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Abstract 
Several spatio-temporal applications require the retrieval 
of summarized information about moving objects that lie 
in a query region during a query interval (e.g., the number 
of mobile users covered by a cell, traffic volume in a 
district, etc.). Existing solutions have the distinct counting 
problem: if an object remains in the query region for 
several timestamps during the query interval, it will be 
counted multiple times in the result. The paper solves this 
problem by integrating spatio-temporal indexes with 
sketches, traditionally used for approximate query 
processing. The proposed techniques can also be applied 
to reduce the space requirements of conventional spatio-
temporal data and to mine spatio-temporal association 
rules.   

1. Introduction 
Despite the vast spatio-temporal literature that aims at 
retrieving individual objects satisfying various query 
predicates, most related applications are interested in 
aggregate information about the qualifying objects. Some 
examples include traffic supervision systems monitoring 
the number of vehicles in a district and mobile computing 
applications allocating bandwidth depending on the usage 
of each cell. Although summarized results can be obtained 
using conventional operations on individual objects (i.e., 
by accessing every single record qualifying the query), as 
suggested in [PTKZ02], there are several motivations for 
specialized aggregation methods: (i) in some cases 
personal data should not be stored due to legal or privacy 
issues; (ii) individual data may be irrelevant or 
unavailable; and (iii) individual data may be highly 
volatile and involve extreme space requirements, while 
the aggregate information is usually more stable over long 
periods, thus requiring considerably less space for storage. 
For example, although the distinct cars in a city area 
usually change rapidly, their number at each timestamp 
may not vary significantly, since the number of objects 
entering the area is similar to that exiting.  

Given a rectangle qr and an interval qt (whose ending 
time is in the past or the present), a spatio-temporal 
aggregate query retrieves summarized information about 
objects that appeared in qr during qt. We consider two 
cases of such queries: (i) the spatio-temporal count that 
returns the total number of qualifying objects and (ii) the 
spatio-temporal sum which, assuming that each object is 
associated with a measure, outputs the sum of the 
measures of the qualifying objects. For instance, a 
measure of interest for the mobile computing scenario is 
the number of phone calls, in which case the 
corresponding spatio-temporal sum query will return the 
total number of phone calls made by all users in region qr 
during interval qt. Obviously, the spatio-temporal count is 
a special case of the spatio-temporal sum, where the 
measure of each object is 1.  
The only directly-related, previous work [PTKZ02] 
proposes several multi-tree structures based on R-trees 
and B-trees (for details see Section 2.2). The shortcoming 
of that approach is the so-called distinct counting 
problem, i.e., if an object remains in the query region for 
several timestamps during the query interval, it will be 
counted (or summed) multiple times in the result. Since 
the structures of [PTKZ02] store only summarized data, 
information about individual objects is lost and the 
problem cannot be solved by duplicate elimination 
techniques. An effective solution to distinct counting is 
crucial for several applications because it enables a much 
richer range of decision-making queries. A natural 
question in traffic analysis, for example, is to ask how 
many cars are present in a district. The techniques of 
[PTKZ02] can be used to find the average number of cars 
per timestamp during a time interval. However, the 
average is not adequate in analyzing the traffic volume. 
For example, one might find a parking garage and a busy 
highway with the same average number of cars, and then 
assert that they have similar traffic characteristics. If we 
allow distinct counting queries, we can easily distinguish 
between the two cases. First, the highway will have a 
much higher turnover rate of cars entering and leaving, 



 

 

which will be directly reflected in a higher number of 
distinct cars over time. Second, this turnover rate can be 
quantified by comparing this number against the average. 
That is, if the number of distinct cars increases by x, while 
the average stays constant, x cars must have entered and x 
must have left within the time period in question. 
The difficulty for supporting distinct counting queries is 
due to the fact that there is no way to exactly summarize 
distinct objects substantially better than by simply 
enumerating all of them. As this is impractical in most 
settings, we are forced to consider approximate methods. 
In this paper we combine sketches, a common 
approximation method, with spatio-temporal aggregate 
indexes. Although our main goal is to solve the distinct 
counting problem, the proposed techniques can also be 
used for alternative tasks, such as reducing the space 
requirements of conventional spatio-temporal databases 
and mining spatio-temporal association rules. The rest of 
the paper is organized as follows. Section 2 surveys 
related work. Section 3 formally defines our problem, and 
describes the proposed methods. Section 4 discusses 
related processing tasks made possible by our techniques, 
while Section 5 contains an extensive experimental 
evaluation. Finally, Section 6 concludes the paper with 
directions for future work. 

2. Related Work 
We first review the FM algorithm for approximate 
counting as it constitutes part of our solution. Then, 
assuming basic knowledge of R-trees [G84, SRF87, 
BKSS90], we describe the existing approaches for 
aggregate processing in multi-dimensional spaces, 
focusing on spatio-temporal applications. 

2.1 The FM algorithm and counting sketch  
Estimating the number of distinct objects in a dataset has 
received considerable attention (see [PGF02, GGR03] and 
the references therein). Many methods in the literature are 
based on the FM algorithm developed by Flajolet and 
Martin [FM85] (referred to as FM in the sequel). FM 
requires a hash function h which takes as input an object 
id o, and outputs a pseudorandom integer h(o) with a 
geometric distribution, that is, Prob[h(o)=v] = 2−v for 
v>=1. A sketch consists of r bits, whose initial values are 
set to 0 (an appropriate choice of r is discussed later). For 
every object o in the dataset, FM sets the h(o)-th bit (of 
the sketch) to 1. After processing all objects, FM finds the 
first bit of the sketch that is still 0. Let the position of this 
bit be k; then the number of distinct objects is estimated as 
n=1.29×2k. This is actually an unbiased estimate, i.e., 
E[n]=1.29×2E[k] where E[.] denotes the expected value of 
a random variable, but the variance of k is approximately 
1.12. Hence, the estimate of n is frequently off by a factor 
of two or more [FM85]. 

