
Improving Transaction-Time DBMS

Performance and Functionality

David B. Lomet
#
, Feifei Li

*

#
Microsoft Research

Redmond, WA 98052, USA

lomet@microsoft.com

*
Department of Computer Science

Florida State University

 Tallahassee, FL 32306, USA

lifeifei@cs.fsu.edu

Abstract— Immortal DB is a transaction time database system

that is built into a commercial database system rather than being

layered on top. This enables it to have performance that is very

close to the performance of an unversioned current time

database system. Achieving such competitive performance is

essential for wide acceptance of this temporal functionality. In

this paper we describe further performance improvements in two

critical dimensions. First Immortal DB range search

performance is improved for current time data via improved

current version storage utilization, making this performance

essentially the same as unversioned performance. Second,

Immortal DB update performance is increased by further

reducing the cost for the timestamping of versions. Finally, we

show how a simple modification, integrated into the

timestamping mechanism, can provide a foundation for auditing

database activity. Our algorithms have been incorporated into a

commercial database engine and experiments using this database

engine demonstrate the effectiveness of our approach.

I. INTRODUCTION

Transaction time database systems have been widely

discussed [9, 31]. They provide access to both current and

previous database states by the mechanism of creating new

versions of data for every transaction, as opposed to doing

update in place. Transaction time databases have many

important applications and are of increasing interest for

auditing, legal compliance, trend analysis, etc.
We have built our Immortal DB transaction time database

system [12, 13, 14] into the kernel of a commercial database

management system, SQL Server using the TSB-tree [15, 16]

to index both current and previous database states. Our

objective is to ensure transaction time performance close to

that of an unversioned current time database. We also

introduced additional functionality to the basic transaction

time functionality to provide a further incentive to providing

transaction time functionality, e.g., we exploited transaction

time versioning to provide recovery from bad user

transactions [20]. This work continues with both these threads,

i.e. we introduce techniques to further improve Immortal DB

performance to a level that is almost identical to the

unversioned databases, and we add additional functionality to

Immortal DB as a further incentive for providing transaction

time support.

A. Performance Improvements

Reading a record in the current database will usually not differ

much from reading it in a transaction time database. An index,

whether it is a B-tree indexing current (single version) data or

an MVB-tree [2] or Time-Split B-tree (TSB-tree) [15, 16]

indexing transaction time (multi-version) data, will access a

data page in logarithmic time, and, should the multi-version

tree be a deeper tree because of the multiple versions, the

higher level root is most likely in main memory in any event

and no extra I/O access will be required. So this performance

measure is already satisfactory.

More problematical is the performance of updates and

range reads. We discuss these briefly below, and highlight

what we have done to address performance in these areas.

1) Update Performance: When a record is updated, one

obvious difference is that each update creates a new version.

That eventually means that pages fill up faster, and require

splitting after fewer updates. We do version compression [14]

to reduce this impact, but there is little else that can be done to

avoid this as versioning is intrinsic to transaction time support.

However, there are multiple updates between page splits in

most cases, so this splitting cost is amortized across these

multiple updates, which greatly reduces the per update cost.

There is, however, another extra cost in our updating that is

more controllable. Each version needs to be timestamped so

that we can determine, on subsequent reads, whether the

version is relevant to an “as of” read request. Because the

version timestamp is not known until a transaction commits so

as to keep timestamps consistent with serialization order, this

timestamping requires a second “touch” of the record. Doing

this second touch at very low cost is essential to making

update cost competitive.

We have previously described “lazy” timestamping

techniques with modest overhead [13]. Our “lazy”

timestamping requires that we retain the mapping from

transaction id to timestamp in a persistent table. Here we

mailto:lomet@microsoft.com
mailto:lifeifei@cs.fsu.edu

further reduce the timestamping overhead by leveraging the

log to temporarily provide persistence for this mapping.

2) Range Performance: This cost in a B-tree is

primarily determined by how many pages need to be read to

process the request. Thus, range performance for a versioned

“as of” request, to a first order, depends upon the density of

the versions on a page that were current at the “as of” time

(what we refer to as the single version utilization). Version

compression substantially improves upon this single version

utilization (SVU) for any version, historical or current.

However, even with version compression, there is room for

further improvement.

While we would like to improve single version utilization

for all versions, the utilization for the current version is by far

the most important; we anticipate that current version reads

will be much more common than historical reads. To that end,

a new page splitting strategy is introduced that we call

deferred splitting. Deferred splitting improves significantly

the utilization for the current version, what we call the single

version current utilization (SVCU), so that the combination of

version compressing and deferred splitting results in single

version current utilization that comes very close to the

utilization seen in B-trees supporting only current data. And

this represents a significant improvement over prior splitting

regimes.

B. Functional Enhancement

Transaction time databases will retain all versions of the

data. Indeed, this is what it means to support transaction time.

We can exploit this basic versioning capability to provide

value added services. Previously we had used the versions as

a way to recover quickly from user transactions that were

erroneous [20]. The basic versioning, together with our

timestamping technique, can also be used to provide the

underpinnings of database auditing, that is, tracking who is

responsible for the updates whose versions appear in the

database.

With the emergence of Sarbanes-Oxley requirements, the

ability to audit database activity has assumed greatly increased

importance [1, 22]. The invaluable thing that a transaction

time database supporting an audit capability makes possible is

a direct linkage between a user executing a transaction and the

version of data records that were updated by the transaction.

Such a capability greatly enhances the value of the versions

being retained in the transaction time database.

C. Our Contributions

This paper introduces significant improvements to the

Immortal DB transaction time database system. Our intent is

to increase the desirability of transaction time functionality

versus an unversioned database, paving the way for wide

acceptance of this transaction time functionality in practice.

Our contributions in this work are summarized as follows.

1. We improve update performance via batch updates to the

timestamp table used for ensuring that timestamping the

record versions can survive a system crash. This

consolidates many singleton writes to this table into a

small number of batch writes and enables us to actually

reduce the total number of entries posted. This is

described in section II.

2. We improve range query performance by improving

single version current utilization via deferring the key

splitting of pages. This is described in section III.

3. We add auditing functionality to our transaction time

database system to enable tracing who was responsible

for changes to the data. This is described in section IV.

