
2020.06

Timon: A Timestamped Event Database for
Efficient Telemetry Data Processing and

Analytics
Wei Cao, Yusong Gao, Feifei Li, Sheng Wang, Bingchen Lin, Ke Xu,

Xiaojie Feng, Yucong Wang, Zhenjun Liu, Gejin Zhang
Alibaba Cloud Database Department

Database services at Alibaba Cloud

Expressway for running fully managed databases on Alibaba Cloud.
https://www.youtube.com/watch?v=5VkLDC_uIxM

As of July 2019 ©Gantner,inc

Enterprise Users:
100 thousands

Databases Migrated:
400 thousands

Cloud Database Marketing:
1st, Asia Pacific

Database Products and Services:
26 Products or Services

https://www.youtube.com/watch?v=5VkLDC_uIxM

Database systems and services at Alibaba and Alibaba Cloud

Feifei Li. Cloud-Native Database Systems at Alibaba: Opportunities and Challenges.
PVLDB, 12(12): 2263 - 2272, 2019. DOI: https://doi.org/10.14778/3352063.3352141

The scenarios of using telemetry data

SIGMOD’18 TcpRT: Instrument and Diagnostic Analysis System for Service
Quality of Cloud Databases at Massive Scale in Real-time.

End-to-End Tracking System

https://www.alibabacloud.com/help/doc-detail/
64851.htm?spm=a2c63.p38356.b99.2.61d09bb0Xe1MPU

Database Autonomy Service (DAS)

https://www.alibabacloud.com/help/doc-detail/64851.htm?spm=a2c63.p38356.b99.2.61d09bb0Xe1MPU
https://www.alibabacloud.com/help/doc-detail/64851.htm?spm=a2c63.p38356.b99.2.61d09bb0Xe1MPU

Challenge of processing telemetry data in cloud database services

• ~10 million objects

• Cover database engine, network, operating system, and even each individual OS
process.

• Support 1 second granularity and hundreds of millions data points per second

• Find and explain peaks which last a short time.

• Support long-term & multiple granularities queries with low response latency

• Find trend and periodicity and compare with historical data

• Strict SLA, realtime & accurate even when out-of-order events exist

• Find and explain anomalies as soon as possible.

• Not just for monitoring but also for autonomous optimization.

Sources of out-of-order events
• Distributed Computing Environment

• Machine failures

• Network failures

• Clock skew

• etc…

• Application Natures

• For instance: TcpRT events can’t be
collected until requests complete.
(53.90% out-of-order events)

SQL-1

SQL-2

SQL-3

Time

T1

T2

T3

T4

T5

T6

The order of events arrival will be T2, T3, T1

Our first generation data processing system

1. Delayed visibility

2. When late data arrives, a Read-Modify-Write
operation is required to read and update the
previously aggregated value on external storage.

3. It’s not good for analysis on
massive and long-term events

Solution: using blind-write and moving aggregate to storage

MachineMachineMachine

DB instanceDB instance
DB

Instance

TimonDB

Time Series
Correlation

Anomaly
Detect

User-Defined
Analysis / Alarm

DB instanceDB instance
Network
Device

Ka"a
Ka"a

Ka"a
Streaming System

Chart / Dashboard

(“machine1”, [bytes], 10:10:00)
(“machine1”, [bytes], 03:07:11)
(“machine2”, [bytes], 10:10:00)
(“machine2”, [bytes], 02:13:33)

Blind-write

Aggregate

Aggregate

Aggregate is
processed in TimonDB

• The most common operators are
associative and commutative.

• sum, max, min, avg, stddev

• quantile: histogram, t-digest*

• distinct: HyperLogLog

• So it’s a good idea to support
incremental processing after a data
point is written.

* t-digest: https://github.com/tdunning/t-digest

https://github.com/tdunning/t-digest

• If failovers occur while the data points are being written, we have to remove the
points that have been successfully written.

Timon

Flink

Incremental Processing Issue: Idempotence

10 20 50

T1 T2 T3

Value
Timestamp

Message: Add T2, 10

Retry or not?

Timon

Flink

10 20 50

T1 T2 T3

Value
Timestamp

Message: Add T2, 10
P1.Offset6

Retry

Modern Data Stream Queue

P1 P2 P3 Each partition is an
ordered sequence
of records.

Each record has an
offset.

P1.Offset6/P2.Offset3/P3.Offset12 Timon keeps the
maximum offset it
encountered for each
partition.

