

Spatio-Temporal Aggregation Using Sketches

Yufei Tao§ George Kollios‡ Jeffrey Considine‡ Feifei Li‡ Dimitris Papadias†

§Department of Computer Science

City University of Hong Kong
Tat Chee Avenue, Hong Kong

taoyf@cs.cityu.edu.hk

‡Department of Computer Science
Boston University
Boston, MA, USA

{gkollios, jconsidi, lifeifei}@cs.bu.edu

†Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
dimitris@cs.ust.hk

Abstract
Several spatio-temporal applications require the retrieval
of summarized information about moving objects that lie
in a query region during a query interval (e.g., the number
of mobile users covered by a cell, traffic volume in a
district, etc.). Existing solutions have the distinct counting
problem: if an object remains in the query region for
several timestamps during the query interval, it will be
counted multiple times in the result. The paper solves this
problem by integrating spatio-temporal indexes with
sketches, traditionally used for approximate query
processing. The proposed techniques can also be applied
to reduce the space requirements of conventional spatio-
temporal data and to mine spatio-temporal association
rules.

1. Introduction
Despite the vast spatio-temporal literature that aims at
retrieving individual objects satisfying various query
predicates, most related applications are interested in
aggregate information about the qualifying objects. Some
examples include traffic supervision systems monitoring
the number of vehicles in a district and mobile computing
applications allocating bandwidth depending on the usage
of each cell. Although summarized results can be obtained
using conventional operations on individual objects (i.e.,
by accessing every single record qualifying the query), as
suggested in [PTKZ02], there are several motivations for
specialized aggregation methods: (i) in some cases
personal data should not be stored due to legal or privacy
issues; (ii) individual data may be irrelevant or
unavailable; and (iii) individual data may be highly
volatile and involve extreme space requirements, while
the aggregate information is usually more stable over long
periods, thus requiring considerably less space for storage.
For example, although the distinct cars in a city area
usually change rapidly, their number at each timestamp
may not vary significantly, since the number of objects
entering the area is similar to that exiting.

Given a rectangle qr and an interval qt (whose ending
time is in the past or the present), a spatio-temporal
aggregate query retrieves summarized information about
objects that appeared in qr during qt. We consider two
cases of such queries: (i) the spatio-temporal count that
returns the total number of qualifying objects and (ii) the
spatio-temporal sum which, assuming that each object is
associated with a measure, outputs the sum of the
measures of the qualifying objects. For instance, a
measure of interest for the mobile computing scenario is
the number of phone calls, in which case the
corresponding spatio-temporal sum query will return the
total number of phone calls made by all users in region qr
during interval qt. Obviously, the spatio-temporal count is
a special case of the spatio-temporal sum, where the
measure of each object is 1.
The only directly-related, previous work [PTKZ02]
proposes several multi-tree structures based on R-trees
and B-trees (for details see Section 2.2). The shortcoming
of that approach is the so-called distinct counting
problem, i.e., if an object remains in the query region for
several timestamps during the query interval, it will be
counted (or summed) multiple times in the result. Since
the structures of [PTKZ02] store only summarized data,
information about individual objects is lost and the
problem cannot be solved by duplicate elimination
techniques. An effective solution to distinct counting is
crucial for several applications because it enables a much
richer range of decision-making queries. A natural
question in traffic analysis, for example, is to ask how
many cars are present in a district. The techniques of
[PTKZ02] can be used to find the average number of cars
per timestamp during a time interval. However, the
average is not adequate in analyzing the traffic volume.
For example, one might find a parking garage and a busy
highway with the same average number of cars, and then
assert that they have similar traffic characteristics. If we
allow distinct counting queries, we can easily distinguish
between the two cases. First, the highway will have a
much higher turnover rate of cars entering and leaving,

which will be directly reflected in a higher number of
distinct cars over time. Second, this turnover rate can be
quantified by comparing this number against the average.
That is, if the number of distinct cars increases by x, while
the average stays constant, x cars must have entered and x
must have left within the time period in question.
The difficulty for supporting distinct counting queries is
due to the fact that there is no way to exactly summarize
distinct objects substantially better than by simply
enumerating all of them. As this is impractical in most
settings, we are forced to consider approximate methods.
In this paper we combine sketches, a common
approximation method, with spatio-temporal aggregate
indexes. Although our main goal is to solve the distinct
counting problem, the proposed techniques can also be
used for alternative tasks, such as reducing the space
requirements of conventional spatio-temporal databases
and mining spatio-temporal association rules. The rest of
the paper is organized as follows. Section 2 surveys
related work. Section 3 formally defines our problem, and
describes the proposed methods. Section 4 discusses
related processing tasks made possible by our techniques,
while Section 5 contains an extensive experimental
evaluation. Finally, Section 6 concludes the paper with
directions for future work.

2. Related Work
We first review the FM algorithm for approximate
counting as it constitutes part of our solution. Then,
assuming basic knowledge of R-trees [G84, SRF87,
BKSS90], we describe the existing approaches for
aggregate processing in multi-dimensional spaces,
focusing on spatio-temporal applications.

2.1 The FM algorithm and counting sketch
Estimating the number of distinct objects in a dataset has
received considerable attention (see [PGF02, GGR03] and
the references therein). Many methods in the literature are
based on the FM algorithm developed by Flajolet and
Martin [FM85] (referred to as FM in the sequel). FM
requires a hash function h which takes as input an object
id o, and outputs a pseudorandom integer h(o) with a
geometric distribution, that is, Prob[h(o)=v] = 2−v for
v>=1. A sketch consists of r bits, whose initial values are
set to 0 (an appropriate choice of r is discussed later). For
every object o in the dataset, FM sets the h(o)-th bit (of
the sketch) to 1. After processing all objects, FM finds the
first bit of the sketch that is still 0. Let the position of this
bit be k; then the number of distinct objects is estimated as
n=1.29×2k. This is actually an unbiased estimate, i.e.,
E[n]=1.29×2E[k] where E[.] denotes the expected value of
a random variable, but the variance of k is approximately
1.12. Hence, the estimate of n is frequently off by a factor
of two or more [FM85].