The paper describes related work in section V, and ends with a

short discussion in section VI.

II. TIMESTAMPING AND UPDATES

A. The Problem

Uniquely identifying versions is easy. One can tag them

with a transaction identifier at the time of an update, such that

every update of the transaction receives the same tag. The

problem arises that the transaction identifier (usually a

monotonically increasing transaction sequence number or

TSN) by itself only differentiates one transaction’s versions

from another’s. It does not tell us directly which version an

“as of” query should see. For that, one needs to be able to

relate the “tag” on the version to the serialization order of the

transaction. When a query is asked “as of” some point in the

serialization order, the correct version of a record needs to be

determined. This correct version is the last version in the

serialization order that is at or earlier than the “as of” request

time. One usually wants, in addition, to be able to relate

points in the serialization order to “wall clock time” so that a

query can be asked “as of” some user understood time. When

viewed this way, version tagging becomes version

“timestamping”. Identifying the correct version then involves

finding the version with the latest timestamp earlier or equal

to the as of time of the query.

B. Previous Solutions

There have been a number of ways proposed for doing

timestamping in support of transaction time databases. They

fall into three broad categories.

1) Timestamp Order Concurrency Control: Choose the

timestamp for a transaction at the time that a transaction starts

execution, or when it makes its first update. Then, one can tag

the versions created by the transaction’s updates with the

already chosen timestamp. This is very simple. Unfortunately,

when choosing a timestamp this early, the transaction

serialization order may not agree with timestamp order. When

an active transaction’s timestamp does not agree with its

serialization order, the transaction is aborted. This is called

timestamp order concurrency control [4]. We know of no

system that uses this strategy because of concerns about the

frequency of aborts.

2) Late Choice Timestamps: The other methods of

timestamping all involve choosing the timestamp when the

transaction commits. When using the common concurrency

control protocols like strict two phase locking, the commit

order is consistent with the serialization order. So choosing

the time then will result in a timestamp that agrees with

serialization order. Note, however, that this is at the end of

the transaction, after an update of the transaction has created a

new version of a record. Thus, we must re-visit the version to

provide it with a timestamp. The other approaches all involve

this second visit.

Eager Timestamping: Update all versions of records created

by the transaction with their timestamp using a normal

transactional update (one that does not create yet another

version), and log this as an update of this transaction. Do this

while the transaction is active, and then commit as usual. This

exploits existing database mechanisms. Timestamping

becomes simply a subsequent update within the transaction. It

is just like any other update that changes the same version of a

record a number of times. The logging and recovery are

entirely conventional. This was the first Immortal DB

timestamping technique [13].

While simple, and minimizing the need for new

mechanisms, this approach has undesirable execution,

bookkeeping, and concurrency control impacts. Treating

timestamping as updates can double the number of updates in

a transaction, doubling also the number of log records for the

transaction. It also requires that we maintain a list of all

records updated by the transaction so that we can later find

and timestamp them. Finally, all these actions are within the

transaction, meaning that when using strict two phase locking,

the locks are held for an extended time, impeding concurrency.

Our very first implementation within Immortal DB used eager

timestamping because of its minimal new mechanism, but we

found its cost to be unacceptable.

Lazy Timestamping: Instead of doing the timestamping

within the transaction, we can do it later. Obviously, we need

to do the timestamping prior to the record versions being

needed for a query, or indeed, given the way we maintain the

historical data, prior to the time that versions are moved to

historical pages of the database. But we can wait until that

subsequent visit to timestamp the version. We have explored

a number of lazy techniques in our effort to find the lowest

cost one [13].

The lazy techniques all require that versions created by a

transaction’s updates be initially tagged with a transaction

identifier (we use a transaction sequence number or TSN).

The TSN is then associated with a timestamp TS, which is a

time or a reliable proxy for time, that is chosen when the

transaction commits. This association must be made

persistent as part of the transaction so that the timestamping

activity can be completed even if the system should crash.

Then, as versions are accessed, should the system find a

version with a TSN tag, this tag is translated to a TS that is

then used to identify whether the version is relevant to a query.

Thus, one advantage of lazy techniques is that the

timestamping is piggybacked on a subsequent access to the

version.

3) Timestamping Issues: There are two primary questions

that need to be answered for any lazy timestamping technique.

There are too many variations to fully discuss all

combinations. Rather than discussing combinations, we

discuss possible answers to these questions independently, and

then present our latest proposal, briefly contrasting it with our

previous approach.

1. Mapping Stability: How is the mapping from TSN to TS

stored stably at least until the timestamping for a

transaction is complete?

2. Garbage Collection: Do we make efforts to remove

mapping information that we no longer need so as to

minimize the storage, and perhaps the maintenance costs,

of this information?

Mapping Stability: Two techniques have been previously

suggested.

1. Define an ordinary (and hence stable) table that contains

the mapping information. Such a table can be made

accessible by TSN key, hence speeding the translation

process. Usually, recent mappings are retained in a main

memory cache. This is the approach that we used earlier

in Immortal DB [13] and in Postgres [30]. It is useful to

keep the table small so that main memory caching of its

entries is effective, so garbage collecting entries is useful.

2. Maintain the mapping table in main memory, with the

information made stable by including it also in log

records on the recovery log [18]. So long as the table

does not become too large, this approach can be quite

efficient, as writing a log record has less overhead than

updating the table in approach 1. However, to keep costs

under control, it is imperative that the table be kept

modest in size as this approach requires that the table be

copied forward in the checkpointing process to ensure

that mapping entries can survive the checkpointing

induced truncation of the recovery log. Hence this

approach must garbage collect entries that are no longer

needed.

Garbage Collection: It is useful to keep the mapping

information modest in size in both the above approaches by

discarding mapping entries that are no longer needed for

timestamping, i.e. the timestamping for the transaction is

complete. Three alternatives have been suggested.

1. Do not perform garbage collection. The mapping table

grows as transactions are committed. A small active part

of the table is kept in main memory to speed the

translation of TSN to TS. This method can work when

the mapping table is an ordinary table. But it is

inappropriate for the log based table approach, as the

table quickly becomes too large to maintain in main

memory, and it becomes too expensive to copy it forward

in checkpoint information when the log is truncated.

