrawal and J. R. Haritsa. A framework for high-accuracy

privacy-preserving mining. In ICDE, 2005.
[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.

Models and issues in data stream systems. In PODS, 2002.
[7] E. Bertino, B. Ooi, Y. Yang, and R. Deng. Privacy and owner-

ship preserving of outsourced medical data. In ICDE, 2005.
[8] J. Bethencourt, D. Song, and B. Waters. Constructions and

practical applications for private stream searching. In IEEE

Symposium on Security and Privacy, 2006.
[9] P. J. Brockwell and R. A. Davis. Introduction to Time Series

and Forecasing. Springer, 2nd edition, 2003.
[10] K. Chen and L. Liu. Privacy preserving data classification

with rotation perturbation. In ICDM, 2005.
[11] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and

W. Hong. Model-driven data acquisition in sensor networks.

In VLDB, 2005.
[12] W. Du and Z. Zhan. Using randomized response techniques

for privacy-preserving data mining. In SIGKDD, 2003.

[13] EPANET, 2002. http://www.epa.gov/ORD/NRMRL/

wswrd/epanet.html.
[14] European-Union. European union:directive on pri-

vacy protection, 2002. http://europa.eu.int/eur-

lex/pri/en/oj/dat/2002/l 201/l 20120020731en00370047.pdf.
[15] A. Evfimevski, J. Gehrke, and R. Srikant. Limiting privacy

breaches in privacy preserving data mining. In PODS, 2003.
[16] A. Evfimievski, R. Srikant, R. Agarwal, and J. Gehrke. Pri-

vacy preserving mining of association rules. In SIGKDD,

2002.
[17] M. Ghil, M. Allen, M. Dettinger, K. Ide, D. Kondrashov,

M. Mann, A. Robertson, A. Saunders, Y. Tian, F. Varadi, and

P. Yiou. Advanced spectral methods for climatic time series.

Rev. Geophys., 40(1), 2002.
[18] S. Guha, D. Gunopulos, and N. Koudas. Correlating syn-

chronous and asynchronous data streams. In KDD, 2003.
[19] S. Haykin. Adaptive Filter Theory. Prentice-Hall, 4th edi-

tion, 2002.
[20] Z. Huang, W. Du, and B. Chen. Deriving private information

from randomized data. In SIGMOD, 2005.
[21] INET ATS, Inc. http://www.inetats.com/.
[22] I. T. Jolliffe. Principal Component Analysis. Springer, 2nd

edition, 2002.
[23] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On

the privacy preserving properties of random data perturba-

tion techniques. In ICDM, 2003.
[24] D. Kifer and J. Gehrke. Injecting utility into anonymized

datasets. In SIGMOD, 2006.
[25] F. Li, C. Chang, G. Kollios, and A. Bestavros. Characteriz-

ing and explorting reference locality for data stream applica-

tions. In ICDE, 2006.
[26] Y. Lindell and B. Pinkas. Privacy preserving data mining. In

CRYTO, 2000.
[27] K. Liu, H. Kargupta, and J. Ryan. Random Projection-Based

Multiplicative Data Perturbation for Privacy Preserving Dis-

tributed Data Mining. IEEE TKDE, 18(1), 2006.
[28] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkita-

subramaniam. l-diversity: Privacy beyond k-anonymity. In

ICDE, 2006.
[29] S. Muthukrishnan. Data streams: Algorithms and applica-

tions. Technical report, Computer Science Department, Rut-

gers University, 2003.
[30] A. V. Oppenheim and A. S. Wilsky. Signals and Systems.

Prentice-Hall, 1983.
[31] R. Ostrovsky and W. Skeith. Private searching on streaming

data. In CRYPTO, 2005.
[32] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern

discovery in multiple time-series. In VLDB, 2005.
[33] S. Papadimitriou and P. Yu. Optimal multi-scale patterns in

time series streams. In SIGMOD, 2006.
[34] R. O. Schmidt. Multiple emitter location and signal parame-

ter estimation. IEEE Trans. Ant. Prop., 34(3), 1986.
[35] L. Sweeney. k-anonymity: a model for protecting privacy.

Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 10(5), 2002.
[36] K. Thearling. Data mining and privacy: A conflict in making.

In DS*, 1998.
[37] J. Vaidya and C. W. Clifton. Privacy prserving association

rule mining in vertically partitionaed data. In SIGKDD,

2002.
[38] K. Xiao and Y. Tao. Personalized privacy preservation. In

SIGMOD, 2006.
[39] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of

thousands of data streams in real time. In VLDB, 2002.