In order to remedy this, Flajolet and Martin propose using
m independent sketches, each with its own independent
hash function, and averaging the resulting values. Let k1,
k2, …, km be the positions of the first 0 in the m sketches
respectively. The new estimate of n is 1.29×2ka, where
ka=(1/m)∑m

i=1(ki). This is also an unbiased estimate, but
with an expected standard error of O(m−1/2) [FM85].
However, the expected processing cost of each object
increases from O(1) to O(m). Flajolet and Martin solve
this problem using Probabilistic Counting with Stochastic
Averaging (PCSA). PCSA applies a second hash function
to choose one of the m sketches and only inserts the object
into that sketch. This reduces the expected insertion cost
back to O(1). As a result, each sketch is responsible for
approximately n/m (distinct) objects, resulting in a new
formula for estimation, 1.29m×2ka, with expected
standard error O(m−1/2). Figure 2.1 shows the pseudo-code
of FM with PCSA.

algorithm FM_PCSA (DS, h, m, r)
/* DS is a dataset; h is a random function such that, given an
object o∈ DS, Prob[h(o) = v]=2−v; m is the number of sketches
used; r is the number of bits in each sketch */
1. initialize m sketches s1, s2, …, sm, each with r bits set to 0
2. for each object o in DS
3. randomly pick a sketch si (1≤i≤m)
4. si[h(o)] = 1
5. k=0
6. for i=1 to m
7. for j=1 to r
8. if si[j] = 0 then
9. k = k + j;
10. break // go to the next sketch
11. return (1.29m·2 k/m)
end FM_PCSA

Figure 2.1: FM Algorithm

As shown in [FM85], a proper value for r (i.e., the
number of bits in a sketch) is O(log2 n), where n is the
number of distinct objects. The resulting space
consumption of the FM algorithm is O(m·log2n) when m
sketches are used. Although we use FM because it is fast
and accurate, our techniques can be applied with any
sketch allowing union operations.

2.2 The aRB-tree
Assume the set of regions r1, r2, …, r4 of Figure 2.2a and
consider that at each timestamp, the number of objects in
the region is given in Figure 2.2b, where the horizontal/
vertical dimension corresponds to time/region id. For
instance, r1 contains 150 objects during the first two
timestamps, 145 objects the third timestamp and so on. A
spatio-temporal count query q retrieves the total number
of objects in a window qr during an interval qt, e.g., the
query with qr equal to the shaded area of Figure 2.2a and

qt=[1,3] returns the sum of the shaded values in Figure
2.2b (i.e., the cells corresponding to r1, r2, r4 during the
first three timestamps).

regions

1 2 3 5

r1

r2

r3

4r

150

75

12

150

80

12

145

85

12 12

90

130135

90

132 127 125 127127

12

4
time

R1

r1 r4
r3

R2

r2

qr

(a) Region extents (b) 2D view of the aggregates

Figure 2.2: Regions and their aggregate data

Papadias et al. [PTKZ02] propose the aRB- (aggregate R-
B-) tree for the efficient processing of spatio-temporal
count queries. In the aRB-tree, the extents of all regions
(in this case r1, r2, r3, r4) are stored in an R-tree. Each
entry of the R-tree is associated with a pointer to a B-tree
that stores historical aggregate data about the entry.
Figure 2.3 illustrates the aRB-tree for the example of
Figure 2.2. Note that Figure 2.2a also includes the
minimum bounding rectangles (MBRs) of the
intermediate tree entries R1, R2. The B-tree of r1, for
example, contains 4 leaf entries (in the format <time,
agg> (with time being the index key), corresponding to its
4 aggregate changes in history (i.e., no change at time 2).
Intermediate B-tree entries follow the same format. For
instance, the first root entry <1,445> in the B-tree for r1
indicates that the total number of objects in r1 during
interval [1,3] is 445, while the second entry <4,265>
shows that for interval [4,5] the number is 265. The B-tree
of an intermediate R-tree entry summarizes the
aggregated data about regions in its branch; e.g., the first
leaf entry of the B-tree for R1 <1,225> denotes that the
number of objects in r1, r2 (i.e., the child node of R1) at
timestamp 1 is 225. Similarly the first entry of the top
node <1,685> denotes that this number during the interval
[1,3] is 685.
The aRB-tree facilitates aggregate processing by
eliminating the need to descend nodes that are totally
enclosed by the query. As an example, consider the query
in Figure 2.2a (with interval qt=[1,3]). Search starts from
the root of the R-tree. Entry R1 is totally contained inside
the query window and the corresponding B-tree is
retrieved. Since the entries of the root node in this B-tree
contain the aggregate data of interval [1,3] (and [4,5]), the
next level of the B-tree does not need to be accessed and
the contribution of R1 (i.e., the contribution of r1, r2) to the
query result is 685. The second root entry R2 of the R-tree
partially overlaps the query rectangle qr; hence, the
algorithm visits its child node, where only entry r4
intersects qs, and thus its B-tree is retrieved. The first root

entry suggests that the contribution of r4 for interval [1,2]
is 259. In order to complete the result, we have to descend
the second entry and retrieve the aggregate value of r4 for
timestamp 3 (i.e., 125). The total number of objects in
these regions during the interval [1,3] is the sum
685+259+125 (i.e., the numbers in the shaded cells of
Figure 2.3). Nevertheless, the aRB-tree does not take into
account multiple object occurrences. For example, if an
object remains in r1 at timestamps 1, 2, 3, it will be
counted three times in the result. Therefore, aRB-trees are
not directly applicable for applications that require
distinct counting.

R-tree for the

1 12

B-tree for r3

220 1 144 2 139 3 137 4 139

1 283 3 405

B-tree for R2

901 75 2 80 3 85 4

1 155 3 265

2B-tree for r

1 150 3 145 4 135 5 130

1 445 4 265

B-tree for r1

1 225 2 230 4 225 5

1 685 4 445

B-tree for R1

R
1

R2

r
1

r 2
r

3
r4

spatial dimensions

1 132 2 127 3 125 4 127

1 259 3 379

4B-tree for r

Figure 2.3: The aRB-tree

2.3 Other techniques for aggregate processing
Most work in the spatial database literature considers the
following problem: given a set of objects (points,
rectangles, etc.) and a rectangular query window q, return
the number of objects intersecting q. Efficient structures
for point data include the aP-tree [TPZ02], and the CRB-
tree [GAA03], which achieves optimal performance, i.e.,
logarithmic query time and linear space in the 2D space.
For 2D interval objects, the MVSB-tree [ZMT+01] solves
the problem in logarithmic query time. Zhang et al.
[ZTG02] develop a set of structures for general rectangle
data with good worst-case bounds. Further, several
authors [JL99, LM01, PKZT01] suggest augmenting a
conventional R-tree with summarized information in the
intermediate entries (in a way similar to aRB-trees) to
accelerate aggregate queries for data with arbitrary extents
and dimensionality. As with the aRB-tree, however, these
approaches do not support distinct counting, and hence
cannot be applied for our problem.
Finally, approximate query answering in conventional
databases and stream management systems has been
addressed using various techniques such as histograms
[TGIK02], sampling [CDD+01], randomized data access
[HHW97], function-fitting [CR94], etc. All these
methods, however, assume a single “snapshot” of the
database, and do not support spatio-temporal temporal
(historical) data. The only histograms with a temporal
aspect focus on spatio-temporal prediction [TSP03].

3. Distinct Spatio-Temporal Aggregation
In Section 3.1, we formally define the problem and
overview the proposed methods. Then, Section 3.2
proposes the sketch index and Section 3.3 describes the
processing of distinct spatio-temporal count queries.
Section 3.4 extends the solution to spatio-temporal sum
processing.