2. Perform stable reference counting to garbage collect the

mapping entries for which the timestamping activity is

complete. This has been suggested with the log based

approach, where it is essential to keep the mapping

information small because of the need to “forward” the

mapping table across checkpoints. Salzberg proposed

“stable” reference counting [24]. It requires writing log

records to document the timestamping so as to be able to

stably decrement reference counts. This, of course, adds

to the cost.

3. Perform volatile reference counting to garbage collect

most mapping entries for which the timestamping activity

is complete. Transactions whose timestamping is

incomplete when the system crashes will lose their

reference counts. We will not be able to garbage collect

their entries. However this failure occurs only when the

system crashes, which is a rare event. So the mapping

table grows very slowly. We used this approach

previously in Immortal DB [13], together with an

ordinary table to provide mapping stability.

C. Prior Immortal DB Approach

We now provide a more complete description of what we

did previously with Immortal DB. We stored the mapping

information in an ordinary table that we call the persistent

timestamp table (PTT). The PTT is updated as part of every

transaction, so it is guaranteed to be stable. We performed

volatile reference counting, the least expensive way we know,

to provide garbage collection for this information. Unlike

Salzberg’s approach [24], no logging of the reference

counting is done. Because of this, a system crash will lose

track of the reference counts and some entries in the PTT will

not be garbage collected even when their timestamping is

complete. But this is a good trade-off. One gets very low

cost reference counting and a PTT that grows a bit in size

when the system crashes.

Because the reference counting and timestamping is

volatile (not logged), we need to know that the pages

containing the timestamps for a transaction are all stable

before we delete the transaction’s mapping entry from the

mapping table. We did that using the checkpointing process.

This exploits log sequence numbers (LSNs) which order the

log records. A checkpoint identifies an LSN (a point on the

log) as the redo scan start point LSN. Once this is greater than

the end-of-log LSN (EOL LSN) at the time that the

timestamping was completed and the page was marked as

dirty, the page containing the timestamps has been written to

disk. This must be true for the checkpoint to operate correctly

and only truncate log entries that are no longer required. At

that point, we can delete the PTT entry for the transaction.

We believe the Immortal DB prior approach, exploiting

volatile timestamping, is more efficient than any competing

approach. However, it does raise costs, particularly for short

transactions that update one or a small number of records.

Every update transaction requires an insert of the TSN:TS

mapping entry to the PTT, and eventually its deletion, both

logged. We wanted to avoid this overhead.

D. Our New Approach

To reduce overhead, we focus on removing the need to

update the PTT in every transaction. This update always

requires writing a log record for the update, and eventually

requires the writing of the page of the PTT containing the

record. In our experience, this adds about 60% overhead to

the cost of executing a transaction that updates exactly one

record. (Updating the PTT means that a “one user update”

transaction is doing two updates.)

To avoid the PTT update, we combine elements from the

two schemes described above for making the mapping

information stable. We temporarily make a transaction’s

TSN:TS entry stable by including it in the commit record for

the transaction, as in [18]. At checkpoint intervals, we

execute a system transaction that updates the PTT with a batch

of inserts of mapping items. Updating the PTT in a batch is

much more efficient than updating it during each transaction.

In addition, we exclude from the batch all transactions for

which the timestamping is complete and the record versions

with their timestamps are stable. Thus, for these transactions

we save both the insert and the delete of the PTT.

In all cases, the reference counting is kept volatilely

(volatile RCNT) in a volatile timestamp table (VTT) until it is

no longer needed. The VTT acts as a cache for the PTT, and

so it contains the TSN:TS mapping as well as the count of the

number of records not yet timestamped (in a way that we will

explain next), and the end of log LSN (EOL LSN). Figure 1

shows the format of the original VTT and our new VTT.

Orchestrating the transition from having the TSN:TS mapping

temporarily stored in the commit record and the VTT to being

persistently stored in the PTT involves subtle considerations

with respect to the reference counting and when the

timestamping for versions is known to be stable.

Figure 1: Formats for the Volatile Timestamp Table.

In earlier Immortal DB implementations, we decremented

the reference count for a transaction’s VTT entry as soon as

TS replaced TSN in the record version in the database cache.

Thus, we tracked the remaining records not yet timestamped

in volatile memory. We then used checkpointing information

to determine when the pages in the database buffer are known

to be stable. Unfortunately, this gives us the stability

information later than we need it for gaining the maximum

benefit.

The problem with this former technique is that we know the

timestamping to be stable only AFTER the checkpoint, which

is too late for a strategy that can entirely avoid posting the

TSN:TS mapping to the PTT if it is known that the

timestamping is stable prior to the checkpoint completion.

We need to have a “seamless” story in which the TSN:TS

mapping is always stable before all timestamping is stable for

the versions in database pages. That is, the TSN:TS mapping

for a transaction must be either (1) in one or both of the stable

(and accessible) part of the log or the PTT, or (2) stable in all

Original VTT

TSN TS (volatile RCNT) (EOL LSN)

New VTT

TSN TS (stable RCNT)

pages updated by the transaction. Thus, we need to know the

updated pages are stable as soon as they are stable, i.e. before

the checkpoint process truncates the log. Otherwise, we have

to insert the TSN:TS mapping entry into the PTT.

To know that timestamping information is stable as early as

possible, we maintain our reference count in the VTT based

on timestamping that we know is already stable (stable

RCNT). To do this, we keep track of timestamping

information on a per page basis. With each page in the

database buffer, we maintain the timestamping activity in the

page since the last time the page was written to disk. When

we write the page back to disk, we complete timestamping for

all committed transactions with records on the page. Once the

disk write has been confirmed as having completed, we know

that this timestamping is now stable. At that point, we update

the VTT reference count field (stable RCNT), now tracking

the stably timestamped records, in particular, the number of

records for which the timestamping is not yet stable. This

count reflects the number of versions either untimestamped or

timestamped but not yet written to disk.

Thus, as soon as a page is written to disk, we know the

impact on the reference counting for the transaction. Pages

written as part of an effort to enable a checkpoint to be taken

are now known to be stable before the checkpoint. We expect

that the vast majority of transactions have their timestamping

completed prior to their log records being truncated.

