Fixed-Function Hardware Sorting Accelerators for
Near Data MapReduce Execution

Seth H. Pugsley
Intel Labs, OR, USA
seth.h.pugsley @intel.com

Arjun Deb

arjundeb@cs.utah.edu

Abstract—

A large fraction of MapReduce execution time is spent
processing the Map phase, and a large fraction of Map phase
execution time is spent sorting the intermediate key-value pairs
generated by the Map function. Sorting accelerators can achieve
high performance and low power because they lack the overheads
of sorting implementations on general purpose hardware, such
as instruction fetch and decode. We find that sorting accelerators
are a good match for 3D-stacked Near Data Processing (NDP)
because their sorting throughput is so high that it saturates the
memory bandwidth available in other memory organizations. The
increased sorting performance and low power requirement of
fixed-function hardware lead to very high Map phase perfor-
mance and energy efficiency, reducing Map phase execution time
by up to 92%, and reducing energy consumption by up to 91%.
We further find that sorting accelerators in a less exotic form
of NDP outperform more expensive forms of 3D-stacked NDP
without accelerators. We also implement the accelerator on an
FPGA to validate our claims.

I. INTRODUCTION

Many commercial workloads rely on efficient processing of
very large datasets. Several hardware innovations are required
to grapple with the challenges of big data workloads. For
example, Wu et al. [1] propose a processing unit (Q100) that
is customized for database workloads, Lim et al. [2] propose
the use of memory blades to expand server memory capacities,
and Pugsley et al. [3] design a near data processing architecture
for in-memory MapReduce workloads.

These examples demonstrate that while we do need effi-
cient processing units for big data workloads, we also need
efficient memory systems. In this work, we propose an ar-
chitecture that targets both of these aspects. We start with a
near-data processing architecture that offers very high memory
bandwidth. We then identify a function that is frequently
exercised and design an accelerator for it. The benefit from
this accelerator is amplified by its high-bandwidth connection
to memory.

In this paper, we focus on in-memory MapReduce work-
loads. MapReduce [4] is a very popular framework used to an-
alyze large datasets. While MapReduce has traditionally been
employed for disk-resident datasets, it is increasingly being
used to process in-memory datasets. The Map and Reduce
functions in MapReduce workloads can take arbitrary forms.
Therefore, they are poor candidates for custom accelerators
and are best handled by general-purpose processors. However,
we show that most MapReduce workloads have a few common
functions, such as the sorting of intermediate outputs after the

This work was supported in part by NSF grants CNS-1302663 and CNS-
1423583.

Rajeev Balasubramonian
University of Utah, UT, USA University of Utah, UT, USA University of Utah, UT, USA

Feifei Li

rajeev@cs.utah.edu lifeifei @cs.utah.edu

Map phase, that can greatly benefit from acceleration. In a
near data processing architecture with highly optimized Map
and Reduce phases, the sort function emerges as a significant
bottleneck.

This paper explores the design space of sorting acceler-
ators, and we show that an accelerator that performs merge
sort on eight input streams has very low overheads and offers
performance that is very close to more sophisticated, idealized
sort algorithms. The merge sort-based accelerators reduce
overall Map phase execution time from 78% to 92%, and
reduce Map phase compute and memory energy consumption
from 77% to 91%, compared to performing the sort function
in software on a near-data core.

II. BACKGROUND
A. Near Data Processing

Near Data Processing (NDP) refers to the tight coupling
of memory and compute resources in order to reduce the
overheads of data movement and remove performance bottle-
necks [5]. In this work, we consider two implementations of
NDP, one where compute and memory resources are vertically
integrated with 3D stacking technology using through-silicon
vias (TSVs), and one using conventional compute and memory
chips that are paired with one another in a 1:1 ratio, and
arranged on DIMM-like memory module boards. Both of these
implementations have previously been proposed as platforms
for running MapReduce workloads [6], and can be seen in
Figure 1.

In 3D-stacked NDP, several memory dies are stacked on top
of a single logic die, similar to Micron’s Hybrid Memory Cube
(HMC) [7], but with the addition of 16 low power cores, one
for each of the HMC’s 16 independent vaults of memory. In
module-based NDP, quad-core SoCs are paired with individual
x32 LPDDR2 chips to approximate the advantages of 3D-
stacked NDP without using expensive 3D stacking. We refer
to these styles of NDP as NDP-HMC, and NDP-Module
respectively. Because NDP-HMC has more bandwidth per
core, its performance will be higher than NDP-Module.