3.1 Problem definition and solution overview
We consider a set of R 2D static regions r1, r2,.., rR as the
finest aggregation granularity (e.g., cells in a mobile
phone network, road segments), and a set of n moving
objects with distinct ids o1, o2, …, on (n>>R). The extents
of two or more regions may overlap. Let o(t) be the
location of object o at time t and assume that o(t) cannot
be measured accurately. Instead, we know the set of
objects that fall in each region every timestamp, which is
indeed the case in many practical applications. For
example, although the exact location of every mobile user
is not usually known, it is possible to decide the cell that
services the user.
Given an aggregate query q with window qr and time
interval qt, we define the set M(q) of matching objects as:

M(q) = {oi | ∃ region rj & time t∈ qt such that, oi(t)∈ rj and
rj intersects qr}

Note that M(q) is defined through the spatial regions (i.e.,
the finest aggregation granularity). In particular, an object
oi ∈ M(q) if it appears in some region that qualifies the
query, even though the object itself does not lie in qr
during qt. Now we are ready to define the query types
considered in this paper.
Problem 3.1: A distinct (spatio-temporal) count (DC, for
short) query q (with window qr and time interval qt)
returns the number of matching objects, or more formally:
DC(q) = |M(q)|.
Assuming that each object oi carries a measure wi
(invariant with time), then a distinct sum (DS) query q
retrieves the sum of the measures of all matching objects:
DS(q)=∑wi , where oi∈ M(q). ■
The exact computation of DC(q) requires working space
at least linear to the number of distinct objects. This lower
bound also applies to DS(q) since DC queries are a special
case of DS with measure wi=1.Thus, if n is the number of
distinct objects and T is the total number of timestamps in
history, any solution that solves DC/DS queries precisely
needs Ω(n·T) space. This is prohibitive in practice since
both n and T may be very large. To overcome this
problem, we develop a structure that answers DC/DS
queries approximately, consuming Ο(m·R·T·log n) space,
where R is the number of regions, and m is an adjustable
constant that, as explained shortly, determines the tradeoff
between overhead and approximation accuracy.

Using the FM algorithm discussed in Section 2, for each
region ri (1≤i≤m) and timestamp t we maintain a sketch
si(t) that captures the (ids of) objects in ri at t. Figure 3.1
presents the system for distinct aggregation. At each
timestamp, every object reports its id (or measure, for DS
queries) to the region that covers its location. The region
has a sketch generator that creates the corresponding
sketches based on the object information, and transmits
them to the database. To obtain sketches for DC queries,
the generator simply performs the PCSA algorithm
described in Section 2.1. The algorithm for DS is more
complex and discussed separately in Section 3.4.

object ids

or weights

object ids or weights

object ids

or weights
r 1

r 2

r 3

database
aggregate queriesapprox. results

sketch
generators

sketches

Figure 3.1: System architecture

The sketches received by the database can be stored in a
two dimensional array shown in Figure 3.2 (assuming
R=4 regions). This is similar to the storage scheme in
Figure 2.2b, except that each cell now contains sketches
instead of the actual number of objects in each region per
timestamp.

regions

1 2 3 5

r1

r2

r3

4r

4 time

01000

10100

11000

101001110010000

11111

01100 01100

10000 1100010000 10001

100001000010000

10000 10000 10100 10100

Figure 3.2: Conceptual sketch storage model

Lemma 3.1: Using the sketch si(t) in cell (ri, t), we can
estimate the distinct number ni(t) of objects in ri at
timestamp t. ■
This lemma results from the straightforward application
of the FM estimation algorithm. Namely, by identifying
the position k of the left most 0 in si(t), we can estimate
ni(t) as 1.29×2k (note that the sketches do not correspond
to the numbers in Figures 2.2a). The following lemma
illustrates another important property, which constitutes
the rationale underlying the proposed method.

Lemma 3.2: Using the OR of the sketches of c cells (r1,
t1), (rx2, t2), …, (rxc, tc), (two cells may have the same
region or timestamp), we can estimate the number of
distinct objects o that appear in some region rxj at time tj.■
The correctness of this lemma is due to the well-known
fact [FM85] that the sketch (generated by FM) for the
union of several datasets is identical to the OR of the
individual sketches of each dataset. In other words, let DS
be the set of objects that satisfy the condition stated in
Lemma 3.2; then, the sketch of DS is exactly the same as
the ORc

i=1sxi(ti).

Lemma 3.2 indicates a simple algorithm for approximate
DC processing. Consider, for example, a DC query with
window qr intersecting r1, r2, r4 and qt=[1,4]. The goal is
to compute the OR of the sketches in the shaded cells. In
this case, the result is 11100, and since the left-most 0 is
at position 4, the (approximate) result equals
1.29×24=10.32. This algorithm, however, is “conceptual”,
meaning that it does not consider the actual access paths
for retrieving the necessary sketches. Efficient sketch
retrieval cannot be achieved using conventional data
warehouses because there is no natural ordering on the
region axis; therefore, regions intersecting qr may not be
consecutive. Furthermore, there is no pre-defined
hierarchy on regions, rendering traditional group-by
techniques inapplicable. Motivated by this, in the next
section we introduce the sketch index to accelerate the
sketch retrieval.

3.2 Sketch index structure
The sketch index is similar to the aRB-tree in terms of
structure, but differs in the query algorithms. Figure 3.3
shows an example for the data in Figure 3.2. An R-tree
indexes the regions r1, r2,…, r4. Each R-tree entry is
associated with a B-tree that records the historical
sketches of the corresponding region (or regions in its
sub-tree). For example, the B-tree of region r1 consists of
4 leaf entries (in the format <time, sketch>), indicating its
4 sketch changes in history (i.e., no change at time 3). The
sketch 11100 of the first root entry in this B-tree equals
the OR of all the sketches (i.e., 10000, 01100) in its
subtree. The same rule applies to all intermediate B-tree
entries.
Consider the first leaf entry <1,10100> in the B-tree of R1.
Its sketch 10100 equals the OR for sketches of r1 and r2
(i.e., 10000, 10100, respectively) at time 1. In general, for
each intermediate R-tree entry Ri, its sketch at any time t,
is the OR of sketches of all the regions in the subtree (of
Ri) at t. The sketch index is a dynamic structure, and its
incremental maintenance algorithms follow those of the
aRB-tree due to the similarity of the structures.

