
FalconDB: Blockchain-based
Collaborative Database

Yanqing Peng1, Min Du2, Feifei Li1, Raymond Cheng2, Dawn Song2

University of Utah1 UC Berkeley2

Shared database - multiple clients

Multiple clients accessing the same database.

Example: Crowdsourcing restaurant rating

Tell me all the Chinese
restaurants in New York
with high rating.

The restaurant
“XX kitchen” is
good! 5 stars!

insert into Rate
values (1000, 2, 5);

select * from Restaurants R
where R.Zip = 94707
and R.Category=“Chinese”
and R.Avg_rat > 4;

Collaborative
Database

Trusted database server solution

Server decides:
1. Transaction order;
2. The result of a query;
3. If an update should go through;

….

Shift the trust

Consensus among all participants:

1. Transaction order;
2. The result of a query;
3. If an update should go through;

….

Guarantees transparency and immutability.

Blockchain

Shift the trust

Blockchain

Each database client stores a full
copy of the database, and run
consensus in a permissioned
blockchain network.

Shift the trust

Blockchain

Individual users querying full nodes.

How to ensure integrity without trusting
full nodes?

Tool: Verifiable Computation

➢Assume the service provider and the users both have a “digest” of the data;
➢Service provider returns results with cryptographic proof based on the digest;
➢Users verify integrity of results using the proof based on the digest.

➢Guarantee: if the digest is correct, then the validation process passes if and only if the
query result is correct

❖Enabling trust on full nodes:
➢Light nodes query full nodes, and verify the results using VC.

Use Blockchain to
ensure the correctness
of digest

FalconDB: architecture overview

❖Block:
➢contains all update logs

❖Full nodes (servers):

➢ store data + update logs (block data)

❖Light nodes (clients):

➢ store digest of data (block header)

FalconDB: verifiable query execution

Blk #102
…

Blk #103
Digest: D

(4) Client verifies the result
(using proof+digest)

FalconDB: updating the database

(1) Client sends update: U

(2) Server broadcasts the
new block with update U
and new digest d’

(3) Blockchain nodes validate the
block (in particular, check the
correctness of new digest)

Blk #102
…
…

Blk #103
Update: U
Digest: d’

Challenge: VC overhead

1. Fetch newest digest
2. Send query

7. Validate the result with
proof and digest

3. Execute query
4. Generate proof
5. Return result
6. Return proof

Overhead: Steps 1, 4, 6, 7 (temporal)

Step 4 could be very slow for complicated queries
➢ Normal query: ~10s; Big query: ~6000s
➢ Bottleneck of query/update!

Asynchronous proof generation

❖Recall:
➢Query execution is fast; proof generation is slow.

❖Observation:
➢With ADS, all dishonest behavior from server could be detected.

❖Solution:
➢Optimistically trust the results from server and ask for a proof later.
➢Proof generation become asynchronous; won’t block any process.
➢Impose high penalty if the server fails to provide proof later.

➢Use external smart contract as incentive model.

Incentive model

• Servers deposit to a smart contract.
• Client can challenge the server.
• Failed to provide a proof in time ->

deposit is confiscated.
• Successfully provide a proof -> client

pays the server a transaction fee.

Smart Contract for
incentive model

Deposit

Server 100,000

Client 1 100

Client 2 100

3. Query Challenge

1. Sent
query: Q

2. Return
result: R

4. Submit Proof
X

X

FalconDB advantages

❖ Low requirements on clients
➢ Allow participating from any device

❖ Secure
➢ Result Integrity
➢ Transparent and Immutable updates
➢ Clients can’t be cheated even all full nodes are malicious

❖ High performance
➢ Query Performance = Traditional Server-Client
➢ Blockchain performance / validation performance / update performance =

Most state-of-the-art work
➢ Since blockchain consensus and ADS are used as blackboxes, we can always replace

them by the newest work

Evaluation Setup

❖ Baseline:
➢ “Naïve Blockchain”: each node maintains the full database; sync updates

with blockchain
➢ “Smart Contract”: each full node maintains the database; light nodes query

by submitting queries to the blockchain

❖ FalconDB setting:
➢ 5 servers, 27 clients

❖ Database workload:
➢ a single table with n rows and m columns

Evaluation

• Space cost on Servers and Clients
• FalconDB shifts the high storage cost from local clients to

server only.