B. MapReduce Execution

MapReduce is a programming framework designed to
efficiently process large amounts of data with a high degree of
parallelism. An input data set is typically a set of independent
database records. The programmer writes a Map function
which consumes these records and produces key-value pairs as
an intermediate output. The programmer also writes a Reduce
function, which consumes these intermediate key-value pairs
and produces the final output.

DRAM Layers

1 NDCore + 1 DRAM Vault Logic Layer

x32 LPDDR2 DRAM

Quad-core SoCs 4 NDCores + 1 DRAM Chip

Fig. 1. Two previously proposed implementations of Near Data Processing
(NDP): HMC-based NDP (above), and memory module-based NDP (below).

The Map and Reduce functions can be anything, and
vary by application domain, so they therefore require general
programmability. Each Map task produces a wide range of
intermediate output, but each Reduce task consumes only a
narrow range of the Map phase’s output. In between the Map
and Reduce phases, the intermediate output is Shuffled be-
tween Map tasks and Reduce tasks. To reduce communication
during this Shuffle phase, each Map task performs a Combine
function, which is like a localized Reduce function. However,
before the Combine can be done, the intermediate data must
first be Sorted. Because Sorting is a part of most MapReduce
workloads, it is a good candidate for hardware acceleration.

C. Map Phase Execution Breakdown

Among workloads that include Sort and Combine phases,
Sort takes the largest fraction of Map task execution time,
by a large margin, as seen in Figure 2. Because RangeAgg
does not have Sort or Combine phases, and can therefore
not benefit from Sort acceleration, we will not consider it
in our forthcoming results. In the other workloads, the Sort
phase dominates execution time, taking 84-94% of the total
Map time. Earlier work evaluating MapReduce workloads on
NDP architectures [3][6] shows that the Map phase typically
accounts for 80-90% of MapReduce execution, further rein-
forcing the importance of accelerating Sort.

III. RELATED WORK

Several recent works have focused on developing efficient
architectures for big data workloads. As we have already refer-
enced, Near Data Processing, by Pugsley et al. [3][6], evaluates
an optimized, throughput-oriented baseline with a high band-
width HMC-based memory system, and then improve upon it
by moving some of the computation to the memory devices
themselves. The Mercury and Iridium architectures, proposed
by Gutierrez et al. [8], use 3D-stacked memory and logic
devices to create an efficient and high performing key-value
store, with a primary goal of increasing memory density. Meet
the Walkers, by Kocberber et al. [9] uses specialized hardware
to accelerate the data access itself in order to improve the
process of building database indices. The HARP accelerator

Map Phase Execution Breakdown
W % Map Scan " % Sort ™ % Combine M % Partition

100% —— P—

% Execution
N W A O O N ® ©
3 &8 3 3 3 & & S
X R 2R xR R R R

=)
B

WordCount SequenceCount

0% —
RangeAgg GroupBy EquiJoin

Fig. 2. Execution breakdown of a Map task. Other than in RangeAgg, sorting
dominates execution time.

by Wu et al. [10], and its follow-up, the Q100 database proces-
sor [1] by Wu et al., use hardware accelerators to improve the
execution of common database operations. A recent paper by
Farmabhini-Farahani [11] considers a general-purpose, coarse-
grained reconfiguratable accelerator (CGRA) framework that
delivers higher performance by placement within a 3D-stacked
memory device. The Tesseract architecture by Ahn et al. [12]
executes graph algorithms in-memory across networks of 3D-
stacked memory+compute devices.

IV. HARDWARE SORTING STRATEGIES
A. Sorting on Keys

The Sort phase in a MapReduce workload deals in arrays of
key-value pairs, not just integers. The key in a key-value pair is
often an integer, but it may be something else, according to the
domain of the currently executing workload. Even in instances
where the key represents a floating point number, or even a
non-number entity, it can still make sense to sort the keys as
if they were integers. The purpose of the Sort phase is not to
create a lexicographically “correct” ordering, but instead the
purpose is to create any ordering where all instances of each
key appear consecutively. Treating all keys as integers, and
sorting on those “integers” accomplishes this goal.