In order to remedy this, Flajolet and Martin propose using 
m independent sketches, each with its own independent 
hash function, and averaging the resulting values. Let k1, 
k2, …, km be the positions of the first 0 in the m sketches 
respectively. The new estimate of n is 1.29×2ka, where 
ka=(1/m)∑m

i=1(ki). This is also an unbiased estimate, but 
with an expected standard error of O(m−1/2) [FM85]. 
However, the expected processing cost of each object 
increases from O(1) to O(m). Flajolet and Martin solve 
this problem using Probabilistic Counting with Stochastic 
Averaging (PCSA). PCSA applies a second hash function 
to choose one of the m sketches and only inserts the object 
into that sketch. This reduces the expected insertion cost 
back to O(1). As a result, each sketch is responsible for 
approximately n/m (distinct) objects, resulting in a new 
formula for estimation, 1.29m×2ka, with expected 
standard error O(m−1/2). Figure 2.1 shows the pseudo-code 
of FM with PCSA. 
 
algorithm  FM_PCSA (DS, h, m, r) 
/* DS is a dataset; h is a random function such that, given an 
object o∈ DS, Prob[h(o) = v ]=2−v; m is the number of sketches 
used; r is the number of bits in each sketch */ 
1. initialize m sketches s1, s2, …, sm, each with r bits set to 0 
2. for each object o in DS  
3.  randomly pick a sketch si (1≤i≤m)  
4.  si[h(o)] = 1    
5. k=0 
6. for i=1 to m 
7.      for  j=1 to r  
8.           if  si[j] = 0 then  
9.                    k = k + j;  
10.                    break // go to the next sketch 
11. return (1.29m·2 k/m ) 
end  FM_PCSA 

Figure 2.1: FM Algorithm  

As shown in [FM85], a proper value for r (i.e., the 
number of bits in a sketch) is O(log2 n), where n is the 
number of distinct objects. The resulting space 
consumption of the FM algorithm is O(m·log2n) when m 
sketches are used. Although we use FM because it is fast 
and accurate, our techniques can be applied with any 
sketch allowing union operations. 

2.2 The aRB-tree 
Assume the set of regions r1, r2, …, r4 of Figure 2.2a and 
consider that at each timestamp, the number of objects in 
the region is given in Figure 2.2b, where the horizontal/ 
vertical dimension corresponds to time/region id. For 
instance, r1 contains 150 objects during the first two 
timestamps, 145 objects the third timestamp and so on.  A 
spatio-temporal count query q retrieves the total number 
of objects in a window qr during an interval qt, e.g., the 
query with qr equal to the shaded area of Figure 2.2a and 



 

 

qt=[1,3] returns the sum of the shaded values in Figure 
2.2b (i.e., the cells corresponding to r1, r2, r4 during the 
first three timestamps).   
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(a) Region extents (b) 2D view of the aggregates 

Figure 2.2: Regions and their aggregate data 

Papadias et al. [PTKZ02] propose the aRB- (aggregate R- 
B-) tree for the efficient processing of spatio-temporal 
count queries. In the aRB-tree, the extents of all regions 
(in this case r1, r2, r3, r4) are stored in an R-tree. Each 
entry of the R-tree is associated with a pointer to a B-tree 
that stores historical aggregate data about the entry. 
Figure 2.3 illustrates the aRB-tree for the example of 
Figure 2.2. Note that Figure 2.2a also includes the 
minimum bounding rectangles (MBRs) of the 
intermediate tree entries R1, R2. The B-tree of r1, for 
example, contains 4 leaf entries (in the format <time, 
agg> (with time being the index key), corresponding to its 
4 aggregate changes in history (i.e., no change at time 2). 
Intermediate B-tree entries follow the same format. For 
instance, the first root entry <1,445> in the B-tree for r1 
indicates that the total number of objects in r1 during 
interval [1,3] is 445, while the second entry <4,265> 
shows that for interval [4,5] the number is 265. The B-tree 
of an intermediate R-tree entry summarizes the 
aggregated data about regions in its branch; e.g., the first 
leaf entry of the B-tree for R1 <1,225> denotes that the 
number of objects in r1, r2 (i.e., the child node of R1) at 
timestamp 1 is 225. Similarly the first entry of the top 
node <1,685> denotes that this number during the interval 
[1,3] is 685.  
The aRB-tree facilitates aggregate processing by 
eliminating the need to descend nodes that are totally 
enclosed by the query. As an example, consider the query 
in Figure 2.2a (with interval qt=[1,3]). Search starts from 
the root of the R-tree. Entry R1 is totally contained inside 
the query window and the corresponding B-tree is 
retrieved. Since the entries of the root node in this B-tree 
contain the aggregate data of interval [1,3] (and [4,5]), the 
next level of the B-tree does not need to be accessed and 
the contribution of R1 (i.e., the contribution of r1, r2) to the 
query result is 685. The second root entry R2 of the R-tree 
partially overlaps the query rectangle qr; hence, the 
algorithm visits its child node, where only entry r4 
intersects qs, and thus its B-tree is retrieved. The first root 

entry suggests that the contribution of r4 for interval [1,2] 
is 259. In order to complete the result, we have to descend 
the second entry and retrieve the aggregate value of r4 for 
timestamp 3 (i.e., 125). The total number of objects in 
these regions during the interval [1,3] is the sum 
685+259+125 (i.e., the numbers in the shaded cells of 
Figure 2.3). Nevertheless, the aRB-tree does not take into 
account multiple object occurrences. For example, if an 
object remains in r1 at timestamps 1, 2, 3, it will be 
counted three times in the result. Therefore, aRB-trees are 
not directly applicable for applications that require 
distinct counting.  
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Figure 2.3: The aRB-tree 

2.3 Other techniques for aggregate processing 
Most work in the spatial database literature considers the 
following problem: given a set of objects (points, 
rectangles, etc.) and a rectangular query window q, return 
the number of objects intersecting q. Efficient structures 
for point data include the aP-tree [TPZ02], and the CRB-
tree [GAA03], which achieves optimal performance, i.e., 
logarithmic query time and linear space in the 2D space. 
For 2D interval objects, the MVSB-tree [ZMT+01] solves 
the problem in logarithmic query time. Zhang et al. 
[ZTG02] develop a set of structures for general rectangle 
data with good worst-case bounds. Further, several 
authors [JL99, LM01, PKZT01] suggest augmenting a 
conventional R-tree with summarized information in the 
intermediate entries (in a way similar to aRB-trees) to 
accelerate aggregate queries for data with arbitrary extents 
and dimensionality. As with the aRB-tree, however, these 
approaches do not support distinct counting, and hence 
cannot be applied for our problem.  
Finally, approximate query answering in conventional 
databases and stream management systems has been 
addressed using various techniques such as histograms 
[TGIK02], sampling [CDD+01], randomized data access 
[HHW97], function-fitting [CR94], etc. All these 
methods, however, assume a single “snapshot” of the 
database, and do not support spatio-temporal temporal 
(historical) data. The only histograms with a temporal 
aspect focus on spatio-temporal prediction [TSP03]. 



