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Abstract—This paper revisits the classical problem of multi-
query optimization in the context of RDF/SPARQL. We show
that the techniques developed for relational and semi-structured
data/query languages are hard, if not impossible, to be extended
to account for RDF data model and graph query patterns
expressed in SPARQL. In light of the NP-hardness of the
multi-query optimization for SPARQL, we propose heuristic
algorithms that partition the input batch of queries into groups
such that each group of queries can be optimized together.
An essential component of the optimization incorporates an
efficient algorithm to discover the common sub-structures of
multiple SPARQL queries and an effective cost model to compare
candidate execution plans. Since our optimization techniques do
not make any assumption about the underlying SPARQL query
engine, they have the advantage of being portable across different
RDF stores. The extensive experimental studies, performed on
three popular RDF stores, show that the proposed techniques
are effective, efficient and scalable.

I. INTRODUCTION

With the proliferation of RDF data, over the years, a lot

of effort has been devoted in building RDF stores that aim to

efficiently answer graph pattern queries expressed in SPARQL.

There are generally two routes to building RDF stores: (i)

migrating the schema-relax RDF data to relational data, e.g.,

Virtuoso, Jena SDB, Sesame, 3store; and (ii) building generic

RDF stores from scratch, e.g., Jena TDB, RDF-3X, 4store,
Sesame Native. As RDF data are schema-relax [26] and

graph pattern queries in SPARQL typically involve many

joins [1], [19], a full spectrum of techniques have been

proposed to address the new challenges. For instance, vertical

partitioning was proposed for relational backend [1]; side-

way information passing technique was applied for scalable

join processing [19]; and various compressing and indexing

techniques were designed for small memory footprint [3], [18].

With the infrastructure being built, the community is turning

to develop more advanced applications, e.g., integrating and

harvesting knowledge on the Web [24], rewriting queries for

fine-grained access control [17] and inference [13]. In such

applications, a SPARQL query over views is often rewritten

into an equivalent batch of SPARQL queries for evaluation

over the base data. As the semantics of the rewritten queries

in the same batch are commonly overlapped [13], [17], there

is much room for sharing computation when executing these

rewritten queries. This observation motivates us to revisit the

classical problem of multi-query optimization (MQO) in the

context of RDF and SPARQL.

Not surprisingly, MQO for SPARQL queries is NP-hard, con-

sidering that MQO for relational queries is NP-hard [30] and

the established equivalence between SPARQL and relational

algebra [2], [23]. It is tempting to apply the MQO techniques

developed in relational systems to address the MQO problem

in SPARQL. For instance, the work by P. Roy et al. [27]

represented query plans in AND-OR DAGs and used heuristics

to partially materialize intermediate results that could result in

a promising query throughput. Similar themes can be seen in

a variety of contexts, including relational queries [30], [31],

XQueries [6], aggregation queries [36], or more recently as

full-reducer tree queries [15]. These off-the-shelf solutions,

however, are hard to be engineered into RDF query engines in

practice. The first source of complexity for using the relational

techniques and the like stems from the physical design of

RDF data itself. While indexing and storing relational data

commonly conform to a carefully calibrated relational schema,

many variances existed for RDF data; e.g., the giant triple table

adopted in 3store and RDF-3X, the property table in Jena, and

more recently the use of vertical partitioning to store RDF data.

These, together with the disparate indexing techniques, make

the cost estimation for an individual query operator (the corner

stone for any MQO technique) highly error-prone and store

dependent. Moreover, as observed in previous works [1], [19],

SPARQL queries feature more joins than typical SQL queries –

a fact that is also evident by comparing TPC benchmarks [34]

with the benchmarks for RDF stores [5], [9], [11], [28]. While

existing techniques commonly root on looking for the best plan

in a greedy fashion, comparing the cost for alternative plans

becomes impractical in the context of SPARQL, as the error

for selectivity estimation inevitably increases when the number

of joins increases [18], [33]. Finally, in W3C’s envision [26],

RDF is a very general data model, therefore, knowledge and

facts can be seamlessly harvested and integrated from various

SPARQL endpoints on the Web [38] (powered by different

RDF stores). While a specialized MQO solution may serve

inside the optimizer of certain RDF stores, it is more appealing

to have a generic MQO framework that could smoothly fit

into any SPARQL endpoint, which would be coherent with

the design principle of RDF data model.

With the above challenges in mind, in this paper, we study

MQO of SPARQL queries over RDF data, with the objective to

minimize total query evaluation time. Specifically, we employ

query rewriting techniques to achieve desirable and consistent

performance for MQO across different RDF stores, with the

guarantee of soundness and completeness. While the previous

works consider alignments for the common substructures

in acyclic query plans [15], [27], we set forth to identify



common subqueries (cyclic query graphs included) and rewrite

them with SPARQL in a meaningful way. Unlike [27], which

requires explicitly materializing and indexing the common

intermediate results, our approach works on top of any RDF

engine and ensures that the underlying RDF stores can au-

tomatically cache and reuse such results. In addition, a full

range of optimization techniques in different RDF stores and

SPARQL query optimizers can seamlessly support our MQO

technique. Our contributions can be summarized as follows.

• We present a generic technique for MQO in SPARQL.

Unlike the previous works that focus on synthesizing

query plans, our technique summarizes similarity in the

structure of SPARQL queries and takes into account the

unique properties (e.g., cyclic query patterns) of SPARQL.

• Our MQO approach relies on query rewriting, which is

built on the algorithms for finding common substruc-

tures. In addition, we tailored efficient and effective

optimizations for finding common subqueries in a batch

of SPARQL queries.

• We proposed a practical cost model. Our choice of the

cost model is determined both by the idiosyncrasies of

the SPARQL language and by our empirical digest of

how SPARQL queries are executed in existing RDF data

management systems.

• Extensive experiments with large RDF data (close to 10

million triples) performed on three different RDF stores

consistently demonstrate the efficiency and effectiveness

of our approach over the baseline methods.

II. PRELIMINARIES

A. SPARQL

SPARQL, a W3C recommendation, is a pattern-matching

query language. There are two types of SPARQL queries in

which we are going to focus our interest:

Type 1: Q := SELECT RD WHERE GP

Type 2: QOPT := SELECT RD WHERE GP (OPTIONAL GPOPT)
+

where, GP is a set of triple patterns, i.e., triples involving both

variables and constants, and RD is the result description. Given

an RDF data graph D, the triple pattern GP searches on D for a

set of subgraphs of D, each of which matches the graph pattern

in GP (by binding pattern variables to values in the subgraph).

The result description RD for both query types contains a

subset of variables in the graph patterns, similar to a projection

in SQL. The difference between the two types is clearly in

the OPTIONAL clause. Unlike query Q, in the QOPT query a

subgraph of D might match not only the pattern in GP but

also the pattern (combination) of GP and GPOPT. While more

than one OPTIONAL clauses are allowed, subgraph matching

with D independently considers the combination of pattern

GP with each of the OPTIONAL clauses. Therefore, with n
OPTIONAL clauses in query QOPT, the query returns as results

the subgraphs that match any of the n (GP + GPOPT) pattern

combinations, plus the results that match just the GP pattern.

Consider the data and SPARQL query in Figure 1(a) and (b).