Now, before we complete a checkpoint, which involves

truncating the log, we know precisely the transactions whose

timestamping is both complete and stable. Those transactions

entries can be dropped from our volatile timestamp table. We

now form the group of TSN to TS mapping items that are then

batch inserted into the persistent timestamp table. And most

transactions are not included in this batch because their

timestamping is known to be complete and stable.

E. Experimental Results

We ran experiments to determine the effect of our new

strategy on the performance of single update transactions,

which is a worst case in terms of impact because the

incremental cost of updating the TSN to TS mapping table is

highest as a percent of execution time. The results of our

experiments are shown in Figure 2. The top line (highest cost)

is our previous timestamping technique. The next line

(second highest cost) is when all transaction mappings

(equivalent to no transactions with completed timestamping)

are added in batch to the mapping table. This shows that

simply batching the updates substantially improves

performance. The next line (third highest cost) is when 50%

of the transactions have not completed timestamping prior to a

checkpoint and still need to be added to the table, which

means that 50% have timestamping completed. Then we

show the cost when 80% of the transactions do not need to be

included in the batch because their timestamping is complete,

leaving only 20% to be added to the PTT. And finally, we

show the performance of an unversioned database executing

the same updates.

Figure 2 demonstrates that the cost of timestamping has

been reduced dramatically, and even when 20% of the

transactions still need to be timestamped at a checkpoint

(which we believe to be much higher than what will be

encountered under real load), the cost of updating a versioned

database is only 10% higher than the update cost in an

unversioned database.

Figure 2: Performance of single update transactions under varying

timestamping methods, compared with no versioning.

III. DEFERRED SPLITTING AND “CURRENT” RANGE READS

As with update efficiency, we have made strenuous efforts

to make range search performance for transaction time data as

close as possible to the corresponding performance in an

unversioned (current time) database. Certainly, version

compression substantially improved range search performance,

as we showed in [14]. However, this performance continues

to be up to 20% worse than unversioned performance on a

large part of the experimental space. This is truly unfortunate

for range queries on current versions of data in a versioned

database, as it imposes on users interested only in current

versions the negative performance impact of versioning.

A. The TSB-tree

The TSB-tree [15, 16], which we use as an integrated index

for both current and historical versions, splits pages both by

key and by time. Each page of the tree indexes a rectangular

key-time region of the search space. To ensure that all

versions in the key-time rectangle are present on the page, we

replicate versions whose lifetimes cross any time boundary.

Thus time splits add copies of versions to each page when the

version lifetimes cross the time boundary of the split. This

increases the total space required for the data being indexed.

We control whether a page is split by key or by time via a

utilization threshold Th. Only pages containing current data

are ever split as only current data can be updated, and hence

only current pages can become over full. We time split a page

when it fills whenever the current versions in the page occupy

less than Th of the page. Thus, Th acts as a lower bound on

the utilization seen by current data. We cannot be sure that

the maximum utilization for current data will exceed Th.

Average utilization is max(utilization)*ln(2). Thus, we

50% PTT

batch inserts

20% PTT

batch inserts

Unversioned

Prior TS method

unbatched

100% PTT
batch inserts

guarantee that utilization for current versions will be at least

Th*ln(2). Only by increasing Th, bringing it closer to 100%,

can we guarantee to improve current utilization. But

increasing Th increases the number of time splits that we do

prior to performing a key split. Hence it increases the number

of pages needed to store the multi-versioned data.

As pointed out in [2], the only way to guarantee the storage

utilization seen by every version in a multi-version tree like

the TSB-tree is to perform a time split whenever there is a key

split. Doing this ensures that the maximum current version

utilization is actually captured in the historical page, before it

is halved by the key splitting of the page. This also makes

the key split very similar to the B-tree key split since only

current versions are in the page when the key split is done.

This form of key splitting (never do a “naked” key split)

has been an aspect of many multi-version indexing techniques

beginning with the write-once B-tree (WOB-tree) [5]. The

WOB-tree was designed to work on write-once media. Hence,

a time split was “built into” the very nature of the splitting

process. The original page became the historical page, and

only the current data from the original page was then re-

written to one or more new pages. For a pure time split, the

current data was written to a single new page. For a key and

time split, it was written to two new pages. Thus, a key split

could not be performed in any other way, since it was

impossible to remove data previously written in a page.

B. Exploiting Re-writable Media

While a write-once medium permits only the WOB-tree

splitting strategy, other splitting strategies have been explored

when a re-writeable medium such as a hard disk is used [16].

These strategies improve certain aspects of the TSB-tree index,

e.g. reducing total space consumed. But, other splitting

techniques do not guarantee that each version has a lower

bound on storage utilization [2]. Hence, it is not possible to

guarantee range performance, either for current or for

historical versions.

C. A New Splitting Strategy

We want to “have our cake and eat it too.” That is, we

wanted improved storage utilization without having to

increase the value of Th. And, when using re-writable media

like magnetic disks, this turns out to be possible. The new

splitting strategy works as follows. When the utilization of

the current version in a full current page (called single version

current utilization or SVCU) is less than Th, the page is time

split as before. When SVCU >= Th, then instead of doing a

time split followed by a key split, we only do a time split. But,

we remember that we have exceeded Th by marking the page.

When the page fills again, we then do a key split without

doing an immediately preceding time split. Rather, the earlier

time split substitutes for this. Thus, we have not changed the

time of the time split, but we have deferred its associated key

split until the current page fills again.

What has this new strategy accomplished? Historical pages

are unchanged by this. The time splits and when the time

splits occur happen exactly as they did when using the WOB-

tree splitting strategy. What have changed are the current

pages and the utilization seen on these pages. During the time

between the preceding time split and the eventual key split,

the current pages in this situation have twice the storage

utilization of the pages had the key split been done

immediately. Thus, we get one more opportunity to fill up the

current page before we finally do this key split. And this is

done without (1) increasing the number of time splits and

hence the number of versions that are replicated and (2)

without changing the single version utilization (SVU) seen for

any historical version. But because of the one extra time the

current page is filled before it is key split, we increase SVCU.

D. Deferred Splitting and Current Versions

Here we derive the deferred splitting impact analytically

and confirm this via experiments. In [14], we derived SVCU.

