
FalconDB: Blockchain-based Collaborative Database
Yanqing Peng
University of Utah
ypeng@cs.utah.edu

Min Du
UC Berkeley

min.du@berkeley.edu

Feifei Li
University of Utah
lifeifei@cs.utah.edu

Raymond Cheng
UC Berkeley

ryscheng@cs.berkeley.edu

Dawn Song
UC Berkeley

dawnsong@berkeley.edu

ABSTRACT
Nowadays an emerging class of applications are based on
collaboration over a shared database among different entities.
However, the existing solutions on shared database may
require trust on others,
have high hardware demand that is unaffordable for in-

dividual users, or have relatively low performance. In other
words, there is a trilemma among security, compatibility
and efficiency. In this paper, we present FalconDB, which
enables different parties with limited hardware resources
to efficiently and securely collaborate on a database. Fal-
conDB adopts database servers with verification interfaces
accessible to clients and stores the digests for query/update
authentications on a blockchain. Using blockchain as a con-
sensus platform and a distributed ledger, FalconDB is able
to work without any trust on each other. Meanwhile, Fal-
conDB requires only minimal storage cost on each client,
and provides anywhere-available, real-time and concurrent
access to the database. As a result, FalconDB overcomes the
disadvantages of previous solutions, and enables individual
users to participate in the collaboration with high efficiency,
low storage cost and blockchain-level security guarantees.

ACM Reference Format:
Yanqing Peng, Min Du, Feifei Li, Raymond Cheng, and Dawn Song.
2020. FalconDB: Blockchain-based Collaborative Database. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3318464.
3380594

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3380594

1 INTRODUCTION
The growth of the Internet has triggered tremendous op-
portunities for data cooperation. Many applications could
benefit from a shared database among multiple parties, such
as collaborative benchmarking [4], crowdsourcing [43], shar-
ing economy [5], cooperative scientific computation [14],
and collaborative machine learning[7].
In such scenarios, a key opponent is a shared database

management system that allows each party to execute up-
dates and queries to the database, while maintaining a con-
sistent view among all participants in the network. Many
projects require collaborations among a group of individual
users. As individual participants, they may need to collabo-
rate through their personal devices with limited storage and
computation power. Furthermore, they could be easily com-
promised and become malicious. Therefore, it is essential
to design a shared database that enables individual users to
collaborate with each other without any trust.
Traditionally, individual users who have limited compu-

tational power and local storage typically utilize a central-
ized server to facilitate collaboration. Such a service enables
anywhere-available, real-time, and concurrent access to the
database. However, it requires to fully trust the central server,
which is expected to correctly execute all requests. One im-
mediate concern is that a malicious server can fool any client
without being detected. Another issue arises from the client
side: a client may manipulate the records arbitrarily for its
own interest. A sophisticated mechanism must be adopted
to prevent clients from issuing undesired updates.
The emergence of blockchain techniques brings practi-

cal solutions to handle Byzantine failures [26], namely, a
party could behave arbitrarily. Specifically, a permissioned
blockchain platform could be viewed as a distributed system,
where there is a chain of blocks that keep immutable records.
The blocks of records are agreed by all blockchain nodes
via some consensus protocol that tolerates Byzantine fail-
ures. Such platforms include Hyperledger [2], Tendermint
[8], HotStuff [47] and BigchainDB [33]. This design does not
require a centralized server, and works in an untrusted en-
vironment with up to a small proportion (e.g., 1/3) of nodes

https://doi.org/10.1145/3318464.3380594
https://doi.org/10.1145/3318464.3380594
https://doi.org/10.1145/3318464.3380594

being malicious. Undesired operations like malicious updates
could be denied by the system.

Although blockchain systems have attracted much atten-
tion, it is still very rare for an individual user to participate
as a node, due to the high cost. First, blockchain nodes need
to locally store a full copy of the blocks, which could easily
be hundreds of gigabytes, potentially exhausting local disk
space for individual users. Second, blockchain nodes must
maintain network communication with others to promptly
receive and validate new blocks, which consumes both net-
work bandwidth and computation power. Finally, since there
is no longer a service provider to facilitate queries, users
have to execute queries locally with their personal hardware.
Executing complex queries with limited CPU power could
be unacceptably slow.
The high cost on blockchain nodes limits the compati-

bility of blockchain. The concept of lightweight clients is
proposed to alleviate the cost on individual participants [35].
Lightweight clients communicate with full nodes to update
or query the blockchain database. Hence their capabilities
are constrained by the APIs exposed by the full nodes. More-
over, query integrity needs to be ensured if the full nodes
are not trustworthy [45]. A baseline solution is to leverage
smart contracts [22]. A user could submit a query to a smart
contract. Then, all full nodes execute the query and run a
Byzantine fault tolerance (BFT) consensus protocol on the
query result. Once a consensus is reached, the result will be
committed to blockchain as well as revealed to the client.
This approach guarantees integrity with a majority of honest
nodes. However, it has limited throughput, high latency, high
gas consumption and introduces privacy concerns.
None of the previous solutions is able to simultaneously

achieve security, compatibility and efficiency. This becomes a
paramount trilemma when we need all three properties. Con-
sider the case of charitable giving, where a large number of
donors make donations to multiple non-profit organizations
(NGOs). An NGO needs to record each received donation,
while an individual donor may want to audit how an NGO is
spending her money. In fact, such a database already exists
[13], where a centralized database server decides the execu-
tion results of all updates and queries. In such a design, the
database host is able to hide any possible corruption or mis-
usage of donations, while the users have no way to verify
them. Therefore, a decentralized blockchain database solu-
tion is more desirable. However, existing blockchain database
designs as mentioned above [33] are not sufficient because: 1)
the individual contributors hardly have enough local storage
to store the whole data; and 2) acting as a lightweight client
and querying full nodes with smart contracts is not efficient
enough. As a result, it is of great importance to design an
efficient system that has low cost on users, but still enables

a traceable and tamper-free historical record of charitable
giving [40].
Our contribution. We present FalconDB, which is a block-
chain database that has low hardware requirements (e.g., stor-
age, computation, bandwidth) on individual clients, achieves
query efficiency as high as a centralized database design, and
ensures security guarantees as strong as blockchain level. In
FalconDB, a blockchain node could either be a server node
that stores the entire database, or a client node that uses
the database by sending query and update requests to the
server nodes. To grant the clients with the ability to verify
if an update or query is correctly executed, the database
contents are stored with authenticated data structures (ADS)
on server nodes. The ADS generates a small piece of digest
for the current database content, and the clients can then
use this digest to authenticate the results returned by the
server. The servers and clients are synchronized under a
decentralized blockchain network. Each server node is a full
blockchain node that stores the entire database and block-
chain blocks, while each client node stores only the block
headers. The newest block header contains the digest of the
current database content, which the clients are able to access
for authentication. With this digest, FalconDB could tolerate
up to 1/3 of the total blockchain nodes being malicious, and
is able to proceed even all full nodes are dishonest except
one, which is enabled by the authenticated database design.
Note that, many previous works on outsourced database

(ODB) [21, 28, 29, 34, 36, 37, 46, 46, 49, 50] have studied the
problem of query authentication, which validates the results
of the database server with essential digests. Unfortunately
they cannot be directly applied to the collaborative database
scenario as we will show later in Section 2.3.1.

We summarize our contributions as follows.

• We propose and implement FalconDB, which to the best of
our knowledge, is the first platform that enables individual
users to collaborate on a database with strong security
guarantee, low storage cost, as well as high efficiency.

• FalconDB leverages a blockchain platform which tolerates
up to 1/3 participants being malicious, as well as employs a
temporal data model which provides a transparent history
log of the database, enabling clients to examine the history
and revert updates made by malicious collaborators.

• FalconDB server nodes store the entire database with au-
thenticated data structures. With this, the client nodes are
only required to store block headers, and able to validate
the results returned by server nodes. Therefore, each client
has minimal storage cost, and FalconDB could tolerate all
full nodes being malicious except one.

• Moreover, FalconDB provides an incentive model that mo-
tivates each server to take extra storage cost and respond

honestly to clients’ requests, which further reduces the
chance of the server being malicious.

• Finally, we conduct empirical evaluation to validate the
performance of FalconDB. Our results show that FalconDB
is able to achieve security guarantee that aligns with state-
of-the-art blockchain protocols, high efficiency as out-
sourced databases, and little storage cost on clients.

2 PRELIMINARIES
2.1 Blockchain
A typical blockchain system consists of multiple nodes which
do not trust each other. Together, the nodes maintain a set
of shared, global states and perform blockchain transactions
that modify the global states. Some nodes may exhibit Byzan-
tine behavior, but the majority are expected to be honest.
The blockchain nodes are able to agree on the blockchain
transactions and their order even with some malicious nodes
present in the network.