The query looks for triples whose subjects (each corresponding

subj pred obj

p1 name ”Alice”
p1 zip 10001
p1 mbox alice@home
p1 mbox alice@work
p1 www http://home/alice
p2 name ”Bob”
p2 zip ”10001”
p3 name ”Ella”
p3 zip ”10001”
p3 www http://work/ella
p4 name ”Tim”
p4 zip ”11234”

(a) Input data D

SELECT ?name, ?mail, ?hpage
WHERE { ?x name ?name, ?x zip 10001,

OPTIONAL {?x mbox ?mail }
OPTIONAL {?x www ?hpage }}

(b) Example query QOPT

name mail hpage

”Alice” alice@home
”Alice” alice@work
”Alice” http://home/alice
”Bob”
”Ella” http://work/ella

(c) Output QOPT(D)

Fig. 1. An example

to a person) have the predicates name and zip, with the latter

having the value 10001 as object. For these triples, it returns

the object of the name predicate. Due to the first OPTIONAL

clause, the query also returns the object of predicate mbox, if

the predicate exists. Due to the second OPTIONAL clause, the

query also independently returns the object of predicate www,

if the predicate exists. Evaluating the query over the input

data D (can be viewed as a graph) results in output QOPT(D),

as shown in Figure 1(c).
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Fig. 2. A query graph

We represent queries graphically, and

associate with each query Q (QOPT) a

query graph pattern corresponding to

its pattern GP (resp., GP (OPTIONAL

GPOPT)
+). Formally, a query graph pat-

tern is a 4-tuple (V,E, ν, µ) where V
and E stand for vertices and edges, ν
and µ are two functions which assign

labels (i.e., constants and variables) to vertices and edges of

GP respectively. Vertices represent the subjects and objects of

a triple; gray vertices represent constants, and white vertices

represent variables. Edges represent predicates; dashed edges

represent predicates in the optional patterns GPOPT, and solid

edges represent predicates in the required patterns GP. Fig-

ure 2 shows a pictorial example for the query in Figure 1(b).

Its query graph patterns GP and GPOPTs are defined sepa-

rately. GP is defined as (V,E, ν, µ), where V = {v1, v2, v3},
E = {e1, e2} and the two naming functions ν = {ν1 : v1→
?x, ν2 : v2→?n, ν3 : v3→10001}, µ = {µ1 : e1→name, µ2 :
e2 → zip}. For the two OPTIONALs, they are defined as

GPOPT1 = (V ′, E′, ν′, µ′), where V ′ = {v1, v4}, E
′ = {e3},

ν′ = {ν′1 : v1→?x, ν′2 : v4→?m}, µ′ = {µ′1 : e3→mbox};
Likewise, GPOPT2 = (V ′′, E′′, ν′′, µ′′), where V ′′ = {v1, v5},
E′′ = {e4}, ν′′ = {ν′′1 : v1 → ?x, ν′′2 : v5 → ?p},
µ′′ = {µ′′1 : e4→www}.

B. Problem statement

Formally, the problem of MQO in SPARQL, from query

rewriting perspective, is defined as follows: Given a data graph

G, and a set Q of Type 1 queries, compute a new set QOPT of

Type 1 and Type 2 queries, evaluate QOPT over G and distribute

the results to the queries in Q. There are two requirements

for the rewriting approach to MQO: (i) The query results of

QOPT can be used to produce the same results as executing the

original queries in Q, which ensures the soundness and com-

pleteness of the rewriting; and (ii) the evaluation time of QOPT,
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OPTIONAL {?x P3 ?y, v1 P5 ?y, ?w P4 v1 }
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(e) Example query QOPT

SELECT *
WHERE { ?w P4 v1 ,

OPTIONAL {?x1 P1 ?z1 , ?y1 P2 ?z1 , ?y1 P3 ?w }
OPTIONAL {?x2 P1 ?z2 , ?y2 P2 ?z2 , ?t2 P3 ?x2 , ?t2 P5 v1 }
OPTIONAL {?x3 P1 ?z3 , ?y3 P2 ?z3 , ?x3 P3 ?y3 , v1 P5 ?y3 }
OPTIONAL {?x4 P1 ?z4 , ?y4 P2 ?z4 , ?y4 P3 ?u4 , ?w P6 ?u4 }

}

pattern p α(p)

?x P1 ?z 15%
?y P2 ?z 9%
?y P3 ?w 18%
?w P4 v1 4%
?t P5 v1 2%
v1 P5 ?t 7%
?w P6 ?u 13%

(f) Structure and cost-based optimization

Fig. 3. Multi-query optimization example

including query rewriting, execution, and result distribution,

should be less than the baseline of executing the queries in

Q sequentially. To ease presentation, we assume that the input

queries in Q are of Type 1, while the output (optimized) queries

are either of Type 1 or Type 2. Our optimization techniques can

easily handle more general scenarios where both query types

are given as input (section IV).

We use a simple example to illustrate the MQO envisioned

and some challenges for the rewriting approach. Figure 3(a)-

(d) show the graph representation of four queries of Type 1.

Figure 3(e) shows a Type 2 query QOPT that rewrites all four

input queries into one. To generate query QOPT, we identify the

(largest) common subquery in all four queries: the subquery

involving triples ?x P1 ?z, ?y P2 ?z (the second largest com-

mon subquery involves only one predicate, P3 or P4). This

common subquery constitutes the graph pattern GP of QOPT.

The remaining subquery of each individual query generates an

OPTIONAL clause in QOPT. Note that by generating a query like

QOPT, the triple patterns in GP of QOPT are evaluated only once,

instead of being evaluated for multiple times when the input

queries are executed independently. Intuitively, this is where

the savings MQO could bring from. As mentioned earlier, MQO

must consider generic directed graphs, possibly with cyclic

patterns, which makes it hard to adapt existing techniques for

this optimization. Also, the proposed optimization has a unique

characteristic that it leverages SPARQL-specific features such

as the OPTIONAL clause for query rewriting.

Note that the above rewriting only considers query struc-

tures, without considering query selectivity. Suppose we know

the selectivity α(p) of each pattern p in the queries, as shown

in Figure 3(f). Let us assume a simple cost model that the cost

of each query Q or QOPT is equal to the minimum selectivity of

the patterns in GP; we ignore for now the cost of OPTIONAL

patterns, which is motivated by how real SPARQL engines

evaluate queries (The actual cost model used in this paper is

discussed in Section III-D.). So, the cost for all four queries

Q1 to Q4 is respectively 4, 2, 4 and 4 (with queries executed

on a dataset of size 100). Therefore, executing all queries

//J :Jaccard

Input: Set Q = {Q1, . . ., Qn}
Output: Set QOPT of optimized queries

// Step 1: Bootstrapping the query optimizer

Run k-means on Q to generate a setM = {M1, . . ., Mk} of k query1

groups based on query similarity in terms of their predicate sets;