R-tree for the

R
1

R2

r
1

r2
r

3
r4

spatial dimensions

4B-tree for r

10000110002100001 1010043

3110001 10100

1B-tree for r

11100011002100001 1010054

4111001 11100

1B-tree for R

11100111002101001 1010154

4111001 11101

2B-tree for r

11000100003101001 1000154

4101001 11001
N 4

N 2

N 1

N 3

3B-tree for r

11111100002010001 5

5110001 11111

2B-tree for R

10100100003110001 4

5110001 11111

111115

Figure 3.3: A sketch index example

3.3 Query processing using the sketch index
A straightforward algorithm for answering DC queries
using the sketch index is to perform the search in a way
similar to that in the aRB-tree. To illustrate this, we
assume, for simplicity, the same extents of regions (r1,
r2,…, r4) and intermediate R-tree entries (R1, R2) as those
in Figure 2.2a. Consider again the query q with window
qr (shown in Figure 2.2a) and interval qt=[1,4]. The
search algorithm initiates a result sketch RS with all bits
set to 0, and gradually updates it. Specifically, the search
starts from the root of the R-tree. Since R1 is contained in
qr, we fetch the root N1 of its B-tree, where the first entry
<1,11100> indicates that the OR of all sketches in its sub-
tree during [1,3] is 11100, which becomes the new value
of RS. The child node N2 of the second root entry must be
searched. Inside this node, entry <4,11100> qualifies qt,
and thus its sketch is OR-ed with RS (which, however,
incurs no change to RS). Next the algorithm backtracks to
the R-tree and, since R2 partially intersects qr, accesses its
child node, in which the only entry intersecting qr is r4.
Hence, it visits N3 and N4 producing the final sketch
RS=11100. In Figure 3.3, the visited B-tree nodes are
shaded.
The above algorithm applies spatial and temporal
conditions (using qr and qt respectively), but completely
ignores the pruning power of the sketches themselves.
Notice that in the previous example RS is already set to
11100 (i.e., the final result) at a very early stage of the
search process (i.e., after accessing the root of the B-tree
of R1). In other words, sketches of subsequent nodes do
not affect the final result at all. This motivates the
following pruning heuristic.
Heuristic 3.1: Let RS be the current result sketch, and e
an intermediate B-tree entry whose associated sketch is se.
Then, the sub-tree of e can be pruned if (se OR RS) = RS.
■

According to this rule, the processing of the above query
can avoid visiting node N4 because the sketch (10100) of
its parent entry <3,10100> satisfies 10100 OR RS = RS.
The implication is that, in order to maximize the
effectiveness of Heuristic 3.1, we should first try to
maximize the 1's in RS, before descending intermediate
(B-tree) entries. In general, we should “postpone” visiting
nodes that may be pruned later as more bits of RS are set.
The next question is: which node accesses are avoidable,
and which ones are necessary?
To answer this question, let SRE be the set of R-tree entries
whose B-trees must be accessed. Equivalently, each entry
e in SRE satisfies the following conditions: (i) its MBR is
covered by query rectangle qr (or its MBR intersects qr if
e is a leaf) and (ii) none of its ancestor entries satisfies (i).
In the example of Figure 3.3, SRE={R1,r4}. Evidently,
accesses to the roots of their respective B-trees are
unavoidable1. Hence we visit all of them (in Figure 3.3,
nodes N1 and N3), and examine the entries therein. Some
of these entries allow us to set (possibly many) bits of RS
without any further node access. The first entry of N1 has
lifespan [1,3] (3 is derived from the timestamp of the next
entry 4), which is contained in the query interval qt. So
we can immediately update RS to its sketch 11100.
Similarly, the lifespan [1,2] of the first entry in N3 is also
contained in qt; hence its sketch 11000 is also taken into
account, but does not change RS.
Now let us consider the remaining entries in N1 and N3,
namely, <4,11101> and <3,10100>. Although, their
lifespans are not contained in qt=[1,4], Heuristic 3.1
eliminates <3,10100>. Nevertheless, <4,11101> is not
pruned by the heuristic because 11101 OR RS = 11101 ≠
RS. However, recall that our objective is not to retrieve
the complete final RS. Instead, we are interested in the
position of the left-most bit that is still 0. What is the
possible left-most position (of the final RS) in this case?
Given the current RS=11100 and entry <4,11101>, the
answer is 4 (i.e., the left-most 0 must be at the 4-th bit),
since the first 3 bits of both RS and the entry’s sketch are
all 1. Therefore, the access to the child node of this entry
can also be avoided, because (even if we actually visit it)
the only possible change to RS is to set the 5-th bit to 1,
which does not affect our estimation. This observation
leads to another heuristic.
Heuristic 3.2: Let SU be the OR of the sketches of the
entries whose sub-trees cannot be pruned so far. If p is the
position of the left-most 0 in (RS OR SU), then the sub-
tree of an intermediate (B-tree) entry e can be pruned if its
sketch se satisfies the following condition:

� �

1 1

 AND 1...10...0 OR AND 1...10...0e
p p

RS RS s
− −

   
=   

   

■

1 Unlike the aRB-tree, we do not store sketches in the R-tree
entries because this would decrease the node fanout.

Heuristic 3.2 subsumes 3.1 by providing a more general
condition. Specifically, instead of requiring all bits of RS
and (RS OR se) to be identical, it prunes se if only the first
p−1 bits (of the these sketches) are the same (where p is
decided by RS and SU together). The third heuristic
indicates a good access order for the child nodes of entries
not pruned by Heuristic 3.2.
Heuristic 3.3: Given a set of qualifying entries, we visit
their child nodes in descending order of the number of 1’s
in their sketches. ■
We use a heap to manage the entries which cannot be
pruned yet, using the numbers of 1’s in their sketches as
the sorting keys. As an example, consider another query
whose (i) rectangle qr intersects all regions (r1, r2, r3, r4),
and contains the MBR of R1 but not R2, and (ii) interval is
qt=[1,4]. In this case, the algorithm first visits the roots of
the B-trees of R1, r3, r4, after which RS=11100, and the
heap contains two entries <1,11111> (from the root of r3’s
B-tree) and <4,11101> (the second entry in the B-tree of
R1), both of which cannot be pruned. The algorithm will
visit the child node of <1,11111> next since it has more
1’s. Figure 3.4 illustrates the pseudo-code of the improved
algorithm (referred to as sketch-prune in the sequel).

algorithm sketch_prune (qr, qt)
1. initiate a “max” heap H accepting entries of the form

<B-tree entry e, key>; set all bits of RS to 0
2. obtain the set SRE of R-tree entries whose B-trees must be

searched
4. for each of entry e in SRE
5. for each entry e' in the root of e.btree
6. process_intermediate(e', SRE, H) }
7. while (H is not empty)
8. SU = the OR of the sketches of the entries in H
9. p = the position of the left-most 0 of SRE OR SU
10. remove the top entry <e, key> from H; let the sketch

of e be se
11. let s be a sketch whose left-most (p−l) bits are 1

while the others are 0
12. if (RS OR se AND s) ≠ (RS AND s)
13. for each entry e' in e.child (its sketch se')
14. if (e.child is leaf) and (e'.lifespan intersects qt)
15. RS=se' OR RS
16. if (e' is an intermediate node)
17. process_intermediate(e', Sfinal, H)
18. let k be the position of the left-most 0 in RS
19. return 1.29 × 2k
end sketch_prune

