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Abstract Filtering plays a crucial role in postprocessing and analyzing data in scientific and
engineering applications. Various application-specific filtering schemes have been proposed
based on particular design criteria. In this paper, we focus on establishing the theoretical
connection between quasi-interpolation and a class of kernels (based on B-splines) that are
specifically designed for the postprocessing of the discontinuous Galerkin (DG) method
called smoothness-increasing accuracy-conserving (SIAC) filtering. SIAC filtering, as the
name suggests, aims to increase the smoothness of the DG approximation while conserving
the inherent accuracy of the DG solution (superconvergence). Superconvergence properties
of SIAC filtering has been studied in the literature. In this paper, we present the theoreti-
cal results that establish the connection between SIAC filtering to long-standing concepts in
approximation theory such as quasi-interpolation and polynomial reproduction. This connec-
tion bridges the gap between the two related disciplines and provides a decisive advancement
in designing new filters and mathematical analysis of their properties. In particular, we derive
a closed formulation for convolution of SIAC kernels with polynomials. We also compare
and contrast cardinal spline functions as an example of filters designed for image processing
applications with SIAC filters of the same order, and study their properties.
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1 Introduction

The SIAC kernel has mostly been developed for discontinuous Galerkin (DG) methods. DG
is a widely-used high-order numerical technique to solve (partial) differential equations over
complex computational domains using high approximation order [1]. DG methods provide
piecewise-continuous approximations to the solution of a (partial) differential equation over
a domain (i.e., a collection of elements) and control the fluxes between elements using a weak
constraint without enforcing a continuity requirement. The DG solution over each element
is represented in terms of (piecewise) polynomials up to degree k where k + 1 is the order of
accuracy of the DG approximation while the weak continuity between elements is controlled
through the flux constraints. However, the inter-element discontinuities can be problematic.
For instance, the inter-element discontinuity can pose challenges for applications such as
feature extraction and visualization. A postprocessing stage to improve the inter-element
continuity of the DG solution is therefore desirable. However, special care must be taken not
to deteriorate the order of the accuracy of the original DG solution inside the elements. The
class of SIAC postprocessing techniques proposed in [2] can be used to raise the continuity
degree of the DG approximation while preserving and extracting the superconvergence of
the original DG approximation. It uses compactly-supported convolution kernels based on a
linear combination of B-splines. While the smoothness increasing property of SIAC filtering
is a direct result of using B-spline filtering, the accuracy preserving property (i.e., supercon-
vergence) of the SIAC filtering is attained through choosing a specific number of B-splines
and imposing a polynomial reproduction constraint.

The approximation properties of smoothness-increasing accuracy-conserving (SIAC) ker-
nel as a filtering technique to generate smooth approximations have received attention in
simulation science [2–6]. A SIAC filter has the ability to extract a superconvergent solution
from a DG approximation for different element types including quadrilateral, structured tri-
angular, tetrahedral and even unstructured triangular meshes [7–9]. One-sided SIAC kernels
have been proposed as an extension of this convolution-based postprocessing for simulations
involving boundaries or sharp discontinuities such as shocks [5,6,10]. However, the approx-
imation properties of SIAC filtering in relation to spline approximation as widely studied
in the approximation theory literature have not received much attention. In this paper, we
study these classes of kernels in a more general setting from both the approximation theory
perspective where spline spaces are heavily studied as well as from an application point
of view where kernels are used for generating smooth approximations with some desirable
properties. Designing B-spline-based filtering schemes is not a new topic. However, for the
first time, we establish the theoretical connection between construction of the SIAC kernel
and quasi interpolation. We provide a unified view that enhances the mathematical analy-
sis tools for designing and analyzing general kernels using central B-splines with desirable
approximation properties. One of the direct impacts of such analysis is deriving a closed
formulation of the convolution of SIAC kernels (and more generic B-spline-based kernels)
with polynomials that leads to a direct and exact computation of the kernel coefficients that
was not known previously. Moreover, we introduce a systematic way of constructing varia-
tions of the symmetric SIAC kernel that still attain superconvergence properties while having
different computational costs and smoothness properties by changing the number and/or the
order of B-splines used. In light of this generalization, we also extend the theoretical super-
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convergence results concerning the error analysis for SIAC kernels in relation to the number
and the order of B-splines used to construct such variations. In addition, we demonstrate that
the symmetric SIAC kernel in this context can be considered as a member of a family of filter-
ing kernels. Thorough study of the entire family of filtering kernels of which the symmetric
SIAC kernels are specific members is beyond the scope of the current work and hence, we
leave it as an interesting future work direction. From the application point of view, our results
can help practitioners design new kernels of interest with different design criteria. For the
purpose of the current work, we only focus on postprocessing of the DG approximation to a
linear hyperbolic equation on a uniform quadrilateral mesh using the symmetric SIAC kernel
and the one-sided SIAC kernel introduced in [5,10] whose superconvergence properties have
been proven in [2–4].

The rest of the paper proceeds as follows. After an introduction to the notation used,
we provide a brief review of the spline approximation in Sect. 2.2. The reader conversant
with variations of spline approximation such as polynomial spline interpolation and quasi
interpolation canmove directly to Sect. 3. In Sect. 3we introduce a generic class of compactly-
supported filters based on a finite linear combination of B-splines. Using theoretical results
concerning B-spline convolution over polynomial spaces, we demonstrate how filtering ker-
nels can be designedwith polynomial reproduction properties from this generic class. Section
4 is devoted to the introduction of SIAC kernels and revisiting its approximation properties
in light of analysis techniques discussed in Sect. 3. In Sect. 5, we provide some numerical
results and error contour plots to demonstrate and validate the theoretical results presented.
Finally, we present our conclusions in Sect. 6.

2 Background

2.1 Notation

Westart by introducing the notation used in the remainder of the paper.As the aimof this paper
is to study convolution kernels, it is necessary to introduce different convolution operators
of interest—continuous convolution, discrete convolution and semi-discrete convolution.

Definition 1 (Continuous convolution) The continuous convolution of two continuous func-
tions, f and g is defined as

( f ∗ g)(x) :=
∫

Ω

f (τ )g(x − τ)dτ, (1)

where Ω represents the domain over which the convolution is computed.