// Step 2: Refining query clusters

for each query group M ∈ M do2

Initialize a set C = {C1, . . ., C|M|} of |M| clusters;3

for each query Qi ∈ M, 1 ≤ i ≤ |M| do Ci = Qi;4

while ∃ untested pair (Ci, Ci′ ) with Jmax(Ci, Ci′ ) do5

Let Qii′ = {Qii′

1 , . . . , Qii′

m } be the queries of Ci ∪ Ci′ ;6

Let S be the top-s most selective triple patterns in Qii′ ;7

// Step 2.1: Building compact linegraphs

Let µ∩ ← µ1 ∩ µ2 . . . ∩ µm and τ = {∅};8

for each query Qii′

j ∈ Qii′ do9

Build linegraph L(Qii′

j ) with only the edges in µ∩;10
Keep indegree matrix m−

j
, outdegree matrix m+

j
for L(Qii′

j );11

for each vertex e defined in µ∩ and µ∩(e) 6= ∅ do12

Let I=m−
1 [e] ∩. . .∩m−

m[e] and O=m+
1 [e] ∩. . .∩m+

m[e];13

if I=O=∅ then µ∩(e)
def
= ∅ and τ=τ ∪ {triple pattern on e};14

for L(GPj), 1 ≤ j ≤ m do15

Prune the L(GPj) vertices not in µ∩ and their incident edges;16

// Step 2.2: Building product graphs

Build L(GPp) = L(GP1)⊗ L(GP2)⊗ . . .⊗ L(GPm);17

// Step 2.3: Finding cliques in product graphs

{K1, . . . , Kr} = AllMaximalClique(L(GPp));18

if r = 0 then goto 22;19

for each Ki, i = 1, 2, . . . , r do20

find all K′
i ⊆ Ki having the maximal strong covering tree in Ki;21

sort SubQ={K′
1, . . . , K

′
t} ∪ τ in descending order by size;22

Initialize K = ∅;23

for each qi ∈ SubQ, i = 1, 2, . . . , t + |τ | do24

if S ∩ qi 6= ∅ then Set K = qi and break25

if K 6= ∅ then26

Let Ctmp = Ci ∪ Ci′ and cost(Ctmp)=cost(sub-query for K);27

if cost(Ctmp) ≤ cost(Ci) + cost(Ci′ ) then28

Put K with Ctmp;29

remove Ci, Ci′ from C and add Ctmp;30

// Step 3: Generating optimized queries

for each cluster Ci in C do31

if a clique K is associated with Ci then32

Rewrite queries in Ci using triple patterns in K;33

Output the query into set QOPT;34

return QOPT.35

Fig. 4. Multi-query optimization algorithm

individually (without optimization) costs 4 + 2 + 4 + 4 = 14.
In comparison, the cost of the structure-based only optimized

query in Figure 3(e) is 9, resulting in a saving of approximately

30%. Now, consider another rewriting in Figure 3(f) that

results in from optimization along the second largest common

subquery that just contains P4. The cost for this query is only

4, which leads to even more savings, although the rewriting

utilizes a smaller common subquery. As this simple example

illustrates, it is critical for MQO to construct a cost model that

integrates query structure overlap with selectivity estimation.

III. THE ALGORITHM

Our MQO algorithm, shown in Figure 4, accepts as input a

set Q = {Q1, . . ., Qn} of n queries over a graph G. Without

loss of generality, assume the sets of variables used in different

queries are distinct. The algorithm identifies whether there is

a cost-effective way to share the evaluation of structurally-

overlapping graph patterns among the queries in Q. At a high

level, the algorithm works as follows: (1) It partitions the input

queries into groups, where queries in the same group are more

likely to share common sub-queries that can be optimized

through query rewriting; (2) it rewrites a number of Type 1



queries in each group to their correspondent cost-efficient

Type 2 queries; and (3) it executes the rewritten queries and

distributes the query results to the original input queries (along

with a refinement). Several challenges arise during the above

process: (i) There exists an exponential number of ways to

partition the input queries. We thus need a heuristic to prune

out the space of less optimal partitioning of queries. (ii) We

need an efficient algorithm to identify potential common sub-

queries for a given query group. And (iii) since different

common sub-queries result in different query rewritings, we

need a robust cost model to compare candidate rewriting

strategies. We describe how we tackle these challenges next.

A. Bootstrapping

Finding structural overlaps for a set of queries amounts to

finding the isomorphic subgraphs among the corresponding

query graphs. This process is computationally expensive (the

problem is NP-hard [4] in general), so ideally we would

like to find these overlaps only for groups of queries that

will eventually be optimized (rewritten). That is, we want

to minimize (or ideally eliminate) the computation spent on

identifying common subgraphs for query groups that lead to

less optimal MQO solutions. One heuristic we adopt is to

quickly prune out subsets of queries that clearly share little

in query graphs, without going to the next expensive step of

computing their common subqueries; therefore, the group of

queries that have few predicates in common will be pruned

from further consideration for optimization. We thus define

the similarity metric for two queries as the Jaccard similarity

of their predicate sets. The rational is that if the Jaccard

similarity of two queries is small, their structural overlap in

query graphs must also be small; so it is safe to not consider

grouping such queries for MQO. We implement this heuristic

as a bootstrap step in line 1 using k-means clustering (with

Jaccard as the similarity metric) for an initial partitioning of

the input queries into a set M of k query groups. Notice

that the similarity metric identifies queries with substantial

overlaps in their predicate sets, ignoring for now the common

sub-structure and the selectivity of these predicates.

B. Refining query clusters

Starting with the k-means generated groups M, we refine

the partitioning of queries further based on their structure

similarity and the estimated cost. To this end, we consider each

query group generated from the k-means clustering M ∈ M
in isolation (since queries across groups are guaranteed to be

sufficiently different) and perform the following steps: In lines

5–30, we (incrementally) merge structurally similar queries

within M through hierarchical clustering [14], and generate

query clusters such that each query cluster is optimized

together (i.e., results in one Type 2 query). Initially, we create

one singleton cluster Ci for each query Qi of M (line 4).
Given two clusters Ci and Ci′ , we have to determine whether

it is more cost-efficient to merge the two query clusters into a

single cluster (i.e., a single Type 2 query) than to keep the two

clusters separate (i.e., executing the corresponding two queries

independently). From the previous iteration, we already know

the cost of the optimized queries for each of the Ci and Ci′

clusters. To determine the cost of the merged cluster, we have

to compute the query that merges all the queries in Ci and Ci′

through rewriting; which requires us to compute the common

substructure of all these queries, and to estimate the cost of the

rewritten query generated from the merged clusters. For the

cost computation, we do some preliminary work here (line

7) by identifying the most selective triple patterns from the

two clusters (selectivity is estimated by [33]). Note that our

refinement of M might lead to more than one queries; one for

each cluster of M, in the form of either Type 1 or Type 2.

Finding common substructures: While finding the maxi-

mum common subgraph for two graphs is known to be NP-

hard [4], the challenge here is asymptotically harder as it

requires finding the largest common substructures for multiple

graphs. Existing solutions on finding common subgraphs also

assume untyped edges and nodes in undirected graphs. How-

ever, in our case the graphs represent queries, and different

triple patterns might correspond to different semantics (i.e.,

typed and directed). Thus, the predicates and the constants as-

sociated with nodes must be taken into consideration. This mix

of typed, constant and variable nodes/edges is not typical in

classical graph algorithms, and therefore existing solutions can

not be directly applied for query optimization. We therefore

propose an efficient algorithm to address these challenges.

In a nutshell, our algorithm follows the principle of finding

the maximal common edge subgraphs (MCES) [25], [37].

Concisely, three major sub-steps are involved (steps 2.1 to

2.3 in Figure 4): (a) transforming the input query graphs

into the equivalent linegraph representations; (b) generating a

product graph from the linegraphs; and (c) executing a tailored

clique detection algorithm to find the maximal cliques in the

product graph (a maximal clique corresponds to an MCES).

We describe these sub-steps in details next.

Step 2.1: Building compact linegraphs: The linegraph L(G)
of a graph G is a directed graph built as follows. Each node

in L(G) corresponds to an edge in G, and there is an edge be-

tween two nodes in L(G) if the corresponding edges in G share

a common node. Although it is straightforward to transform

a graph into its linegraph representation, the context of MQO

raises new requirements for the linegraph construction. We

represent the linegraph of a query graph pattern in a 4-tuple,
defined as L(G) = (V, E , π, ω). During linegraph construction,
besides the inversion of nodes and edges for the query graph,

our transformation also assigns to each edge in the linegraph

one of 4 labels (ℓ0 ∼ ℓ3). Specifically, for two triple patterns,

there are 4 possible joins between their subjects and objects (ℓ0
= subject-subject, ℓ1 = subject-object, ℓ2 = object-subject, ℓ3
= object-object). The assignment of labels on linegraph edges

captures these four join types (useful for pruning and will

become clear shortly). Figure 5 (a)-(d) shows the linegraphs

for the queries in Figure 3(a)-(d).

The classical solution for finding common substructures

of input graphs requires building Cartesian products on their
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Fig. 5. (a)–(d) linegraphs, (e) their common substructures

linegraphs. This raises challenges in scalability when finding

the maximum common substructure for multiple queries in

one shot. To avoid the foreseeable explosion, we propose

fine-grained optimizations (lines 8–16) to keep linegraphs as

small as possible so that only the most promising substructures

would be transformed into linegraphs, with the rest being

temporarily masked from further processing.