We repeat part of that analysis for completeness and because

it extends naturally to deal with deferred splitting. This is an

asymptotic analysis, not a probabilistic one. Our results are

presented in terms of the mix of inserts (resulting in new

records) and updates (resulting in new versions of existing

records), where, for example a “percent of update” of 0.20

indicates 20% of database modifications are updates while

80% of them are inserts. We use “percent of update” in the

presentation to be consistent with the results presented in [16],

which served as a sanity check for our results. We compute

SVCU as a function of the fraction of updates that are inserts,

called the insert ratio In. Thus “percent of updates” is 1.0 –

In. We use In because it makes the equations simpler.

We also include the impact of compressing all versions of a

record except the latest version on the page. Compression

ratio is denoted as CR in the analysis, where CR is compressed

version size divided by uncompressed version size. The

format for a database page is shown in Figure 3. It is

important to note that the current versions (more generally, the

most recent versions) on the page are not compressed. All

older versions of existing records are delta compressed; i.e.

only the difference between the version and its predecessor is

retained, along with the timestamping information associated

with the version and the version chain pointers. CR denotes

the full size in bytes of a delta version divided by the full size

in bytes of the uncompressed version.

dynamic slot array

1 slot = 2 bytes 0 1

page header: 96 bytes includes among other things

contig free

space offset

FREE SPACE

USED SPACE
∆1.2

∆1.1

free space

total

slot

count

VVeerrssiioonn 11..33
VVeerrssiioonn 00..44

∆0.3

∆0.2

∆0.1

time

stamp

Figure 3: Data page layout showing how uncompressed latest versions are
chained to earlier delta compressed versions.

When a data page is split by time, it is always split as of the

current time. Its entire contents are moved to the resulting

historical page. The original current page is then updated by

removing all historical records (the deltas) from the page. The

following analysis is based on this form of time splitting.

We compute the maximum value for SVCU iteratively until

it reaches a fixed point. Consider a page split at iteration i’s

maximum value SVCUi. We iterate through multiple splitting

steps until this maximum converges. Once we have

determined the maximum value for SVCU, we then compute

SVCUavg as SVCU*ln(2).

A newly key split page at the (i+1)
th

 step has utilization

SVCU(i+1)min = 0.5*SVCUi. That is, we have removed all

historical delta records during the preceding time split, and we

have divided the remaining current records in half, allotting

each half to one of the resulting pages. We then fill the page

with entries divided between updates and inserts as given by

the update ratio. The current entries when the page next fills

are represented by these initial entries plus the inserts (but not

the updates). We need to capture the impact of compression

and hence we want to know how the space in the page is

divided. This results in the following iteration formula. We

start calculating this using Th as SVCU0. The value converges

rapidly (five iterations). At iteration i+1, we fill the unused

space (1 -0.5*SVCUi) with insertions in their ratio of insertion

space over the total space for new versions, taking into

account that updates lead to compression of the supplanted

version. Once the value of SVCUi are “clipped” by threshold

Th, guaranteeing that Th is the minimum value for the

maximum utilization that is permitted. Thus:

SVCU0 = Th

SVCUi+1=

Max(Th,0.5*SVCUi+(1- 0.5*SVCUi)*(In/(In+C*Up)))

These values are SVCUmax, the maximum value reached by

SVCU before the page is key split. For average, we then get:

SVCUavg = SVCUmax * ln(2).

We plot SVCUavg against update ratio in Figure 4 based on

our prior experiments (the “no defer” results). Our analysis

suggests that Th limits SVCUmax at lower update ratios more

than found in the experiments, but has less of an impact at

mid-range update ratios before Th limits are strong.

To derive the improvement in SVCU resulting from our

delayed splitting strategy, we continue our analysis by

determining the impact on SVCU of one extra filling of the

page prior to performance of a key split. Let us call the new

single version current utilization SVCU
d
 indicating it is for the

deferred split case. Then, because of the deferred split, we

have one more opportunity to fill the page, starting at the

maximum fill (utilization) reached for the original case. Thus

SVCU
d
max= SVCUmax +(1-SVCUmax)* [In/(In +C*Up)]

To get the new average SVCU
d

avg, we multiply the maximum

utilization by ln(2), which is now quite standard. Thus

SVCU
d
avg= SVCU

d
max*ln(2)

We plot the result of our analysis for the deferred case in

Figure 4 comparing our analytic results with both deferred and

non-deferred (WOB-tree) experimental results, both with and

without version compression. Figure 4’s experimental results

are produced from experiments that we ran using Immortal

DB as the test vehicle. The difference between analysis and

experiment are minor, never differing by more than a few

percent, and usually less.

Figure 4: Single version utilization: deferred and non-deferred splitting results.

What we see in looking at Figure 4 is that our analysis

matches our experimental results for the deferred case very

closely. Deferred splitting improves SVCU substantially in

the middle of the update ratio range, but the effect is reduced

at both end points. When we have almost all inserts (percent

of updates below say 0.2), then regardless of the threshold Th,

the page is almost full without deferred splitting since there

are very few historical versions to prevent this. Hence there is

very little room for improvement. The resulting SVCU is

already comparable to B-tree utilization. At the high end of

the percent of updates, almost all updates modify records,

producing more historical versions. Even though there is

space in the page to fill after the final time split (which

removes all historical versions), filling it with almost all

historical versions does not improve SVCU much. It is in the

middle of the update range where deferred splitting has most

impact. And it is this part of the update ratio range that we

expect to encounter in real system deployments. What we see,

especially when we have decent compression (a compression

ratio of C =.162 that might be produced when one or two

fields of a multi-field record are updated) is that deferred

splitting keeps SVCU within 10% of B-tree utilization out to

around an update ratio of 0.8. Experiments confirm the

analysis.

E. Deferred Splitting and Historical Versions

Delayed splitting also has an impact on what we have

called multi-version utilization (MVU). Here we want to

determine the effective storage utilization, where each version

is counted only once, regardless of how often it might be

duplicated during a time split of an overfull page. We also

want to calculate it assuming that each version is

uncompressed, so that we can clearly see the benefit of

compression as well as deferred splitting.

As with SVCU, we adapt our results for MVU to determine

the impact of deferred splitting. Our analysis for MVU did

not determine its value at all points. We will not repeat the

analysis from [14] here. Deferred splitting changes only the

amount of space taken by data pages containing current data.