Equivalently, one can write the continuous convolution operator in terms of an inner product
as

( f ∗ g)(x) := 〈 f (τ ), g(x − τ)〉. (2)

Definition 2 (Discrete convolution) The discrete convolution of two functions, f [k] and
g[k] defined over a (sub)set of Z is defined as

( f ∗′ g)[k] :=
∑
m∈Z

f [m]g[k − m]. (3)
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Definition 3 (Semi-discrete convolution) Considering ϕ to denote a compactly supported
continuous function and f to denote a function (at least) defined on Z, then the 1D semi-
discrete convolution can be defined as

(ϕ ∗| f )(·) :=
∑
m∈Z

f (m)ϕ(· − m). (4)

It is worth noting that in comparison to continuous convolution that commutes with trans-
lation, semi-discrete convolution only commutes with integer translations. Approximation
of polynomials using B-splines plays a major role in derivation of our theoretical results.
We use P

n to denote the polynomial space containing polynomials up to degree n and use
normalized monomials as a convenient basis for such polynomial spaces.

Definition 4 (Nomalized monomial) The normalized monomial of degree p is defined as

�x�p := x p

p! . (5)

We wish to emphasize that in the DG literature the bracket notation is generally reserved
for indicating an inter-element jump [1]. Here, unless otherwise noted, we use the bracket
notation to indicate a normalized monomial.

Where appropriate, we use ∂α to denote the central difference operator of order α. To aid
the discussion of B-spline convolution in Sect. 3, we use f̂ (·) to denote the Fourier transform
of an integrable function f (·) defined as: f̂ (ω) = ∫ ∞

−∞ f (x)e−i xωdx . We will use δ(·) to
denote theDirac delta function(al) and use δ(p)(·) to denote its pth order functional derivative.

The superconvergence properties of the SIAC kernel is studied in terms of the norm of the
postprocessing error. We use ‖ · ‖0,Ω to represent the usual L2-norm over Ω and ‖ · ‖−	,Ω

to denote the negative-order norm, where Ω represents a bounded open set Ω ∈ R
d . The

negative-order norm is defined as in [11] in terms of positive norms as

‖u‖−	,Ω = sup
φ∈C∞

0 (Ω)

∫
Ω
u(x)φ(x)dx

‖φ‖	,Ω

, (6)

where C∞
0 (Ω) denotes the space of infinitely differentiable functions with compact support

onΩ . 1 The negative order norm as Cockburn noted [2] can be used to quantify the oscillatory
nature of a function. Negative order norm is often used to prove superconvergence property
of SIAC filtering via the following relation it has with L2 norm [11, Lemma 4.2]

‖u‖0,Ω ≤ C
∑
|α|≤	

‖Dαu‖−	,Ω, (7)

where Dα is used to denote the differentiation operator of degree α. Since the focus of this
paper is on linear hyperbolic equations, we use u(·) to denote the true solution to a linear
hyperbolic equation and uh(·) to denote its DG approximation of order k + 1.

2.2 Review of B-Splines and Spline Approximation

The maximal approximation order of B-splines along with their minimal support made B-
spline-based approximation techniques popular in a variety of applications, including signal
processing, biomedical imaging, finite element methods and superconvergence-extraction

1 The negative order norm ‖ · ‖−	,Ω is the norm associated with H−	(Ω) (i.e., the dual space of the Sobolev
space H	(Ω)).
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Fig. 1 Self-convolution of
B-splines

techniques [2,5,11–18]. In this section, we introduce B-splines in the univariate case, with all
the results easily extending to higher-dimensional Cartesian lattices (or uniform quadrilateral
meshes) using tensor products.

2.2.1 Introduction to Central B-Splines and Spline Spaces

The first-order univariate central B-spline (Basis splines) is defined as the indicator function
over the interval, T = [−1

2 , 1
2 ]:2

b1(x) = XT (x) =
{
1 x ∈ [−1

2 , 1
2 ]

0 otherwise.
. (8)

Higher-order central B-splines can be constructed by simply using self-convolution,

bn+1(x) = (b1 ∗ bn)(x),

as shown in Fig. 1. For the rest of the discussion we simply use the term B-splines to denote
central B-splines unless otherwise stated. B-splines define a basis for an approximation space
called a spline space. A typical spline space is defined as the spanning space of translations
of the basis function (i.e., B-splines), denoted as:

Sn := span(bn(· − k))k∈Z. (9)

An arbitrary function can be approximated with an element from the spline space, s ∈ Sn
by finding the unique set of spline coefficients, cγ , that best represent that function:

s =
∑
γ∈hZ

cγ bn(· − γ ), (10)

where cγ represents the spline coefficient and h denotes the distance between the B-spline
centers, x − γ . The above relation can be translated into a semi-discrete convolution with a
B-spline as the kernel and the vector representing the spline coefficients. It has been proven
that every piecewise polynomial function of a given degree and smoothness over a domain
can be represented by a linear combination (i.e., convolution) of the B-spline of the same
degree over the same domain partition [19]. In general, the smoothness and the accuracy of
the spline approximation can be controlled by varying the order of the B-spline used.

In addition to having compact support, B-splines provide themaximal approximation order
over polynomial spaces. The approximation order of B-splines is defined as the asymptotic
behavior of the approximation error as the sampling distance h is refined [20]

dist( f − sh) = O(hn), (11)

where sh ∈ Sn denotes the spline approximation of any function f in the corresponding
Sobolev space and the distance in here is measured in the L p-norm (2 ≤ p ≤ ∞). Various

2 The first-order central B-spline is often denoted as b0(x), but herein the authors chose to follow the notation
used in the previously published definition of SIAC kernels throughout the article.
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Table 1 Approximation
properties of spline space formed
by d-dimensional B-spline of
order n + 1

Spline space Degree Approx. order Continuity

Sn+1 nd n + 1 Cn−1

properties of the spline space formed by shifts of a d-dimensional B-spline of order n + 1
have been summarized in Table 1. Note that a spline space in this context is formed by shifts
of a single B-spline. In the next section, we study how kernels can be constructed using a
linear combination of multiple B-splines.

The spline space formed by B-splines of order n + 1 contains polynomials up to degree
n [21,22]. Therefore, the approximation order of the spline space can also be studied in
terms of its lower-order polynomial space reproduction property [23]. The choice of spline
coefficients plays a major role in attaining the best spline approximation when approximating
an arbitrary function in the spline space. A proper choice of spline coefficients ensures
the exact reproduction of polynomials up to the degree that spline space can afford. An
improper choice of spline coefficients (such as using the discrete function values as the
spline coefficients) can result in degradation of the approximation error from the best that
can be offered by spline approximation (often referred to as over-smoothing artifact) [24,
Proposition 2.10]. Computation of proper spline coefficients for spline approximation has
been studied in the approximation theory literature through a pre-filtering scheme called
quasi-interpolation [21, Chapter III].