Algorithm process_intermediate (e, Sfinal, H)
/* e is an intermediate entry in the B-tree with sketch se; RS is
the current result sketch; qt is the query interval; H is the heap*/
1. if e.lifespan is contained in qT then RS=RS OR se;
2. else if (e.lifespan intersects qT)
3. insert <e, number of “1” in se> into H
end process_intermediate

Figure 3.4: The sketch-prune algorithm

Heuristic 3.3 provides a reasonably “good” access order,
but other more sophisticated and potentially better access
orders exist. For instance, the order may be decided
according to the number of additional bits in RS that may
be set (to 1) by this entry. Specifically, assume RS=11000,
and two sketches 11100 and 00110; then according to this
order, the second sketch will be processed first (although
it has fewer 1’s) since it may set two bits of RS (while the
first sketch can set only one bit). This, however, requires
adjusting the sorting keys of the entries in the heap as the
algorithm proceeds (and RS changes), which may be
expensive if the heap size is large.
The description so far assumes that only one sketch is
maintained per B-tree entry; however, the sketch-prune
algorithm can be easily modified to support multiple
sketches (which, as discussed in Section 2.1, leads to
higher accuracy) as follows. First, Heuristics 3.1 and 3.2
are applied individually for each sketch to prune the
entries that qualify the heuristic conditions in all sketches.
Then, Heuristic 3.3 determines the access order with
respect to the total number of 1’s in all the sketches of an
entry. The storage of the sketch index at each timestamp
is linear to (i) the number R of regions, (ii) the length
log2n of each sketch, and (iii) the number m of sketches
used. As a result, the total space complexity (for all T
timestamps in the history) is Ο(m·R·T·logn)

3.4 Supporting distinct sum queries
The proposed method for DC (distinct count) processing
can be applied to DS (distinct sum) queries, by modifying
the sketches of the leaves. The resulting sketches are then
indexed and queried in exactly the same way as described
in the previous section. Hence, it suffices to illustrate the
specialized algorithm for creating the sum sketches.
Specifically, the problem is stated as follows: given a
dataset with (possibly duplicate) tuples in the form (object
o, measure w), estimate the sum of measures of the
distinct objects. That is, if an object appears with the same
measure several times, its measure is added only once.
We solve this problem by reducing it to DC processing.
Given an input record (o, w), we simulate the FM sketch
generation algorithm by inserting w different elements
(o,θ1,w), (o,θ2,w),…, (o,θw,w), where θi,w are special symbols
to distinguish these elements. Consequently, the estimated
“count” using FM is actually the sum of the w’s of distinct
records (o, w) (comparing both o and w) in the original
problem2. The disadvantage of this approach is that, if w
is large, inserting w different elements will be expensive.
Here we briefly describe an alternative algorithm for
generating sum-sketches that remedies this problem (more

2 An alternative approach is to insert elements of the form
(o,θi), in which case the estimated “count” is the sum of
the maximum w’s for each distinct o.

details and proofs may be found in [CLKB04]). The main
idea is to leverage the observation of [FM85] that the first
few (say x) bits are (almost) definitely 1. Since the FM
estimator is only concerned with the first 0 in the final
sketch, we only need to consider the part (of the sketch)
starting at the (x+1)-th bit, or in other words, we can
ignore the insertion of those elements (let their number be
y) that will set the first x bits. Recall that, since the hash
function (used by FM) has the property that, the
probability of setting the i-th bit equals 2−i, each element
has probability ∑x

i=1(2
−i) to set (any of) the first x bits.

Hence, y follows the Binomial distribution3 Bin(w, ∑x
i=1

(2−i)). As a result, (in order to decide how many bits after
the x-th one is set) we only need to insert w−y elements,
and obtain the resulting sketch. Let the left-most 0 of this
sketch be at position k'; then the corresponding position k
in the sketch of inserting all w elements equals x+k'.
There remains only one question: what is a good value for
x? The analysis of [FM85] observes that inserting w
distinct items sets the first x = log2 w−2 log2 log2 w bits of
the resulting sketch to 1 with high probability. This value
is adopted in our implementation. Finally, we note that
this method can also be combined with PCSA to improve
accuracy, as shown in Figure 3.5.

algorithm sum_PCSA (DS, h, m, r)
/* dataset DS={(o1,w1),(o2,w2),…}; h is a random function such
that, Prob[h(o,w)=v]=2−v; m is the number of sketches used; r is
the number of bits in each sketch */
1. init m sketches s1, s2, …, sm, each with r bits, all set 0
2. for each (o, w) in DS do
3. randomly pick a sketch si (1≤i≤m)
4. x = log2w–2log2log2w;
5. for j=1 to x
6. si[j] = 1;
7. for j=1 to w−Bin(w, ∑x

i=1(2
−i))

8. si[x+h(o,j)] = 1;
9. k=0
10. for i=1 to m do
11. for j=1 to r do
12. if si[j] = 0 then
13. k = k + j;
14. break; // go to the next sketch
15. return (1.29m·2 k/ m)
end sum_PCSA

Figure 3.5: Sketch generation and estimation for DS

4. Extensions
In this section we present the application of the proposed
techniques to related spatio-temporal problems. Section
4.1 uses sketches to reduce the size of general spatio-
temporal databases and enhance the performance of

3 For Binomial distribution x~Bin(n,p), the probability
Prob[x=m] is (n

m)pn(1−p)n−m.

aggregate processing. Section 4.2 applies sketches to mine
spatio-temporal association rules.

4.1 Approximating general moving data
The discussion in Section 3 assumes a set of regions that
constitute the finest aggregation granularity, which may
not be the case for the conventional spatio-temporal
databases. In this scenario, each object o reports its
location (x,y) at each timestamp t to the database, which
maintains a tuples in the form <o,x,y,t>. Evidently, the
size of the database table grows continuously, so that
eventually it becomes prohibitively large (especially if the
number of monitored objects is high). In addition to the
space complexity O(n·T) (where n is the number of
objects, and T is the number of timestamps in the history),
this deteriorates query performance. In the sequel, we
show that, if the goal is to support aggregate queries, we
can reduce the size and query overhead significantly, at
the trade-off of some small error (around 15% as shown
in our experiments).

We manually impose a res×res regular grid over the data
space (i.e., each cell of the grid has length 1/res of the
total axis extent), where res is a parameter called
resolution. Then, the sketch index is directly applicable
by treating the grid cells as the finest aggregate
granularity. It is worth mentioning that if the number of
cells is relatively small (i.e., low resolution), the
approximation tends to over-estimate the actual result
because an object, which does not fall in the query
rectangle qr, but in a cell intersecting qr, will also be
counted. This problem can be alleviated by setting res to a
sufficiently large value (e.g., 50 in our implementation). It
is easy to verify that the space complexity is
O((res)2

·T·logn), or O(T·logn) when res is a constant. As a
further improvement, observe that we can actually remove
the R-tree from the sketch index, because the cells
indexed by the R-tree are regular. Specifically, it suffices
to introduce a hierarchical decomposition as shown in
Figure 4.1, where the grid at level i has resolution 2i, and
the maximum level equals log2res.