Even for update percent of zero, current pages make up only

1/2 of the pages. So the number of current pages is always

smaller than the number of historical pages. Over most of the

range of update percent, the number of current pages is small.

What we see then is that deferred splitting has only a very

modest impact on multi-version utilization. This is because it

only impacts single version current utilization, and the pages

containing the current versions can be a very modest fraction

of the total pages. Most of the impact of deferred splitting is

in the significant increase in current version utilization, and

hence current version range read performance.

At the end points of the update percent range, the deferred

splitting has no impact. That is because at the end points, it

has no impact on SVCU. The biggest impact, evident from the

graph in Figure 5, occurs between 0.5 and 0.9. This is the

range that we expect most applications to operate in.

However, even here, the impact is not large. Hence, the

primary justification for deferred splitting lies in its

improvement in current version range search. On the other

hand, we see that delta compression makes a very large

difference in MVU over most of the update percent range. It

is especially helpful when there are a large percentage of

updates, and hence a large number of historical versions. The

space savings are very substantial at percent of updates.

Figure 5: Multi-version utilization: deferred and non-deferred splitting results.

IV. AUDITING WHO DID WHAT

Auditing, e.g. to track company finances, is a complex

subject with many esoteric tests that are performed on a

company’s data. A database platform cannot hope to provide

built-in support for these tests. Rather, the role of a platform

is to provide the underlying information that enables the tests

to be made. Note that a transaction time database, because it

retains the entire history of the database, already helps

substantially with this.

Part of auditing is tracing responsibility. Transaction time

databases do not, with their basic functionality, address this.

However, we have found it straightforward to add the ability

to track which user (actually user id) is responsible for each

change made to the database. And the impact on system

performance is modest.

To support timestamping of versions, Immortal DB

maintains the PTT table. This permits the system to replace

TSNs by timestamps lazily after commit. We have been

garbage collecting the PTT’s entries once the timestamping

activity is completed for the corresponding transactions.

However, garbage collection is discretionary, and is purely a

space optimization. If we retain the time table entries, the

system continues to operate correctly.

Based on the preceding observation, our support for the

audit function adds a user id field (UID) to the PTT. The UID

permits us to remember who executed the transaction. To be

consistent with our timestamping approach, we also add the

UID to the information stored in each transaction’s commit

record and to the VTT, the volatile timestamp table that we

cache in main memory to speed up the timestamping process.

Coupled with a no delete policy for the PTT, we can now

remember not only the “what” of a transaction but also the

“who”. That is, every record contains a timestamp. This

timestamp can be used to search the PTT to find the UID of

the user on whose behalf the transaction executed.

We have already measured the performance impact of

providing this audit support. We measured it in our

experiment to determine timestamping overhead (see Figure

2). Recall that in the timestamp information is added in

“batches” to the PTT. Because it is added in a batch, the

overhead of doing this is modest. The correct result to use in

determining the auditing cost is the 50% batch inserts line.

This line denotes the cost of adding only 50% of the

transaction entries to the PTT. However, it also includes the

cost of deleting those entries as well, hence being

approximately equivalent to a pure insert of all transactions to

the PTT. Recall that what Figure 2 gives is the overhead

when executing single record update transactions, which is a

worst case. Auditing thus adds (from Figure 2) about 25%

overhead in this case. Remember, however, that what is

being measured here is response time, not throughput. The

throughput impact will be less as there are fewer page writes

per transaction when the system is more heavily loaded, and

multiple users are updating a transaction time database.

V. RELATED WORK

Many database applications require that multiple versions

of records be stored and retrieved. The effort to satisfy the

diverse needs of these applications has led to a number of

versioning solutions. A more complete history of related

work is given in [14]. There have been a number of papers

discussing aspects of timestamping [10, 19, 32]. Further,

there are a large number of proposed indexing techniques used

for temporal data, e.g. [2, 7, 25, 26]. Temporal database

bibliographies are in [11, 26, 33]. Here we focus on multi-

version support in general purpose database systems.

A. Postgres

There was some conceptual temporal database work in the

early 1980’s ([28] is an example and contains citations to even

earlier work). However, the first database system offering

temporal functionality was Postgres [30], which provided

reasonably complete transaction time functionality. R-trees [6]

are used in Postgres to index historical data, with recent data

residing in a B+tree. This separation is important as R-trees,

a general multi-attribute index, have difficulty supporting, in a

straightforward way, data that is current and hence does not

yet have an end time.

The movement of data from the B+tree to the R-tree occurs

at a later time, after transaction commit. Versions that had not

yet been timestamped, can be timestamped during this process,

called “vacuuming”, i.e. committed versions whose “end

times” are sufficiently old are moved from the current part of

the database to the historical part. This means that the

Postgres version of our PTT can be garbage collected after

each vacuuming scan completes, as all transactions committed

prior to the time specified for the vacuuming can be

guaranteed to be timestamped.

The Postgres approach does mean, however, that queries

accessing historical “as of” record versions need to access

both B+tree and R-tree. A record version valid at a given time

may either (1) be in the B+tree if it has not been subsequently

updated or (2) be in the R-tree if it has been subsequently

updated. Range search performance in either of these trees is

limited by the lack of time splitting support. Thus, the B+tree

only splits by key. The R-tree splits in both dimensions, but is

forced to index intervals, resulting in a reduction in the single

version utilization and hence as of query performance.

In [23], a time-travel service is implemented for a

replication DBMS. The time-travel semantics is defined using

snapshot isolation in PostgreSQL and allows retrieval of older

snapshots in replication systems.

B. DEC Rdb

DEC Rdb [8] (now owned by Oracle and called Oracle Rdb)

provides support for read-only transactions without impeding

update transactions via a transient versioning technique in

which the transient versions are accessed by being linked to

the current data. Transient versioning methods are also

described in [29] for the same purpose. Rdb uses a technique

called “commit lists” to identify the versions that should be

seen in an “as of” query. General “as of” queries are not

supported. Rather, a user can issue a query within a read only

transaction. As in snapshot isolation, the version that is

current as of the time that a read only transaction begins is

selected as the version to be read. The system keeps track of

transaction identities via TSNs. When a read only transaction

starts, the system points the transaction to the set of

transactions that have already been committed, together with

their commit sequence numbers (CSN). The CSN is assigned

at transaction commit in the order that transactions have

committed, and hence in their serialization order.