The blockchain network maintains a chain of blocks. In a
minimized blockchain system, each block has a block content
C and a headerH = (M,V)which consists of metadataM and
verification data V . The metadata includes the block height
heiдht , the hash value of previous block lastBlockHash, and
the hash value of the block content dataHash.
The first block (with height 1) in the blockchain is called

the genesis block, which is hardcoded in the protocol. A
non-genesis block (H ,C) is valid only if there exists a valid
previous block (H ′,C ′) and all the following conditions are
satisfied:
• hash(H ′) = H .lastBlockHash.
• H .heiдht = H ′.heiдht + 1.
• hash(C) = H .dataHash.
• validate(V) = 1 for a function validate defined by the
blockchain protocol.
In a meaningful blockchain system, the verification dataV

and the validate function should ensure that the blocks can’t
be arbitrarily generated, which helps the blockchain remain
stable. Sometimes there are multiple valid blocks at the same
height, which is called a fork. Most blockchain protocol will
choose a branch as the main chain and make sure that all
nodes will work on the same main chain, so that the global
state is consistent among these nodes.
A blockchain system can be categorized as either per-

missionless or permissioned. In the former, any node can
join and leave the system, while in the latter, the access to
blockchain is restricted to a group of members only. In a
permissioned blockchain network, every node is authenti-
cated and its identity is known to the other nodes. Since
FalconDB is a collaborative database, we assume that the
identities of all collaborators are known, and we will focus
on permissioned blockchain in this paper.

2.2 Smart Contract
A smart contract is a computer program that executes in a
secure environment, e.g., blockchain system, which has di-
rect control over digital assets. Like other programs, a smart
contract has variables and functions, and users can inter-
act with the functions in the smart contract to examine or
change the values of its variables. For blockchain systems
where the security is ensured by BFT consensus, the inputs,
outputs and states affected by the smart contract execution
are agreed on by every node. Smart contracts typically define
the logic of money transfer, which will happen immediately
if the defined conditions are met, guaranteed by the secure
environment. Existing public smart contract platforms are
represented by Ethereum [44], which is an open-source plat-
form widely used in real world applications.

2.3 Authenticated Data Structures
Authenticated data structures (ADS) are commonly used in
outsourced databases, where users upload their databases
to a cloud server and access the database remotely. ADSs
empower database clients with the ability to verify the re-
sults of queries and updates to the remote database, which
could prevent the server from being malicious. We define
the abstract notion of an ADS as below.
Given a database D, an ADS is defined over a class of

queries Q and updatesU on D that it supports. It includes
five key functions:
• Function Sum takes as input the data D, and outputs a
digest δ .

• Function Qry takes as input the data D and a query q ∈ Q.
It returns a result R = q(D) with proof π .

• FunctionVerifyQry takes as input a digest δ , a queryq ∈ Q,
result R, and proof π . This function should guarantee that
if δ = Sum(D), it will return 1 if and only if (R,π) =
Qry(D,q). This guarantees the correctness of the query
result R as long as the client has the correct digest δ of the
data D.

• Functions UpdS and UpdC are interactive algorithms run
by the server and client. UpdS takes as input the data D
and an update u ∈ U, while UpdC takes as input the
same update u and the data digest δ which satisfies δ =
Sum(D). After a successful interaction, UpdS outputs the
new database content D ′ = u(D) and UpdC outputs a
digest δ ′ which satisfies δ ′ = Sum(D ′). This guarantees
that the client will get the right digest of the data after the
update without storing the data locally, as long as the it
has the correct digest before the update.
For an ADS to be practical, the sizes of δ and π as well as

the data exchange between UpdS and UpdC should be much
smaller than the size of D. We say an ADS is secure if for any
probabilistic polynomial time adversary A, the probability

that the adversary breaks the equalities in VerifyQry and
UpdC is negligible.

With the help of these functions, database users can safely
upload their data to the server node while only keep a small
local storage for the digest δ . The user will be able to verify
if the server has correctly executed functions Qry and UpdS,
through running functions VerifyQry and UpdC over the
returned results and proofs.

2.3.1 Limitation. ADSs have been proved to be powerful in
ODB where there is only one client in the setting. With ADS,
the client can ensure the soundness, completeness and fresh-
ness of query results returned by the server, without storing
the whole data locally. However, when applying ADSs to
collaborative databases where there are multiple clients to
update the data, there are two major challenges that remain
to be solved:
• The security guarantees of ADS are based on the assump-
tion that the user holds the correct, most recent digest
of the data. However, when there are multiple clients to
update the remote data, the digest stored at a client’s lo-
cal machine is likely to be outdated. It’s challenging for a
client to fetch the newest digest after the data has been up-
dated by others, considering that the network has latency,
the updates can have conflicts, and the digest received
might be maliciously generated.

• The collaborators might be compromised and become ma-
licious. A malicious client may issue undesired updates to
the data, e.g., randomly insert and delete records. When
this happens, unfortunately, a vanilla ADS can neither
recover the data nor identify the attacker.
In this paper, we build the ADS upon a blockchain network

to elegantly solve these two challenges. As a BFT consensus
algorithm, blockchain can be naturally used to synchronize
the digest among the clients, which solves the first challenge.
Moreover, whenever there is an undesired update to the
data, the properties brought by blockchain provides straight-
forward solution to recover the data (with immutable prop-
erty) and detect the attacker (with transparent property),
which solves the second challenge.

3 PROBLEM STATEMENT
As mentioned in Section 1, FalconDB consists of two types
of entities: a group of servers that hold the database con-
tent, and a group of clients that can query and update the
database without storing the database itself. The problem
we study in this paper is how to enable a set of clients with
limited hardware resources to jointly maintain a database
both efficiently and securely.

3.1 Design goals
We require the following security guarantees in FalconDB:

Immutability. Any update to the database being commit-
ted on blockchain is immutable, which means it cannot be
tampered with or denied/discredited under our threat model.

Transparency. The updates, insertions and deletions to the
database are transparent to all. For any record that is/was
in the database, users are able to get all its historical values
as well as the metadata of previous updates, including the
update time and the identity of the update issuer.

Data integrity. The client is able to verify that the database
is updated according to the committed transactions. There
is no unauthorized update to the database.
Query correctness. When a client receives a query result

from a server, the client can verify the correctness of the
result based on the following criteria: 1) Soundness: none of
the answers in the query result have been modified and all
of them satisfy the query conditions; 2) Completeness: no
answers have been omitted from the result; 3) Freshness: the
results are based on the most current version of database.

Furthermore, we require the system to have the following
performance properties:
Highly expressive. The system can support a wide range

of queries and updates.
Low cost on clients. We require that the space/computa-

tion/network overhead on clients are small, so that even
devices with limited hardware resources (e.g. mobile phones)
can participate in the system as database clients and enjoy
all benefits of the system.
Performance. FalconDB aims to support high through-

put and low latency on database transactions, despite the
overhead of consensus and authentication compared with a
vanilla outsourced database.

3.2 Threat model
In FalconDB, all data and schema are public. We assume ei-
ther the servers or the clients could be malicious in that they
may modify the data to their benefits. The database servers
are incentivized (detailed in Section 4.3) to reply any query
access or update request honestly in order to continuously
gain profit. However, the servers may be malicious or collude
with clients towards modifying the data and/or results to
their benefits. FalconDB requires at least one server to be
honest and return the correct results as requested. Further-
more, we assume up to 1/3 of the blockchain nodes (includ-
ing both server nodes and client nodes) could be malicious
(i.e., express Byzantine behavior), which is a requirement
to reach consensus for BFT protocols with the presence of
Byzantine nodes. Note that client nodes also participate in
consensus, so the 1/3 corruption threshold still holds even
if all server nodes are controlled by one company. Lastly,
the authentication scheme adopted by FalconDB assumes a
probabilistic polynomial-time adversary that cannot attack
the hash functions.

4 FALCONDB SYSTEM DESIGN
4.1 System Overview
Figure 1 presents an overview of the FalconDB system. Fal-
conDB consists of two types of entities:
Server nodes that hold the database and full blockchain

data. The server nodes are hosted by different entities. They
are responsible to answer the queries and updates from the
clients, validating new blocks of blockchain, and generate
proofs for query results. In return, they will be financially
awarded for providing the service.
The database maintained by each server is stored in a

persistent structure which preserves all historical versions.
In addition, an ADS is constructed upon the database content
to provide authenticated queries and updates to clients.
Client nodes that collaborate on the database. They don’t

store the content of database locally, but can read or write
part of the database depending on their privileges. They
access the database by issuing requests to any of the server
nodes, and are able to authenticate the query/update results
via the ADS interface. Depending on the setting, a subset of
the client nodes will join the blockchain network to validate
the blocks, while others passively pull the newest blocks
without taking part in the blockchain consensus.