2.3 Introduction to Quasi-Interpolation

Quasi-interpolation provides an elegant formulation to convert discrete function values of f
into spline coefficients in order to provide its best representation (i.e., approximation) in a
spline space. Considering a sufficiently smooth function f (x) and its representation in terms
of a Taylor series expansion,

f (x) = f (0) + Df (0)x + · · · + Dn f (0)xn + O(xn+1), (12)

a spline-based quasi-interpolation of f (x) using a B-spline of order (n + 1) ensures the
reproduction of the first n + 1 terms of its Taylor series expansion which translate into the
best approximation of f (x) in P

n . Finding spline coefficients using quasi-interpolation is
often carried out by designing a linear functional λ to write the spline approximation of f
as [21, III.13]

Qλ f (x) =
∑
γ∈Z

λ f (· + γ )︸ ︷︷ ︸
cγ

bn+1(x − γ ), (13)

where Qλ f (x) represents the quasi-interpolant of f (x) (or spline approximation of f (x)
with quasi-interpolation) and cγ denotes the spline coefficients in Eq. 10. In cases where f
is a low-order polynomial, the spline-based quasi-interpolation exactly reproduces f , that is
Qλ f (x) = f (x) for f (x) ∈ P

n . Polynomial reproduction guarantees optimal asymptotic
behavior of the approximation error using B-splines [21,25] and their higher dimensional
counterparts [26,27]. Construction of such a linear functional for quasi-interpolation lends
itself to the Fourier analysis of B-splines’ (semi-discrete) convolution with polynomials.

The following lemma summarizes the results concerning the B-spline mapping in poly-
nomial spaces that plays the main role in derivation of λ (and quasi-interpolation).

123



J Sci Comput (2016) 67:237–261 243

Lemma 1 Denote the polynomial space consisting of polynomials of degree less than or
equal to n as P

n . The (semi-discrete) convolution of a polynomial from this space with a
B-spline of order n + 1 provides a one-to-one and onto mapping, and is therefore invertible.

Interested readers should consult [21, Proposition 6] for the proof and the discussion of this
result in a general setting. We only provide a summary of this result to study the mapping of
polynomials under (univariate) B-spline convolution while the results can easily be extended
to higher dimensions using tensor products. The semi-discrete convolution of a normalized
monomial of degree p ≤ n with B-splines of order n + 1 results in a polynomial of the same
order. However, the resultant polynomial is often not equal to �x�p unless n = 0, 1. For
instance, the following summarizes the results of the convolution of quadratic B-spline with
normalized monomials (up to degree 2)

b3(x) ∗| �x�0 = 1,

b3(x) ∗| �x�1 = x,

b3(x) ∗| �x�2 = �x�2 + 1

8
.

(14)

While, this example demonstrates that convolution of B-spline of order n+1with �x�p where
p ≤ n does not result in the reproduction of the original function, from Lemma 1, it is easy
to conclude that for p ≤ n there exists a polynomial gp(x) such that

bn+1(x) ∗| gp(x) = �x�p, gp(x) =
∑
γ≤p

βγ �x�p−γ , p ≤ n. (15)

Therefore, in order to reproduce �x�p using a B-spline of order n+1 where p ≤ n, one needs
to use discrete values of gp(x) instead of discrete values of �x�p . gp(x) is not an arbitrary
polynomial (see Lemma 1) and can be uniquely specified (for any order) in terms of the
coefficients βγ efficiently. The following lemma fully specifies gp(x) in this context.

Lemma 2 The polynomial coefficients βγ in Eq. (15) are fully specified by the Fourier
transform of the B-spline used in (15) as [21, III. 34],

βγ = Dγ iγ

b̂n+1(ω)

∣∣∣∣
ω=0

, (16)

where i denotes the unit imaginary number.

Using Lemma 2, βγ can be computed analytically. The interested reader can consult [21,
Chapter III] for the proof. The polynomial gp(x) along with Taylor series expansion can then
be used to define the linear functional, λ, to construct the spline coefficients from discrete
values of an arbitrary function as [21, III.13]

λ : f 
→
∑
γ≤n

gγ (0)(Dγ f )(0). (17)

The optimal approximation power and smoothness of the spline-approximants are among
the main reasons that make B-spline approximation attractive from a practical point of view.
As shown in Table 1, using higher-order B-splines as approximation kernels results in a
smoother approximation of the underlying function, while the exact interpolation of the sam-
pling points is only satisfied when lower-order B-splines like b1 or b2 are used (even with
deployment of quasi-interpolation). The exact interpolation of discrete function values using
higher-order B-splines (using semi-discrete convolution) has been studied as a cardinal spline
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interpolation problem [28,29]. In what follows, we briefly discuss the cardinal spline inter-
polation problem. Cardinal spline (filters) are examples of globally-supported interpolatory
kernels constructed based on a linear combination of B-splines to solve spline interpolation
problem.

2.4 Cardinal Spline Interpolation

The cardinal spline interpolation problem can be defined as follows: Consider a discrete
sequence of function values, { f (γ )}, that are equally spaced, where f (x) is a continuous
piecewise polynomial function of degree n with continuous derivatives up to order n−1. Find
an spline interpolant of this function in the spline space formed by translates of the (n+ 1)th
order B-spline. Without any loss of generality, we assume a unit length distance between the
discrete function values (and the B-spline translations). This problem is equivalent to finding
the spline coefficients cγ that satisfy

f (x) ≈ s(x) =
∑
γ∈Z

cγ bn+1(x − γ ), s(γ ) = f (γ ). (18)

The existence and uniqueness of such an interpolant in the spline space formed by translates
of (n + 1)th order B-splines has been discussed in [28]. The spline coefficients cγ in this
relation are obtained by pre-filtering the discrete function values, { f (γ )}, using the direct
B-spline filter {qnint (γ )} proposed in [29]:

s(x) =
∑
γ∈Z

( f ∗′ qnint )(γ )︸ ︷︷ ︸
cγ

bn+1(x − γ ), (19)

where ∗′ denotes discrete convolution introduced in Eq. 3. Equivalently, one can express the
spline interpolant s(x) in terms of the discrete function values as

s(x) =
∑
γ∈Z

f (γ )ηn+1(x − γ ), ηn+1(x) =
∑
γ∈Z

qnint (γ )bn+1(x − γ ), (20)

where ηn+1(x) denotes the cardinal spline of order n+1 (with a global support). For instance,
the cardinal cubic spline can be written as:

η4(x) = −6α

(1 − α2)

∑
γ∈Z

α|γ |b4(x − γ ), (21)

where α = √
3 − 2 [29].