This “commit list” permits the read only transaction to

identify which version of a record it should read, i.e. the

version with the highest CSN that is earlier than the last CSN

that it is permitted to see. TSNs are stored with the updated

record versions. Finding the correct version entails translating

the TSN to its associated CSN.

The “commit list” approach avoids storing all transaction

TSNs over all of history by truncating the list at an active

transaction “low water mark”, a TSN that is smaller than any

active transaction. All earlier TSNs encountered when

reading versions are assumed to be readable by the read only

transaction. Further, all versions with TSNs greater than the

TSN associated with the last CSN the read only transaction is

permitted to see are bypassed in a backward scan to find the

correct version. Thus a “commit list” can be easily

represented by a list of limited size.

Rdb chains back to a separate version store for its recent

versions. This works fine when only recent versions are read.

Microsoft SQL Server borrows from DEC Rdb both the

commit list approach for handling “timestamping” and the

backward chaining to recent versions for its support of

snapshot isolation concurrency control [29] which is a form of

multi-version concurrency control that improves concurrency

and reduces locking.

C. Oracle

Oracle has long supported a form of versioned data. Its

undo recovery method keeps prior committed versions

available in database pages, where a transaction abort removes

the uncommitted version, restoring the prior version to its

status as current version. It exploits this versioning in

concurrency control, being a very early supporter of multi-

version concurrency control. It calls the most stringent of its

isolation levels “serializable”, but this has been more precisely

identified as “snapshot isolation” [3], with its own set of

slightly weaker guarantees. Oracle has, over time, enhanced

its versioning capability to support transaction time

functionality.

With Oracle 9i, Oracle announced support for transaction

time functionality [21], which it called “FlashBack”.

FlashBack queries allow the application to access prior

transaction time states of their database. Oracle 10g extended

FlashBack queries to retrieve all the versions of a row

between two transaction times (a key-transaction time-range

query) and allowed tables and databases to be rolled back to a

previous transaction time, discarding all changes after that

time. This is equivalent to “point in time” recovery and is

used to deal with removing the effects of bad user transactions.

The Oracle 10g Workspace Manager includes the time period

data type, valid-time support, transaction time support,

support for bitemporal tables, and support for sequenced

primary keys, sequenced uniqueness, sequenced referential

integrity, and sequenced selection and projection. They do

not index historical versions, however, so historical version

queries must go through current time versions and then search

backward “linearly” in time.

More recently, Oracle has announced the “Total Recall”

feature for Oracle 11g [22]. Building on FlashBack, Total

Recall supports the long time archiving of transaction time

versions, supporting the migration of the versions to archival

media. “As of” queries, supported with FlashBack, execute

“seamlessly” on the archive maintained by Total Recall. Built

in security enforces that the Total Recall archive is strictly

read-only. A form of compression is supported to reduce the

storage cost of retaining the more extensive database history.

Centralized management supports a deletion policy that can

“age out” old versions, based on business policy. Total Recall

is promoted as supporting Sarbanes-Oxley compliance.

D. Comparing with Our Work

In none of this related work on implemented systems were

versions indexed using a multi-version temporal access

method. Since such an access method was not used, it is not

surprising that deferred splitting was not an aspect of the work.

Aside from Postgres, the other system implementations do

not replace transaction sequence numbers with timestamps.

We have worked hard to make this process as efficient as

possible. This has a large payoff as soon as significant

numbers of queries to past database states are executed,

making our system a much better fit for the actual exercise of

transaction-time functionality than prior work.

Our auditing approach is a very simple, effective, and high

performance way of supporting audit functionality. Oracle

“Total Recall” also provides an auditing capability, but we

have not found an explanation that is sufficiently detailed to

provide a meaningful discussion.

VI. DISCUSSION

A. Performance

We have stressed throughout this paper the importance of

temporal support having performance that is close to the

performance of a non-versioned (non-temporal) database.

This is important even when only supporting versioning for

snapshot isolation. If versioning performance is not

comparable to unversioned performance, few users will run

their database code using the versioning technology. Without

competitive performance, users will not be inclined to exploit

any more general database temporal functionality. This is at

the heart of our rationale for building multi-version support

into the database kernel.

In this paper we have shown how to make performance

noticeably better than we had achieved in the past.

1. For transaction timestamping, we exploited (1) the better

performance of batch updating, enabled by storing

mapping information in a transaction’s commit record;

and (2) a more timely reference counting method to

reduce the number of entries needing insertion into our

PTT table.

2. We improved the range search performance for current

data by exploiting re-writable media. Delaying key

splitting in the way that we have may seem an obvious

thing to do. But there is a long history of multi-versioned

indexing in which this opportunity was not noticed or

exploited. And it has a noticeable impact on range query

performance for current data.

Both of these performance improvements together narrow the

performance gap with unversioned data. It can truly be

claimed that this gap is now no longer a serious impediment to

supporting applications that require transaction time temporal

support.

B. Functionality

 Reducing the performance impact is one way of making

temporal functionality more attractive. Increasing the

functionality supported is another way, where both together

improve the cost/benefit ratio seen by database users. Already

suggested has been high performance media recovery [17] as

well as the Immortal DB fast recovery from bad user

transactions [20].

In this paper, we have added a foundation for audit support.

Auditing database systems (and their data) has always been

important for businesses. And with the passing of the

Sarbanes-Oxley legislation, auditing has assumed even greater

importance.

It is important to understand that we have added a

foundational element of audit functionality. We have added

only the tracking of who was responsible for the execution of

a transaction. This, together with the versioning already

supported by Immortal DB, permits special purpose

application programs to be written that can trace every change

made in the database, and assign the change to the responsible

user id. Further, the performance impact of this is quite

modest.