The blockchain network is collaboratively maintained by
the servers and the clients. For each block, the block con-
tent C contains exactly one transaction that includes one or
more reads/writes to the database (therefore in FalconDB,
a blockchain transaction is equivalent to a database trans-
action). Meanwhile, the block header H includes the ADS
digest of the database version when that block is committed,
i.e., the database content after executing the corresponding
transaction in the block. These digests can be used for clients
to verify if their requests have been correctly executed, as
described in Section 2.3.
Before running consensus, each server and each client

makes a deposit to a smart contract hosted by services like
Ethereum, which facilitates the incentive model as will be
described in Section 4.3. Besides, we assume that there is a
privilege function agreed by all nodes in the network. This
function defines the kind of updates that can be made by a
certain client. This privilege function is dynamic and can be
adjusted. For example, if a client is compromised and become
malicious, the others can revoke all its privilege to access
the database. This function can be simply implemented by
any smart contract, and we skip the details in this paper.
Figure 2 illustrates the general workflow for a query. A

client node can send queries to any server node after trans-
ferring the query fee from its deposit to the server’s account.
The server will immediately execute the query and return
the result to the client. After that, the client can choose to

Col 1 Col 2 Col 3

D11 D12 D13

D21 D22 D23

Col 1 Col 2 Col 3

D11 D12 D13

D21 D22 D23

Col 1 Col 2 Col 3

D11 D12 D13

D21 D22 D23

Servers

Clients

Database

Block Header

Height

PrevBlk

DB Digest

TX Meta

Validation

Block Data

TX

Blk Hdr

Blk Data

Blk Hdr

Blk Data

Blk Hdr

Blk Data

Blk Hdr

Blk Data

Figure 1: System overview. The clients store only the
block headers, while the servers store the full block-
chain and the database content. The servers and a sub-
set of clients communicate with each other through
permissioned blockchain protocol. The clients can
connect to any server for updates and queries.

C1 C2 VF VT

Database
Table

Authenticated
Data Structure

Digest
Blk1

server

Blockchain

Blk2

Blk0

client

client -> server query
server -> client result
client -> server proof request
server -> client proof (based on digest)

Figure 2: Simplified query workflow of FalconDB. Our
system relies on an ADS to generate a digest for the
data. The digest is stored in the blockchain header and
the clients can use it to authenticate query results re-
turned from a server.

challenge the query result by sending an authentication re-
quest to the smart contract. In this case, the client pays an
extra amount of money to the server, and the server has to
generate an ADS proof which can be validated by the digest.
Failing to provide such a proof will result in the server losing
all the fees in its smart contract account, including its initial
deposit and revenue earned from the clients.

Furthermore, a client can issue updates to the server using
the ADS interface. After interacting with a server, the client
will propose a new block to the network, including the update
and the interactive log in the block content, and the identity
of updater and the new digest in the block header. Blockchain
nodes will check if the update is valid and the new digest is
correct. The block will be committed to the blockchain after
reaching consensus among all blockchain nodes through the
BFT consensus protocol, and the clients will update their
digest to the one in this newly-proposed block.

In order to support transactions as in traditional databases,
we adopt optimistic concurrency control (OCC) to provide
snapshot isolation as many modern database systems. User
can start a transaction with a specification on which block

it’s based on. The block containing this transaction will be
accepted only if there is no conflict during the specified block
and the current block.

4.2 Blockchain Construction
To setup the system, the following parameters and functions
need to be agreed on by all nodes before running the block-
chain protocol:
• B0, a hardcoded genesis block.
• hash(s) → s ′, a cryptographic hash function that converts
a string to a hashed string.

• (pki , ski), a pair of public/private keys for node i . pki is
revealed to all participants in the network, and can be used
to verify identities using the following two functions.

• sign(sk, s) → s ′, a function that takes a secret key and a
string, and outputs the signed string.

• VerifySig(pk, s, s ′) → {0, 1} verifies the signature. It guar-
antees1 thatVerifySig(pk, s, s ′)=1 if and only if sign(sk, s)=s ′.

• k , the number of validators for each block.
In FalconDB, each block corresponds to a database trans-

action with arbitrary size. For a block B = (H ,C), the block
content C contains the transaction, and the block header
H = (M,V) includes both metadata and verification data.
The metadataM contains the following fields:
• heiдht , the block index.
• lastBlockHash = hash(Hheiдht−1), the hash value of previ-
ous block.

• ϕ = hash(C), the hash value of the block content.
• δ , a digest of the database version when the block is com-
mitted.

• hash(RW), the hash value of the set of reads and writes
associated with the update log in the block.

• e0, the entity by whom the update is made.
The block validation data V contains the following fields:
• s0=sign(sk(e0),M), the signature of e0.
• {e1, . . . , ek }, the blockchain nodes that validate the block.
• {s1, . . . , sk } where si=sign(sk(ei),M), k signatures of the
blockchain nodes that validate the block.
FalconDB can use any permissioned BFT consensus proto-

col as the blockchain layer. The validators of the blockchain
protocol is made up with all server nodes and a subset of
client nodes. These blockchain nodes validate new blocks
according to the rules described in Sections 4.6 and 4.7.
Implementation. When the number of clients is small, we
can set k to be the total number of servers and clients. In this
case, all clients can participate in the blockchain consensus
in order to achieve maximum security guarantee. Tender-
mint [8] is an ideal platform that we can leverage to provide

1By guarantee we mean that the failure probability is negligible. Same for
the rest of this paper.

Byzantine fault tolerance in a permissioned blockchain envi-
ronment. However, when the number of clients is too large
such that the consensus process could be slow, we could set
a smaller k and use RandHound [42] to randomly select a
subset of clients to join the consensus protocol, or use Al-
gorand [20] as the consensus protocol instead, in order to
reduce the communication overhead.

4.3 Incentive Model
An incentive model is essential to motivate the servers to
provide services to clients, as well as impose penalty for
their dishonest behaviors. FalconDB relies on smart contracts
(e.g., on Ethereum) to enforce the incentive model. At the
beginning, all servers and clients make deposits to a smart
contract. The contract has two key components:
• Service fee contract. A client pays the server it connects
to a certain amount of service fee whenever it issues a
query to the server, or requests a proof for the returned
results. Moreover, the servers and clients are rewarded for
participating in the blockchain consensus protocol and
validating new blocks.

• Authentication contract. As we described earlier, the query
authentication process is decoupled from blockchain. Users
can request a proof for a query result by submitting the
result to the smart contract. In this case, the server has
to submit a corresponding proof to the smart contract
later. Before the server submits a valid proof, its account
(including deposit and previous earnings) in the smart
contract will be temporarily frozen. The server can still
receive money from the smart contract during that time,
but cannot withdraw it. Therefore, a malicious server will
lose all the funds in the smart contract account. On the
other hand, if the server successfully submits a valid proof,
the client will have to pay the server a certain amount of
authentication fee in return.
When the account is not frozen, the server can withdraw

funds from the smart contract. It can withdraw the revenue
earned from clients freely. It can also withdraw the initial
deposit and quit the blockchain network. We will discuss the
rationale of this incentive model in Section 5.4.

4.4 Data Model
All participants in the network jointly maintain a blockchain
with headersH = {H0, . . . ,Hheiдht } and block contents C =
{C0, . . . ,Cheiдht }. Each block contentCi contains a database
transaction TXi . Both the clients and servers need to store
all blockchain headers H . Besides, the server nodes need to
store the blockchain contentsC aswell as a persistent version
of the database from which we can recover all its historical
versionsD = {D0, . . . ,Dheiдht }, whereDi = Upd(Di−1, TXi)
denotes the database content after executing the updates in
the i-th block. The database content is updated upon the

requests from the clients. On the server side, the server aug-
ments the original database with temporal attributes. To be
more specific, all records are paired with two extra attributes:
VF (stands for ‘valid from’) and VT (stands for ‘valid to’),
which stands for the height of blocks that create and delete
them respectively. At block height h, only those records with
VF ≤ h and VT > h are valid at that snapshot. The primary
keys in the original tables are paired with VF as the new
keys in FalconDB.
The update operations are also augmented with tempo-

ral information. Suppose we are dealing with an update at
height h. For an insertion, the record is inserted with VF
being the current height of blockchain, h, andVT being∞. A
deletion will be regarded as updating theVT attribute of the
original record to be the current height. An update will be
decomposed into two logical steps: a deletion of the original
record (i.e., change VT to be the current height), followed
by an insertion of the updated record (i.e., duplicate the af-
fected record and update the attributes accordingly, then set
VF = h and VT = ∞). Note that the tables involved in the
predicates of SQL queries should also be augmented by an
additional condition VT = ∞, which guarantees that we’re
working on the most recent snapshot of the database.

An example is given as follows. Suppose there are two ta-
bles: N=(int ID, string Name) and S=(int ID, int Score). Both
tables are extended with two additional columns VF and
VT , and the keys (ID) are combined with VF respectively,
which becomes the pair (ID,VF) serving as the new key. The
original table content is shown in Figure 3. Now suppose
the following four updates are executed in four consecu-
tive transactions, with the indices as the block heights that
contain the corresponding transaction.