B. Hardware Merge Sort

Merge sort works by interleaving the items from multiple
sorted input lists into a larger sorted output list. At each step of
the algorithm, the least of the items at the head of all the input
lists is moved into the output list. In this work, we consider
hardware merge sorters that merge just two input lists of key-
value pairs, and eight input lists of key-value pairs.

1) Two-Input Merge Sorter: In this implementation, the
input stream buffers must keep track of two sorted input lists.
On each cycle, the sorter compares its two input keys, then
moves the smaller of the two key-value pairs onto its output.
This is more efficient than the software implementation of
merge sort running on a general purpose core, because an
accelerator can sort one item every cycle.

It takes a number of cycles equal to the number of input
key-value pairs to complete one iteration of merge sort, and a
number of iterations equal to log base two of the number of
input key-value pairs to completely sort the entire data set.

I
I
.
Fig. 3. A Merge Sort unit that sorts eight input lists.
Area Power Frequency
MergeSort2 0.005 mm? 1.2 mW 1.0 GHz
MergeSort8 0.035 mm? 8.4 mW 1.0 GHz
BitonicSort+RP 1.130 mm? 81.3 mW 400 MHz (BS), 300 MHz (RP)
BitonicSort+MS8 | 0.223 mm? | 60.9 mW | 400 MHz (BS), 1.0 GHz (MS)

TABLE 1. HARDWARE SORT COMPONENT PARAMETERS.

2) Eight-Input Merge Sorter: In this implementation, seen
in Figure 3, the input stream buffers must keep track of eight
sorted input lists. This sorter is internally organized like a heap,
and each cycle the smallest of two input key-value pairs will
be chosen to advance to the next level. This means that each
cycle, the smallest of all eight input lists will appear at the
output, and be written to memory. Like the two-input merge
sorter, it takes a number of cycles equal to the number of
input key-value pairs to complete one iteration of merge sort.
However, the eight-input merge sorter takes only log base eight
iterations to completely sort the entire data set.

C. Hardware Bitonic Sort

In this work, we also consider a Bitonic Sort unit that can
sort 1024 inputs, similar to Q100 [1]. Sorting inputs larger than
1024 items will require additional effort and other techniques.
We consider two such complementary techniques. In the first
technique, Bitonic Sort is used as a finishing step to finalize
the sorting that has been partially accomplished by a hardware
range partitioning unit. In the second technique, Bitonic Sort is
used as a pre-processing step to prepare an input to be operated
on by an eight-input hardware merge sorter.

D. Summary of Hardware Sorting Unit Characteristics

Table I shows area, power, clock speed, and sorting
throughput figures for all hardware sorters considered in this
work. The Merge Sort units are trivially small, even compared
to our 0.51 mm? general purpose NDCores. The Range
Partitioner, however, is approximately 1.85x the size of an
NDCore, and the Bitonic Sorter is approximately 37% the size
of an NDCore.

V. EVALUATION
A. Methodology

In this work we evaluate the performance and energy char-
acteristics of only the Map phase of MapReduce workloads.
This has previously been identified as the largest phase in
MapReduce execution on NDP architectures [3]. We evaluate
four different workloads:

GroupBy Aggregation scans the website log for the 1998
Word Cup website [13] and counts the instances of each

Map Phase Performance Breakdown
W % Map Scan % Sort ® % Combine M % Partition

100% - - -
90%
o, 80%
2
g 70%
<
£ 60%
3
£ 50%
w
R 40%
3
S 30%
S
£ 20% e
S -
10% o E ==
B=wr CEEEER iinni
o2 B E S HE
= 8 = o w 2 o » o o® =z o 2o w z o o ow
nw 0 xx 0 0w 0 @ 9 0w 0 x 9 nw 0 x 9
== ¥ = oz s ¥ = © =3 ¥ = =z = ¥ =
[o T o T » T
o 0 o 0 o 0 o »
o o o o

GroupBy EquiJoin WordCount SequenceCount

Fig. 4. The amount of time spent in each phase of a Map task, normalized
to the software case running on NDP.

unique IP address. Self Equi-Join Aggregation uses the same
website log dataset as GroupBy to perform a self equi-join
operation. WordCount scans HTML files from Wikipedia [14]
and counts the number of instances of each unique word.
SequenceCount uses the same input as WordCount, but counts
the number of instances of each unique set of three consecutive
words.