To achieve the above, queries in Qii′ pass through a

two-stage optimization. In the first stage (lines 8–11), we

identify (line 8) the common predicates in Qii′ by building

the intersection µ∩ for all the labels defined in the µ’s (recall
that function µ assigns predicate names to graph edges).

Predicates that are not common to all queries can be safely

pruned, since by definition they are not part of any common

substructure, e.g.,P5 and P6 in Figure 3. While computing

the intersection of predicates, the algorithm also checks for

compatibility between the corresponding subjects and objects,

so that same-label predicates with different subjects/objects

are not added into µ∩. In addition, we maintain two adjacency

matrices for a linegraph L(GP), namely, the indegree matrix

m− storing all incoming, and the outdegree matrix m+ storing

all outgoing edges from L(GP) vertices. For a vertex v, we use
m−[v] and m+[v], respectively, to denote the portion of the

adjacency matrices storing the incoming and outgoing edges

of v. For example, the adjacency matrices for vertex P3 in

linegraph L(Q1) of Figure 5 are m+
1 [P3] = [∅, ℓ0, ∅, ℓ2, ∅, ∅],

m−1 [P3] = [∅, ℓ0, ∅, ℓ1, ∅, ∅], while for linegraph L(Q2) they

are m+
2 [P3] = [ℓ2, ∅, ∅, ∅, ℓ0, ∅], m

−
2 [P3] = [ℓ1, ∅, ∅, ∅, ℓ0, ∅].

In the second stage (lines 12–16), to further reduce the size

of linegraphs, for each linegraph vertex e, we compute the

Boolean intersection for the m−[e]’s and m+[e]’s from all

linegraphs respectively (line 13). We also prune e from µ∩
if both intersections equal ∅ and set aside the triple pattern

associated with e in a set τ (line 14). Intuitively, this optimiza-

tion acts as a look-ahead step in our algorithm, as it quickly

detects the cases where the common sub-queries involve only

one triple pattern (those in τ ). Moreover, it also improves

the efficiency of the clique detection (step 2.2 and 2.3) due

to the smaller sizes of input linegraphs. Going back to our

example, just by looking at the m−1 , m
+
1 , m

−
2 , m

+
2 , it is easy

to see that the intersection ∩m+
i [P3] = ∩m−i [P3] = ∅ for all

the linegraphs of Figure 5(a)-(d). Therefore, our optimization

temporarily masks P3 (so as P4) from the expensive clique

detection in the following two steps.

Step 2.2: Building product graphs: The product graph

L(GPp) := (Vp, Ep, πp, ωp) of two linegraphs, L(GP1) :=
(V1, E1, π1, ω1) and L(GP2) := (V2, E2, π2, ω2), is denoted as

L(GPp) := L(GP1) ⊗ L(GP2). The vertices Vp in L(GPp)
are defined on the Cartesian product of V1 and V2. In order

to use product graphs in MQO, we optimize the standard

definition with the additional requirement that vertices paired

together must have the same label (i.e., predicate). That is,

Vp := {(v1, v2) | v1 ∈ V1 ∧ v2 ∈ V2 ∧ π1(v1) = π2(v2)},
with the labeling function defined as πp := {πp(v) | πp(v) =
π1(v1), with v = (v1, v2) ∈ Vp}. For the product edges, we

use the standard definition which creates edges in the product

graph between two vertices (v1i, v2i) and (v1j , v2j) in Vp if

either (i) the same edges (v1i, v1j) in E1, and (v2i, v2j) in E2
exist; or (ii) no edges connect v1i with v1j in E1, and v2i
with v2j in E2. The edges due to (i) are termed as strong

connections, while those for (ii) as weak connections [37].

Since the product graph for two linegraphs conforms to the

definition of linegraph, we can recursively build the product

for multiple linegraphs (line 17). Theoretically, there is an

exponential blowup in size when we construct the product for

multiple linegraphs. In practice, thanks to our optimizations in

Steps 2.1 and 2.2, our algorithm is able to accommodate tens to

hundred of queries, and generates the product graph efficiently

(which will be verified through Section V). Figure 5(e) shows

the product linegraph L(GPp) for the running example.

Step 2.3: Finding Cliques in product graphs: A (maximal)

clique with a strong covering tree (a tree only involving strong

connections) in the product graph equals to an MCES – a

(maximal) common sub-query in essence. In addition, we

are interested in finding cost-effective common sub-queries.

To verify if the found common sub-query is selective, it is

checked with the set S (from line 7) of selective query patterns.
In the algorithm, we proceed by finding all maximal cliques

in the product graph (line 18), a process for which many

efficient algorithms exist [16], [21], [35]. For each discovered

clique, we identify its sub-cliques with the maximal strong

covering trees (line 21). For the L(GPp) in Figure 5(e), it

results in one clique (itself): i.e., K ′1 = {P1,P2}. As the cost

of sub-queries is another dimension for query optimization, we

look for the substructures that are both large in size (i.e., the

number of query graph patterns in overlap) and correspond to

selective common sub-queries. Therefore, we first sort SubQ

(contributed byK ′s and τ , line 22) by their sizes in descending
order, and then loop through the sorted list from the beginning

and stop at the first substructure that intersects S (lines 22–
25), i.e., P4 in our example. We then merge (if it is cost-

effective, line 28) the queries whose common sub-query is

reflected in K and also merge their corresponding clusters

into a new cluster (while remembering the found common

sub-query) (lines 26–30). The algorithm repeats lines 5–30
until every possible pair of clusters have been tested and no

new cluster can be generated.

C. Generating optimized queries and distributing results

After the clusters are finalized, the algorithm rewrites each

cluster of queries into one query and thus generates a set of

rewritings QOPT (lines 31–34). The result from evaluating QOPT

over the data is a superset of evaluating the input queries Q



(more expositions in section III-E). Therefore, we must filter

and distribute the results from the execution of QOPT. This

necessitates one more step of parsing the result of QOPT (refer

to Figure 1(c)), which checks each row of the result against

the RD of each query in Q. Note that the result description

RDOPT is always the union of RDis from the queries being

optimized, and we record the mappings between the variables

in the rewritings and the variables in the original input queries.

As in Figure 1(c), the result of a Type 2 query might have

empty (null) columns corresponding to the variables from the

OPTIONAL clause. Therefore, a row in the result of RDOPT

might not conform to the description of every RDi. The

goal of parsing is to identify the valid overlap between each

row of the result and the individual RDi, and return to each

query the result it is supposed to get. To achieve this, the

parsing algorithm performs a Boolean intersection between

each row of result and each RDi: if the columns of this

row corresponding to those columns of RDi are not null, the

algorithm distributes the corresponding part of this row to Qi

as one of its query answers. This step iterates over each row

and each Qi that composed the Type 2 query. The parsing on

the results of QOPT only requires a linear scan on the results

to the rewritten query. Therefore, it can be done on-the-fly as

the results of QOPT is streamed out from the evaluation.

D. Cost model for SPARQL MQO

The design of our cost module is motivated by the way in

which a SPARQL query is evaluated on popular RDF stores.

This includes a well-justified principle that the most selective

triple pattern is evaluated first [33] and that the GPOPT clause

is evaluated on the result of GP (for the fact that GPOPT is a

left-join). This suggests that a good optimization should keep

the result cardinality from the common sub-query as small as

possible for two reasons: 1) The result cardinality of a Type 2

SPARQL query is upper bounded by result cardinality of its

GP clause since GPOPTs are simply left-joins; 2) Intermediate

result from evaluating the GP clause is not well indexed, which

implies that a non-selective GP will result in significantly more

efforts in processing the corresponding rewriting GPOPTs.

