FalconDB: Blockchain-based
Collaborative Database

Yanging Peng?, Min Du?, Feifei Li', Raymond Cheng?, Dawn Song?

University of Utah' UC Berkeley?

Shared database - multiple clients

Ll

— Database
—=

_ S A\
8 Multiple ﬁnts Zcessinth]e sam>abase. e
o &
O o6

Example: Crowdsourcing restaurant rating

Tell me all the Chinese The restaurant
9 restaurants in New York 9 ‘XX kitchen” is
with high rating. good! 5 stars!

N 74

select * from Restaurants R
where R.Zip = 94707

and R.Category="Chinese”
and R.Avg_rat > 4;

insert into Rate
values (1000, 2, 5);

Collaborative
Database

Trusted database server solution

Server decides:
1. Transaction order;
2. The result of a query;

.. Database 3. If an update should go through;

-' held by Yelp

/ j ﬂ Google docs Overleaf Github

How about a decentralized rating

e 8 e system without centralized server?

Shift the trust

o
o

O
-

Bloek I

s

o

o
o

Blockchain-based solution

Consensus among all participants:
1. Transaction order;

2. The result of a query;
3. If an update should go through;

Guarantees transparency and immutability.

Shift the trust

[

[

(0

Blockchain

L
O

Naive Blockchain-based solution

=L

=

[

@
=

Each database client stores a full
copy of the database, and run
consensus in a permissioned
blockchain network.

FluereeDB

High storage cost!
BigchainDB
swarmDB Find a restaurant with an

old smartphone?

Shift the trust Light blockchain node

Individual users querying full nodes.

How to ensure integrity without trusting
full nodes?

Blockchain

Tool: Verifiable Computation

> Assume the service provider and the users both have a “digest” of the data;
>Service provider returns results with cryptographic proof based on the digest;
>Users verify integrity of results using the proof based on the digest.

> Guarantee: if the digest is correct, then the validation process passes if and only if the

query result is correct
\ Use Blockchain to
ensure the correctness
of digest

ssEnabling trust on full nodes:

>Light nodes query full nodes, and verify the results using VC.

FalconDB: architecture overview

| 9o [) @ Block Header
| Clients |
| [dh [Height
| I
1 BlkHdr |+ Blk Hdr | BlkHdr | BlkHdr [l PrevBlk
Yy —— ——— |
Blk Data Blk Data Blk Data Blk Data DB Digest
\ Upd Meta
Servers Qqﬁ
. =~ Validation
< Block: D11 D12 DI3 \
>contains all update logs ;q% cq% e \| Block Data
= = Database | | Update

“Full nodes (servers):
> store data + update logs (block data)
“Light nodes (clients):

> store digest of data (block header)

FalconDB: verifiable query execution

Blk#102 L Blk #103
Digest: D

(1) Client extracts digest (D)
from the newest blk header.

A

‘ (2) Client sends query: Q

-

(4) Client verifies the result ~__ (3) Serverreply result R + proof P
(using proof+digest)

FalconDB: updating the database

(2) Server broadcasts the

_ new block with update U P
. (1) Client sends update: U and new digest d’ - &
ah g= > S ;

=

3) Blockchain nodes validate the
bIock in particular, check the
correctness of new digest)

(—'o

Blk #102 Blk #103
€rrns Update: U
Digest: d’

Challenge: VC overhead

2 L=

1. Fetch newest digest
2. Send query

Execute query
Generate proof
Return result
Return proof

o0k w

7. Validate the result with
proof and digest

Overhead: Steps 1, 4, 6, 7 (temporal)

Step 4 could be very slow for complicated queries
> Normal query: ~10s; Big query: ~6000s
> Bottleneck of query/update!

Asynchronous proof generation

»Recall:
>Query execution is fast; proof generation is slow.

+»Observation:
>With ADS, all dishonest behavior from server could be detected.

s Solution:
> Optimistically trust the results from server and ask for a proof later.
>Proof generation become asynchronous; won’t block any process.
>|mpose high penalty if the server fails to provide proof later.

> Use external smart contract as incentive model.

Incentive model

» Servers deposit to a smart contract.
« Client can challenge the server.

* Failed to provide a proof in time ->
deposit is confiscated.

» Successfully provide a proof -> client
pays the server a transaction fee.

Smart Contract for
incentive model

Deposit
Client1 100
Client2 100

3.

A

Query Challenge &

«

1. Sent 2. Return
query: Q result: R

4. Submlt Proof
==

FalconDB advantages

+» Low requirements on clients
> Allow participating from any device

% Secure
> Result Integrity
> Transparent and Immutable updates
> Clients can’t be cheated even all full nodes are malicious

+ High performance
> Query Performance = Traditional Server-Client
> Blockchain performance / validation performance / update performance =

Most state-of-the-art work
> Since blockchain consensus and ADS are used as blackboxes, we can always replace
them by the newest work

Evaluation Setup

Baseline:
> “Naive Blockchain”: each node maintains the full database; sync updates
with blockchain
> “Smart Contract”: each full node maintains the database; light nodes query
by submitting queries to the blockchain

7
L X4

+ FalconDB setting:
> 5 servers, 27 clients

+ Database workload:
> a single table with n rows and m columns

Evaluation

Space Usage (GB)
[}
[=]
=]

| ="~ FalconDB

—"= BC
== 5C

e
/
/ |

.L-—/—g-——ﬁ—ﬁ—ﬁ—ﬁ

—
1 1
/-z

00 02 04 06 08 10

Blockchain Height - h (% 10%)

(a) Server

Space Usage (GB)

(=T

LE2 B = 4]

i

—"— BC
= SC Py
== FalconDB :
u/ L —
0.0 0.2 04 0.6 0.8 1.0
Blockchain Height - h {x10%)
(b) Client

Space cost on Servers and Clients

FalconDB shifts the high storage cost from local clients to

server only.