We model a low-power, in-order core with performance and
energy characteristics similar to the ARM Cortex-AS5 operating
at 1 GHz and consuming 80 mW of power. We use WindRiver
Simics [15] to model the processor core, and USIMM [16]
to model DRAM access latency and bandwidth. We augment
the core with the various hardware sorting units described in
Table I.

Each NDNode in the system has access to a private vault of
memory, and does not share resources with any other NDNode
when using it. This means that all of the bandwidth of each
vault can be dedicated to a single hardware sorting unit. We
assume each vault has a 32-bit internal data bus operating
at 1600 Mbps per bus wire, for a maximum bandwidth of
6400 MB/s.

B. Performance Evaluation

1) Map Task Latency: Figure 4 shows the breakdown of the
Map phase as executed first with software running on NDP,
and then with the various accelerators. Although the highest
performing hardware sorter was able to offer two orders of
magnitude performance over the software case handling the
Sort phase of a Map task, that does not directly translate into
two orders of magnitude of overall Map task performance.

After sort has been accelerated so much, it eventually
ceases to be a substantial bottleneck in the system, and
improving it further offers negligible additional gains. For
example, for WordCount, when considering the Map phase as a
whole, MergeSort2 reduces execution latency by 78%, Merge-
Sort8 reduces execution latency by 81%, and the BitonicSort
combination is able to reduce execution latency by 83%. Given
the area and power advantages of MergeSort8, we believe it
is the most compelling design point.

2) Map Task Energy: Next, we consider total energy con-
sumption of the memory and compute systems during Map
phase execution, including both the Sort phase, and non-Sort

Energy Breakdown Between Sort and Non-Sort
m Sort Compute ™ Sort Memory ® Non-Sort Compute B Non-Sort Memory

1.0
: I i

0.8

0.7
0.6
0.5

Normalized Energy

0.4
0.3

02
(R B | II | III IIII
00I_!!! BZ%p0 JTREE JTNER
Tz 38 %& 8 22883 258 & 8 298 & 8
- oz = ¥ = oz =z ¥ = oz = 5 =
0+ [By [B [B
o v o 0 o 0 o 0
e} [} 4] o

GroupBy EquiJoin WordCount SequenceCount

Fig. 5. Breakdown of where both compute and memory energy is spent
during Map phase execution, normalized to the NDCore Software case.

phases. Figure 5 shows the breakdown for each workload
and hardware sort accelerator, normalized to the case of the
Software sort running on an NDCore.

Most of the energy is spent in the memory subsystem, and
not in compute. All of the compute is being performed by
low-EPI cores or fixed-function hardware accelerators, which
offer large energy savings compared to conventional out-of-
order server CPUs. Most of the memory energy consumption
is due to high background power of HMC-based devices.

3) Sorting Accelerators with NDP-Module: We also evalu-
ated our sorting accelerators in the context of an NDP-Module
system that avoids 3D-stacked memory devices and instead
tightly couples simple in-order cores to LPDDR2 memory
chips. For space reasons, we provide only a brief summary
here. Sorting acceleration allows our workloads to maximally
utilize the available memory bandwidth. The accelerators re-
duce Map phase execution time from 64.8% in WordCount up
to 88.1% in GroupBy. In all cases, NDP-Module with sorting
acceleration is able to improve upon the performance of the
more expensive NDP-HMC without sorting acceleration by at
least a factor of 2x. Further, the NDP-Module system with
sorting acceleration is able to achieve greater energy efficiency
than the more expensive NDP-HMC system without sorting
acceleration by at least a factor of 5x.

4) FPGA Emulation: We also implemented our sorting
accelerator on a Virtex-7 FPGA. The 100 MHz accelerator is
controlled by a MicroBlaze soft processor core (emulating our
NDCore) and the dataset is stored on a 1GB DDR3 SODIMM,
controlled by a 200 MHz memory controller (MIG). Without
the accelerator, the software sort function on the MicroBlaze
does not exhaust memory bandwidth. With the accelerator,
performance is entirely dictated by the modest memory band-
width. The FPGA implementation serves as a proof of concept,
confirming that the sort accelerator has a simple design that
can be effectively orchestrated by an NDCore.