In [33], the authors discussed the selectivity estimation

for the conjunctive Basic Graph Patterns (BGP). In a nut-

shell, given a triple pattern t = (s p o), where each entry

could be bound or unbound, its selectivity is estimated by

sel(t) = sel(s) × sel(p) × sel(o). sel is the selectivity

estimation function, whose value falls in the interval of [0, 1].
Specifically, for unbound variable, its selectivity equals 1.
For bound variables/constants, depending on whether it is

a subject, predicate or object, different methods (e.g., [33])

are used to implement sel. Notice that the formula implicitly

assumes statistical independence for the subject, predicate and

object; thus is an approximation. Pre-computed statistics of

the dataset are also required. For a join between two triple

patterns, independence assumption is adopted [33]. However,

in practice, such estimation is not accurate enough for op-

timizing complex queries. The culprit comes from the fact

that as the number of joins increases, the accuracy of the

estimated selectivity drops quickly, resulting in a very loose

estimation [19].

With the above limitations in mind, we propose a cost

function for conjunctive SPARQL query. It has a simple design

and roots on the well justified principle in query optimization

that the selective triple patterns have higher priorities in

evaluation. Our cost model is an incarnation of this intuition,

as in Formula 1:

Cost(Q) =

{

Min(sel(t)) Q is a Type 1 query, t ∈ GP

Min(sel(t)) + ∆ Q is a Type 2 query, t ∈ GP

(1)

For a Type 1 conjunctive query, Formula 1 simply returns

the selectivity for the most selective triple pattern in the

query graph GP as the cost of evaluating Q. For a Type 2

query, the cost is the summation of the cost on evaluating

the common graph pattern GP and the cost on the evaluating

the OPTIONALs, i.e., the cost denoted by ∆. We extrapo-

late (backed by a comprehensive empirical study on three

different RDF query engines) that ∆ is a hidden function

of (i) the cost of GP; (ii) the number of OPTIONALs; and

(iii) the cost of the query pattern of each GPOPT. However,

we observed empirically that when the cost of GP is small

(being selective), ∆ would be a trivial value and Cost(Q)
is mostly credited to the evaluation of GP. Hence, we can

approximate Cost(Q) with the cost of GP in such cases. We

show (experimentally) that using our cost model to choose

a good common substructure can consistently improve the

performance of query evaluation over the pure structure-based

optimization (i.e., without considering the evaluation cost of

common sub-queries) on different RDF stores.

Finally, notice that the proposed cost function requires using

the pre-computed statistics of the RDF dataset to estimate the

selectivity of triple patterns. Therefore, it requires to collect

some statistics from the dataset. This mainly includes (i)

building the histogram for distinct predicates in the dataset

and (ii) that for each disparate predicate, we build histograms

for the subjects and objects attached to this predicate in the

dataset. In practice, for some RDF stores, like Jena, part of

such statistics (e.g., the histogram of predicates) is provided

by the SPARQL query optimizer and is accessible for free;

for the others, e.g., Virtuoso and Sesame, the statistics of the

dataset need to be collected in a preprocessing step.

E. Completeness and soundness of our MQO algorithm

Completeness: Suppose a Type 2 rewritten query QOPT opti-

mizes a set of n Type 1 queries, i.e., Q = {Q1,Q2, . . . ,Qn}.
Without loss of generality, denote the common relation (i.e.,

the common sub-query) used in QOPT as GP and its outer

join relations (i.e., the OPTIONALs) as GPi (i = 1, 2, . . . , n).
As we only consider conjunctive queries as input, hence by

construction Q = ∪n
i=1GP ⋊⋉ GPi and QOPT = ∪n

i=1GP GPi.

By the definition of left outer join , GP ⋊⋉ GPi ⊆ GP GPi

for any i. It follows Q ⊆ QOPT in terms of query results.

Soundness: Soundness requires Q ⊇ QOPT. This is achieved by

evaluating the results from QOPT and distributing the matched



results to correspondent queries in Q (section III-C). As such,

false positives are discarded and the remainings are valid

bindings for one or more graph patterns in Q. Therefore,

Q ⊇ QOPT in terms of results after the refining step.

Completeness and soundness together guarantee that the

final answers resulted by our MQO techniques are equivalent

to the results from evaluating queries in Q independently.

IV. EXTENSIONS

For the ease of presentation, the input queries discussed so

far are Type 1 queries using constants as their predicates. It is

interesting to note that with some minimal modifications to the

algorithm and little preprocessing of the input, the algorithm

in Figure 4 can optimize more general SPARQL queries.

Here, we introduce two simple yet useful extensions: (i)

optimizing input queries with variables as the predicates; and

(ii) optimizing input queries of Type 2 (i.e., with OPTIONALs).

A. Queries with variable predicates

We treat variable predicates slightly differently from the

constant predicates when identifying the structural overlap of

input queries. Basically, a variable predicate from one query

can be matched with any variable predicate in another query.

In addition, each variable predicate of a query will correspond

to one variable vertex in the linegraph representation, but the

main flow of the MQO algorithm remains the same.

B. TYPE 2 queries

Our MQO algorithm takes a batch of Type 1 SPARQL

queries as input and rewrites them to another batch of Type 1

and Type 2 queries. It can be extended to optimize a batch of

input queries with both Type 1 and Type 2 queries.

To this end, it requires a preprocessing step on the input

queries. Specifically, by the definition of left-join, a Type 2

input query will be rewritten into its equivalent Type 1 form,

since our MQO algorithm only works on Type 1 input queries.

The equivalent Type 1 form of a Type 2 query GP (OPTIONAL

GPOPT)
+) consists two sets of queries: (i) a Type 1 query solely

using the GP as its query graph pattern; and (ii) the queries

by replacing the left join(s) with inner join(s) between GP and

each of the GPOPT from the OPTIONAL, i.e., ∪GP ⋊⋉ GPOPT.

For example, to strip off the OPTIONALs in the Type 2 query

in Figure 6(a), applying the above preprocessing will result in

a group of three Type 1 rewritings as in Figure 6(b).
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Fig. 6. A Type 2 query to its equivalent Type 1 form

By applying the above transformation to all Type 2 queries

in the input and then passing the batch of queries to algorithm

in Figure 4 for optimization, we can handle Type 2 queries

seamlessly. Finally, the result to the original Type 2 query

can be generated through the union of the results, from the

transformed Type 1 queries after MQO.

V. EXPERIMENTAL EVALUATION
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We implemented all algorithms in

C++ and performed an extensive ex-

perimental evaluation using a 64-bit
Linux machine with a 2GHz Intel

Xeon(R) CPU and 4GB of memory.

Datasets: Our evaluation is based

on LUBM benchmark. The popular

benchmark models universities with

students, departments, etc., using only 18 predicates [11]. This

limits the complexity of queries we can evaluate (similar lim-

itations in [5], [28]), and results in queries with considerable

overlaps (which favors MQO but is not very realistic). Thus,

we extended the LUBM data generator, and added a random

subset from 50 new predicates to each person in the dataset,

where predicate selectivity follows the distribution in Figure 7.

Therefore, given the number of triples N in a dataset D, the

number of times that a predicate appears in D (dubbed its

frequency) is precisely its selectivity multiplied by N .

RDF Stores: We experimented with three popular RDF stores:

Jena TDB 0.85, OpenLink Virtuoso 6.01, and Sesame Native

2.0. Due to space constraints, we analyze mainly the exper-

iments with Jena TDB. Results for the other two stores are

highly consistent with the results from Jena TDB. For all

stores, we created full indexes using the technique in [39].

For Virtuoso, we also built bitmap indexes as reported in [3].