It is important to note that the cubic cardinal spline presented attains a value of 1 at 0
(i.e., for the interpolation point) and value 0 on all other integer points (i.e., for the rest of
the discrete function values). This property guarantees the exact interpolation of the discrete
function values. From a theoretical point of view, the polynomial spline interpolant is com-
puted as an element of the spline space and hence the approximation error is still bounded
by the approximation power of the B-spline used. As demonstrated in Fig. 2, the support of
the cardinal spline (filter) tends to vanish rapidly. However, based on Eq. 20 cardinal splines
have global supports.
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Fig. 2 Cardinal cubic spline function

3 The B-Spline Based Kernels with Compact Support

In the previous section, we briefly reviewed approximation in spline spaces using a semi-
discrete convolution framework. In this section, we focus on studying B-spline-based kernels
that are often used in practice for filtering and generating smooth functions using continuous
convolution and study the theoretical connection between the two.An example of applications
that widely use B-spline-based filters is postprocessing of the DG approximation, which will
be covered in detail in Sect. 4.

Kernels with global support (e.g., cardinal spline) are computationally unattractive. There-
fore, in this section, we consider a general approach to define kernels with compact support
based on the linear combination of r + 1 central B-splines of order n + 1 as

Kr+1,n+1(x) =
r∑

γ=0

cγ bn+1(x − xγ ). (22)

For notational convenience, we express the kernel as Kr+1,n+1 throughout the article. It
is hoped that these kernels can balance computational cost with desirable approximation
properties. The design choices that should be considered to construct such a kernel are the
number of B-splines, the order of the B-splines used, the kernel coefficients, cγ , and the
B-spline centers, xγ .

Note that the extent of the support of the kernel is specified based on the order, the number
of B-splines used and the B-spline centers. Assuming x0 < x1 < · · · < xr the support of
the kernel Kr+1,n+1 is: [x0 − n+1

2 , xr + n+1
2 ] where n + 1 is the support of bn+1. Kernels

constructed through this approach have Cn−1 continuity. A common design criterion for
choosing the kernel coefficients is to impose constraints on the coefficients regarding the
behavior of the approximation error. For instance, one can choose to control the behavior of
the kernel in a specific approximation space (e.g., spline spaces or polynomial spaces) or to
impose exact interpolation of the sampling points to construct a unique kernel.
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Since Kr+1,n+1 is constructed using central B-splines, it is natural to study its properties
in the polynomial spaces. As discussed in detail in Sect. 2.3, spline approximation can be
better understood as the mapping B-spline (convolution) provides in low-order polynomial
spaces in terms of gp(x) defined in Eq. 15. Consequently, low-order polynomial reproduction
is a natural choice for controlling the approximation behavior of Kr+1,n+1. In order to fully
benefit from the approximation power of the B-spline used to construct Kr+1,n+1, the kernel
needs to reproduce polynomials up to degree n (i.e., up to the approximation power of the B-
spline) . However, special care must be taken to enforce this constraint based on the relation
between the number of coefficients (i.e., the degrees of freedom), r + 1 and the B-spline
order, n + 1. For r + 1 ≥ n, the following relation ensures that Kr+1,n+1 reproduces the
polynomials up to degree n,

Kr+1,n+1(x) ∗ �x�p = �x�p, 0 ≤ p ≤ n, (23)

where ∗ in this equation denotes a continuous convolution defined in Eq. 1. Designing kernels
with a polynomial reproduction property is not a new topic, and the kernel coefficient can
be numerically computed by solving the linear system of equations induced by Eq. 23.
However,we aim todemonstrate thatwell-established results in approximation theory provide
theoretical means to write the left hand side of Eq. 23 in closed form, which in turn results
in finding the kernel coefficients exactly. The following lemma demonstrates some results
regarding (n + 1)th order B-spline mapping over polynomial spaces.

Lemma 3 Convolution of the (n+1)th order B-spline for n ≥ 1with normalized monomials
of degree higher than or equal to n results in a polynomial of the same order of the form:

�x�p ∗ bn+1(x) = Gp(x) =
p∑

k=0

ak�x�k, ak = i p−k

(p − k)! · (
Dp−k b̂n+1(ω)

)∣∣∣∣
ω=0

, (24)

where i = √−1.

Remark It is known that B-spline (semi-discrete) convolution over lower order polynomial
spaces as discussed in Lemma 1 provides a one-to-one and onto mapping. Note that the
B-spline mapping for polynomial spaces whose degree is higher than the B-spline order is
only into (yet invertible). Moreover, B-spline mapping using continuous convolution and
semi-discrete convolution agrees on polynomial spaces [21, Chapter III].

Proof Convolution in the spatial domain corresponds to multiplication in the frequency
domain; hence, we can write the convolution of a generic normalized monomial of order p
with B-spline of order n + 1 in the Fourier domain as:

�x�p ∗ bn+1(x) ⇔ i pδ(p)(ω)

p! · b̂n+1(ω), (25)

Using the distributional definition of the delta function, δ(ω), we canwrite the right-hand-side
of the above relation as:

i pδ(p)(ω)

p! · b̂n+1(ω) = i p

p!
(
b̂n+1 ·φ)(p)

(ω)

∣∣∣∣
ω=0

=
p∑

k=0

((
i kφ(k)

k! · i
p−k b̂(p−k)

n+1

(p − k)!

)
(ω)

∣∣∣∣
ω=0

)
,

(26)
where φ(ω) in this relation represents a test function. Note that b̂(n+1) can be calculated
analytically and evaluated at ω = 0. Therefore, the equation above can be rewritten as a

123



J Sci Comput (2016) 67:237–261 247

linear combination of derivatives of the delta function whose coefficients only depends on
the evaluation values of the derivatives of Fourier transform of bn+1(x) at 0:

i p

p!
(
b̂n+1 · φ

)(p)
(ω)

∣∣∣∣
ω=0

=
p∑

k=0

〈
ak,

i kφ(k)(ω)

k!
∣∣∣∣
ω=0

〉
,

ak = i p−k

(p − k)! · (
Dp−k b̂n+1(ω)

)∣∣∣∣
ω=0

.

(27)

The right-hand-side in the inner product corresponds to the Fourier transformof a kth order
normalized monomial in the time domain (φ(ω) in this relation represents a test function).
Note that the Fourier transform of a B-spline is an even function and therefore, for odd
values of p − k we have: b̂(p−k)

n+1 (0) = 0. The Fourier analysis above shows that the result
of the convolution of a higher-order monomial with B-spline can be interpreted as another
polynomial of the form:

�x�p ∗ bn+1(x) =
p∑

k=0

ak�x�k . (28)

��
The following Theorem shows how one can use the B-spline mapping in the polynomial

space, using Lemma 3 to enforce polynomial reproduction up to the approximation power
of bn+1(x):

Theorem 1 Let r + 1 ≥ n, then the following relations guarantee that Kr+1,n+1 satisfies
the lower-order polynomial reproduction property for P

n as defined in Eq. (23):

(1)
r∑

γ=0

cγ = 1 (partition of unity)

(2)
r∑

γ=0

cγ

p∑
m=0

�−xγ �m
p−m∑
k=0

ap−k−m�x�k = �x�p, p = 0, . . . , n,

(29)

where ak is only dependent on theFourier transformof the constituentB-spline (seeLemma2).