 

 

3. Distinct Spatio-Temporal Aggregation  
In Section 3.1, we formally define the problem and 
overview the proposed methods. Then, Section 3.2 
proposes the sketch index and Section 3.3 describes the 
processing of distinct spatio-temporal count queries. 
Section 3.4 extends the solution to spatio-temporal sum 
processing.  

3.1 Problem definition and solution overview 
We consider a set of R 2D static regions r1, r2,.., rR as the 
finest aggregation granularity (e.g., cells in a mobile 
phone network, road segments), and a set of n moving 
objects with distinct ids o1, o2, …, on (n>>R). The extents 
of two or more regions may overlap. Let o(t) be the 
location of object o at time t and assume that o(t) cannot 
be measured accurately. Instead, we know the set of 
objects that fall in each region every timestamp, which is 
indeed the case in many practical applications. For 
example, although the exact location of every mobile user 
is not usually known, it is possible to decide the cell that 
services the user.   
Given an aggregate query q with window qr and time 
interval qt, we define the set M(q) of matching objects as:  

M(q) = {oi | ∃ region rj & time t∈ qt such that, oi(t)∈ rj and 
rj intersects qr} 

Note that M(q) is defined through the spatial regions (i.e., 
the finest aggregation granularity). In particular, an object 
oi ∈  M(q) if it appears in some region that qualifies the 
query, even though the object itself does not lie in qr 
during qt. Now we are ready to define the query types 
considered in this paper. 
Problem 3.1: A distinct (spatio-temporal) count (DC, for 
short) query q (with window qr and time interval qt) 
returns the number of matching objects, or more formally: 
DC(q) = |M(q)|.  
Assuming that each object oi carries a measure wi 
(invariant with time), then a distinct sum (DS) query q 
retrieves the sum of the measures of all matching objects: 
DS(q)=∑wi , where oi∈ M(q).     ■ 
The exact computation of DC(q) requires working space 
at least linear to the number of distinct objects. This lower 
bound also applies to DS(q) since DC queries are a special 
case of DS with measure wi=1.Thus, if n is the number of 
distinct objects and T is the total number of timestamps in 
history, any solution that solves DC/DS queries precisely 
needs Ω(n·T) space. This is prohibitive in practice since 
both n and T may be very large. To overcome this 
problem, we develop a structure that answers DC/DS 
queries approximately, consuming Ο(m·R·T·log n) space, 
where R is the number of regions, and m is an adjustable 
constant that, as explained shortly, determines the tradeoff 
between overhead and approximation accuracy.  

Using the FM algorithm discussed in Section 2, for each 
region ri (1≤i≤m) and timestamp t we maintain a sketch 
si(t) that captures the (ids of) objects in ri at t. Figure 3.1 
presents the system for distinct aggregation. At each 
timestamp, every object reports its id (or measure, for DS 
queries) to the region that covers its location. The region 
has a sketch generator that creates the corresponding 
sketches based on the object information, and transmits 
them to the database. To obtain sketches for DC queries, 
the generator simply performs the PCSA algorithm 
described in Section 2.1. The algorithm for DS is more 
complex and discussed separately in Section 3.4.  
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Figure 3.1: System architecture  

The sketches received by the database can be stored in a 
two dimensional array shown in Figure 3.2 (assuming 
R=4 regions). This is similar to the storage scheme in 
Figure 2.2b, except that each cell now contains sketches 
instead of the actual number of objects in each region per 
timestamp.  
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Figure 3.2: Conceptual sketch storage model  

Lemma 3.1: Using the sketch si(t) in cell (ri, t), we can 
estimate the distinct number ni(t) of objects in ri at 
timestamp t.     ■   
This lemma results from the straightforward application 
of the FM estimation algorithm. Namely, by identifying 
the position k of the left most 0 in si(t), we can estimate 
ni(t) as 1.29×2k (note that the sketches do not correspond 
to the numbers in Figures 2.2a). The following lemma 
illustrates another important property, which constitutes 
the rationale underlying the proposed method. 



 

 

Lemma 3.2: Using the OR of the sketches of c cells (r1, 
t1), (rx2, t2), …, (rxc, tc), (two cells may have the same 
region or timestamp), we can estimate the number of 
distinct objects o that appear in some region rxj at time tj.■ 
The correctness of this lemma is due to the well-known 
fact [FM85] that the sketch (generated by FM) for the 
union of several datasets is identical to the OR of the 
individual sketches of each dataset. In other words, let DS 
be the set of objects that satisfy the condition stated in 
Lemma 3.2; then, the sketch of DS is exactly the same as 
the ORc

i=1sxi(ti).   

Lemma 3.2 indicates a simple algorithm for approximate 
DC processing. Consider, for example, a DC query with 
window qr intersecting r1, r2, r4 and qt=[1,4]. The goal is 
to compute the OR of the sketches in the shaded cells. In 
this case, the result is 11100, and since the left-most 0 is 
at position 4, the (approximate) result equals 
1.29×24=10.32. This algorithm, however, is “conceptual”, 
meaning that it does not consider the actual access paths 
for retrieving the necessary sketches. Efficient sketch 
retrieval cannot be achieved using conventional data 
warehouses because there is no natural ordering on the 
region axis; therefore, regions intersecting qr may not be 
consecutive. Furthermore, there is no pre-defined 
hierarchy on regions, rendering traditional group-by 
techniques inapplicable. Motivated by this, in the next 
section we introduce the sketch index to accelerate the 
sketch retrieval.  