Metrics: For all experiments, we measure the number of

optimized queries and their end-to-end evaluation time, in-

cluding query rewriting, execution and result distribution. We

compare our MQO algorithm with the evaluation without any

optimization (i.e., No-MQO), and the approach with structure-

only optimization (i.e., MQO-S). To realize the latter strategy

as a baseline solution, we need to turn off all the cost-based

comparisons in Figure 4. Specifically, in line 24 of Figure 4,

instead of walking through the set of SubQ (which correspond

to different common substructures), structure-based optimiza-

tion (i.e., MQO-S) simply returns the the largest clique (i.e.,

the largest common subquery) for optimization.

Comparing MQO with MQO-S illustrates the benefits of

blending structured-based with the cost-based optimization

versus a purely structural approach. In the algorithms, we

use the suffix -C to denote the cost by rewriting queries

(e.g., MQO-C) and the suffix -P to denote the cost by parsing

and distributing the query results (e.g., MQO-P). For finding

cliques, we customized the Cliquer library [21], which is an

efficient implementations for clique detection. For selectivity

estimation, we implemented the technique in [33]. All experi-

ments are performed using cold caches, and the bootstrapping

parameter k in the k-means algorithm is set to k = ⌈|Q|/40⌉.
Table I provides the summary along with ranges and the

default values used for various parameters in our experiments.

Queries: LUBM has only 14 SPARQL queries, which have lim-

ited variance in both structure and evaluation cost. Therefore,



Parameter Symbol Default Range

Dataset size D 4M 3M to 9M
Number of queries |Q| 100 60 to 160
Size of query (num of triple patterns) |Q| 6 5 to 9
Number of seed queries κ 6 5 to 10
Size of seed queries |qcmn| ∼ |Q|/2 1 to 5
Max selectivity of patterns in Q αmax(Q) random 0.1% to 4%
Min selectivity of patterns in Q αmin(Q) 1% 0.1% to 4%

TABLE I
PARAMETER TABLE.
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Fig. 8. Three basic query patterns

we created a module to generate query sets Q with varying

sizes |Q|, where we generated queries that combine star, chain,

and circle pattern structures. In addition, we attached to each

person (as a subject) in the LUBM data a (random) subset of

50 new predicates P1 ∼ P50. In particular, we customized

the data generator of LUBM in such a way that whenever a

triple (s Pi ci) is added to the data, ci is an integer value

serving as the object of this triple and it is set to the number

of predicate Pi existed in the dataset so far. Therefore, triples

with different predicates could join on their subjects or objects,

so as the triple patterns in the query, which we will detail next.

Our query generator utilizes the aforementioned patterns

in the customized data to compose queries. Specifically, we

ensure that the queries have reasonably high randomness in

structure (such that they are not replicas of limited query

templates) and reasonable variances in selectivity (such that

any predicate could be part of a query regardless of the

structure). To this end, we first show how to compose three

basic query patterns: star, chain and circle with a set of four

basic triple patterns; see Figure 8 (a) – (c). The star and the

chain can be built with any number of triple patterns while the

circle can only be built with an even number of triple patterns.

To blend the three basic patterns into one query Q with

|Q| triple patterns, the generator first randomly distributes

the set of triple patterns into k groups of subqueries (k is

a random integer, k ∈ (0, |Q|)), with each subquery randomly

composing one of the three basic patterns, i.e., star, chain

and if possible, circle. To ensure Q to be conjunctive, the

generator then makes equal the (randomly) chosen pairs of

subjects and/or objects from the k subqueries by unifying their

variable names or binding them to the same constant. This

concludes composing the structure of Q. Finally, to ensure that

Q conforms to the selectivity requirement posed by a specific

experiment (refer to Table I), the generator fills in the structure

of Q with the predicates that would make Q a legitimate query.

In the experiments, a group of queries in Q were rendered

to share a common seed sub-query qcmn. The generator first

constructs qcmn and the remaining portion of the queries

independently. Then, by equaling the subjects and/or objects

of these two sub-queries, the generator propagates qcmn over

the group such that qcmn joins with each of the sub-queries

in the group. In addition, individual query sizes |Q| can be

varied where the probability of a predicate being part of a

query conforms to its frequency in the dataset. We ensure that

90% of the queries in Q are amenable to optimization, while

10% are not. We use a parameter κ to determine seed queries

that will be used to generate the queries in this 90%. For a

given κ, κ seed-groups are generated, each corresponding to

⌈(90/κ)⌉% of queries in Q. The seed in each seed-group is

what our algorithm will (hopefully) discover.

In short, we generated datasets and queries with various

size, complexity, and statistics to evaluate the proposed MQO

algorithm in a comprehensive way.

A. Experimental Results

The objective of our experiments is to evaluate: (i) how

much each step of MQO (from bootstrapping step to cost

estimation) contributes to the optimization, i.e., drop in perfor-

mance due to omission of each step; (ii) whether the combi-

nation of structure and cost-based optimization consistently

outperforms purely structure-based optimizations; (iii) how

well Algorithm MQO optimizes its alternatives, including the

comparison with the baseline approach without any optimiza-

tion, in every experimental setting; and (iv) whether Algorithm

MQO consistently works across RDF stores.

60 80 100 120 140 160

10
0

10
1

   

T
im

e
 (

s
e

c
o

n
d

s
)

 

 

MQO−noKM−C MQO−C

|Q|
Fig. 9. Clustering time

10
0

10
1

10
2

200

220

240

260

   

T
im

e
 (

s
e

c
o

n
d

s
)

 

 

No−MQO MQO−KM

Number of k-means clusters
Fig. 10. Evaluation time

Impact of each MQO step: We start with an experiment to

illustrate the benefit of bootstrapping MQO using k-means.

Figure 9 shows the cost of hierarchical clustering in Step

2 of MQO with (MQO-C) and without (MQO-noKM-C) boot-

strapping. The figure shows an order of magnitude difference

between the MQO-C and MQO-noKM-C, since without boot-

strapping Step 2 of MQO requires O((|Q| × |Q|)2) pairwise

checks between all the queries in the input set Q. The next

experiment, in Figure 10, illustrates algorithm MQO-KM which

after Step 1 of MQO, it finds the common substructures for the

coarse-grained groups that result in from k-means and then

performs Step 3 (i.e., MQO-KM does not perform hierarchical

clustering in Step 2). The figure shows that the resulting

optimization has limited (less than 10%) to no benefits in

evaluation time, when compared with the case of having no

optimizations (No-MQO). This is because k-means ignores

query structures and relies solely on the predicate names

to determine groups. Therefore, the fine-grained groups that

result in from hierarchical clustering (in Step 2) are necessary

for the considerable savings (as illustrated in the following

experiments) in terms of evaluation times.

Varying |Q|: We study scalability w.r.t. the cardinality |Q| of
the query set Q, for which we vary from 60 to 160 queries,

by an increment of 20. As Figure 11 shows, both MQO and

MQO-S are successful in identifying common substructures,
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Fig. 14. Parsing cost

the former resulting in up to 60% savings and the latter

having up to 80% savings in terms of the number of queries,

compared to No-MQO. However, in terms of evaluation times

(see Figure 12), MQO-S results in less savings than MQO,

with the former achieving up to 45%, and the latter up to

60% savings in evaluation times, when compared to No-MQO.

So MQO is more efficient, despite generating a larger number

of optimized queries than MQO-S. The following example,

along with the example in Figure 3, illustrates this situation.

Consider a set of queries Q, such that (i) predicate pcmn is

common to all the queries in Q; (ii) predicate p1 is common

to the subset Q1 ⊂ Q; and (iii) predicate p2 is common to the

subset of queries in Q2 ⊂ Q, with Q1∩Q2 = ∅. MQO-S looks

only at the structure and thus it may opt to generate a single

optimized query for Q with qcmn = pcmn. If predicate pcmn is

not selective, while predicates p1 and p2 are highly selective,

then MQO will generate two different optimized queries, one

for set Q1 and involving q1, and one for set Q2 and involving

p2. As this simple example illustrates, MQO-S can generate

fewer but cost-wise less optimized queries when compared

with MQO; which is exactly the pattern in Figure 12.