Remark: The left-hand side of (2) in Eq. 29 denotes a linear combination of lower order
monomials up to degree p. Therefore, ak can be used to specify the relation between the
kernel coefficients analytically and define the kernel coefficients exactly in terms of rational
numbers.

Proof We start with rewriting (23) as

r∑
γ=0

cγ 〈bn+1(x − y − xγ ), y p〉 = x p, p = 0, . . . , n, (30)

We can replace the monomials in the relation above with normalized monomials: �x�p := x p

p!
and use the change of variable z = x − y − xγ to write

r∑
γ=0

cγ 〈bn+1(z), �x − z − xγ �p〉 = �x�p, p = 0, . . . , n. (31)
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Using the binomial expansion we have

�x − z − xγ �p = (x − z − xγ )p

p! =
p∑

k=0

�x − z�p−k�−xγ �k . (32)

Consequently, Eq. (30) simplifies to

r∑
γ=0

cγ

p∑
m=0

�−xγ �m〈bn+1(z), �x − z�p−m〉 = �x�p, p = 0, 1, . . . , n. (33)

For p ≤ n, B-splines of order n + 1 can reproduce polynomials up to degree n and hence,
we can write Eq. (33) in terms of Gp(x) (see Lemma 3) as:

r∑
γ=0

cγ

p∑
m=0

�−xγ �mG p−m(x) = �x�p, p = 0, . . . , n. (34)

For p = 0, we have G0(x) = 1 and hence, we can conclude that the kernel coefficients
satisfy:

r∑
γ=0

cγ = 1. (35)

This relation further shows that any order of Kr+1,n+1 introduced in Eq. (23) satisfies a
partition of unity property and completes the proof for (1). By plugging in the relation for
Gp(x) we have:

r∑
γ=0

cγ

p∑
m=0

�−xγ �m
p−m∑
k=0

ap−k−m�x�k = �x�p, p = 0, . . . , n. (36)

Note that the values of ak only depend on the B-spline order and not p. Therefore, it suffices
to consider p = n. ��
Depending on the values chosen for n and r , Theorem 1 may not fully specify the kernel
coefficients cγ . However, Eq. (36) will uniquely specify a family of kernels that are Cn−1

continuous and filtering using Kr+1,n+1 reproduces any function f (x) ∈ P
n . Moreover, all

the kernels in this family satisfy the partition of unity property. In this situation, additional
constraints on the behavior of the kernel are required in order to select a unique kernel
from this family. We first focus on symmetric kernels and later demonstrate how the results
generalize to a specific class of one-sided kernels as well [5,10].

In simulation science, polynomial reproduction is a desirable property, and correspond-
ingly is the property on which postprocessing kernels such as the symmetric SIAC kernels
have been constructed [2,11]. Considering r+1 ≥ n, let us consider polynomial reproduction
up to the number of B-splines (i.e., the number of kernel coefficients) as

Kr+1,n+1(x) ∗ �x�p = �x�p, p = 0, . . . , r. (37)

This equation uniquely specifies all r + 1 kernel coefficients in Eq. (22).
Theorem 1 and Lemma 3 can be used to study the polynomial reproduction property of

Kr+1,n+1 in order to uniquely specify the unknown kernel coefficients.
Without loss of generality, for the rest of the discussion in this section we consider r to

represent an even number and xγ = − r
2 + γ which means Kr+1,n+1 represents a symmetric

kernel where cm = cr−m and hence, the degrees of freedom (i.e., the number of unknown
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kernel coefficients) reduces to r
2 + 1. In Sect. 4, we prove how the results can be extended

for a class of filtering kernels with different choice for xγ and r .

Theorem 2 Let r
2 + 1 ≥ � n

2 � and xγ = − r
2 + γ . The kernel coefficients of the symmetric

kernel Kr+1,n+1 with polynomial reproduction property as introduced in Eq. (37) can then
be fully specified using the following relations:

(1)
r∑

γ=0

cγ = 1 (partition of unity)

(2) bn+1(x) ∗ �x�r + 2
r/2−1∑
γ=0

cγ

�r/2�∑
m=1

�xγ �2m
(
bn+1(x) ∗ �x�r−2m

)
= �x�r .

(38)

Proof Following the proof provided for Theorem 1, we can rewrite the polynomial repro-
duction property of the kernel presented in Eq. (37) in terms of B-spline convolutions as

r∑
γ=0

cγ

p∑
m=0

�−xγ �m
(
bn+1(x) ∗ �x�p−m

)
= �x�p, p = n, . . . , r (39)

implying

r∑
γ=0

cγ

(
bn+1(x) ∗ �x�p

)
+

r∑
γ=0

cγ

p∑
m=1

�−xγ �m
(
bn+1(x) ∗ �x�p−m

)
= �x�p. (40)

Taking p = 0, (1) is trivial. Note that equivalently one can use Theorem 1 to prove (1). Due
to the symmetry of the kernel, the kernel coefficients cγ and the B-spline centers, xγ are
symmetric around r

2 , therefore, we can further simplify the relation

r∑
γ=0

cγ

(
bn+1(x) ∗ �x�p

)
+

r/2−1∑
γ=0

cγ

p∑
m=1

(−1)m�xγ �m
(
bn+1(x) ∗ �x�p−m

)

+
r∑

γ=r/2+1

cγ

p∑
m=1

(−1)m�xγ �m
(
bn+1(x) ∗ �x�p−m

)

+ cr/2

p∑
m=1

(−1)m�0�m
(
bn+1(x) ∗ �x�p−m

)
= �x�p, p = 0, . . . , r.