3.2 Sketch index structure 
The sketch index is similar to the aRB-tree in terms of 
structure, but differs in the query algorithms. Figure 3.3 
shows an example for the data in Figure 3.2. An R-tree 
indexes the regions r1, r2,…, r4. Each R-tree entry is 
associated with a B-tree that records the historical 
sketches of the corresponding region (or regions in its 
sub-tree). For example, the B-tree of region r1 consists of 
4 leaf entries (in the format <time, sketch>), indicating its 
4 sketch changes in history (i.e., no change at time 3). The 
sketch 11100 of the first root entry in this B-tree equals 
the OR of all the sketches (i.e., 10000, 01100) in its 
subtree. The same rule applies to all intermediate B-tree 
entries.  
Consider the first leaf entry <1,10100> in the B-tree of R1. 
Its sketch 10100 equals the OR for sketches of r1 and r2 
(i.e., 10000, 10100, respectively) at time 1. In general, for 
each intermediate R-tree entry Ri, its sketch at any time t, 
is the OR of sketches of all the regions in the subtree (of 
Ri) at t. The sketch index is a dynamic structure, and its 
incremental maintenance algorithms follow those of the 
aRB-tree due to the similarity of the structures. 
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Figure 3.3: A sketch index example 

3.3 Query processing using the sketch index 
A straightforward algorithm for answering DC queries 
using the sketch index is to perform the search in a way 
similar to that in the aRB-tree. To illustrate this, we 
assume, for simplicity, the same extents of regions (r1, 
r2,…, r4) and intermediate R-tree entries (R1, R2) as those 
in Figure 2.2a. Consider again the query q with window 
qr (shown in Figure 2.2a) and interval qt=[1,4]. The 
search algorithm initiates a result sketch RS with all bits 
set to 0, and gradually updates it. Specifically, the search 
starts from the root of the R-tree. Since R1 is contained in 
qr, we fetch the root N1 of its B-tree, where the first entry 
<1,11100> indicates that the OR of all sketches in its sub-
tree during [1,3] is 11100, which becomes the new value 
of RS. The child node N2 of the second root entry must be 
searched. Inside this node, entry <4,11100> qualifies qt, 
and thus its sketch is OR-ed with RS (which, however, 
incurs no change to RS). Next the algorithm backtracks to 
the R-tree and, since R2 partially intersects qr, accesses its 
child node, in which the only entry intersecting qr is r4. 
Hence, it visits N3 and N4 producing the final sketch 
RS=11100. In Figure 3.3, the visited B-tree nodes are 
shaded.   
The above algorithm applies spatial and temporal 
conditions (using qr and qt respectively), but completely 
ignores the pruning power of the sketches themselves. 
Notice that in the previous example RS is already set to 
11100 (i.e., the final result) at a very early stage of the 
search process (i.e., after accessing the root of the B-tree 
of R1). In other words, sketches of subsequent nodes do 
not affect the final result at all. This motivates the 
following pruning heuristic. 
Heuristic 3.1: Let RS be the current result sketch, and e 
an intermediate B-tree entry whose associated sketch is se. 
Then, the sub-tree of e can be pruned if (se OR RS) = RS.     
■ 



 

 

According to this rule, the processing of the above query 
can avoid visiting node N4 because the sketch (10100) of 
its parent entry <3,10100> satisfies 10100 OR RS = RS. 
The implication is that, in order to maximize the 
effectiveness of Heuristic 3.1, we should first try to 
maximize the 1's in RS, before descending intermediate 
(B-tree) entries. In general, we should “postpone” visiting 
nodes that may be pruned later as more bits of RS are set. 
The next question is: which node accesses are avoidable, 
and which ones are necessary? 
To answer this question, let SRE be the set of R-tree entries 
whose B-trees must be accessed. Equivalently, each entry 
e in SRE satisfies the following conditions: (i) its MBR is 
covered by query rectangle qr (or its MBR intersects qr if 
e is a leaf) and (ii) none of its ancestor entries satisfies (i). 
In the example of Figure 3.3, SRE={R1,r4}. Evidently, 
accesses to the roots of their respective B-trees are 
unavoidable1. Hence we visit all of them (in Figure 3.3, 
nodes N1 and N3), and examine the entries therein. Some 
of these entries allow us to set (possibly many) bits of RS 
without any further node access. The first entry of N1 has 
lifespan [1,3] (3 is derived from the timestamp of the next 
entry 4), which is contained in the query interval qt. So 
we can immediately update RS to its sketch 11100. 
Similarly, the lifespan [1,2] of the first entry in N3 is also 
contained in qt; hence its sketch 11000 is also taken into 
account, but does not change RS.  
Now let us consider the remaining entries in N1 and N3, 
namely, <4,11101> and <3,10100>. Although, their 
lifespans are not contained in qt=[1,4], Heuristic 3.1 
eliminates <3,10100>. Nevertheless, <4,11101> is not 
pruned by the heuristic because 11101 OR RS = 11101 ≠ 
RS. However, recall that our objective is not to retrieve 
the complete final RS. Instead, we are interested in the 
position of the left-most bit that is still 0. What is the 
possible left-most position (of the final RS) in this case? 
Given the current RS=11100 and entry <4,11101>, the 
answer is 4 (i.e., the left-most 0 must be at the 4-th bit), 
since the first 3 bits of both RS and the entry’s sketch are 
all 1. Therefore, the access to the child node of this entry 
can also be avoided, because (even if we actually visit it) 
the only possible change to RS is to set the 5-th bit to 1, 
which does not affect our estimation. This observation 
leads to another heuristic.  
Heuristic 3.2: Let SU be the OR of the sketches of the 
entries whose sub-trees cannot be pruned so far. If p is the 
position of the left-most 0 in (RS OR SU), then the sub-
tree of an intermediate (B-tree) entry e can be pruned if its 
sketch se satisfies the following condition: 

� �

1 1

 AND 1...10...0  OR  AND 1...10...0e
p p

RS RS s
− −

   
=   

   
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1 Unlike the aRB-tree, we do not store sketches in the R-tree 
entries because this would decrease the node fanout.  