Next, we further analyze the evaluating cost spent on clus-

tering/rewriting the queries, and distributing the final results.

In Figure 13, we report the clustering time, which includes

both the bootstrapping k-means clustering and the hierarchical

clustering that relies on finding common substructures. Notice

that MQO requires more time than MQO-S. This is because (i)

MQO involves an additional check on the selectivity; and (ii)

queries with non-selective common subqueries are recycled

into the pool of clusters by MQO, leading to more rounds of

comparisons and thus a slower convergence. Contrarily, since

the common subqueries rewritten by MQO-S are on average

less selective, parsing and distributing these results inevitably

requires more effort, as in Figure 14. Nevertheless, clustering

and parsing times are a small fraction of the total evaluating

cost (less than 2% in the worst case). In the remaining

experiments, we only report the end-to-end evaluating cost.

Varying |qcmn|: Here, we study the impact on optimization of

the size |qcmn| of the common subquery, i.e., the size of seed
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Fig. 16. Vary |qcmn|: time

queries. At iteration i we make sure that for the queries in

the same group of Q, we have |qcmn| = i. Figure 15 shows

the number of optimized queries generated by MQO-S and

MQO. Notice that the number of optimized queries is reduced

(optimization improves) as |qcmn| increases . This is because,

as the maximum size of each query is kept constant, the

more |qcmn| increases the more the generated queries become

similar (less randomness in query generation). Therefore, more

queries are clustered and optimized together. Like before,

MQO-S is more aggressive and results in less queries compared

to MQO. But, like before, Figure 16 shows that MQO is always

better and results in optimized queries whose evaluation time is

half less than MQO-S and up to 75% less than No-MQO. Notice

in the figure that for small values of |qcmn|, MQO-S performs

worse than No-MQO. Intuitively, the more selective GP is in a

Type 2 optimized query, the less work a SPARQL query engine

needs to do to evaluate the GPOPT terms in the OPTIONAL of

the query. MQO-S relies only on the structural similarity, while

ignoring predicate selectivity, negatively influences the overall

evaluation time for the optimized query to the point that any

benefits from the optimization are alleviated by the extra cost

of evaluating the OPTIONAL terms.
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Fig. 17.Evaluating qcmn

MQO combines structured and

cost optimization and does not

suffer from these limitations. This

is evident in Figure 17, which

plots the percentage of the evalu-

ation time of the optimized query

that is spent evaluating qcmn. By

carefully selecting the common subquery qcmn, MQO results in

optimized queries whose evaluation time goes mostly (more

than 90%) into evaluating qcmn (while less than 10% goes

to evaluating OPTIONAL terms). In contrast, MQO-S results

in queries whose large extent of evaluation time goes into

evaluating OPTIONAL terms (when |qcmn| = 1 this is almost

30%). Things improve for MQO-S as the size of qcmn increases,

but still MQO retains the advantage of selecting substructures

not just based on their size, but also on their selectivity, and

therefore overall evaluation times are still much better.

Varying κ: In Figures 18 and 19, we analyze the impact of the

number κ of seed queries on the optimization, by varying κ
from 5 to 10. Figure 18 shows that as κ increases, less queries

can be optimized by both MQO-S and MQO, which resulted in

more rewritten queries. Not surprisingly, a larger κ increases

query diversity and reduces the potential for optimization. This

affects evaluation times, but MQO is still the best of the three.

Varying |Q|: In Figures 20 and 21, we study the impact of
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Fig. 18. Vary κ: |QOPT|
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Fig. 19. Vary κ: time
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Fig. 20. Vary |Q|: |QOPT|
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Fig. 21. Vary |Q|: time

0.1 0.5 1 2 4
0

25

50

75

100

N
u
m

b
e
r 

o
f 
q
u
e
ri
e
s

   

 

 

No−MQO MQO−S MQO

αmin(qcmn) (%)

Fig. 22. Vary αmin: |QOPT|
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Fig. 23. Vary αmin: time
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Fig. 24. Vary αmax: |QOPT|
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Fig. 25. Vary αmax: time

query size, which we increase from 5 to 9 predicates in GP of

a query Q. For this experiment we keep the |qcmn|/|Q| a rough

constant and equal to 0.5. So, the increase in query size does

not result in a significant change in query overlap (or potential

for optimization). Since the size of a query increases, there is

higher chance for the query generator to assign it a selective

predicate, which in turn affects the evaluation times. As a

result, Figure 21 shows that the evaluation time of No-MQO

decreases with the query size. Clearly, MQO still provides

savings in evaluation time, ranging from 40% to 70%.

Varying αmin(qcmn): We study the impact of the mini-

mum predicate selectivity in qcmn (seed query), by varying

αmin(qcmn) from 0.1% to 4%. As Figure 22 shows, selectivity

has minimal impact for MQO-S which ignores evaluation costs,

but noticeable impact in MQO. As selectivity is reduced,

the number of optimized queries increases (less optimization)

since MQO increasingly rejects optimizations that lead to more

expensive (non-selective) common subqueries. While reduced

selectivity increases the evaluation time of queries for all

algorithms (Figure 23), MQO still achieves between 10% and

50% savings in evaluation times.

Varying αmax(Q): While changing minimum selectivity has

an impact on deciding the sub-structure that forms qcmn,

maximum selectivity mostly affects the cost of evaluating the

(non-seed) OPTIONAL terms. Here, we vary the maximum

selectivity for predicates in a query, αmax(Q), from 0.1%
to 4%. Like before, Figure 24 shows that the number of

optimized queries is almost unaffected for MQO-S. Unlike

the previous experiment, this number is also unaffected for

algorithm MQO since the change in selectivity concerns

OPTIONAL predicates and thus has less of an effect in the

generation of optimized queries. Figure 25 shows that both

MQO-S and MQO outperform No-MQO, with MQO achieving

a minimum of 50% savings. Again, notice that when MQO-S

chooses non-selective predicates for optimization, evaluation

times quickly degrade to No-MQO as when αmax(Q) > 1%.

2 4 6 8 10
0

100

200

300

Data size (× 10
6
 triples)

T
im

e
 (

s
e
c
o
n
d
s
)

 

 

No−MQO MQO−S MQO

Fig. 26. Varying |D|

Varying |D|: We investigate the

impact of dataset size |D| on the

optimization results, by varying |D|
from 3M to 9M triples. While

this does not affect the number of

rewritings of Q it clearly affects

evaluation times, as shown in Fig-

ures 26. Notice that MQO consis-

tently has a minimum of 50% (achieving up to 65%) savings.

Effect of our cost model: In Section III, we extrapolate that

the evaluation cost of a Type 2 query is inversely correlated

with the estimated cost of GP, i.e., the minimum selectivity

of its triple patterns. This is indeed a reasonable approxima-

tion in practice. As shown in Figure 23, reduced minimum

selectivity in the common subquery GP would incur higher

evaluation cost for Type 2 queries. Similarly, both the number

of OPTIONALs and the cost of the query pattern of each GPOPT

are indispensable factors in determining the value of ∆, as

shown respectively in Figure 19 and Figure 16. However, we

observed that when the cost of GP is small (being selective),

∆ would be a trivial value and Cost(Q) is mostly credited

to the evaluation of GP. This is clearly shown in Figure 17

that when GP is selective, the dominant cost is contributed by

evaluating GP (more than 90%) with the rest factors being

almost irrelevant. This suggests that when dealing with a

selective GP, a possibly good approximation of Cost(Q) can

set ∆ ≃ 0. This observation also motivates us to choose a

selective GP in rewriting. In practice, this simple cost model

and its approximation give excellent cost estimation in MQO.