Level 0

Level 1

Level L

B-tree

B-tree

B-tree

B-tree

B-tree

B-tree

Figure 4.1: Grid-based approximation

Note that, this hierarchy implicitly defines the parent-
child relation among cells of different levels (e.g., the
shaded cell at level 0 is the ancestor of all the shaded cells
in the lower levels). As in sketch indexes, each grid cell is

associated with a B-tree managing the historical sketches
about objects in its extent (cells in intermediate levels
resemble intermediate entries in the R-tree of a sketch
index). Given a rectangle qr, we can easily decide the set
of cells (in a particular grid) that (i) partially intersect or
(ii) are contained in qr. As with the R-tree of a sketch
index, descending the hierarchy is only necessary for case
(i), because in case (ii) the B-tree is accessed directly. It
can be proven that, given the finest resolution res, the
algorithm accesses O(res·hB) pages (for any query), where
hB is the maximum height of the B-tree.

4.2 Mining spatio-temporal association rules
Consider a user in region ri at time t. What is the
probability p that this user will appear in region rj by time
t+T? We denote such a spatio-temporal association rule
with the syntax (ri,T,p)⇒rj. Inferring such rules is
important in practice. For example, in mobile computing,
they can identify trends in user movements and lead to
better allocation of antenna bandwidth to cater for
potential network congestions in the near future.
Additional constraints, such that ri and rj must be within
certain distance, may also be specified.
By maintaining the sketches of all regions at each
timestamp as in Figure 3.2, we can answer the following
question easily: given specific ri, rj, and a timestamp t,
how many users that are in ri at t, appear in rj at any of the
following T timestamps (i.e., t+1,…, t+T)? Let si(t) be the
sketch of ri at time t, and sj(t),..., sj(t+T) be the sketches of
rj at the subsequent T timestamps. We first estimate the
number n1 of objects at ri at time t (using si(t)), and the
number n2 of objects at rj during time interval [t+1, t+T]
(using ORt+T

i=t+1(sj(t+i))). Next, we estimate the total
number n3 of objects that appeared either in ri (at time T)
or in rj during [t+1, t+T] (using ORt+T

i=t+1(sj(t+i)) OR si(t)).
Then, the number of objects that appear in ri at time t and
then appear in rj during [t+1, t+T] equals n1+n2−n3. This
idea naturally leads to a simple brute-force algorithm for
discovering the association rules, which as shown in
Figure 4.2, checks all possible instances of (ri, rj, t).

algorithm associate_rule_mining (T, p, c)
/* T is the horizon; p is the appearance probability; c is the
confidence factor */
1. for each region ri
2. for each region rj
3. sample=0; witness=0
4. for each timestamp t in history
5. sample++
6. s' = sj(t+1) OR sj(t+2) OR ... OR sj(t+T)
7. n1=FM estimate from si(t); n2=FM estimate from s';

n3=estimate from si(t) OR s'
8. if (n1+n2−n3)/n1>p then witness++
9. if (witness/sample>c) then output rule (ri,T,p)⇒rj
end associate_rule_mining

Figure 4.2: Algorithm for mining association rules

5. Experiments
This section experimentally evaluates the proposed
methods. First, Section 5.1 examines the efficiency of the
sketch-index in answering aggregate queries. Then,
Section 5.2 studies the effect of approximating spatio-
temporal data, while Section 5.3 presents preliminary
results for mining association rules.

5.1 Performance of sketch-indexes
Due to the lack of real spatio-temporal datasets we
generate synthetic data in a way similar to [SJLL00,
TPS03] aiming at simulation of air traffic. We first adopt
a real spatial dataset [Tiger] that contains 10k 2D points
representing locations in the Long Beach county (the data
space is normalized to unit length on each dimension).
These points serve as the “airbases”. At the initial
timestamp 0, we generate 100k air planes, such that each
plane (i) is associated with a number of passengers
uniformly generated in [200,300], (ii, iii) a source and a
destination that are two random different airbases, and
(iv) a speed uniformly distributed in [0.02, 0.04] (the
velocity direction is determined by the orientation of the
line segment connecting its source and destination
airbases). At the subsequent 100 timestamps, all planes
move continually according to their velocities. Once a
plane reaches its destination, it flies towards another
(randomly selected) airbase with a new velocity (also
uniform in [0.02, 0.04]). At each timestamp, every plane
reports to its nearest airbase, or specifically, the database
consists of tuples in the form <time t, airbase b, plane p,
passenger # a>, specifying that plane p with a passengers
is closest to base b at time t.
A spatio-temporal count/sum query has two parameters:
the length qrlen of its query (square) window and the
number qtlen of timestamps covered by its interval. The
actual extent of the window (interval) distributes
uniformly in the data space (history, i.e., timestamps
[0,100]). A count query retrieves the number of distinct
air planes that report to airbases in qr during qt, while a
sum query returns the sum of these planes’ passengers. A
workload consists of 100 queries with the same
parameters qrlen and qtlen.
The disk page size is set to 1k in all cases (the relatively
small page size simulates situations where the database is
much more voluminous). Since there does not exist any
specialized method for distinct spatio-temporal
aggregation, we compare the sketch-index to the
following relational approach that can be implemented in
a DBMS. Specifically, we index the 4-tuple table
<t,b,p,a> using a B-tree on the time t column. Given a
count query (with window qr and interval qt), we issue:
SELECT distinct p
FROM <t,b,p,a>

WHERE t∈ qt & b contained in qr.

The performance of each method is measured as the
average number of page accesses (per query) in
processing a workload. For the sketch-index, we also
report the average (relative) error of the workload.
Specifically, let acti and esti be the actual and estimated
results of the i-th query in the workload; then the error
equals (1/100)∑100

i=1 |acti−esti|/acti. For sketch-indexes we
set the number of bits in each sketch to 24, and vary the
number of sketches.
The first experiment evaluates the space consumption.
Figure 5.1 shows the sketch index size as a function of the
number of sketches used (count- and sum-indexes have
the same results). As expected, the size increases when
more sketches are included, but is usually considerably
smaller than the database size (e.g., for 16 signatures, the
size is only 40% the database size).