Heuristic 3.2 subsumes 3.1 by providing a more general 
condition. Specifically, instead of requiring all bits of RS 
and (RS OR se) to be identical, it prunes se if only the first 
p−1 bits (of the these sketches) are the same (where p is 
decided by RS and SU together). The third heuristic 
indicates a good access order for the child nodes of entries 
not pruned by Heuristic 3.2.  
Heuristic 3.3: Given a set of qualifying entries, we visit 
their child nodes in descending order of the number of 1’s 
in their sketches.     ■  
We use a heap to manage the entries which cannot be 
pruned yet, using the numbers of 1’s in their sketches as 
the sorting keys. As an example, consider another query 
whose (i) rectangle qr intersects all regions (r1, r2, r3, r4), 
and contains the MBR of R1 but not R2, and (ii) interval is 
qt=[1,4]. In this case, the algorithm first visits the roots of 
the B-trees of R1, r3, r4, after which RS=11100, and the 
heap contains two entries <1,11111> (from the root of r3’s 
B-tree) and <4,11101> (the second entry in the B-tree of 
R1), both of which cannot be pruned. The algorithm will 
visit the child node of <1,11111> next since it has more 
1’s. Figure 3.4 illustrates the pseudo-code of the improved 
algorithm (referred to as sketch-prune in the sequel).  
 
algorithm sketch_prune (qr, qt) 
1.   initiate a “max” heap H accepting entries of the form 

<B-tree entry e, key>;  set all bits of RS to 0  
2.  obtain the set SRE of R-tree entries whose B-trees must be 

searched 
4. for each of entry e in SRE  
5.  for each entry e' in the root of e.btree  
6.   process_intermediate(e', SRE, H) } 
7. while (H is not empty) 
8.  SU = the OR of the sketches of the entries in H 
9.  p = the position of  the left-most 0 of SRE OR SU 
10.  remove the top entry <e, key> from H; let the sketch 

of e be se 
11.  let s be a sketch whose left-most (p−l) bits are 1 

while the others are 0 
12.  if (RS OR se AND s) ≠ (RS AND s)  
13.   for each entry e' in e.child  (its sketch se') 
14.          if (e.child is leaf) and (e'.lifespan intersects qt) 
15.     RS=se' OR RS 
16.     if (e' is an intermediate node) 
17.      process_intermediate(e', Sfinal, H)  
18. let k be the position of the left-most 0 in RS 
19. return 1.29 × 2k 
end sketch_prune 
 
Algorithm process_intermediate (e, Sfinal, H) 
/* e is an intermediate entry in the B-tree with sketch se; RS is 
the current result sketch; qt is the query interval; H is the heap*/ 
1. if e.lifespan is contained in qT  then RS=RS OR se;  
2. else if (e.lifespan intersects qT)  
3.  insert <e, number of “1” in se> into H  
end process_intermediate 

Figure 3.4: The sketch-prune algorithm 



 

 

Heuristic 3.3 provides a reasonably “good” access order, 
but other more sophisticated and potentially better access 
orders exist. For instance, the order may be decided 
according to the number of additional bits in RS that may 
be set (to 1) by this entry. Specifically, assume RS=11000, 
and two sketches 11100 and 00110; then according to this 
order, the second sketch will be processed first (although 
it has fewer 1’s) since it may set two bits of RS (while the 
first sketch can set only one bit). This, however, requires 
adjusting the sorting keys of the entries in the heap as the 
algorithm proceeds (and RS changes), which may be 
expensive if the heap size is large.  
The description so far assumes that only one sketch is 
maintained per B-tree entry; however, the sketch-prune 
algorithm can be easily modified to support multiple 
sketches (which, as discussed in Section 2.1, leads to 
higher accuracy) as follows. First, Heuristics 3.1 and 3.2 
are applied individually for each sketch to prune the 
entries that qualify the heuristic conditions in all sketches. 
Then, Heuristic 3.3 determines the access order with 
respect to the total number of 1’s in all the sketches of an 
entry. The storage of the sketch index at each timestamp 
is linear to (i) the number R of regions, (ii) the length 
log2n of each sketch, and (iii) the number m of sketches 
used. As a result, the total space complexity (for all T 
timestamps in the history) is Ο(m·R·T·logn) 

3.4 Supporting distinct sum queries 
The proposed method for DC (distinct count) processing 
can be applied to DS (distinct sum) queries, by modifying 
the sketches of the leaves. The resulting sketches are then 
indexed and queried in exactly the same way as described 
in the previous section. Hence, it suffices to illustrate the 
specialized algorithm for creating the sum sketches. 
Specifically, the problem is stated as follows: given a 
dataset with (possibly duplicate) tuples in the form (object 
o, measure w), estimate the sum of measures of the 
distinct objects. That is, if an object appears with the same 
measure several times, its measure is added only once.  
We solve this problem by reducing it to DC processing. 
Given an input record (o, w), we simulate the FM sketch 
generation algorithm by inserting w different elements 
(o,θ1,w), (o,θ2,w),…, (o,θw,w), where θi,w are special symbols 
to distinguish these elements. Consequently, the estimated 
“count” using FM is actually the sum of the w’s of distinct 
records (o, w) (comparing both o and w) in the original 
problem2. The disadvantage of this approach is that, if w 
is large, inserting w different elements will be expensive. 
Here we briefly describe an alternative algorithm for 
generating sum-sketches that remedies this problem (more 

                                                           
2 An alternative approach is to insert elements of the form 
(o,θi), in which case the estimated “count” is the sum of 
the maximum w’s for each distinct o. 

details and proofs may be found in [CLKB04]). The main 
idea is to leverage the observation of [FM85] that the first 
few (say x) bits are (almost) definitely 1. Since the FM 
estimator is only concerned with the first 0 in the final 
sketch, we only need to consider the part (of the sketch) 
starting at the (x+1)-th bit, or in other words, we can 
ignore the insertion of those elements (let their number be 
y) that will set the first x bits. Recall that, since the hash 
function (used by FM) has the property that, the 
probability of setting the i-th bit equals 2−i, each element 
has probability ∑x

i=1(2
−i) to set (any of) the first x bits. 