Kafka/AWS Kinesis/
Aliyun Loghub etc..

How to support blind-write and incremental processing efficiently

• LSM-Tree by P O’Neil - 1996

C0 tree C1 tree Ck tree

Memory Disk

…

MergeMerge

Write-optimized Read-optimized

Append & merge to tolerate out-of-order events. Build time-partitioning tree index
for long-term queries.

Time-Segment Log-Structured Merge-Tree

MemTable is optimized for
time series data.

SSTables Level 0

SSTable

SStable

SSTables Level 1

SSTable SSTable

Time

SSTable

SSTable

Wait Time

Wait Time

Compaction

SSTable of Later Events

…

SSTable of Later Events

Later Events
MemTable

Page

Page

Page

Ptr

(3090, 2584290)

(3090, 2584227)

(UUID, PageID)

(3060, 2584228)

(3060, 2584227)

Pages Mapping Table(Array-based)

Page

Page

[1550574000, 1550574600)

[1550536200, 1550536800)

[1550536200, 1550536800)

[1550536800, 1550537400)

Time Interval = [PageID * 600, (PageID + 1) * 600)

Seal

�1550536202, 30, 80, 90�
�1550536201, 90, 70, 90�
�1550536200, 38, 16, 70�

…

Sealed Page
�1550536200, 38, 16, 70�
�1550536201, 128, 70, 90�
�1550536202, 30, 80, 90�

…

MemTable

SSTables

In Memory

Flush

Data Structures of Operators: Sum, Max, Max

�1550536201, 38, 66, 90�

Sort & Merge

(UUID, PageID)

(3090, 2584227)

UUID Index Table(Tree-based)

…

Event time >= Last SSTable
Endtime - Wait Time?

Yes

MemTable

No

Lazy Merge

L1 L2 L3 A1

SSTable Data Section

1

3

 6

S

SSTable Index Section: Time-partitioning Tree Index

0 A30

t1~t6

…K…

…K…

Resolution

K^2

K

1

…………………..

………

…

0 A11

t1~t4

1 A21

t5~t6

0 L12

t1~t2

1 L22

t3~t4

2 L32

t5~t6

block address

local position

depth

time range

time_bin

…
field_1 bin

field_k bin

Block Block

…

Build time-partitioning tree
index when compacting.

Optimized MemTable for Time Series

Page

Page

Page

Ptr

(3090, 2584290)

(3090, 2584227)

(UUID, PageID)

(3060, 2584228)

(3060, 2584227)

Pages Mapping Table(Array-based)

Page

Page

[1550574000, 1550574600)

[1550536200, 1550536800)

[1550536200, 1550536800)

[1550536800, 1550537400)

Time Interval = [PageID * 600, (PageID + 1) * 600)
Seal

�1550536202, 30, 80, 90�
�1550536201, 90, 70, 90�
�1550536200, 38, 16, 70�

…

Sealed Page
�1550536200, 38, 16, 70�
�1550536201, 128, 70, 90�
�1550536202, 30, 80, 90�

…

MemTable Data Structures of Operators: Sum, Max, Max

�1550536201, 38, 66, 90�

Sort & Merge

(UUID, PageID)

(3090, 2584227)

UUID Index Table(Tree-based)

…

• Hybrid Tree-based Structure and Array-based Structure

• Pages are used to process sparse events.

Tolerating out-of-order events (1)

SSTables Level 0

SSTable

SStable

SSTables Level 1

SSTable SSTable

Time

SSTable

SSTable

Wait Time

Wait Time

Compaction

SSTable of Later Events

…

SSTable of Later Events

Later Events
MemTable

Page

Page

Page

Ptr

(3090, 2584290)

(3090, 2584227)

(UUID, PageID)

(3060, 2584228)

(3060, 2584227)

Pages Mapping Table(Array-based)

Page

Page

[1550574000, 1550574600)

[1550536200, 1550536800)

[1550536200, 1550536800)

[1550536800, 1550537400)

Time Interval = [PageID * 600, (PageID + 1) * 600)

Seal

�1550536202, 30, 80, 90�
�1550536201, 90, 70, 90�
�1550536200, 38, 16, 70�

…

Sealed Page
�1550536200, 38, 16, 70�
�1550536201, 128, 70, 90�
�1550536202, 30, 80, 90�

…

MemTable

SSTables

In Memory

Flush

Data Structures of Operators: Sum, Max, Max

�1550536201, 38, 66, 90�

Sort & Merge

(UUID, PageID)

(3090, 2584227)

UUID Index Table(Tree-based)

…

Event time >= Last SSTable
Endtime - Wait Time?