(41)

Using (1) and symmetry, we can rewrite the relation above for p = n, . . . , r as

bn+1(x) ∗ �x�p + 2
r/2−1∑
γ=0

cγ

�p/2�∑
m=1

�xγ �2m
(
bn+1(x) ∗ �x�p−2m

)
= �x�p. (42)

The B-spline convolutions in the relation above can be further simplified using ak (see
Theorem 1 and Lemma 3). Similar to the proof provided for Theorem 1, it suffices to consider
p = r . The Fourier transform of B-spline is an even function and hence, ak = 0 for k =
2m + 1. Therefore, the relation above results in exactly r

2 + 1 equations (in terms of ak)
which will uniquely specify the r

2 + 1 kernel coefficients. ��
For the rest of the discussion in this section, we will focus on specific symmetric kernels that
reproduce polynomials up to degree r :
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Table 2 Linear system of equations constructed using Theorem 2 in order to compute the kernel coefficients
of K 2n+1,n+2 and K 2n+1,n

K 2n+1,n K 2n+1,n+2

n = 2 n = 2⎧⎪⎨
⎪⎩
c2 + 2c1 + 2c0 = 1

c1 + 4c0 = −1
12

c1 + 10c0 = 1−60

⎧⎪⎨
⎪⎩
c2 + 2c1 + 2c0 = 1

c1 + 4c0 = −1
6

c1 + 8c0 = 1−20

c0 = c4, c1 = c3 c0 = c4, c1 = c3
n = 3 n = 3⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c3 + 2c2 + 2c1 + 2c0 = 1

c2 + 4c1 + 9c0 = −1
8

5c2 + 44c1 + 189c0 = −13
80

23c2 + 428c1 + 3375c0 = −41
168

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c3 + 2c2 + 2c1 + 2c0 = 1

c2 + 4c1 + 9c0 = −5
24

7c2 + 52c1 + 207c0 = −23
48

77c2 + 1028c1 + 6933c0 = −1135
504

c2 = c4, c1 = c5, c0 = c6 c2 = c4, c1 = c5, c0 = c6

Table 3 Approximation
properties of K 2n+1,n and
K 2n+1,n+2 for n = 2, 3

Support Continuity Polynom. reprod.

k2n+1,n(x) 3n Cn−2
P
2n

k2n+1,n+2(x) 3n + 2 Cn
P
2n

1. In simulation sciences, K 2n+1,n+1 (i.e., r = 2n) has been studied in order to construct a
class of postprocessing kernels which will be discussed in detail in Sect. 4.

2. Motivated by (1) and for illustration purposes, we briefly introduce two new kernels,
namely: K 2n+1,n+2 and K 2n+1,n for n = 2, 3. We study their superconvergence prop-
erties for postprocessing of the DG approximation of linear hyperbolic equations in the
next section.

Table 2 summarizes the linear system of equations used to compute kernel coefficients for
n = 2, 3 for both K 2n+1,n+2 and K 2n+1,n usingTheorem2. Furthermore, Table 3 summarizes
their approximation properties and Fig. 3 demonstrates these kernels.

To conclude this section, we remark that while we have only demonstrated our results for
the univariate case, they easily extend to higher dimensions using tensor products. Moreover,
while Eq. (22) defines a specific class of kernels with a specific target application in mind, our
approach can be generalized to other classes of kernels, based on specific application require-
ments; for example, one could generate combinations of B-splines that exactly interpolate
function samples. Such generalizations are beyond the scope of this article.

4 Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering

Wenowprovide a brief introduction to the symmetric andone-sidedSIACkernels as examples
of compactly-supported filters designed based on a linear combination ofB-splines. The com-
pact support of the SIAC kernel along with its superconvergence properties in approximating
the DG solutions is one of the main reasons for its popularity in simulation science [2,13,30].
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Fig. 3 Kernels introduced in Eq. (37) for specific choices of n and r

We first focus on the symmetric SIAC kernel and then show how results from the previous
section also generalize to the one-sided SIAC kernel.

4.1 Symmetric SIAC Kernel

The symmetric SIAC kernels form a class of filtering techniques for postprocessing of DG
solutions. For a DG approximation of order k + 1, the symmetric SIAC kernel is constructed
using a linear combination of 2k + 1 symmetric B-splines of order k + 1,

K (2k+1,k+1)(x) =
2k∑

γ=0

cγ bk+1(x + k − γ ), r = 2k (43)

where cγ denotes the kernel coefficients. The kernel coefficients cγ are fully specified by
enforcing the polynomial reproduction constraint in Theorem 2.

The finite number of B-splines used in the construction of the symmetric SIAC kernel
results in the compactness of its support: [− 3k+1

2 , 3k+1
2 ].

Since a component of the error of the DG method converges with order 2k + 1 in the
L2 norm, the SIAC kernel is constructed with 2k + 1 B-splines and forced to reproduce
polynomials up to degree 2k [2]. SIAC filtering increases the inter-element continuity up to
Ck−1 and raises the convergence rate of the DG solution from order k + 1 to order 2k + 1 for
linear hyperbolic equations solved over a uniformmesh [2]. Convergence properties of SIAC
filtering and its effectiveness have been widely studied in the literature [2–4,11,31,32].

While Theorem 2 uniquely specifies all the kernel coefficients of the SIAC kernel of order
k, conventionally the computation of the kernel coefficients is accomplished by inverting a
matrix-vector system with a large condition number [13]. By revisiting the symmetric SIAC
kernel construction and using the results from Sect. 3, we introduce a new formulation of
the symmetric SIAC kernel construction that entails a direct and exact computation of the
kernel coefficients in terms of rational numbers. This new formulation also results in the
introduction of a family of approximation kernels from which the symmetric SIAC kernel is
a specific member with desirable and optimal superconvergence properties. In general, we
can represent the family of SIACkernels by K (r+1,n+1) as in Eq. 22.We can better understand
the polynomial reproduction of the symmetric SIAC kernel up to the approximation power
of bn+1, (n = k) through an analysis similar to the one presented in Theorem 1. Table 4
summarizes such analysis for k = 1, 2, 3.Note that these equations are the result ofwriting the
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Table 4 Linear system of equations adopted from Theorem 1 for p = 0, . . . , k

k = 1 k = 2 k = 3

c1 + 2c0 = 1

{
c2 + 2c1 + 2c0 = 1
c1 + 4c0 = −1

8

{
c3 + 2c2 + 2c1 + 2c0 = 1
c2 + 4c1 + 9c0 = −1

6

Table 5 Polynomial reproduction analysis of SIAC filer using Theorem 2 for k = 1, 2, 3

k = 1 k = 2 k = 3

{
c1 + 2c0 = 1
c0 = −1

12

⎧⎪⎨
⎪⎩
c2 + 2c1 + 2c0 = 1
c1 + 4c0 = −1

8

5c1 + 44c0 = −312
1920

⎧⎪⎪⎨
⎪⎪⎩

c3 + 2c2 + 2c1 + 2c0 = 1
c2 + 4c1 + 9c0 = −1

6
6c2 + 48c1 + 198c0 = −3

10
21c2 + 324c1 + 2349c0 = −12240

30240{
c1 = 7

6
c0 = c2 = −1

12

⎧⎪⎨
⎪⎩
c2 = 437

320
c0 = c4 = −97

480

c1 = c3 = 37
1920

⎧⎨
⎩
c3 = 12223

7560 c2 = c4 = −919
2520

c1 = c5 = 311
5040 c0 = c6 = −41

7560

continuous convolution of SIACkernelwith polynomials in closed form rather than numerical
evaluation of the convolution. Theorem 1 ensures the full deployment of the approximation
power of bn+1 (n = k) along with enforcing the partition of unity as an essential requirement
to construct a valid kernel. As Table 4 shows, the linear system of equations adopted from
Theorem 1 is an under-determined system which represents a family of symmetric kernels. It
is important to note that all the kernels in this family have compact support while providing
Ck−1 continuity. The size of the support varies with B-spline order, n + 1 = k + 1, and the
number of B-splines, r + 1 = 2k + 1.