Hence, y follows the Binomial distribution3 Bin(w, ∑x
i=1

(2−i)). As a result, (in order to decide how many bits after 
the x-th one is set) we only need to insert w−y elements, 
and obtain the resulting sketch. Let the left-most 0 of this 
sketch be at position k'; then the corresponding position k 
in the sketch of inserting all w elements equals x+k'.  
There remains only one question: what is a good value for 
x? The analysis of [FM85] observes that inserting w 
distinct items sets the first x = log2 w−2 log2 log2 w bits of 
the resulting sketch to 1 with high probability. This value 
is adopted in our implementation. Finally, we note that 
this method can also be combined with PCSA to improve 
accuracy, as shown in Figure 3.5.  

algorithm  sum_PCSA (DS, h, m, r)  
/* dataset DS={(o1,w1),(o2,w2),…}; h is a random function such 
that, Prob[h(o,w)=v]=2−v; m is the number of sketches used; r is 
the number of bits in each sketch */ 
1. init m sketches s1, s2, …, sm, each with r bits, all set 0 
2. for each (o, w) in DS do 
3.       randomly pick a sketch si (1≤i≤m)       
4.       x = log2w–2log2log2w;  
5.       for j=1 to x 
6.            si[j] = 1;    
7.       for j=1 to w−Bin(w, ∑x

i=1(2
−i)) 

8.            si[x+h(o,j)] = 1;  
9.  k=0 
10.  for i=1 to m do 
11.       for  j=1 to r do 
12.              if  si[j] = 0 then 
13. k = k + j;  
14. break;  // go to the next sketch  
15. return ( 1.29m·2 k/ m ) 
end  sum_PCSA 

Figure 3.5: Sketch generation and estimation for DS  

4. Extensions 
In this section we present the application of the proposed 
techniques to related spatio-temporal problems. Section 
4.1 uses sketches to reduce the size of general spatio-
temporal databases and enhance the performance of 

                                                           
3 For Binomial distribution x~Bin(n,p), the probability 
Prob[x=m] is (n

m)pn(1−p)n−m.  



 

 

aggregate processing. Section 4.2 applies sketches to mine 
spatio-temporal association rules. 

4.1 Approximating general moving data  
The discussion in Section 3 assumes a set of regions that 
constitute the finest aggregation granularity, which may 
not be the case for the conventional spatio-temporal 
databases. In this scenario, each object o reports its 
location (x,y) at each timestamp t to the database, which 
maintains a tuples in the form <o,x,y,t>. Evidently, the 
size of the database table grows continuously, so that 
eventually it becomes prohibitively large (especially if the 
number of monitored objects is high). In addition to the 
space complexity O(n·T) (where n is the number of 
objects, and T is the number of timestamps in the history), 
this deteriorates query performance. In the sequel, we 
show that, if the goal is to support aggregate queries, we 
can reduce the size and query overhead significantly, at 
the trade-off of some small error (around 15% as shown 
in our experiments).  

We manually impose a res×res regular grid over the data 
space (i.e., each cell of the grid has length 1/res of the 
total axis extent), where res is a parameter called 
resolution. Then, the sketch index is directly applicable 
by treating the grid cells as the finest aggregate 
granularity. It is worth mentioning that if the number of 
cells is relatively small (i.e., low resolution), the 
approximation tends to over-estimate the actual result 
because an object, which does not fall in the query 
rectangle qr, but in a cell intersecting qr, will also be 
counted. This problem can be alleviated by setting res to a 
sufficiently large value (e.g., 50 in our implementation). It 
is easy to verify that the space complexity is 
O((res)2

·T·logn), or O(T·logn) when res is a constant. As a 
further improvement, observe that we can actually remove 
the R-tree from the sketch index, because the cells 
indexed by the R-tree are regular. Specifically, it suffices 
to introduce a hierarchical decomposition as shown in 
Figure 4.1, where the grid at level i has resolution 2i, and 
the maximum level equals log2res.  

Level 0

Level 1

Level L

B-tree

B-tree

B-tree

B-tree

B-tree

B-tree

 
Figure 4.1: Grid-based approximation 

Note that, this hierarchy implicitly defines the parent-
child relation among cells of different levels (e.g., the 
shaded cell at level 0 is the ancestor of all the shaded cells 
in the lower levels). As in sketch indexes, each grid cell is 

associated with a B-tree managing the historical sketches 
about objects in its extent (cells in intermediate levels 
resemble intermediate entries in the R-tree of a sketch 
index). Given a rectangle qr, we can easily decide the set 
of cells (in a particular grid) that (i) partially intersect or 
(ii) are contained in qr. As with the R-tree of a sketch 
index, descending the hierarchy is only necessary for case 
(i), because in case (ii) the B-tree is accessed directly. It 
can be proven that, given the finest resolution res, the 
algorithm accesses O(res·hB) pages (for any query), where 
hB is the maximum height of the B-tree.  

4.2 Mining spatio-temporal association rules 
Consider a user in region ri at time t. What is the 
probability p that this user will appear in region rj by time 
t+T? We denote such a spatio-temporal association rule 
with the syntax (ri,T,p)⇒rj. Inferring such rules is 
important in practice. For example, in mobile computing, 
they can identify trends in user movements and lead to 
better allocation of antenna bandwidth to cater for 
potential network congestions in the near future. 
Additional constraints, such that ri and rj must be within 
certain distance, may also be specified.  
By maintaining the sketches of all regions at each 
timestamp as in Figure 3.2, we can answer the following 
question easily: given specific ri, rj, and a timestamp t, 
how many users that are in ri at t, appear in rj at any of the 
following T timestamps (i.e., t+1,…, t+T)? Let si(t) be the 
sketch of ri at time t, and sj(t),..., sj(t+T) be the sketches of 
rj at the subsequent T timestamps. We first estimate the 
number n1 of objects at ri at time t (using si(t)), and the 
number n2 of objects at rj during time interval [t+1, t+T] 
(using ORt+T

i=t+1(sj(t+i))). Next, we estimate the total 
number n3 of objects that appeared either in ri (at time T) 
or in rj during [t+1, t+T] (using ORt+T

i=t+1(sj(t+i)) OR si(t)). 
Then, the number of objects that appear in ri at time t and 
then appear in rj during [t+1, t+T] equals n1+n2−n3. This 
idea naturally leads to a simple brute-force algorithm for 
discovering the association rules, which as shown in 
Figure 4.2, checks all possible instances of (ri, rj, t).   