Evaluation

• Query and Update performance
• FalconDB has best query performance
• Updates are slower but acceptable

THANK YOU!

FalconDB:

➢ A blockchain based collaborative database.
➢ Clients store a little piece of data, and connect to servers to issue query/update.
➢ Clients are able to verify query/update results with authenticated data structures (ADS).
➢ High performance, high security guarantee.

Summary

Backup Slides

Baseline Solution #1: Smart Contract

Blk #1 Blk #2 Blk #3

Execute query Q

Result=0

Result=1
(Lie)Result=0

Blk #4
Query:Q
Result: 0

Baseline Solution #1: Smart Contract

Blk #1 Blk #2 Blk #3
Blk #4

Query:Q
Result: 0

Privacy concern

Consensus overhead
Execute query Q

Limited TPS

Gas consumption

Drawbacks...

Result=0

Baseline Solution #2: Verifiable Computation

❖Verification Computation (VC)
➢Service provider returns results with cryptographic proof;
➢Users verify integrity of results using the proof.

❖Enabling trust on full nodes:
➢Light nodes query full nodes, and verify the results using VC.

A B C D

Input: array data

h(h21|h22)=h31

h(h11|h12)=h21

h(A)=h11 h(B)=h12

h(h13|h14)=h22

h(C)=h13 h(D)=h14

Output: merkle tree over the array

Example: array data with Merkle tree as VC data structure

VC as a blackbox

h31

h21

h11 h12

h22

h13 h14

Example: array data with Merkle tree

Return: Array[1]=B
Return: Proof = (h11, h22)

Send: Array[1]=?

Check: h(h(h11|h(B))|h22)=digest?

h31

VC as a blackbox

h31’

h21‘

h11 h12’

h22

h13 h14

Example: array data with Merkle tree

Calculate: h12’ = h(B);
h21’=h(h11|h12’);
h31’=h(h21’|h22)
Return: Proof = (h11, h12, h22,
h31’)

Send: Array[1]:=B’

Check: h(h(h11|h12)|h22)=digest?
Check: h31’= h(h(h11|h(B))|h22)?
Update: digest=h31’

h31

h31’

VC as a blackbox

h31

h21

h11 h12

h22

h13 h14

Comparison between different approaches

Client
storage

Client
set-up

Query
execution side

Query
Throughput

Query
Latency

Trust

Centralized No No Server High Low Server

Blockchain High Slow Client Low High No

Smart
contract

Low Quick Server Low High No

Blockchain
+VC

Low Quick Server High Depends
on proof
generation

No

Challenge

Other tech details

❖ Blockchain scalability
➢ Algorand

❖ Easy history retrieval
➢ Temporal database model

❖ Supporting DB transactions
➢ Optimistic Concurrency Control

	FalconDB: Blockchain-based Collaborative Database
	 Shared database - multiple clients
	 Example: Crowdsourcing restaurant rating
	 Trusted database server solution
	 Shift the trust
	 Shift the trust
	 Shift the trust
	 Tool: Verifiable Computation
	 FalconDB: architecture overview
	 FalconDB: verifiable query execution
	 FalconDB: updating the database
	 Challenge: VC overhead
	 Asynchronous proof generation
	 Incentive model
	 FalconDB advantages
	 Evaluation Setup
	 Evaluation
	 Evaluation
	 Summary
	Backup Slides
	 Baseline Solution #1: Smart Contract
	 Baseline Solution #1: Smart Contract
	 Baseline Solution #2: Verifiable Computation
	 VC as a blackbox
	 VC as a blackbox
	 VC as a blackbox
	 Comparison between different approaches
	 Other tech details