0
20
40
60
80

100
120
140
160

8 16 32
number of sketches

size (mega bytes)

database
size

Figure 5.1: Size comparison

Next we demonstrate the superiority of the proposed
sketch-pruning query algorithm, with respect to the naïve
one that applies only spatio-temporal predicates. Figure
5.2a illustrates the costs of both algorithms for count-
workloads with qtlen=10 and various qrlen (the index
used in this case has 16 sketches). For comparison, we
also illustrate the performance of the relational method,
which, however, is clearly incomparable (for qrlen≥0.1, it
is worse by an order of magnitude); hence in the sequel
we omit this technique.
Sketch-pruning always outperforms naïve (e.g., eventually
two times faster for qrlen=0.25). The improvement
increases with qrlen, since queries returning larger results
tend to set bits in the result sketch more quickly, thus
enhancing the power of Heuristics 3.1 and 3.2. In Figure
5.2b, we compare the two methods by fixing qrlen to 0.15
and varying qtlen. Similar to the findings of [PTKZ02]4,
both algorithms demonstrate “step-wise” growths in their
costs, while sketch-pruning is again significantly faster.
The experiments with sum-workloads lead to the same
observations, and therefore we evaluate sketch-indexes
using sketch-pruning in the rest of the experiments.

4 As explained in [PTKZ02], query processing accesses at most
two paths from the root to the leaf level of each B-tree,
regardless the length of the query interval.

sketch-pruning naive relational

0

100

200

300

400

500

600

700

800

900

0.05 0.1 0.15 0.2 0.25

number of disk accesses

query rectangle length

300

0

100

200

400

500

600

1 5 10 15 20

number of disk accesses

query interval length
(a) Cost vs. qrlen

(qtlen=10)
(b) Cost vs. qtlen

(qrlen=0.15)
 Figure 5.2: Superiority of sketch-pruning (count)

As discussed in Section 2, a large number of sketches
reduces the variance in the resulting estimate. To verify
this, Figure 5.3a plots the count-workload error of indexes
using 8-, 16-, and 32- sketches, as a function of qrlen
(qtlen=10). As expected, the 32-sketch has the lowest
error (below 10%), and its accuracy is most stable (it
increases slowly with qrlen). When only 8 sketches are
used, however, the error rate is much higher (up to 30%),
and has serious fluctuation, indicating the prediction is not
robust. The performance of 16-sketch is in between these
two extremes, or specifically, its accuracy is reasonably
high (average error around 15%) and stable (much less
fluctuation than 8-sketch).

 32-sketch 16-sketch 8-sketch
relative error

0%

5%

10%

15%

20%

25%

30%

35%

0.05 0.1 0.15 0.2 0.25
query rectangle length

relative error

0%

5%

10%

15%

20%

25%

30%

35%

1 5 10 15 20
query interval length

(a) Error vs. qrlen
(qtlen=10, count)

(b) Error vs. qtlen
(qrlen=0.15, count)

relative error

query rectangle length

0%

5%

10%

15%

20%

25%

0.05 0.1 0.15 0.2 0.25

relative error

query interval length

0%

5%

10%

15%

20%

25%

30%

1 5 10 15 20

(c) Error vs. qrlen
(qtlen=10, sum)

(d) Error vs. qtlen
(qrlen=0.15, sum)

 Figure 5.3: Accuracy of the approximate results

The same phenomena are confirmed in Figures 5.3b
(where we fix qrlen to 0.15 and vary qtlen), and 5.3c and
5.3d (results for sum-workloads). Although a larger
number of sketches improves the estimation accuracy, it
also leads to higher space requirements (as shown in
Figure 5.1), and processing costs. To demonstrate this,
Figures 5.4a and 5.4b show the number of disk accesses
for the settings of Figures 5.3a and 5.3b. All indexes have
almost the same behavior, while the 32-sketch is clearly
more expensive than the other two indexes. The
interesting observation is that 8- and 16-sketches have
almost the same overhead due to the similar heights of
their B-trees. Since the diagrams for sum-workloads
illustrate (almost) identical results, they are omitted to
avoid redundancy.

32-sketch 16-sketch 8-sketch
number of disk accesses

query rectangle length

0

50

100

150

200

250

300

350

400

0.05 0.1 0.15 0.2 0.25

number of disk accesses

query interval length

0

50

100

150

200

250

300

350

1 5 10 15 20

(a) Cost vs. qrlen

(qtlen=10)
(b) Cost vs. qtlen

(qrlen=0.15)
Figure 5.4: Costs of indexes with various signatures

Summary: The sketch index constitutes an effective
method for approximate spatio-temporal (distinct)
aggregate processing. Particularly, the best tradeoff
(between space, query time, and estimation accuracy) is
obtained by 16 sketches, which leads to size around 40%
the database, fast response time (an order of magnitude
faster than the relational method), and less than 15%
average relative error.

5.2 Approximating spatio-temporal data
We proceed to study the efficiency of using sketches to
approximate spatio-temporal data (proposed in Section
4.1). For this purpose, we generate data in the same way
as in the last section, except that at each timestamp all
airplanes report their locations to a central server (instead
of their respective nearest bases). Specifically, the server
maintains a table in the form <time t, plane p, x, y>, where
(x,y) denotes the coordinates of p at time t. A count query
(with parameters qrlen and qtlen) retrieves the number of
distinct planes satisfying the spatial and temporal
conditions. For comparison, we index the table using a 3D
R*-tree on the columns time, x, and y. Given a query, this
tree facilitates the retrieval of all qualifying tuples, after
which a post-processing step is performed to obtain the

number of distinct planes (in the sequel, we refer to this
method as 3DR). As mentioned earlier, our compression
method introduces a regular res×res grid of the data
space, where the resolution res is a parameter. We adopt
16 sketches because, as mentioned earlier, this number
gives the best overall performance.
Figure 5.5 compares the sizes of the resulting sketch
indexes (obtained with resolutions res=25, 50, 100) with
the database size. In all cases, we achieve high
compression rate (e.g., the rate is 25% for res=25). To
evaluate the query efficiency, we first set the resolution to
the median value 50, and use the sketch index to answer
workloads with various qrlen (qtlen=10).

size (mega bytes)

database
size

0
20
40
60
80

100
120
140
160

25 50 100
resolution

Figure 5.5: Size reduction

Figure 5.6a shows the query costs (together with the error
in each case), and compare them with those of the 3DR
method. The sketch index is faster than 3DR by an order
of magnitude (note that the vertical axis is in logarithmic
scale), while at the same time it achieve high accuracy
(around 15% error). Figure 5.6b confirms these
observations using workloads with different qtlen.
Finally, we examine the effect of resolution res using a
workload with qrlen=0.15 and qtlen=10. As shown in
Figure 5.6c, larger res incurs higher query overhead, but
improves the estimation accuracy.
Summary: The proposed sketch method can be used to
efficiently approximate spatio-temporal data for aggregate
processing. It consumes significantly smaller space, and
answers a query almost in real-time with low error.