algorithm associate_rule_mining (T, p, c) 
/* T is the horizon; p is the appearance probability; c is the 
confidence factor */ 
1. for each region ri  
2.  for each region rj  
3.   sample=0; witness=0 
4.   for each timestamp t in history  
5.    sample++ 
6.    s' = sj(t+1) OR sj(t+2) OR ... OR sj(t+T) 
7.     n1=FM estimate from si(t); n2=FM estimate from s';    

n3=estimate from si(t) OR s' 
8.    if (n1+n2−n3)/n1>p then witness++  
9.   if (witness/sample>c) then output rule (ri,T,p)⇒rj 
end associate_rule_mining 

Figure 4.2: Algorithm for mining association rules 



 

 

5. Experiments 
This section experimentally evaluates the proposed 
methods. First, Section 5.1 examines the efficiency of the 
sketch-index in answering aggregate queries. Then, 
Section 5.2 studies the effect of approximating spatio-
temporal data, while Section 5.3 presents preliminary 
results for mining association rules.  

5.1 Performance of sketch-indexes  
Due to the lack of real spatio-temporal datasets we 
generate synthetic data in a way similar to [SJLL00, 
TPS03] aiming at simulation of air traffic. We first adopt 
a real spatial dataset [Tiger] that contains 10k 2D points 
representing locations in the Long Beach county (the data 
space is normalized to unit length on each dimension). 
These points serve as the “airbases”. At the initial 
timestamp 0, we generate 100k air planes, such that each 
plane (i) is associated with a number of passengers 
uniformly generated in [200,300], (ii, iii) a source and a 
destination that are two random different airbases, and 
(iv) a speed uniformly distributed in [0.02, 0.04] (the 
velocity direction is determined by the orientation of the 
line segment connecting its source and destination 
airbases). At the subsequent 100 timestamps, all planes 
move continually according to their velocities. Once a 
plane reaches its destination, it flies towards another 
(randomly selected) airbase with a new velocity (also 
uniform in [0.02, 0.04]). At each timestamp, every plane 
reports to its nearest airbase, or specifically, the database 
consists of tuples in the form <time t, airbase b, plane p, 
passenger # a>, specifying that plane p with a passengers 
is closest to base b at time t.  
A spatio-temporal count/sum query has two parameters: 
the length qrlen of its query (square) window and the 
number qtlen of timestamps covered by its interval. The 
actual extent of the window (interval) distributes 
uniformly in the data space (history, i.e., timestamps 
[0,100]). A count query retrieves the number of distinct 
air planes that report to airbases in qr during qt, while a 
sum query returns the sum of these planes’ passengers. A 
workload consists of 100 queries with the same 
parameters qrlen and qtlen.  
The disk page size is set to 1k in all cases (the relatively 
small page size simulates situations where the database is 
much more voluminous). Since there does not exist any 
specialized method for distinct spatio-temporal 
aggregation, we compare the sketch-index to the 
following relational approach that can be implemented in 
a DBMS. Specifically, we index the 4-tuple table 
<t,b,p,a> using a B-tree on the time t column. Given a 
count query (with window qr and interval qt), we issue: 
SELECT distinct p  
FROM <t,b,p,a>  

WHERE t∈ qt & b contained in qr.  

The performance of each method is measured as the 
average number of page accesses (per query) in 
processing a workload. For the sketch-index, we also 
report the average (relative) error of the workload. 
Specifically, let acti and esti be the actual and estimated 
results of the i-th query in the workload; then the error 
equals (1/100)∑100

i=1 |acti−esti|/acti. For sketch-indexes we 
set the number of bits in each sketch to 24, and vary the 
number of sketches.  
The first experiment evaluates the space consumption. 
Figure 5.1 shows the sketch index size as a function of the 
number of sketches used (count- and sum-indexes have 
the same results). As expected, the size increases when 
more sketches are included, but is usually considerably 
smaller than the database size (e.g., for 16 signatures, the 
size is only 40% the database size). 
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Figure 5.1: Size comparison 

Next we demonstrate the superiority of the proposed 
sketch-pruning query algorithm, with respect to the naïve 
one that applies only spatio-temporal predicates. Figure 
5.2a illustrates the costs of both algorithms for count-
workloads with qtlen=10 and various qrlen (the index 
used in this case has 16 sketches). For comparison, we 
also illustrate the performance of the relational method, 
which, however, is clearly incomparable (for qrlen≥0.1, it 
is worse by an order of magnitude); hence in the sequel 
we omit this technique.  
Sketch-pruning always outperforms naïve (e.g., eventually 
two times faster for qrlen=0.25). The improvement 
increases with qrlen, since queries returning larger results 
tend to set bits in the result sketch more quickly, thus 
enhancing the power of Heuristics 3.1 and 3.2. In Figure 
5.2b, we compare the two methods by fixing qrlen to 0.15 
and varying qtlen. Similar to the findings of [PTKZ02]4, 
both algorithms demonstrate “step-wise” growths in their 
costs, while sketch-pruning is again significantly faster. 
The experiments with sum-workloads lead to the same 
observations, and therefore we evaluate sketch-indexes 
using sketch-pruning in the rest of the experiments. 