Yes

MemTable

No

• Most of out-of-order
events arrive with a delay
of less than 5 minutes.

• Some latecomers are small
in proportion but wide in
time range.

Tolerating out-of-order events (2)

01:33:00, [values]
14:00:00, [values]
14:01:00, [values]

…
14:29:00, [values]

…

SSTable x SSTable x+1 SSTable x+13

!ery(14:15:00, 14:45:00) : read about 14 SSTables

02:33:00, [values]
14:30:00, [values]
14:31:00, [values]

…
14:59:00, [values]

14:33:00, [values]
20:30:00, [values]
20:31:00, [values]

…
20:59:00, [values]

min_time: 01:33:00
max_time: 14:29:00

min_time: 02:33:00
max_time: 14:59:00

min_time: 14:33:00
max_time: 20:59:00

arrived
too late

14:00:00, [values]
14:01:00, [values]

…
14:29:00, [values]

SSTable x’ SSTable x’+1

14:30:00, [values]
14:31:00, [values]

…
14:59:00, [values]

in-time SSTables late SSTables

01:33:00, [values]
02:33:00, [values]

…
21:33:00, [values]

SSTable y

min_time: 14:00:00
max_time: 14:29:00

min_time: 14:30:00
max_time: 14:59:00

min_time: 01:33:00
max_time: 21:33:00

!ery(14:15:00, 14:45:00) : read about 3 SSTables
(2 in-time SSTables and 1 late SSTables)

Separate late items

• Build time-partitioning tree index by
compaction for fast exploration of
long-term time-series.

• An aggregated query will scan recent
data from MemTable and L0 SSTable,
and historical data from time-
partitioning tree.

How to process aggregated queries efficiently

L1 L2 L3 A1

SSTable Data Section

1

3

 6

S

SSTable Index Section: Time-partitioning Tree Index

0 A30

t1~t6

…K…

…K…

Resolution

K^2

K

1

…………………..

………

…

0 A11

t1~t4

1 A21

t5~t6

0 L12

t1~t2

1 L22

t3~t4

2 L32

t5~t6

block address

local position

depth

time range

time_bin

…
field_1 bin

field_k bin

Block Block

…

Timon with user-friendly tools and facilities
• We enhance Timon with user-friendly tools and facilities, such as metric set,

materialized view and TQL.

• Metric set

• For record which contains dozens of metric values.

• Materialized view

• Aggregating data on a higher abstract level, e.g., the region level.

• TQL

• SQL-like query languages which allows users to retrieve and analyze the
underlying timestamped event data with rich semantics.

Benchmark

Query latency with different write mode.Throughput with different write mode

Benchmark: Write Throughput as batch size grow or streams grow

• BtrDB (M. P. Andersen at FAST 2016) is a state-
of-the-art TSDB with very high performance
and long-term time-series exploration support.

• BtrDB is much better for ultra-high frequency
data points (i.e., sub-microsecond precision
timestamps).

• Timon maintains high write performance
stably when the number of streams increases.

• The main difference is that Timon builds
Time-partitioning Tree Indexes by a batch and
async procedure, but BtrDB inserts records
directly into its tree indexes.

Benchmark: Query Latency

Deployment
• Deployed in data centers distributed in 21 regions around the world.

• The biggest application cluster: 97 Timon nodes support about 500 million data
points writing per second from the system, and the busiest node serves about 18
million data points per second.

Object Storage (Aliyun OSS/AWS S3)

Timon Timon Timon

ORC Standard File Format

Aliyun ECS & AWS EC2

Data Analytics Platform (MaxCompute / Spark)

Timon Timon

Aliyun ECS &
AWS EC2

Cloud Storage
(Aliyun ESSD & AWS EBS)

Timon
Master

Timon
Slave

Bare-metal
server

Bare-metal
server

On Bare-metal Server On Elastic Compute
(Each Timon node sees its own data)

On Elastic Compute

And Using Object Storage

Aliyun ECS &
AWS EC2

Thanks

Yusong Gao

jianchuan.gys@alibaba-inc.com

mailto:jianchuan.gys@alibaba-inc.com