The symmetric SIAC kernel as one of themembers of this family attains superconvergence
order of 2k + 1 through additional polynomial reproduction constraint. Notice that the SIAC
kernel is capable of reproducing polynomials up to degree r = 2k. Theorem 2 can be directly
used to exactly specify the kernel coefficients for symmetric SIACkernel by a simpleGaussian
elimination,without any need to numerically solve the system.Table 5 summarizes the system
and rational coefficients for the first three orders of the symmetric SIAC kernel.

Before we demonstrate how the new formulation of the symmetric SIAC kernel can be
extended for one-sided SIAC kernel, we present a theorem concerning the superconvergence
properties of symmetric kernels of type K (r+1,n+1) introduced in Eq. 37 for DG approx-
imation of linear hyperbolic equations. The following theorem specifically states how the
error of the filtered DG solution (using K (r+1,n+1)) depends upon the number of B-splines,
r + 1, and the B-spline order, n + 1. This provides a wider class of superconvergent filtered
solutions for the DG approximation.

Theorem 3 Let uh(x) denote the DG approximation of order k + 1 to the true solution
u(x) ∈ Hs (Hilbert space), which solves a linear hyperbolic equation (with upwind flux
and periodic boundary conditions). Let K (r+1,n+1) denote the class of symmetric kernels of
the form introduced in Eq. (37). For n ≥ 1, and sufficiently smooth u(x) and based on the
relation between r and n, we have the following relation for the approximation error bound
of the postprocessing of uh(x) using K (r+1,n+1) at T > 0:

‖u(x) − (K (r+1,n+1)
h ∗ uh)(x)‖0,Ω ≤ Chs (44)
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where K (r+1,n+1)
h (·) = 1

h K
(r+1,n+1)
h ( ·

h ) and s = min{r + 1, k + n + 2, 2k + 1} [2, Theo-
rem 3.3].

Remark: Here we summarize the important points regarding the relation between the number
and order of B-splines to the superconvergence error analysis. In order to demonstrate this
relation, we first decompose the left-hand-side of Eq. 44 as

‖u(x) − (K (r+1,n+1)
h ∗ uh)(x)‖0,Ω

≤ ‖ u(x) − (K (r+1,n+1)
h ∗ u)(x)︸ ︷︷ ︸
filter error

‖0,Ω + ‖ (K (r+1,n+1)
h ∗ (u − uh))(x)︸ ︷︷ ︸

approximation error

‖0,Ω . (45)

The first term is entirely dependent on the polynomial reproduction property (not the B-spline
order) and hence, this term can be bounded by defining s = r + 1. The error bound for the
second term (i.e., approximation error) in Eq. (45) depends on the order of B-spline used to
construct K (r+1,n+1). For n ≥ k, the negative order norm property (see Eq. 7) can be used
to bound the error using s = 2k + 1. On the other hand, (uh ∗ K (r+1,n+1)

h )(x) ∈ P
k+n+1 and

therefore, s = k + n + 2. Therefore, the error of the postprocessed solution can be bounded
by defining s = min{r + 1, k + n + 2, 2k + 1}.
4.2 One-Sided SIAC Kernel

Due to the symmetric nature of the previously described SIAC kernel around the evaluation
point, its utility for postprocessing near the boundaries or shocks is limited. In order to solve
this problem, one-sided SIAC kernels have been introduced [5,10] of the form

K (r+1,n+1)(x̄) =
r∑

γ=0

cγ bn+1(x̄ − xγ ) (46)

where cγ denotes the kernel coefficient, bn+1(x) denotes the symmetric B-spline of order
n + 1, x̄ denotes the evaluation point and xγ represents the B-splines centers defined as

xγ = − r

2
+ γ + ζ(x̄), γ = 0, . . . , r. (47)

ζ(x̄) in this relation represents a shift function as defined in [5,10]. Note that for the one-sided
kernel, the kernel coefficients depend on the evaluation point (unlike the symmetric SIAC
kernel). Therefore, for the rest of the discussionweuse cγ (x̄) to denote the position-dependent
kernel coefficients. Similar to symmetric SIAC kernel, the polynomial reproduction up to
degree r uniquely specifies all the kernel coefficients for the one-sided SIAC kernel. The
following theorem demonstrates how the results from Sect. 3 can be used in order to compute
the kernel coefficients for one-sided SIAC kernel.

Theorem 4 The kernel coefficients of the one-sided SIAC kernel introduced in Eq. 46 with
polynomial reproduction property for polynomials of degree up to r can be uniquely specified
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using the following relations:

(1)
r∑

γ=0

cγ (x̄) = 1

(2)
r∑

γ=0

cγ (x̄)
p∑

m=0

�−xγ �mG p−m(x̄) = �x̄�p, p = 0, . . . , n

(3)
r∑

γ=0

cγ (x̄)
p∑

m=0

�−xγ �m
(
bn+1(x̄) ∗ �x̄�p−m

)
= �x̄�p, p = 0, . . . , r.

(48)

Proof The polynomial reproduction property of the one-sided SIAC kernel can be rewritten
in terms of a B-spline convolution (similar to the proof provided for Theorem 1) as

r∑
γ=0

cγ (x̄)
p∑

m=0

�−xγ �m
(
bn+1(x̄) ∗ �x̄�p−m

)
= �x̄�p, p = 0, . . . , r. (49)

Note that the kernel coefficients cγ (x̄) are dependent on the evaluation points, however, they
are not part of the convolution. Therefore, the proof follows from Theorem 1 (for p ≤ n)
and similar to Theorem 2 (for n < p < r ). ��

5 Numerical Results

In this section, we compare and contrast various choices of kernels we discussed in the pre-
vious section in terms of their approximation error behavior. The first set of results provide
some insight about how function approximation using various choices of kernels would differ
from one another for a simple 1D example using semi-discrete convolution. We have gener-
ated a set of uniformly spaced sample points and approximated the underlying 1D function
using various choices of quadratic kernels, namely: quadratic B-spline using proper quasi-
interpolation, symmetric SIAC kernel and cardinal spline function. Figure 4 demonstrates
the approximated functions in blue curves. Note that compared to quadratic B-spline approx-
imation, both SIAC filtering and cardinal spline interpolation provide a better approximation
for the sampling points, while the cardinal spline provides exact interpolation of the sampling
points.