Listing 1: Updates
(1) Update Bob 's score to 95.

(2) Insert Charlie with score 60.

(3) Delete Alice.

(4) Decrease everyone 's score by 10.

After executing these updates, Figure 4 shows the resulted
database contents. As will be shown later, one can retrieve all
historical versions of the database from the wrapped tables.

ID Name VF VT
1 Alice 0 ∞

2 Bob 0 ∞

(a) Table N

ID Score VF VT
1 100 0 ∞

2 80 0 ∞

(b) Table S
Figure 3: Example of an augmented table content.

4.5 Queries in FalconDB
4.5.1 Query Types. Empowered by the temporal model de-
scribed in Section 4.4, the query types supported by Fal-
conDB include standard queries where only the newest data-
base version is queried, full historical queries on a particular
predicate, range historical queries on all updates within a

ID Name VF VT
1 Alice 0 3
2 Bob 0 ∞

3 Charlie 2 ∞

(a) Table N

ID Score VF VT
1 100 0 3
2 80 0 1
2 95 1 4
3 60 2 4
2 85 4 ∞

3 50 4 ∞

(b) Table S
Figure 4: The resulting table content after executing
the updates in Listing 1 on the tables in Figure 3.

time range, and delta queries on the changes made by a
database transaction.

Standard query. The basic type is to query FalconDB as
a traditional database, where the client only cares about the
query result on the newest version. In this case, the client
applies a selection to results with the condition: VT = ∞.
This guarantees that only the records that are not expired
could be selected.

Full historical query. Another supported query type is
historical query, which is especially important for collabo-
rative databases since it provides a transparent history to
database clients and grants them the access to understand
the evolution of data records. In a full historical query where
the client wants to see all historical records that satisfy a pre-
dictor. In this case, we run the query as-is, and the result set
naturally contains the historical results. For example, a client
might be interested in a question “Whose scores are/were
above 90?”. The results contain not only the people who have
score above 90 currently, but also include people who used
to have such a high score which is somehow lowered later
on. This helps the querier to better understand the evolu-
tion of data, as well as helps participants to detect undesired
updates to the database. Any malicious update attempting
to temper the data, e.g., deliberately lower someone’s score,
will be revealed by it.

The above question is equivalent to the SQL query "SE-
LECT * FROM S WHERE S.Score >= 90;". If we execute the
query on the table shown in Figure 4, the results are:

ID Score V F VT
1 100 0 3
2 95 1 4

From the results we can see that: a) there is no qualifying
records in the current database, since there is no record with
VT = ∞; and b) there were two qualifying records, but they
expired at B3 and B4 respectively. We can further look into
the updates at these two blocks to understand what was
happening using delta query as described below. This will
be extremely useful for reverting undesired updates. For
example, if the deletion of Alice was made by a mistake, its
record is still retrievable by the historical queries and a client
can easily find the problem here and revert the record by
inserting it as a new record.

Range historical query. Historical queries can also be
issued with desired time ranges, which could be achieved by
applying additional conditions on the VF and VT attributes.
For example, if we want to get a snapshot of the database
at block h, we could collect the records with VF ≤ h and
VT > h.

Delta query. FalconDB further guarantees transparency
by supporting delta queries, which help the clients to un-
derstand the influence of previous updates. Specifically, Fal-
conDB provides an interface for clients to query the changes
made by the transaction committed at any particular block,
e.g., Bh . This can be achieved by issuing the following SQL
query to every table T in the database:
SELECT * FROM T WHERE VF=h OR VT=h;

For example, whenh = 1, this query will return the second
and third rows in Table S (Figure 4b), which are Bob’s scores
before and after this update; while when h = 4, this query
will return the last four rows of Table S, which are the scores
that affected by the last update.
4.5.2 Query Authentication. The query types that FalconDB
supports are restrained by the ADS being used. Following the
query wrapping methods described above, each query will
be wrapped with at most two more predicates by the client,
before sending it to the server. For any ADS that supports
range query authentication, the wrapped query will still be
supported by the ADS as long as the original query (without
the extra predicates) is supported. After executing the query,
the server could utilize the ADS interface to provide a proof
as well as the result to the user for authentication.

Query execution is typically fast on server, but proof gen-
eration is much slower and can take hours for real-world
million-item queries. To address this, FalconDB decouples
the proof generation process from the blockchain network.
With this, the server returns the query result immediately
after it is retrieved along with its signature. The client can
later pay extra money to request a proof, by submitting a
request to the smart contract with the signed query result
received from the server. In this case, the server must submit
a proof to the smart contract in order to avoid penalty as
described in Section 4.3. In other words, a user pays extra
money and time to request a proof for extra security. We will
discuss this mechanism in detail in Section 5.4.

4.6 Updates in FalconDB
Like traditional database systems, the clients in FalconDB
can use database transactions to update the database. We will
first focus on update operations in this section, and discuss
transaction processing later in Section 4.7.

4.6.1 Update Types. As described in Section 4.4, the update
needs to be augmented with attributes to enable time travel
features. Generally speaking, when an update is requested at
block height h, It could be augmented according to its type:

• Insertion. When inserting a record, we add the additional
attributes VF = h and VT = ∞.

• Deletion. When deleting a record, we set VT = h.
• Record value change. When changing value for a record,
we decompose it to an deletion of the original record fol-
lowed by an insertion of a new record with the desired
values. In other words, we set VT of the original record to
h, and insert the new record with the desired values plus
VF = h and VT = ∞.

In the case where multiple records are involved, the augmen-
tation process could be enforced for each affected record. If
the values to be set are computation results of other fields,
FalconDB adds additional queries to the transaction to com-
pute the values, which are then used as constants to construct
the requested updates. An interesting fact here is that Fal-
conDB does not require the ADS to support deletion, but
only insertion and update operations.

We still use the table in Figure 4 as an example. Consider
the case where a client wants to update everyone’s score to
be Bob’s score. It could be decomposed into three steps.
Step 1 Retrieve Bob’s score:
SELECT S.SCORE FROM S, N

WHERE N.Name = "Bob" AND N.ID = S.ID

AND N.VT=∞ AND S.VT = ∞;

The result will be 85.
Step 2 Find all affected records and void them:
UPDATE S SET S.VT=5 WHERE S.VT = ∞;

The two up-to-date records in S are affected, which will
be updated to (2, 85, 4, 5) and (3, 50, 4, 5) respectively.
Step 3 Insert the new records:
INSERT INTO S VALUES (2, 85, 5, ∞);

INSERT INTO S VALUES (3, 85, 5, ∞);

The first attribute (i.e., “2” in Step 3) is unchanged in the
update, so its value comes from the original record. The
second attribute (i.e., “85” in Step 3) is set by the update, so
its value comes from the first step. The VF and VT values
are automatically supplied by the system.

4.6.2 Update Authentication. After augmenting the update
requests with time intervals, the server can use ADS inter-
faces to update the database and propose a new block to the
blockchain network. In particular, an authenticated update
is achieved by following steps.
(1) A client node c connects to a server and request for an

update. The server first checks the privilege function to
make sure that the client has the privilege to make the
update. Then they use the interactive functions UpdC
and UpdS to update their local states, and the client will
compute a new digest δ ′ after the interaction. If there are
multiple updates to be made, the client and server repeat
this step and generate a digest for each update.

(2) The server then constructs a block by filling the fields de-
fined in Section 4.2. In the case of multiple updates, only
the digest after the final update is filled in the block. Then
the server proposes it to the blockchain network along
with all the interactive logs and intermediate digests in
the first step.

(3) Once the new block is received, blockchain nodes per-
form validation by first checking if the client has the
privilege to issue the update request as defined by the
privilege function, and then verifying the correctness of
the new digests (including the final one and the inter-
mediate ones) by checking the corresponding interactive
logs. All clients have the same local information on block-
chain, so that they can replay the interactive logs and
see if it follows the algorithm UpdC.

(4) The new block will be committed to blockchain if its
content is validated through the BFT consensus proto-
col. Once committed, all other servers update their local
database content to the newest version, while each client
updates the local digest to the new one included in the
block header.

4.7 Database Transactions in FalconDB
The four most important properties in database transactions
are ACID (atomicity, consistency, isolation and durability).
As described in Section 4.2, a transaction in FalconDB will
always be stored entirely in a single block regardless of its
size. Therefore, the AD properties are naturally guaranteed.
The concept of consistency is defined as other databases
including referential constraints and triggers, and can be
verified by authenticated queries. In order to provide isola-
tion property for transactions, we use a variant of optimistic
concurrency control adopted from [53] to abort conflicting
transactions, which ensures snapshot isolation for transac-
tions. Note that in FalconDB, a read-only transaction is not
necessary, since queries could be issued one-by-one with a
specified database version for each, as described in Section
4.5. In this case, snapshot isolation is intrinsically achieved.