3D Rsketch
number of disk accesses

query rectangle length

1

10

100

1k

10k

0.05 0.1 0.15 0.2 0.25

16%
14% 15% 15% 13%

relative error

number of disk accesses

query interval length

1

10

100

1k

10k

1 5 10 15 20

16%
15% 15% 12% 11%

relative error

(a) Cost vs. qrlen

(qtlen=10, res=25)
(b) Cost vs. qtlen

(qrlen=0.15, res=25)

0

500

1000

1500

2000

2500

25 50 100

number of disk accesses

resolution

20% 15% 14%

relative error

(c) Cost vs. res (qrlen=0.15, qtlen=10)

Figure 5.6: Query efficiency (costs and error)

5.3 Mining association rules
To evaluate the proposed algorithm for mining spatio-
temporal association rules, we first artificially formulate
1000 association rules in the form (r1,T,90%)⇒r2 (with
90% confidence), such that (i) r1 and r2 are two regions
randomly picked from 10k ones, (ii) each region appears
in at most one rule, and (iii) T is the same for all rules.
Then, at each of the following 100 timestamps, we assign
100k objects to the 10k regions following these rules. We
execute our algorithms (using 16 sketches) to discover
these rules, and measure (i) the precision, the number of
“correct” rules divided by the total number of discovered
rules, and (ii) recall, the percentage of the artificial rules
successfully mined.
Figures 5.7a and 5.7b illustrate the precision and recall as
a function of T respectively. Our algorithm has good
precision (close to 90%) for all T, meaning that the
majority of the rules discovered are correct. The recall,
however, is relatively low for short T, but gradually
increases (90% for T=25). This is expected because, as
evaluated in the previous sections, the estimation error
decreases as the query result becomes larger (i.e., the case
for higher T).

78%
80%
82%
84%
86%
88%
90%
92%
94%
96%

5 10 2015 25

precision

HT

78%
80%
82%
84%
86%
88%
90%
92%
94%
96%

5 10 2015 25

recall

HT
(a) Precision vs. HT (b) Recall vs. HT
Figure 5.7: Efficiency of the mining algorithm

Summary: The preliminary results justify the usefulness
of our mining algorithm, whose efficiency improves as T
increases.

6. Conclusions
While efficient aggregation is the objective of most
spatio-temporal applications in practice, the existing
solutions either incur prohibitive space consumption and
query time, or are not able to return useful aggregate
results due to the distinct counting problem. In this paper,
we propose the sketch index that integrates traditional
approximate counting techniques with spatio-temporal
indexes. Sketch indexes use a highly optimized query
algorithm resulting in both smaller database size and
faster query time. Our experiments show that while a
sketch index consumes only a fraction of the space
required for a conventional database, it can process
queries an order of magnitude faster with average relative
error less than 15%.
While we chose to use FM sketches, our methodology can
leverage any sketches allowing union operations.
Comparing the efficiency of different sketches constitutes
a direction for future work, as well as further investigation
of more sophisticated algorithms for mining association
rules. For example, heuristics similar to those used for
searching sketch indexes may be applied to improve the
brute-force implementation.

ACKNOWLEDGEMENTS
Yufei Tao and Dimitris Papadias were supported by grant
HKUST 6197/02E from Hong Kong RGC. George
Kollios, Jeffrey Considine and were Feifei Li supported
by NSF CAREER IIS-0133825 and NSF IIS-0308213
grants.

References
[BKSS90] Beckmann, N., Kriegel, H., Schneider, R.,

Seeger, B. The R*-tree: An Efficient and
Robust Access Method for Points and
Rectangles. SIGMOD, 1990.

[CDD+01] Chaudhuri, S., Das, G., Datar, M., Motwani,
R., Narasayya, V. Overcoming Limitations of
Sampling for Aggregation Queries. ICDE,
2001.

[CLKB04] Jeffrey Considine, Feifei Li, George Kollios,
John Byers. Approximate aggregation
techniques for sensor databases. ICDE, 2004.

[CR94] Chen, C., Roussopoulos, N. Adaptive
Selectivity Estimation Using Query
Feedback. SIGMOD, 1994.

[FM85] Flajolet, P., Martin, G. Probabilistic Counting
Algorithms for Data Base Applications.
JCSS, 32(2): 182-209.

[G84] Guttman, A. R-Trees: A Dynamic Index
Structure for Spatial Searching. SIGMOD,
1984.

[GAA03] Govindarajan, S., Agarwal, P., Arge, L. CRB-
Tree: An Efficient Indexing Scheme for
Range Aggregate Queries. ICDT, 2003.

[GGR03] Ganguly, S., Garofalakis, M., Rastogi, R.
Processing Set Expressions Over Continuous
Update Streams. SIGMOD, 2003.

[HHW97] Hellerstein, J., Haas, P., Wang, H. Online
Aggregation. SIGMOD, 1997.

[JL99] Jurgens, M., Lenz, H. PISA: Performance
Models for Index Structures with and without
Aggregated Data. SSDBM, 1999.

[LM01] Lazaridis, I., Mehrotra, S. Progressive
Approximate Aggregate Queries with a
Multi-Resolution Tree Structure. SIGMOD,
2001.

[PGF02] Palmer, C., Gibbons, P., Faloutsos, C. ANF:
A Fast and Scalable Tool for Data Mining in
Massive Graphs. SIGKDD, 2002.

[PKZT01] Papadias, D., Kalnis, P., Zhang, J., Tao, Y.
Efficient OLAP Operations in Spatial Data
Warehouses. SSTD, 2001.

[PTKZ02] Papadias, D., Tao, Y., Kalnis, P., Zhang, J.
Indexing Spatio-Temporal Data Warehouses.
ICDE, 2002.

[SJLL00] Saltenis, S., Jensen, C., Leutenegger, S.,
Lopez, M.A. Indexing the Positions of
Continuously Moving Objects. SIGMOD,
2000.

[SRF87] Sellis, T., Roussopoulos, N., Faloutsos, C.
The R+-tree: A Dynamic Index for Multi-
Dimensional Objects. VLDB, 1987.

[TGIK02] Thaper, N., Guha, S., Indyk, P., Koudas, N.
Dynamic Multidimensional Histograms.
SIGMOD, 2002.

[Tiger] www.census.gov/geo/www/tiger/
[TPS03] Tao, Y., Papadias, D., Sun, J. The TPR*-

Tree: An Optimized Spatio-Temporal Access
Method for Predictive Queries. VLDB, 2003.

[TPZ02] Tao, Y., Papadias, D., Zhang, J. Aggregate
Processing of Planar Points. EDBT, 2002.

[TSP03] Tao, Y., Sun, J., Papadias, D. Analysis of
Predictive Spatio-Temporal Queries. TODS,
28(4): 295-336, 2003.

[ZMT+01] Zhang, D., Markowetz, A., Tsotras, V.,
Gunopulos, D., Seeger, B. Efficient
Computation of Temporal Aggregates with
Range Predicates. PODS, 2001.

[ZTG02] Zhang, D., Tsotras, V., Gunopulos, D.
Efficient Aggregation over Objects with
Extent PODS, 2002.