Evaluation

10°;
'EEE BC BEm SC WEE FalconDB 4000
10%4 = 3500
2 E
2100 EH{I{}D
> = 2500
c) %
£ 107 7 2000
— =
Lol 1500
1000
100_

Range Join

Query Type

.- Query and Update performance

"~ BC
< SC

= FalconDB

,J"x——'.at—'."‘-r _rﬁ,__.'ﬂ'.
X b et et -

- FalconDB has best query performance

. Updates are slower but acceptable

Mumber of insertions

Summary

FalconDB:

A blockchain based collaborative database.
Clients store a little piece of data, and connect to servers to issue query/update.

Clients are able to verify query/update results with authenticated data structures (ADS).
High performance, high security guarantee.

VY VY

THANK YOU!

Backup Slides

Baseline Solution #1: Smart Contract

Blk #4
Query:Q
Result: 0

Baseline Solution #1: Smart Contract

Drawbacks...
Blk #4
Blk #1 Blk #2 Blk #3 Query:Q
Result: 0

Privacy concern
L=
Execute query Q =

o
a T *% *% «— Consensus overhead
= =
Limited TPS
N

Gas consumption

Baseline Solution #2: Verifiable Computation

»Verification Computation (VC)
>Service provider returns results with cryptographic proof;
>Users verify integrity of results using the proof.

4

ssEnabling trust on full nodes:

>Light nodes query full nodes, and verify the results using VC.

VC as a blackbox

* Summary

* Data D -> ADS S * Digest 6

‘ h(h11]h12)=h21 h(h13|h14)=h22

h(A)=h11

-

Input: array data Output: merkle tree over the array

h(B)=h12 h(C)=h13 h(D)=h14

Example: array data with Merkle tree as VC data structure

VC as a blackbox

* Query (Server side)
* Data D » Query Q -> Result R * Proof
* Verify Query (Client side)
* Digest § * Query Q * Result R » Proof m -> {0, 1}

h31

h31
[4
- [h21] [h22]

Send: Array[1]=? [h11] [h12] [h13] [h14]

Return: Array[1]=B
Return: Proof = (h11, h22)

Check: h(h(h11]h(B))|h22)=digest?

Example: array data with Merkle tree

VC as a blackbox

* Update (Server side)
« Data D * Update U -> Updated data D’ * Digest of updated data 6" * Proof m
* Verify Update (Client side)
« Old digest § * New digest 6’ * Update U * Proof w -> {0, 1}

h31

!

o -
dh
Send: Array[1]:=B’
Calculate: h12’ = h(B);

h21’=h(h11]h12");
h31’=h(h21’|h22

)
Return: Proof = (h11, h12, h22,

Check: h(h(h11|h12)|h22)=digest? h31’)
Check: h31'= h(h(h11|h(B))|h22)?
Update: digest=h31’

Example: array data with Merkle tree

h31

[h21] [h22]

[h11][h12][h13]|h14]

[h21‘] [h22]

[h11][h12’]|h13|[h14]

Comparison between different approaches

Client Client Query Query Query Trust

storage set-up execution side | Throughput | Latency
Centralized No No Server High Low Server
Blockchain | High Slow Client Low High No
Smart Low Quick Server Low High No
contract
Blockchain | Low Quick Server High Depends No
+VC ©) ©) ©) ©) | on proof

generation

Challenge

Other tech details

+ Blockchain scalability
> Algorand

+ Easy history retrieval
> Temporal database model

+ Supporting DB transactions
> Optimistic Concurrency Control

	FalconDB: Blockchain-based Collaborative Database
	 Shared database - multiple clients
	 Example: Crowdsourcing restaurant rating
	 Trusted database server solution
	 Shift the trust
	 Shift the trust
	 Shift the trust
	 Tool: Verifiable Computation
	 FalconDB: architecture overview
	 FalconDB: verifiable query execution
	 FalconDB: updating the database
	 Challenge: VC overhead
	 Asynchronous proof generation
	 Incentive model
	 FalconDB advantages
	 Evaluation Setup
	 Evaluation
	 Evaluation
	 Summary
	Backup Slides
	 Baseline Solution #1: Smart Contract
	 Baseline Solution #1: Smart Contract
	 Baseline Solution #2: Verifiable Computation
	 VC as a blackbox
	 VC as a blackbox
	 VC as a blackbox
	 Comparison between different approaches
	 Other tech details