For each transaction that involves update requests, the
user must specify which snapshot (i.e., block height) it is
based on when starting the transaction. This height will
be used as the read timestamp of OCC. When the transac-
tion is committed, the height of the block containing this
transaction will be used as the commit timestamp. Suppose a
transaction has read timestamp i and commit timestamp j.
The blockchain nodes must check if this transaction has con-
flict with any transaction in blocks Bi+1 . . . Bj−1 using OCC
methods in [53]. The transaction will be aborted if there is
any conflict identified within these blocks. In order to make
it possible for clients to check conflicts, the server broadcast

the read/write set associated with the involved blocks to-
gether with the proposed block to the network. The client
validators first validate the set of reads and writes using the
hash(RW) set in headers, and then perform OCC validation
in the same way. In addition, the blockchain protocol will
also handle forks, i.e., two blocks having the same height
and the two transactions having the same commit timestamp.
The protocol will guarantee that the network will eventually
agree on a forkless chain to avoid this situation.

5 FALCONDB ANALYSIS
In this section, we analyze FalconDB’s security, performance,
and space usage. We will see that FalconDB achieves all
desired properties in Section 3. Note that FalconDB could
utilize any blockchain platform or ADS solution that fits to
the design, while the analysis may vary accordingly. In this
paper, our analysis is based on two state-of-the-art work:
Tendermint [8] which is a blockchain platform that has been
theoretically proved to be safe and practically adopted by
many systems; and IntegriDB [50], an ADS that is capable
of authenticating a wide range of SQL queries efficiently.

5.1 Security analysis
Correctness of query results. The correctness of query
results can be built upon the digest and the ADS proof. More
specifically, with a valid digest, the soundness and complete-
ness properties can be guaranteed by the VerifyQry function
of the ADS as described in Section 2.3. Meanwhile, freshness
is guaranteed as long as the digest held by the client is newest.
This is naturally satisfied since the client can always fetch
the newest digest from the newest block in the blockchain.
Data Integrity. Recall that the UpdS and UpdC interfaces
provided by the ADS ensure that a client can verify whether
a server has executed the requested query honestly. On the
other hand, a server can only update the database upon
requests from the clients, otherwise the server won’t be able
to generate a valid proof for any future queries since the
actual digest of the database has been changed and doesn’t
match the digest in the blockchain.
Immutability and transparency. The update process and
temporal data model provided by FalconDB ensures that
all updates are permanently stored in the database, as well
as verifiable via blockchain, which guarantees immutabil-
ity. Moreover, all historical results are retrievable, which
guarantees transparency.
Server reliability and system liveness. A major differ-
ence between FalconDB and a traditional permissioned block-
chain system is, as a client that starts participating in the
blockchain consensus from the beginning, it is able to iden-
tify dishonest behaviours even if all other blockchain nodes
(servers and other clients) are malicious. That is because with

the initial digest being revealed to all, a client that joins at
the beginning can validate each block through ADS, which
implies that the first appearance of an incorrect digest will
be spotted immediately. With that, the servers are not able to
fool the clients. On the other hand, for clients that join later
in the blockchain consensus, FalconDB can still ensure in-
tegrity as long as the portion of honest nodes (including the
servers and clients) meets the BFT requirement in Section 3.2,
no matter how many servers are honest. Blockchain nodes
that participate in the consensus process could validate each
block and ensure the correctness of the digest (or detect in-
correct digest in the block and reject it) via ADS, regardless
of the number of dishonest servers. The consensus being
reached on the digest will help other clients to authenticate
their queries based on the digest.
Once a server is detected malicious, the blockchain net-

work can exclude that server from further participation. Fur-
thermore, as long as there exists at least one server that is
honest, the blockchain network can introduce new servers
and the honest server can send all its data to the new servers.
In other words, FalconDB is able to proceed even with one
single server being honest.
Privacy issues. As a transparent public database, FalconDB
raises privacy concerns since all data are accessible to each
participant, especially the untrusted servers. If we want to
ensure data confidentiality, the data and logs need to be
encrypted at servers. Unfortunately, querying and updat-
ing encrypted databases still remains an open problem in
academia. To make things harder, FalconDB employs an au-
thentication scheme that allows each participant to verify if
the database server has returned the correct result, which is
hardly supported by current solutions of encrypted databases.
That said, the current database server in FalconDB could be
easily replaced with other databases that provide the ability
of authentication over encrypted data in future, if there are
breakthroughs in the area of encrypted database.

5.2 Performance Analysis
Authentication layer. As the state-of-the-art ADS, Inte-
griDB [50] is an ideal candidate for the ADS component in
FalconDB. In IntegriDB, the proof generation, communica-
tion and verification time do not depend on the database size,
but only on the query. Verifying a given proof takes little time
on the client side. However, the proof generation time for
real-world million-item queries may take hours. As described
in Section 4.5.2, FalconDB addresses this challenge by decou-
pling the proof generation process from system pipeline so
that it wouldn’t become the bottleneck. On the other hand,
an update in IntegriDB is fast and typically finishes within 1
second. In the case of batch updates, the time consumption

grows linearly with respect to the number of updates, which
is asymptotically optimal for accumulator-based ADSs [9].
Consensus layer. Modern permissioned blockchain sys-
tems can achieve satisfactory performance for consensus
when the participating blockchain nodes are not too many.
As our current choice, Tendermint is able to process thou-
sands of transactions per second, with a commit latency
in the order of one to two seconds, in benchmarks of 64
nodes distributed across 7 data-centers located in 5 conti-
nents accessed through commodity cloud instances. Notably,
this performance is maintained even in harsh adversarial
conditions, with validators crashing or broadcasting mali-
ciously crafted votes. When the number of blockchain nodes
is large, we could utilize a blockchain protocol that scales. In
particular, we could adopt a random selection process, e.g.,
RandHound [42], to select a subset of clients to participate
in consensus, which helps reduce the consensus overhead
while maintaining almost the same BFT security guarantees.
Concurrency control. The OCC adopted by FalconDB as-
sumes that it is rare for transactions to conflict with each
other. However when conflicts appear very frequently, the
abort rate for transactions will also be high. Note that most
database systems suffer from conflicting transactions, and
how to address this challenge is still an open problem.
5.3 Space analysis
Recall that each block contains all information related to a
single database transaction, including the database digest,
related hash values and signatures. Utilizing IntegriDB [50],
the digest could be implemented in O(1). All other fields to-
gether take less than one kilobyte. The clients can easily store
millions of blocks which in total only take several megabytes.
We will investigate in more details in the experiment section.

Compared with clients, the servers in FalconDB have to
store much larger data locally, which includes the persis-
tent database that contains all historical information, and
the block contents that contain all transactions in the past.
Nevertheless, the total storage required for database servers
in FalconDB is in the same order of any full node in exist-
ing naive blockchain database solutions [33]. The advantage
brought by FalconDB is that it could proceed with BFT con-
sensus even with one single server node.

5.4 Incentive model analysis
A core component of FalconDB is the incentive model. It mo-
tivates the servers to provide services to clients, and prevents
them from being malicious.
A key design challenge in many security systems is the

trade-off between performance and security. In particular,
even the state-of-the-art verification computing technology
can still take more than one hour to generate a proof for
a complex query. This becomes a bottleneck of the system

pipeline and makes the system unfavorable for databases.
However, with the help of blockchain and smart contract, we
make this process asynchronous with the rest of the pipeline.
With a view of game theory, all servers are motivated to

work honestly and lively. As discussed in Section 5.1, any
malicious behavior will be noticed by clients. Once identified
as malicious, the server will be excluded from the blockchain
network and the related deposit will be confiscated. On the
contrary, if the server stays honest, it gets paid for each re-
quest from the client. Therefore, the service providers are not
only incentivized to provide honest answers to clients, but
are also motivated to take actions, e.g., use replicas, to guar-
antee liveness and protect them from being compromised.
From the clients’ view, knowing that servers are highly

likely to behave honestly, as well as the fact that any ma-
licious behavior can be detected, the clients can be more
flexible on the queries. Recall that a client can choose to ask
for a proof after receiving a query result from the server.
Assume that the reward for the server to answer a query
is r , the penalty on the server for being malicious is p, the
importance value of a query answer (i.e., the profit for a
server to lie on a query answer without being detected) is
v , and the probability that a client requests a proof is x . The
server will stay honest when the expected revenue for being
honest is larger than the expected revenue for lying, which is
r > −xp + (1−x)i , or x > (i −r)/(p + i). From this inequality,
we can easily check that for queries with a small importance
value compared with the penalty, a rational server will be-
have honestly even when the client rarely request for the
proof; while when the query is important, the client can
choose to request for the proof with high probability in or-
der to keep servers to stay honest. In particular, when x = 1,
i.e., the client always ask for the proof for each query, a ra-
tional server will always stay honest disregards the values of
other parameters, since the server won’t be able to fool the
client anyway and will be punished for sure when behave
dishonestly. Note that even in the case that the client request
for a proof, it could choose to trust the result before getting
the proof, as long as they believe that the server is rational.
With the above analysis, we conclude that this model is

incentive compatible (i.e., all nodes will achieve maximum
profit by following the protocol honestly) as long as the
reward is greater than the maintenance cost for being a
blockchain server node, and the penalty is large enough to
make the above inequalities hold. Therefore, the parameters
can be decided by simply valuating the server maintenance
cost and the values of data. However to achieve optimal
performance, we should set the parameters so that the clients
request proofs as infrequent as possible while still preventing
the server from being malicious. Due to the space constraint,
we leave a formal discussion as our future work. A detailed

study on incentivizing correct computation with blockchain
can be found in [25].