Our second set of numerical results aims to study the effect of using various choices of the
kernels introduced in postprocessing the DG approximation of a differential equation using
quadrature approximation [33] of the continuous convolution in 2D. Note that the kernels
introduced in Sect. 3 can all be easily extended to 2D using tensor products. For this example,
we used the DG approximation of the linear transport equation at the final time as reported
in [31]:

ut + ∇ · u = 0, u(x, 0) = sin(x + y), x ∈ Ω = [0, 2π]2. (50)

A DG approximation of the equation above consists of a discontinuous approximate solution
uh over a spatial discretization of the domain, Ωh . For each element eh ∈ Ωh , we seek
uh ∈ Vh where Vh denotes the space of piecewise polynomials of degree k. Considering a
test function vh ∈ Vh and the weak formulation of the transport equation above, for each
element eh we have∫

eh
(uh)tv dx −

∫
eh
auh · ∇v dx +

∫
Γeh

âuh · n ds = 0, (51)
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Fig. 4 The effect of using various kernels in the reconstruction of a 1D random function using uniformly
spaced sampling points and semi-discrete convolution. The function approximation carried out using various
kernels namely: symmetric SIAC kernel for n = 2, cardinal quadratic spline and quadratic B-spline along
with proper quasi-interpolation. The blue curve in the figure represents the approximated function and the
function sample points are shown as red points (Color figure online)

where n denotes the unit outward normal, Γeh denotes the boundary of element eh and âhh
is the numerical flux. One can find uh ∈ Vh such that the above equation is satisfied for all
test functions in Vh . For the purpose of the current manuscript, we consider an upwind flux
to find uh and used Nektar++ software package [34] in order to find the DG approximation.

The postprocessing of the DG solution uh(x) at the final time T has been carried out
through the quadrature approximation procedure proposed in [33]. The approximation error
for all the examples is defined as the difference between the postprocessed DG solution
and the true solution: Kh(x) ∗ uh(x)− u(x) where Kh(x) represents a generic scaled kernel,
uh(x) the DG solution and u(x) the true solution of Eq. (50). For all the experiments, we have
chosen 80 sampling points over each mesh element to compute the approximation errors.

For cardinal spline interpolation of the DG solution using continuous convolution, special
care is required in the interpretation of the results because the infinite support of the cardinal
spline filter has been truncated for evaluation. We have used 17 B-splines to form a truncated
version of the quadratic cardinal spline filter. As Table 6 demonstrates postprocessing of the
DG approximation using a cardinal B-spline filter only increases the order of convergence
of the postprocessed solution by one.
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Table 6 L2 and L∞ norm of the approximation error using cardinal quadratic spline kernel

Quadrilateral meshes

Mesh DG Cardinal B-spline

L2 error Order L∞ error Order L2 error Order L∞ error Order

P
2

202 9.75e−05 – 5.09e−04 – 5.1e−05 – 7.22e−05 –

402 1.22e−05 2.99 6.43e−05 2.98 3.06e−06 4.05 4.33e−06 4.05

802 1.52e−06 3.00 8.06e−06 2.99 1.41e−07 4.43 1.99e−07 4.44

1602 1.90e−07 3.00 1.01e−06 2.99 1.22e−08 3.53 1.73e−08 3.52

Table 7 presents the approximation errors corresponding to various choices of kernels for
different resolutions of a quadrilateral mesh. In addition, Fig. 5 shows the contour plot of the
approximation error over the whole domain in logarithmic scale. Note that all the kernels
reported in this table use 2n + 1 B-splines while the order of B-spline differs in each case.
The numerical values in Table 7 verifies the 2k + 1 order of convergence of symmetric SIAC
filter (as reported in [31]) and kernels constructed using B-spline orders beyond n + 1 as
proved in Theorem 3. While the numerical results demonstrate better order of convergence
for kernels with lower orders of B-splines in some cases, the contour plots in Fig. 5 clearly
show the oscillatory nature of the approximation error compared to SIAC kernel and kernels
constructed using higher-order B-splines. Notice that the order of convergence has dropped
in case of quadratic polynomial for K 2n+1,n−1 and in case of cubic polynomial at resolution
1602. It is worth noting that all the experiments have been carried out up to basic floating
point precision. For higher resolutions and higher-order polynomial orders (for instance in
our case, quartic polynomial at resolution 1602), extended precision is required in order to
achieve the order of accuracy expected.

Using results summarized in Table 3, it is easy to conclude that kernels constructed using
B-splines of order less than n+1 provides slightly higher computational efficiency compared
to symmetric SIAC kernel of the same order. In contrast, kernels constructed using B-splines
of order higher than n + 1 increases the smoothness of the the postprocessed results with
a slightly higher computational cost. These properties can be used to decide which type of
kernel to be used in the application based on the tradeoff required between computational
efficiency, smoothness and superconvergence considerations.

6 Conclusion

In this paper we presented and established the theoretical results that demonstrate the connec-
tion between symmetric SIAC kernel construction and approximation theory. Specifically,
we derived a closed formulation for the convolution of SIAC kernels with polynomials that
leads to a direct and exact scheme to solve for the kernel coefficients rather than through
numerical computation. Moreover, studying the symmetric SIAC kernel in this framework,
introduces a family of kernels from which symmetric SIAC kernel satisfies 2n + 1 order of
superconvergence property. The introduction of this family of kernels to the community can
be helpful to design application-specific kernels from this family with specific design criteria.
For demonstration, we have studied variations of the symmetric SIAC kernel where the order
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Fig. 5 Contour plot of the approximation error in a logarithmic scale. a SIAC kernel (n = 2). b Cardinal
quadratic interpolation. c K 5,2. d K 5,4

of the B-spline used to construct the symmetric SIAC kernel was changed. We provided
theoretical results demonstrating that the order 2n + 1 superconvergence property for linear
hyperbolic equations can be preserved when the order of B-splines is higher than the order
used in the original symmetric SIAC kernel. Studying other variations of the symmetric SIAC
kernel in the family introduced along with their superconvergence properties is an interesting
open question which can provide a potential direction for future research. Another interesting
line of future research is to investigate the postprocessing of DG solutions with discontinuity
and shocks.
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