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Database services at Alibaba Cloud

Expressway for running fully managed databases on Alibaba Cloud.  
https://www.youtube.com/watch?v=5VkLDC_uIxM

As of July 2019     ©Gantner,inc

Enterprise Users:  
100 thousands

Databases Migrated:  
400 thousands

Cloud Database Marketing:  
1st, Asia Pacific

Database Products and Services:  
26 Products or Services

https://www.youtube.com/watch?v=5VkLDC_uIxM


Database systems and services at Alibaba and Alibaba Cloud

Feifei Li. Cloud-Native Database Systems at Alibaba: Opportunities and Challenges. 
PVLDB, 12(12): 2263 - 2272, 2019. DOI: https://doi.org/10.14778/3352063.3352141



The scenarios of using telemetry data

SIGMOD’18 TcpRT: Instrument and Diagnostic Analysis System for Service 
Quality of Cloud Databases at Massive Scale in Real-time.

End-to-End Tracking System

https://www.alibabacloud.com/help/doc-detail/
64851.htm?spm=a2c63.p38356.b99.2.61d09bb0Xe1MPU

Database Autonomy Service (DAS)

https://www.alibabacloud.com/help/doc-detail/64851.htm?spm=a2c63.p38356.b99.2.61d09bb0Xe1MPU
https://www.alibabacloud.com/help/doc-detail/64851.htm?spm=a2c63.p38356.b99.2.61d09bb0Xe1MPU


Challenge of processing telemetry data in cloud  database services

• ~10 million objects 

• Cover database engine, network, operating system, and even each individual OS 
process. 

• Support 1 second granularity and hundreds of millions data points per second 

• Find and explain peaks which last a short time. 

• Support long-term & multiple granularities queries with low response latency 

• Find trend and periodicity and compare with historical data 

• Strict SLA, realtime & accurate even when out-of-order events exist 

• Find and explain anomalies as soon as possible. 

• Not just for monitoring but also for autonomous optimization.



Sources of out-of-order events
• Distributed Computing Environment 

• Machine failures 

• Network failures 

• Clock skew 

• etc…

• Application Natures 

• For instance: TcpRT events can’t be 
collected until requests complete. 
(53.90% out-of-order events)  
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The order of events arrival will be T2, T3, T1



Our first generation data processing system

1. Delayed visibility

2. When late data arrives, a Read-Modify-Write 
operation is required to read and update the 
previously aggregated value on external storage.

3. It’s not good for analysis on 
massive and long-term events



Solution: using blind-write and moving aggregate to storage
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Aggregate

Aggregate is
processed in TimonDB

• The most common operators are 
associative and commutative. 

• sum, max, min, avg, stddev 

• quantile: histogram, t-digest* 

• distinct: HyperLogLog 

• So it’s a good idea to support 
incremental processing after a data 
point is written.

* t-digest: https://github.com/tdunning/t-digest

https://github.com/tdunning/t-digest


• If failovers occur while the data points are being written, we have to remove the 
points that have been successfully written.

Timon

Flink

Incremental Processing Issue: Idempotence
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Modern Data Stream Queue

P1 P2 P3 Each partition is an 
ordered sequence 
of records. 

Each record has an 
offset.

P1.Offset6/P2.Offset3/P3.Offset12 Timon keeps the 
maximum offset it 
encountered for each 
partition.

Kafka/AWS Kinesis/
Aliyun Loghub etc..



How to support blind-write and incremental processing efficiently

• LSM-Tree by P O’Neil - 1996

C0 tree C1 tree Ck tree

Memory Disk

…

MergeMerge

Write-optimized Read-optimized

Append & merge to tolerate out-of-order events. Build time-partitioning tree index 
for long-term queries.



Time-Segment Log-Structured Merge-Tree

MemTable is optimized for 
time series data.
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Build time-partitioning tree 
index when compacting. 



Optimized MemTable for Time Series
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• Hybrid Tree-based Structure and Array-based Structure  

• Pages are used to process sparse events.



Tolerating out-of-order events (1)
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• Most of out-of-order 
events arrive with a delay 
of less than 5 minutes. 

• Some latecomers are small 
in proportion but wide in 
time range.



Tolerating out-of-order events (2)

01:33:00, [values]
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…
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…
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(2 in-time SSTables and 1 late SSTables)

Separate late items



• Build time-partitioning tree index by 
compaction for fast exploration of 
long-term time-series. 

• An aggregated query will scan recent 
data from MemTable and L0 SSTable, 
and historical data from time-
partitioning tree.

How to process aggregated queries efficiently
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Timon with user-friendly tools and facilities
• We enhance Timon with user-friendly tools and facilities, such as metric set, 

materialized view and TQL. 

• Metric set 

• For record which contains dozens of metric values. 

• Materialized view 

• Aggregating data on a higher abstract level, e.g., the region level. 

• TQL 

• SQL-like query languages which allows users to retrieve and analyze the 
underlying timestamped event data with rich semantics.



Benchmark

Query latency with different write mode.Throughput with different write mode



Benchmark: Write Throughput as batch size grow or streams grow

• BtrDB (M. P. Andersen at FAST 2016) is a state-
of-the-art TSDB with very high performance 
and long-term time-series exploration support. 

• BtrDB is much better for ultra-high frequency 
data points (i.e., sub-microsecond precision 
timestamps). 

• Timon maintains high write performance 
stably when the number of streams increases. 

• The main difference is that Timon builds 
Time-partitioning Tree Indexes by a batch and 
async procedure, but BtrDB inserts records 
directly into its tree indexes.



Benchmark: Query Latency



Deployment
• Deployed in data centers distributed in 21 regions around the world.  

• The biggest application cluster: 97 Timon nodes support about 500 million data 
points writing per second from the system, and the busiest node serves about 18 
million data points per second.

Object Storage (Aliyun OSS/AWS S3)

Timon Timon Timon

ORC Standard File Format

Aliyun ECS & AWS EC2

Data Analytics Platform (MaxCompute / Spark) 

Timon Timon

Aliyun ECS & 
AWS EC2

Cloud Storage  
(Aliyun ESSD & AWS EBS)

Timon 
Master

Timon 
Slave

Bare-metal 
server

Bare-metal 
server

On Bare-metal Server On Elastic Compute  
(Each Timon node sees its own data)

On Elastic Compute 

And Using Object Storage

Aliyun ECS & 
AWS EC2
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