Results from other stores: Up to now, all results reported

were performed with Jena TDB. Using the same queries and

parameters, we also ran the experiments on Virtuoso and

Sesame native, to evaluate the desired property of store inde-

pendence. In general, the results from Virtuoso and Sesame

are consistent with what we observed in Jena TDB, see

Figures 27∼32 when we used the same setup as that in the

experiments for Jena TDB, and varied values of one parameter

while using default values for all other parameters. The

proposed optimization algorithm, MQO, significantly reduces

the evaluation time of multiple SPARQL queries on both stores.
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(b) Sesame
Fig. 27. Vary |Q|: evaluation time
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Fig. 28. Vary αmin(qcmn): evaluation time
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(b) Sesame
Fig. 29. Vary αmax(Q): evaluation time

In particular, we consistently observed that the cost-based op-

timization can remarkably improve the performance in almost

all experiments, leading to a 40%–75% speedup compared to

No-MQO on both Virtuoso and Sesame. For example, using

the same setting and optimized queries as Figure 12 where we

vary the number of queries in a batch Q, Figures 27(a) and

27(b) report the results from Virtuoso and Sesame. It is clear

that MQO consistently outperforms MQO-S and No-MQO,

leading to savings of 50%–60% across engines. Similarly, in

the experiment that studies the impact of minimum selectivity

in qcmn, i.e., Figure 28(a) and Figure 28(b), reducing the

minimum selectivity of qcmn results in increasing evaluation

times for all algorithms. While MQO-S is sensitive to such

variance since it does not proactively take cost into account,

MQO still achieves 40%–75% savings in evaluation times.

VI. RELATED WORK

The problem of multi-query optimization has been well

studied in relational databases [22], [27], [31], [32], [42]. The

main idea is to identify the common sub-expressions in a batch

of queries. Global optimized query plans are constructed by

reordering the join sequences and sharing the intermediate

results within the same group of queries, therefore minimizing

the cost for evaluating the common sub-expressions. The same

principle was also applied in [27], which proposed a set of

heuristics based on dynamic programming to deal with nested

sub-expressions. There has also been studies on identifying

common expressions [10], [40] with complexity analysis of
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Fig. 30. Vary |qcmn|: evaluation time
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Fig. 31. Vary |Q|: evaluation time
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Fig. 32. Vary κ: evaluation time

MQO; the general MQO problem for relational databases is

NP-hard. Even with heuristics, the search space for individual

candidate plans and their combinatorial hybrid (i.e., the global

plan) is often astronomical [27]. In light of the hardness,

[27] proposed some heuristics which were shown to work

well in practice; however, those heuristics were proposed to

work inside query optimizers (i.e., engine dependent), and are

only applicable when the query plans are expressible as AND-

OR DAGs. Dalvi et al. [7] considered pipelining intermediate

results to avoid unnecessary materialization. In addition to

pipelining, Diwan et al. [8] studied the issue of scheduling

and caching in MQO. A cache-aware heuristics was proposed

in [20] to make maximal use of the buffer pool.

All of the above work focus on MQO in the relational case,

MQO has also been studied on semi-structured data. Hong

et al. [12] considered concurrent XQuery join optimization in

publish/subscribe systems. Join queries were mapped to a pre-

computed tree structure, called query template, for evaluation.

Due to the limitation of the pre-computed templates, only basic

join structures were supported. Another work by Bruno et

al. [6] in XML studied navigation and index based path MQO.

Unlike the MQO problem in relational and SPARQL cases,

path queries can be encoded into a prefix tree where common

prefixes share the same branch from the root. This nature

provides an important advantage in optimizing concurrent

path queries. Nevertheless, the problem of multi-query join

optimization was not addressed. The work of Kementsietsidis

et al. [15] considered a level-wise merging of query trees



based on the tree depth of edges in a distributed setting, with

the main objective to minimize the communication cost in

evaluating tree-based queries in a distributed setting.

In summary, existing MQO techniques proposed in relational

and XML cases cannot be trivially extended to work for

SPARQL queries over RDF data (which can be viewed as

SPJ queries over generic graphs), since relational techniques

need to reside in relational query optimizers, which cannot

be assumed in the management of RDF data, and notions

like prefix-tree and tree depth do not apply to generic graphs.

Also there have been work on query optimization for single

SPARQL query [18], [29], [33], as well as single graph query

optimization for general graph databases [41]. However, to the

best of our knowledge, our work is the first to address MQO

for SPARQL queries over RDF data.

VII. CONCLUSION

We studied the problem of multi-query optimization in the

context of RDF and SPARQL. Our optimization framework,

which integrates a novel algorithm to efficiently identify

common subqueries with a fine-tuned cost model, partitions

input queries into groups and rewrites each group of queries

into equivalent queries that are more efficient to evaluate. We

showed that our rewriting approach to multi-query optimiza-

tion is both sound and complete. Furthermore, our techniques

are store-independent and therefore can be deployed on top of

any RDF store without modifying the query optimizer. Useful

extensions on handling more general SPARQL queries are also

discussed. Extensive experiments on different RDF stores show

that the proposed optimizations are effective, efficient and

scalable. An interesting future work is to extend our study

to generic graph queries over general graph databases.

VIII. ACKNOWLEDGMENT

Wangchao Le and Feifei Li were partially supported by NSF

Grant CNS-0831278.

REFERENCES

[1] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable
semantic web data management using vertical partitioning. In VLDB,
2007.

[2] R. Angles and C. Gutierrez. The expressive power of SPARQL. In
ISWC, 2008.

[3] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix ”bit” loaded:
A scalable lightweight join query processor for RDF data. In WWW,
2010.

[4] N. Biggs, E. Lloyd, and R. Wilson. Graph Theory. Oxford University
Press, 1986.

[5] C. Bizer and A. Schultz. The berlin SPARQL benchmark. International
Journal On Semantic Web and Information Systems, 2009.

[6] N. Bruno, L. Gravano, N. Koudas, and D. Srivastava. Navigation- vs.
index-based XML multi-query processing. In ICDE, 2003.

[7] N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan. Pipelining in
multi-query optimization. In PODS, 2001.

[8] A. A. Diwan, S. Sudarshan, and D. Thomas. Scheduling and caching
in multi-query optimization. In COMAD, 2006.

[9] S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples and
oranges: a comparison of RDF benchmarks and real RDF datasets. In
SIGMOD, 2011.

[10] S. Finkelstein. Common expression analysis in database applications.
In SIGMOD, 1982.

[11] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge
base systems. Journal of Web Semantics, 2005.

[12] M. Hong, A. J. Demers, J. Gehrke, C. Koch, M. Riedewald, and W. M.
White. Massively multi-query join processing in publish/subscribe
systems. In SIGMOD, 2007.

[13] G. Ianni, T. Krennwallner, R. Martello, and A. Polleres. Dynamic
querying of mass-storage RDF data with rule-based entailment regimes.
In ISWC, 2009.

[14] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review.
ACM Comput. Surv., 1999.

[15] A. Kementsietsidis, F. Neven, D. V. de Craen, and S. Vansummeren.
Scalable multi-query optimization for exploratory queries over federated
scientific databases. PVLDB, 2008.

[16] I. Koch. Enumerating all connected maximal common subgraphs in two
graphs. Theoretical Computer Science, 2001.

[17] W. Le, S. Duan, A. Kementsieditis, F. Li, and M. Wang. Rewriting
queries on SPARQL views. In WWW, 2011.

[18] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF.
In PVLDB, 2008.

[19] T. Neumann and G. Weikum. Scalable join processing on very large
RDF graphs. In SIGMOD, 2009.

[20] K. O’Gorman, D. Agrawal, and A. E. Abbadi. Multiple query opti-
mization by cache-aware middleware using query teamwork. In ICDE,
2002.
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