6 EXPERIMENTS
6.1 Testbed and Methodology
Experimental Setup. In our evaluation, FalconDB incorpo-
rates the following components: 1) MySQL server as the back-
end SQL server, 2) IntegriDB [50] to provide ADS and support
authentication, and 3) Tendermint [8] as the blockchain plat-
form. These components are selected because of the superb
characteristics revealed in practice, such as compatibility
and security guarantee. Nevertheless, future alternatives and
more advanced solutions that provide similar functionalities
could also be plugged in and used as blackboxes in FalconDB.
The experiments are conducted on CloudLab [15], where
each node is equipped with 2.4 GHz Ten-core Intel E5-2640v4
processor and 64GB DRAM. We run our experiments on a
cluster with Ns server and Nc clients. By default, Ns = 5
and Nc = 27. To simulate the difference between the server
and the client, we manually slow down the processing speed
on all client nodes, by reporting the execution time with a
factor 10x , which is a reasonable ratio between the process-
ing speed of a commercial server and a mobile phone. For
simplicity, access control is ignored in the experiments.
Baseline.We compare the performance of FalconDB with
the two existing blockchain database solutions mentioned in
Section 1: a naive blockchain based shared database where
each user stores a full data copy (BC), and a smart contract
based solution where a user could submit smart contracts to
query full nodes and get consented results (SC). In BC, all
servers and clients serve as blockchain nodes. They execute
queries locally since each stores a full copy of the database.
When a node wants to update the database, it will push the
update command to the blockchain network. After consen-
sus and committed on chain, all blockchain nodes execute
the same update on their local copies. In SC, the clients issue
queries and updates by sending commands to the blockchain
network maintained by servers. Once the servers executed
and reached consensus, the client can obtain the results from
committed blocks. For a fair comparison, we use Tendermint
as the underlying blockchain platform for all solutions.

Data set. The database construction in all experiments fol-
lows YCSB [11]: there is a single table with a column for
primary key and several columns of other fields. The value
of each field is a 100-byte ASCII string. In addition, the table
is wrapped with two additional columns VF and VT as ex-
plained in Section 4.4. We denote the number of rows as n,
and the number of columns (including VF and VT) asm. In
the following we first evaluate FalconDB with different syn-
thetic workflows, and then test it with YCSB workflows. All
SQL queries are wrapped as described in Sections 4.5 and 4.6.

0.0 0.2 0.4 0.6 0.8 1.0
Blockchain Height : h (×105)

0

50

100

150
Sp

ac
e

Us
ag

e
(G

B)
BC
SC
FalconDB

(a) Server

0.0 0.2 0.4 0.6 0.8 1.0
Blockchain Height : h (×105)

0

1

2

3

4

5

6

Sp
ac

e
Us

ag
e

(G
B)

BC
SC
FalconDB

(b) Client
Figure 5: Space usage on a table with 10h rows and 10
columns. FalconDB shifts the high storage cost from lo-
cal clients to server only.

6.2 Performance measurement
We use h to denote the number of blocks in blockchain. An
update block contains the record of an update operation,
while a query block includes the result of a query. Note that
in SC, a block can be either a query block or an update block,
while in BC and FalconDB, all blocks are update blocks.

In this set of experiments, we assume the table has n0 rows
initially, and all following updates are insertions with ∆ rows.
Therefore, with h update blocks the database has n = n0+h∆
rows. By default, n0 = 0, m = 10 and ∆ = 10. We ignore
transaction conflicts and focus on the performance of each
operation of FalconDB in this set of experiments. Therefore,
we assume that there is only one client that is making queries
and updates to the network in this subsection.
Storage. In all three approaches, the servers have to store
the full database content and all the blocks. In addition, in
our implementation of FalconDB, the server has to maintain
O(m2n) authenticate data structures for a table with n rows
andm columns. In both SC and FalconDB, the clients only
need to store the blockchain headers, which is orders of
magnitude smaller than the database size. Since the sizes of
block headers are fixed, the space cost on clients will grow
linearly with the total number of blocks. In the BC approach,
however, all client nodes are equivalent to server nodes. They
need to store the entire database as well as full blockchain
containing all updates to the database. The storage costs on
the clients are in proportional to the volume of a database
with all its histories.

Figure 5 shows the space usage on each node for an empty
table withm = 10 columns to be inserted by up to h = 106
times, and the records being inserted in each update is∆ = 10.
As shown in Figure 5a, for a table with size around 3GB, the
server storage of SC and the node storage of BC are about
the same as the table size, while the storage of FalconDB is
around 200GB. This is a reasonable overhead compared to
prior work on authenticated databases. On the other hand,
each client in FalconDB or SC only needs to store less than
100MB size of blockchain for the table. This size is magni-
tudes less than the database size and is acceptable on most
devices. The BC approach, however, requires every node
to store the database and the blockchain that contains the

Point Range Join
Query Type

100

101

102

103

104

105

Th
ro

ug
hp

ut
 (T

x/
s)

BC SC FalconDB

(a) Throughput

Point Range Join
Query Type

100

101

102

103

104

105

La
te

nc
y

(m
s)

BC SC FalconDB

(b) Latency
Figure 6: Query performance on a table with 106 rows
and 10 columns.

full update history (different from the digest storage in Fal-
conDB’s blockchain). Therefore it requires about 6GB stor-
age space, which is relatively high for many individual users.
Note that this experiment only considers short strings as
table contents. In a modern database where there could be
many diversed data types involved, storing the whole data-
base would take significantly more space, while the block-
chain digest storage remains constant.
Query throughput and latency. In the BC solution, a data-
base client executes the query locally. The low-performance
hardware on these individual users limits the throughput
and latency. In FalconDB and SC, a client issues a query to
the server, and the server executes the query with power-
ful commercial hardware. However in SC, the query result
is confirmed by committing the corresponding block to the
blockchain. As a result, its performance depends on the block-
chain consensus strategy, i.e., the number of blocks generated
per second and the size of blocks. On the other hand, each
query in FalconDB is performed through a direct server-
client communication, so the throughput is much higher.
We test three types of queries in this experiment, which

represent three difficulty levels in terms of computation. The
first query type is a simple point query on the primary key.
The second type is a multi-dimensional range query on 6
non-key fields. The third type of query is a join query on two
tables. For all queries, the number of rows n in the involved
tables is 106. For the second and third query types, each result
contains precisely 100 rows.

Figure 6 shows the throughput and latency for each data-
base solution with respect to different query types. As we
can see in the figure, both the throughput and latency are
magnitudes better on FalconDB, while the performance on
BC and SC is much lower.
Query authentication latency. In the case that the next
query depends on the previous query’s verification, the client
has to wait for the authentication of the previous query. Fig-
ure 7 illustrates the waiting time under this case by showing
the authentication time of FalconDB with varying number
of table rows, using IntegriDB as the supporting ADS. De-
pending on the query complexity, the authentication time
varies from seconds to hours, and grows linearly according
to the database size. However, regardless of query type and

103 104 105 106

Number of rows : n

102

103

104

105

106

Au
th

en
tic

at
io

n
Ti

m
e

(m
s) Point

Range
Join

(a) Proof generation time

103 104 105 106

Number of rows : n

100

150

200

250

300

350

Au
th

en
tic

at
io

n
Ti

m
e

(m
s) Point

Range
Join

(b) Verification time

103 104 105 106

Number of rows : n

0

50

100

150

200

250

Pr
oo

f s
ize

 (K
B)

Point
Range
Join

(c) Proof size

Figure 7: Authentication latency on a table with n rows and 10 columns.