VI. CONCLUSIONS

In this paper, we have explored using fixed-function hard-
ware accelerators as a way to speed up the Map phase
of MapReduce workloads. We considered hardware merge
sorters, bitonic sorters, and range partitioners. Ultimately we
found the performance difference between the various hard-
ware sorters to be small, as they all offer very large speedups

compared to the case where sort is running in software on
an NDCore. We therefore recommend the use of the Merge-
Sort8 accelerator, because of its very low area and power
requirements. Compared to an NDP-HMC system without
accelerators, incorporating fixed-function sorting accelerators
offered Map phase execution time reductions ranging from
78% in WordCount using the MergeSort2 accelerator, to
92% reduction in GroupBy using the MergeSort8 accelerator.
Similarly, energy consumption by the compute and memory
subsystems during Map phase execution was reduced from
77% in WordCount by MergeSort2, to 91% in GroupBy by
MergeSort8. Also compared to an NDP-HMC system without
accelerators, an NDP-Module system with accelerators has
greatly increased performance and energy efficiency, offering
a cheaper alternative to expensive 3D-stacking to achieve very
high MapReduce performance.

REFERENCES

[11 L. Wu, A. Lottarini, T. Paine, M. Kim, and K. Ross, “Q100: The
Architecture and Design of a Database Processing Unit,” in Proceedings
of ASPLOS, 2014.

[2] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch, “Disaggregated Memory for Expansion and Sharing in Blade
Servers,” in Proceedings of ISCA, 2009.

[3] S. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “NDC: Analyzing the Impact
of 3D-Stacked Memory+Logic Devices on MapReduce Workloads,” in
Proceedings of ISPASS, 2014.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” in Proceedings of OSDI, 2004.

[5] R. Balasubramonian, J. Chang, T. Manning, J. Moreno, R. Murphy,
R. Nair, and S. Swanson, “Near-Data Processing: Insight from a
Workshop at MICRO-46,” in IEEE Micro’s Special Issue on Big Data,
2014.

[6] S. Pugsley, J. Jestes, R. Balasubramonian, V. Srinivasan, A. Buyukto-
sunoglu, A. Davis, and F. Li, “Comparing Different Implementations
of Near Data Computing with In-Memory MapReduce Workloads,” in
IEEE Micro’s Special Issue on Big Data, 2014.

[7]1 J. Jeddeloh and B. Keeth, “Hybrid Memory Cube — New DRAM
Architecture Increases Density and Performance,” in Symposium on
VLSI Technology, 2012.

[8] A. Gutierrez, M. Cieslak, B. Giridhar, R. Dreslinski, L. Ceze, and
T. Mudge, “Integrated 3D-Stacked Server Designs for Increasing Phys-
ical Density of Key-Value Stores,” in Proceedings of ASPLOS, 2014.

[9] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ran-
ganathan, “Meet the Walkers: Accelerating Index Traversals for In-
Memory Databases,” in Proceedings of MICRO, 2013.

[10] L. Wu, R. Barker, M. Kim, and K. Ross, “Navigating Big Data with
High-Throughput Energy-Efficient Data Partitioning,” in Proceedings of
ISCA, 2013.

[11] A. Farmahini-Farahani, J. Ahn, K. Morrow, and N. Kim, “NDA:
Near-DRAM Acceleration Architecture Leveraging Commodity DRAM
Devices and Standard Memory Modules,” in Proceedings of HPCA,
2015.

[12] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable
Processing-in-Memory Accelerator for Parallel Graph Processing,” in
Proceedings of ISCA, 2015.

[13] M. Arlitt and T. Jin, “1998 World Cup Web Site Access Logs,”
http://www.acm.org/sigcomm/ITA/, August 1998.

[14] “PUMA Benchmarks and dataset
https://sites.google.com/site/farazahmad/pumadatasets.

[15] “Wind River Simics Full System Simulator,” 2007,
http://www.windriver.com/products/simics/.

[16] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,
A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “USIMM: the Utah
SImulated Memory Module,” University of Utah, Tech. Rep., 2012,
UUCS-12-002.

downloads,”