Adding audit support is very much in the same spirit as our

previous functional additions to versioning databases. Like

the audit support, they exploit the existence of versioned data

to accomplish in a simple and high performance way, a highly

useful capability. For bad user transaction recovery, earlier

versions are used to replace subsequently corrupted later

versions. This is done with much higher performance and

much greater selectivity than is done by the classical “point in

time” recovery, which has to install a database backup and

then roll forward changes from the media recovery log to a

point just earlier than the bad transaction. And then, finally,

“point in time” recovery removes the effects of all later

transactions, hence “de-committing” them. Using multiple

versions, we avoid installing a backup, need no roll forward

step, and selectively de-commit only directly impacted

transactions.

C. Conclusion

Immortal DB in its current state has demonstrated that

supporting multiple versions does not incur any serious

performance degradation. And it provides the foundation for

useful additional functionality exploiting multiple versions.

This provides a strong incentive for the adoption of database

systems that support transaction time functionality.

REFERENCES

[1] R. Agrawal and R. J. Bayardo Jr. and C. Faloutsos and J. Kiernan and R.
Rantzau and R. Srikant: Auditing Compliance with a Hippocratic

Database. VLDB 2004.

[2] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An

Asymptotically Optimal Multiversion B+tree. VLDB J. 5, 4, 264--275,

1996.

[3] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O'Neil, and P. E.

O'Neil: A Critique of ANSI SQL Isolation Levels. SIGMOD, 1--10.
1995.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman: Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[5] M. Easton: Key-Sequence Data Sets on Inedible Storage. IBM J. R & D
30, 3, 230--241, 1986.

[6] A. Guttman, "R-trees: a dynamic index structure for spatial searching",
SIGMOD, pp. 47--57, 1984

[7] M. Hadjieleftheriou, G. Kollios, V.J. Tsotras, and D. Gunopulos:
Efficient Indexing of Spatiotemporal Objects. EDBT, 251 -- 268, 2002.

[8] L. Hobbs, K. England. Rdb: A Comprehensive Guide. Digital Press,
1995.

[9] C. S. Jensen and R. T. Snodgrass: Temporal Data Management. IEEE
TKDE, 11, 1, 36--44, 1999.

[10] C. S. Jensen and D. B. Lomet: Transaction Timestamping in (Temporal)
Databases. VLDB, 441--450, 2001.

[11] N. Kline: An Update of the Tcmporal Database Bibliography, SIGMOD
Record, 22, 4, 66--80, 1993.

[12] D. B. Lomet, R. Barga, M. Mokbel, G. Shegalov, R. Wang, and Y. Zhu:
Immortal DB: Transaction Time Support for Sql Server. SIGMOD, 939-

-941, 2005.

[13] D. B. Lomet, R. Barga, M. Mokbel, G. Shegalov, R. Wang, and Y. Zhu:

Transaction Time Support Inside a Database Engine. ICDE, 35, 2006.

[14] D. B. Lomet, M. Hong, R. Nehme, R. Zhang: Transaction Time

Indexing with Version Compression. VLDB, 2008 (to appear).

[15] D. B. Lomet and B. Salzberg: Access Methods for Multiversion Data.

SIGMOD, 315--324, 1989.

[16] D. B. Lomet and B. Salzberg: The Performance of a Multiversion

Access Method. SIGMOD, 353--363, 1990.

[17] D. B. Lomet and B. Salzberg: Exploiting A History Database for

Backup. VLDB, 380--390, 1993.

[18] Lomet, D. and Salzberg, B. Transaction-Time Databases. Chapter in

Temporal Databases: Theory, Design, and Implementation. A Tansel et
al eds., Benjamin/Cummings(1993)

[19] D. B. Lomet, R. T. Snodgrass, and C. S. Jensen: Using the Lock
Manager to Choose Timestamps. IDEAS, 357--368, 2005.

[20] D.B. Lomet, Z. Vagena, and R. Barga: Recovery from "Bad" User
Transactions. SIGMOD, 337--346, 2006.

[21] Oracle:_Oracle_Flashback_Technology.
http//www.oracle.com/technology/deploy/availability/htdocs/Flasflashb

ack_Overview.htm, 2005

[22] Oracle:_Total_Recall.

http://www.oracle.com/technology/products/database/oracle11g/pdf/flas

hback-data-archive-whitepaper.pdf , 2008.

[23] C. Plattner, A. Wapf, and G. Alonso: Searching in Time. SIGMOD, 754-

-756, 2006.

[24] Betty Salzberg: Timestamping After Commit. PDIS 1994: 160-167

[25] B. Salzberg and V.J. Tsotras: Comparison of access methods for time-

evolving data. ACM Comput. Surv. 31, 2, 158--221, 1999.

[26] M.D. Sao: Bibliography on Temporal Databases. SIGMOD Record, 20,

1, 14--23, 1991.

[27] H. Shen, B.C. Ooi, and H. Lu: The TP-Index: A Dynamic and Efficient

Indexing Mechanism for Temporal Databases. ICDE, 274--281, 1994

[28] Richard T. Snodgrass, "The Temporal Query Language TQuel," In

Proceedings of the ACM SIGACT-SIGMOD Symposium on Principles of

Database Systems (PODS'84), Waterloo, Ontario, Canada, April 1984,
pp. 204–213.

[29] SQL Server: Inside Microsoft SQL Server 2005: The Storage Engine,

MS Press, 2005.

[30] M. Stonebraker. The Design of the POSTGRES Storage System. VLDB,

289--300, 1987.

[31] U. Tansel, J. Clifford, S. K. Gadia, A. Segev, and R. T. Snodgrass:

Temporal Databases: Theory, Design, and Implementation.

Benjamin/Cummings, 1993.

[32] K. Torp, R. T. Snodgrass, C. S. Jensen. Effective Timestamping in

Databases. VLDB J., 8, 4, 267--288, 2000.

[33] V.J. Tsotras and A. Kumar: Temporal Database Bibliography Update.

SIGMOD Record, 25, 1, 41--51, 1996.

http/www.oracle.com/technology/deploy/availability/htdocs/Flasflashback_Overview.htm
http/www.oracle.com/technology/deploy/availability/htdocs/Flasflashback_Overview.htm
http://www.oracle.com/technology/products/database/oracle11g/pdf/flashback-data-archive-whitepaper.pdf
http://www.oracle.com/technology/products/database/oracle11g/pdf/flashback-data-archive-whitepaper.pdf
http://www.informatik.uni-trier.de/~ley/db/conf/pdis/pdis94.html#Salzberg94