1 2 3 4 5
Number of insertions

1000

1500

2000

2500

3000

3500

4000

Up
da

te
 ti

m
e

(m
s)

BC
SC
FalconDB

Figure 8: Update perfor-
mance on an empty table
with 10 columns.

table size, the size of proof remains small while the verifi-
cation on the client side can be done in one second. That
means validating the query results doesn’t consume much
bandwidth and computation power on the client side, and
can be performed on any individual. Recall that although
proof generating could be slow, it is decoupled from the Fal-
conDB main pipeline and clients still get instant results from
server side, whose correctness is partially protected by the
incentive model as described in Section 5.4.
Update efficiency. Figure 8 shows the execution time for
updates where each update involves a varying number of
record insertions into an empty table with 10 fields. It’s no
surprise that the update performance of BC and SC is almost
independent with the number of insertions, since the per-
formance is dominated by the consensus algorithm and the
overhead on local database is negligible. A single insertion
in FalconDB is comparably efficient. It takes only about one
second to complete, which includes the blockchain consen-
sus, the ADS proof generation, and the result verification
on client side. For batch updates, the results of FalconDB
show a linear performance cost with respect to the number
of insertions. We note that as proven by [9], it is impossible
to achieve sub-linear performance cost for batch updates in
any powerful ADSs built upon cryptographic accumulators.
6.3 YCSB results
Finally, we test the performance of FalconDB with three
YCSB workflows: read only, read heavy (comprised of 95%
reads and 5% writes) and write heavy (comprised of 50%
reads and 50% writes). The record selection follows Uniform
distribution. We vary the number of concurrent clients to
see its affect on the performance of FalconDB. As described
in Section 5.2, we select at most 27 clients (32 nodes in total
together with the 5 server nodes) to serve as blockchain
node in order to reduce the consensus overhead. Since the
authentication process is independent from themain pipeline
and has been fully tested in previous experiment, in this
experiment, we skip the authentication process and focus on
the transactional performance on FalconDB.

In the read-only workflow, the performance of FalconDB
remains stable with respect to the number of concurrent
clients. This is because these transactions don’t need to go

20 40 60
Number of concurrent clients

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

)

Read only
Read heavy
Write heavy

(a) Average throughput

20 40 60
Number of concurrent clients

0

2000

4000

6000

8000

10000

La
te

nc
y

(m
s)

Read only
Read heavy
Write heavy

(b) Average latency

Figure 9: YCSB performance.

through blockchain consensus, and the increase in concur-
rent clients only increase the load on servers. In the other
two workflows, the performance decreases when there are
concurrent clients. The reason is the data contention from
different transactions: when multiple transactions are writ-
ing to the same record simutaneously, only one of them will
success and all the others are aborted. Note that this phe-
nomenon is common in all modern databases with OCC, and
we leave improving the concurrency control as future work.

Note that in reality, the server node could be busy answer-
ing queries from clients. To prevent this situation, the logical
server node could be equipped with sufficient physical server
nodes so that the updates and queries can be processed si-
multaneously. Since all replicas from a logical server node
trust each other (e.g., they are all from Amazon clusters),
traditional distributed system with simple failure models can
be included to guarantee consistency among physical server
node. However, this is out of the scope of this experiment.

7 APPLICATIONS
Besides the aforementioned use case for charitable giving,
many other applications could benefit from FalconDB.
Credit score. A person’s credit is influenced by many fac-
tors, e.g., interactions with banks. Credit scores are queried
extensively, from housing agencies to car dealers. Currently
credit bureaus collect credit information of each person from
multiple organizations and acts as the “central database
server” for other agencies to query. However, they have
been involved in several legal and regulatory issues. If we
could have a decentralized credit bureau powered by Fal-
conDB, all relevant organizations could have update access

to the database to update a person’s credit-related informa-
tion. Moreover, all parties can now fully trust the credit score
and history in the database because they hold a local copy of
the proofs for the verifiable server in FalconDB. Moreover, if
certain information are later found incorrect, it is traceable
because the signatures related to an update are also recorded.
Banking.A person could have multiple bank accounts and a
bank holds numerous deposit accounts. Traditionally, inter-
bank money transfer may take a few days, although the
involved database update only take seconds. A major reason
is because the lacking of trust between banks, due to which
one has to be sure that a bank actually has that amount
of money it claims to. With a shared database among all
banks, this process could bemuch simplified. Also, our design
enables small banks having few data storage the ability to
collaborate with large banks without worrying about trust.
Government audit. Government audit is critical in order to
prevent any wrongdoings such as corruption and fraud. At
present Federal Audit Clearinghouse [17] takes an important
role to collect data from federal agencies and distribute to
the public. It is a time-consuming and cumbersome process,
and yet essential to produce an reliable and trustful report.
Using FalconDB as a shared database among federal agencies
and the public, each agency could directly insert records
such as how they spend their funds, and the public could
simply query the database to monitor the government. Note
that, FalconDB’s design empowers a single person with the
ability to store the whole blockchain of proofs, thus a person
could fully trust the query result backed by the interactive
verification process between blockchain and the verifiable
database server, that is coupled with each query.

8 RELATEDWORKS
Verifiable outsourced database. The thriving of cloud ser-
vices brings an interesting application scenario: outsourced
database. There are many advantages to host data on the
cloud such as flexibility, but it is challenging to ensure in-
tegrity of the outsourced data. A series of works have been
proposed to address this challenge, either using authenti-
cated data structures [6, 10, 12, 18, 21, 24, 29, 31, 34, 36–
38, 46, 50–52] or zero-knowledge proofs [49]. The ADS ap-
proach is relatively efficient but can only authenticate some
specified types of queries, while the zero-knowledge proof
approach can support general queries but is much slower.
Blockchain platform. FalconDB leverages blockchain as
the underlying platform to store essential proofs for clients
to verify data server’s integrity and reach consensus. De-
signing a blockchain protocol with high performance under
large scale while ensuring blockchain’s good properties has
been a major research topic. Some works [27, 41] uses di-
rected acyclic graph (DAG) instead of chain structure, which

ensures that the average amount of time for each transaction
is reduced since few blocks are wasted. Another direction
aims to design protocols with less consensus time [1, 23, 54].
Finally, Algorand [20] and RandHound [42] achieves high
scalability by randomly selecting a subset of nodes to partic-
ipate in the consensus. This will result in a smaller scale in
the consensus without hurting the security guarantees.
Blockchain-based data sharing. The emergence of block-
chain technology has led to the redesign of data sharing
platforms. Some previous works build systems for data col-
laboration [2, 3], but the data structures they maintain are
not as complex as databases. Database has also been im-
plemented on blockchain platform [19, 33, 39], but these
previous works all fall into the three approaches mentioned
in Section 1 and are not able to achieve security, compat-
ibility and efficiency simultaneously. CreDB [32] utilized
trusted computing environment to achieve similar security
guarantees as blockchain , but it relies on trusted hardware
and is limited to simple forms of operations. Finally, vChain
[45] and GEM2 [48] aim to combine ADS with blockchain in
order to support authenticated queries, but they are limited
to range queries and are not able to support SQL queries.
Game theory in Blockchain. From a prospective of game
theory, the incentive model of any blockchain should be
incentive compatible, i.e., nodes will achieve maximum profit
by following the protocol honestly. In many blockchains that
the nodes are competingwith each other for the reward, there
exists attackswhere a node can getmore profit by performing
malicious strategies. For example in Bitcoin, the nodes will
have a larger chance to mine blocks by withholding selected
blocks [16]. Analyzing the blockchains using game theory
models is an active research topic. Interested readers could
refer to a survey on game theory applications in blockchain
by Liu et al. [30]. In FalconDB, the nodes don’t compete for
the reward. Instead, they receive maximum profit as long
as they follow the protocol honestly. Therefore, our model
won’t explicitly suffer from existing attacks.
9 CONCLUSION
This paper presents FalconDB, a shared database that is se-
cure, efficient, and has low hardware requirement on clients’
side. It uses a blockchain platform and ADS data storage to
build public outsourced database. It requires one or multiple
server nodes to store the database and the chain of blocks,
while the client nodes only need to store block headers. This
allows FalconDB to tolerate up to 1/3 of total nodes being
malicious, and all server nodes being dishonest except one.
ACKNOWLEDGMENTS
Feifei Li and Yanqing Peng are supported in part by NSF
grants 1816149, 1801446, 1514520, 1718834. Min Du and
Dawn Song are supported in part by NSF grant TWC-1518899
and DARPA grant N66001-15-C-4066.

REFERENCES
[1] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis.

Chainspace: A sharded smart contracts platform. InNDSS. The Internet
Society, 2018.

[2] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al.
Hyperledger fabric: a distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys Conference,
page 30. ACM, 2018.

[3] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, P. Meng, V. Pandey, and
R. Ramamurthy. Concerto: A high concurrency key-value store with
integrity. In SIGMOD Conference, pages 251–266. ACM, 2017.

[4] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara. Private
collaborative forecasting and benchmarking. In Proceedings of the
2004 ACM workshop on Privacy in the electronic society, pages 103–114.
ACM, 2004.

[5] M. J. Atallah, H. G. Elmongui, V. Deshpande, and L. B. Schwarz. Se-
cure supply-chain protocols. In E-Commerce, 2003. CEC 2003. IEEE
International Conference on, pages 293–302. IEEE, 2003.

[6] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of
computation on outsourced data. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages
863–874. ACM, 2013.