                                                           
4 As explained in [PTKZ02], query processing accesses at most 
two paths from the root to the leaf level of each B-tree, 
regardless the length of the query interval.   
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 Figure 5.2: Superiority of sketch-pruning (count) 

As discussed in Section 2, a large number of sketches 
reduces the variance in the resulting estimate. To verify 
this, Figure 5.3a plots the count-workload error of indexes 
using 8-, 16-, and 32- sketches, as a function of qrlen 
(qtlen=10). As expected, the 32-sketch has the lowest 
error (below 10%), and its accuracy is most stable (it 
increases slowly with qrlen). When only 8 sketches are 
used, however, the error rate is much higher (up to 30%), 
and has serious fluctuation, indicating the prediction is not 
robust. The performance of 16-sketch is in between these 
two extremes, or specifically, its accuracy is reasonably 
high (average error around 15%) and stable (much less 
fluctuation than 8-sketch).  
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 Figure 5.3: Accuracy of the approximate results 

The same phenomena are confirmed in Figures 5.3b 
(where we fix qrlen to 0.15 and vary qtlen), and 5.3c and 
5.3d (results for sum-workloads). Although a larger 
number of sketches improves the estimation accuracy, it 
also leads to higher space requirements (as shown in 
Figure 5.1), and processing costs. To demonstrate this, 
Figures 5.4a and 5.4b show the number of disk accesses 
for the settings of Figures 5.3a and 5.3b. All indexes have 
almost the same behavior, while the 32-sketch is clearly 
more expensive than the other two indexes. The 
interesting observation is that 8- and 16-sketches have 
almost the same overhead due to the similar heights of 
their B-trees. Since the diagrams for sum-workloads 
illustrate (almost) identical results, they are omitted to 
avoid redundancy.   
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Figure 5.4: Costs of indexes with various signatures  

Summary: The sketch index constitutes an effective 
method for approximate spatio-temporal (distinct) 
aggregate processing. Particularly, the best tradeoff 
(between space, query time, and estimation accuracy) is 
obtained by 16 sketches, which leads to size around 40% 
the database, fast response time (an order of magnitude 
faster than the relational method), and less than 15% 
average relative error.   

5.2 Approximating spatio-temporal data 
We proceed to study the efficiency of using sketches to 
approximate spatio-temporal data (proposed in Section 
4.1). For this purpose, we generate data in the same way 
as in the last section, except that at each timestamp all 
airplanes report their locations to a central server (instead 
of their respective nearest bases). Specifically, the server 
maintains a table in the form <time t, plane p, x, y>, where 
(x,y) denotes the coordinates of p at time t. A count query 
(with parameters qrlen and qtlen) retrieves the number of 
distinct planes satisfying the spatial and temporal 
conditions. For comparison, we index the table using a 3D 
R*-tree on the columns time, x, and y. Given a query, this 
tree facilitates the retrieval of all qualifying tuples, after 
which a post-processing step is performed to obtain the 



 

 

number of distinct planes (in the sequel, we refer to this 
method as 3DR). As mentioned earlier, our compression 
method introduces a regular res×res grid of the data 
space, where the resolution res is a parameter. We adopt 
16 sketches because, as mentioned earlier, this number 
gives the best overall performance.  
Figure 5.5 compares the sizes of the resulting sketch 
indexes (obtained with resolutions res=25, 50, 100) with 
the database size. In all cases, we achieve high 
compression rate (e.g., the rate is 25% for res=25). To 
evaluate the query efficiency, we first set the resolution to 
the median value 50, and use the sketch index to answer 
workloads with various qrlen (qtlen=10).  
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Figure 5.5: Size reduction 

Figure 5.6a shows the query costs (together with the error 
in each case), and compare them with those of the 3DR 
method. The sketch index is faster than 3DR by an order 
of magnitude (note that the vertical axis is in logarithmic 
scale), while at the same time it achieve high accuracy 
(around 15% error). Figure 5.6b confirms these 
observations using workloads with different qtlen. 
Finally, we examine the effect of resolution res using a 
workload with qrlen=0.15 and qtlen=10. As shown in 
Figure 5.6c, larger res incurs higher query overhead, but 
improves the estimation accuracy.  
Summary: The proposed sketch method can be used to 
efficiently approximate spatio-temporal data for aggregate 
processing. It consumes significantly smaller space, and 
answers a query almost in real-time with low error.  
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Figure 5.6: Query efficiency (costs and error) 

5.3 Mining association rules 
To evaluate the proposed algorithm for mining spatio-
temporal association rules, we first artificially formulate 
1000 association rules in the form (r1,T,90%)⇒r2 (with 
90% confidence), such that (i) r1 and r2 are two regions 
randomly picked from 10k ones, (ii) each region appears 
in at most one rule, and (iii) T is the same for all rules. 
Then, at each of the following 100 timestamps, we assign 
100k objects to the 10k regions following these rules. We 
execute our algorithms (using 16 sketches) to discover 
these rules, and measure (i) the precision, the number of 
“correct” rules divided by the total number of discovered 
rules, and (ii) recall, the percentage of the artificial rules 
successfully mined.  
Figures 5.7a and 5.7b illustrate the precision and recall as 
a function of T respectively. Our algorithm has good 
precision (close to 90%) for all T, meaning that the 
majority of the rules discovered are correct. The recall, 
however, is relatively low for short T, but gradually 
increases (90% for T=25). This is expected because, as 
evaluated in the previous sections, the estimation error 
decreases as the query result becomes larger (i.e., the case 
for higher T).  
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Figure 5.7: Efficiency of the mining algorithm 

Summary: The preliminary results justify the usefulness 
of our mining algorithm, whose efficiency improves as T 
increases.  



 

 

6. Conclusions 
While efficient aggregation is the objective of most 
spatio-temporal applications in practice, the existing 
solutions either incur prohibitive space consumption and 
query time, or are not able to return useful aggregate 
results due to the distinct counting problem. In this paper, 
we propose the sketch index that integrates traditional 
approximate counting techniques with spatio-temporal 
indexes. Sketch indexes use a highly optimized query 
algorithm resulting in both smaller database size and 
faster query time. Our experiments show that while a 
sketch index consumes only a fraction of the space 
required for a conventional database, it can process 
queries an order of magnitude faster with average relative 
error less than 15%.  
While we chose to use FM sketches, our methodology can 
leverage any sketches allowing union operations. 
Comparing the efficiency of different sketches constitutes 
a direction for future work, as well as further investigation 
of more sophisticated algorithms for mining association 
rules. For example, heuristics similar to those used for 
searching sketch indexes may be applied to improve the 
brute-force implementation.  
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