[7] D. Billsus and M. J. Pazzani. Learning collaborative information filters.
In Icml, volume 98, pages 46–54, 1998.

[8] E. Buchman, J. Kwon, and Z. Milosevic. The latest gossip on bft con-
sensus. https://tendermint.com/docs/tendermint.pdf, 2018.

[9] P. Camacho and A. Hevia. On the impossibility of batch update for
cryptographic accumulators. In International Conference on Cryptology
and Information Security in Latin America, pages 178–188. Springer,
2010.

[10] R. Canetti, O. Paneth, D. Papadopoulos, and N. Triandopoulos. Verifi-
able set operations over outsourced databases. In International Work-
shop on Public Key Cryptography, pages 113–130. Springer, 2014.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In SoCC, pages
143–154. ACM, 2010.

[12] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S. G.
Stubblebine. Flexible authentication of xml documents. Journal of
Computer Security, 12(6):841–864, 2004.

[13] DONOR SEARCH. The largest searchable charitable giving database,
2018. [Online; accessed 12-October-2018].

[14] W. Du and M. J. Atallah. Privacy-preserving cooperative scientific
computations. In csfw, page 0273. IEEE, 2001.

[15] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide, L. Stoller,
M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang, G. Ricart,
L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and P. Mishra.
The design and operation of CloudLab. In Proceedings of the USENIX
Annual Technical Conference (ATC), pages 1–14, July 2019.

[16] I. Eyal and E. G. Sirer. Majority is not enough: bitcoin mining is
vulnerable. Commun. ACM, 61(7):95–102, 2018.

[17] Federal Audit Clearinghouse (FAC). Federal Audit Clearinghouse (FAC)
. https://harvester.census.gov/facweb/. [Online; accessed 25-October-
2018].

[18] C. Fournet, M. Kohlweiss, G. Danezis, Z. Luo, et al. Zql: A compiler for
privacy-preserving data processing. In USENIX Security Symposium,
pages 163–178, 2013.

[19] J. Gehrke, L. Allen, P. Antonopoulos, A. Arasu, J. Hammer, J. Hunter,
R. Kaushik, D. Kossmann, R. Ramamurthy, S. T. V. Setty, J. Szymaszek,
A. van Renen, J. Lee, and R. Venkatesan. Veritas: Shared verifiable
databases and tables in the cloud. In CIDR. www.cidrdb.org, 2019.

[20] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings
of the 26th Symposium on Operating Systems Principles, pages 51–68.
ACM, 2017.

[21] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Efficient authen-
ticated data structures for graph connectivity and geometric search
problems. Algorithmica, 60(3):505–552, 2011.

[22] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren. Searching an
encrypted cloud meets blockchain: A decentralized, reliable and fair
realization. In INFOCOM, pages 792–800. IEEE, 2018.

[23] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford.
Omniledger: A secure, scale-out, decentralized ledger via sharding. In
IEEE Symposium on Security and Privacy, pages 583–598. IEEE, 2018.

[24] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi,
and N. Triandopoulos. Trueset: Faster verifiable set computations. In
USENIX Security Symposium, pages 765–780, 2014.

[25] R. Kumaresan and I. Bentov. How to use bitcoin to incentivize correct
computations. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 30–41. ACM, 2014.

[26] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems (TOPLAS),
4(3):382–401, 1982.

[27] C. Li, P. Li, W. Xu, F. Long, and A. C. Yao. Scaling nakamoto consensus
to thousands of transactions per second. CoRR, abs/1805.03870, 2018.

[28] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authen-
ticated index structures for outsourced databases. In SIGMOD, pages
121–132, 2006.

[29] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Authenticated
index structures for aggregation queries. ACM Trans. Inf. Syst. Secur.,
13(4):32:1–32:35, 2010.

[30] Z. Liu, N. C. Luong, W. Wang, D. Niyato, P. Wang, Y. Liang, and D. I.
Kim. A survey on applications of game theory in blockchain. CoRR,
abs/1902.10865, 2019.

[31] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G.
Stubblebine. A general model for authenticated data structures. Algo-
rithmica, 39(1):21–41, 2004.

[32] K. Mast, L. Chen, and E. G. Sirer. A vision for autonomous blockchains
backed by secure hardware. In SysTEX@SOSP, pages 1:1–1:6. ACM,
2019.

[33] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. Mc-
Conaghy, G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto.
Bigchaindb: a scalable blockchain database. white paper, BigChainDB,
2016.

[34] A. Miller, M. Hicks, J. Katz, and E. Shi. Authenticated data structures,
generically. In ACM SIGPLAN Notices, volume 49, pages 411–423. ACM,
2014.

[35] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
[36] D. Papadopoulos, S. Papadopoulos, and N. Triandopoulos. Taking

authenticated range queries to arbitrary dimensions. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pages 819–830. ACM, 2014.

[37] D. Papadopoulos, C. Papamanthou, R. Tamassia, and N. Triandopou-
los. Practical authenticated pattern matching with optimal proof size.
Proceedings of the VLDB Endowment, 8(7):750–761, 2015.

[38] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal verifica-
tion of operations on dynamic sets. In Annual Cryptology Conference,
pages 91–110. Springer, 2011.

[39] B. M. Platz, A. F. Filipowski, and K. Double-
day. Flureedb, a practical decentralized database.
https://flur.ee/assets/pdf/flureedb_whitepaper_v1.pdf, 2017.

[40] G. Sachs. Blockchain–putting theory into practice. the-blockchain.
com, pages 25–32, 2016.

https://harvester.census.gov/facweb/

[41] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. Spectre: A fast and
scalable cryptocurrency protocol. IACR Cryptology ePrint Archive,
2016:1159, 2016.

[42] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi,
M. J. Fischer, and B. Ford. Scalable bias-resistant distributed random-
ness. In IEEE Symposium on Security and Privacy, pages 444–460. IEEE
Computer Society, 2017.

[43] A. Wiggins and K. Crowston. From conservation to crowdsourcing:
A typology of citizen science. In System Sciences (HICSS), 2011 44th
Hawaii international conference on, pages 1–10. IEEE, 2011.

[44] G. Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151:1–32, 2014.

[45] C. Xu, C. Zhang, and J. Xu. vChain: Enabling verifiable boolean range
queries over blockchain databases. In Proceedings of the 2019 ACM
SIGMOD International Conference on Management of Data, Amsterdam,
Netherlands, June 2019.

[46] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis. Authenticated
join processing in outsourced databases. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of data, pages
5–18. ACM, 2009.

[47] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abraham.
Hotstuff: BFT consensus with linearity and responsiveness. In PODC,
pages 347–356. ACM, 2019.

[48] C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi. GEM2-Tree: A gas-efficient
structure for authenticated range queries in blockchain. In Proceedings
of the 35th IEEE International Conference on Data Engineering, pages
842–853, Macau SAR, China, Apr. 2019.

[49] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papaman-
thou. vsql: Verifying arbitrary SQL queries over dynamic outsourced
databases. In IEEE Symposium on Security and Privacy, pages 863–880.
IEEE Computer Society, 2017.

[50] Y. Zhang, J. Katz, and C. Papamanthou. IntegriDB: Verifiable SQL for
Outsourced Databases. In ACM Conference on Computer and Commu-
nications Security, pages 1480–1491. ACM, 2015.

[51] Y. Zhang, C. Papamanthou, and J. Katz. Alitheia: Towards practical
verifiable graph processing. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 856–867.
ACM, 2014.

[52] Q. Zheng, S. Xu, and G. Ateniese. Efficient query integrity for out-
sourced dynamic databases. In Proceedings of the 2012 ACM Workshop
on Cloud computing security workshop, pages 71–82. ACM, 2012.

[53] T. Zhu, Z. Zhao, F. Li, W. Qian, A. Zhou, D. Xie, R. Stutsman, H. Li, and
H. Hu. Solar: Towards a shared-everything database on distributed
log-structured storage. In USENIX Annual Technical Conference, pages
795–807. USENIX Association, 2018.

[54] ZILLIQA. The zilliqa technical whitepaper.
https://docs.zilliqa.com/whitepaper.pdf, 2017.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Blockchain
	2.2 Smart Contract
	2.3 Authenticated Data Structures

	3 Problem Statement
	3.1 Design goals
	3.2 Threat model

	4 FalconDB System Design
	4.1 System Overview
	4.2 Blockchain Construction
	4.3 Incentive Model
	4.4 Data Model
	4.5 Queries in FalconDB
	4.6 Updates in FalconDB
	4.7 Database Transactions in FalconDB

	5 FalconDB Analysis
	5.1 Security analysis
	5.2 Performance Analysis
	5.3 Space analysis
	5.4 Incentive model analysis

	6 Experiments
	6.1 Testbed and Methodology
	6.2 Performance measurement
	6.3 YCSB results

	7 Applications
	8 Related Works
	9 Conclusion
	Acknowledgments
	References

